1
|
Wang H, Liu X, Liu Y, Yang C, Ye Y, Yu X, Sheng N, Zhang S, Mao B, Ma P. The E3 ubiquitin ligase RNF220 maintains hindbrain Hox expression patterns through regulation of WDR5 stability. eLife 2024; 13:RP94657. [PMID: 39526890 PMCID: PMC11554307 DOI: 10.7554/elife.94657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The spatial and temporal linear expression of Hox genes establishes a regional Hox code, which is crucial for the antero-posterior (A-P) patterning, segmentation, and neuronal circuit development of the hindbrain. RNF220, an E3 ubiquitin ligase, is widely involved in neural development via targeting of multiple substrates. Here, we found that the expression of Hox genes in the pons was markedly up-regulated at the late developmental stage (post-embryonic day E15.5) in Rnf220-/- and Rnf220+/- mouse embryos. Single-nucleus RNA sequencing (RNA-seq) analysis revealed different Hox de-repression profiles in different groups of neurons, including the pontine nuclei (PN). The Hox pattern was disrupted and the neural circuits were affected in the PN of Rnf220+/- mice. We showed that this phenomenon was mediated by WDR5, a key component of the TrxG complex, which can be polyubiquitinated and degraded by RNF220. Intrauterine injection of WDR5 inhibitor (WDR5-IN-4) and genetic ablation of Wdr5 in Rnf220+/- mice largely recovered the de-repressed Hox expression pattern in the hindbrain. In P19 embryonal carcinoma cells, the retinoic acid-induced Hox expression was further stimulated by Rnf220 knockdown, which can also be rescued by Wdr5 knockdown. In short, our data suggest a new role of RNF220/WDR5 in Hox pattern maintenance and pons development in mice.
Collapse
Affiliation(s)
- Huishan Wang
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Xingyan Liu
- Academy of Mathematics and Systems Science, Chinese Academy of ScienceBeijingChina
- School of Mathematical Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Yamin Liu
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesKunmingChina
| | - Chencheng Yang
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesKunmingChina
| | - Yaxin Ye
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesKunmingChina
| | - Xiaomei Yu
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Nengyin Sheng
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Shihua Zhang
- Academy of Mathematics and Systems Science, Chinese Academy of ScienceBeijingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of SciencesHangzhouChina
| | - Bingyu Mao
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
| | - Pengcheng Ma
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| |
Collapse
|
2
|
Paolillo VK, Ochs ME, Lundquist EA. MAB-5/Hox regulates the Q neuroblast transcriptome, including cwn-1/Wnt, to mediate posterior migration in Caenorhabditis elegans. Genetics 2024; 227:iyae045. [PMID: 38652773 PMCID: PMC11151924 DOI: 10.1093/genetics/iyae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Neurogenesis involves the precisely coordinated action of genetic programs controlling large-scale neuronal fate specification down to terminal events of neuronal differentiation. The Q neuroblasts in Caenorhabditis elegans, QL on the left and QR on the right, divide, differentiate, and migrate in a similar pattern to produce three neurons each. However, QL on the left migrates posteriorly, and QR on the right migrates anteriorly. The MAB-5/Hox transcription factor is necessary and sufficient for posterior Q lineage migration and is normally expressed only in the QL lineage. To define genes controlled by MAB-5 in the Q cells, fluorescence-activated cell sorting was utilized to isolate populations of Q cells at a time in early L1 larvae when MAB-5 first becomes active. Sorted Q cells from wild-type, mab-5 loss-of-function (lof), and mab-5 gain-of-function (gof) mutants were subject to RNA-seq and differential expression analysis. Genes enriched in Q cells included those involved in cell division, DNA replication, and DNA repair, consist with the neuroblast stem cell identity of the Q cells at this stage. Genes affected by mab-5 included those involved in neurogenesis, neural development, and interaction with the extracellular matrix. cwn-1, which encodes a Wnt signaling molecule, showed a paired response to mab-5 in the Q cells: cwn-1 expression was reduced in mab-5(lof) and increased in mab-5(gof), suggesting that MAB-5 is required for cwn-1 expression in Q cells. MAB-5 is required to prevent anterior migration of the Q lineage while it transcriptionally reprograms the Q lineage for posterior migration. Functional genetic analysis revealed that CWN-1 is required downstream of MAB-5 to inhibit anterior migration of the QL lineage, likely in parallel to EGL-20/Wnt in a noncanonical Wnt pathway. In sum, work here describes a Q cell transcriptome, and a set of genes regulated by MAB-5 in the QL lineage. One of these genes, cwn-1, acts downstream of mab-5 in QL migration, indicating that this gene set includes other genes utilized by MAB-5 to facilitate posterior neuroblast migration.
Collapse
Affiliation(s)
- Vitoria K Paolillo
- Department of Molecular Biosciences, KU Center for Genomics, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Matthew E Ochs
- Department of Molecular Biosciences, KU Center for Genomics, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Erik A Lundquist
- Department of Molecular Biosciences, KU Center for Genomics, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| |
Collapse
|
3
|
Paolillo VK, Ochs ME, Lundquist EA. MAB-5/Hox regulates the Q neuroblast transcriptome, including cwn-1/Wnt, to mediate posterior migration in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566461. [PMID: 37986999 PMCID: PMC10659417 DOI: 10.1101/2023.11.09.566461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Neurogenesis involves the precisely-coordinated action of genetic programs controlling large-scale neuronal fate specification down to terminal events of neuronal differentiation. The Q neuroblasts in C. elegans, QL on the left and QR on the right, divide, differentiate, and migrate in a similar pattern to produce three neurons each. However, QL on the left migrates posteriorly, and QR on the right migrates anteriorly. The MAB-5/Hox transcription factor is necessary and sufficient for posterior Q lineage migration, and is normally expressed only in the QL lineage. To define genes controlled by MAB-5 in the Q cells, fluorescence-activated cell sorting was utilized to isolate populations of Q cells at a time in early L1 larvae when MAB-5 first becomes active. Sorted Q cells from wild-type, mab-5 loss-of-function (lof), and mab-5 gain-of-function (gof) mutants were subject to RNA-seq and differential expression analysis. Genes enriched in Q cells included those involved in cell division, DNA replication, and DNA repair, consist with the neuroblast stem cell identity of the Q cells at this stage. Genes affected by mab-5 included those involved in neurogenesis, neural development, and interaction with the extracellular matrix. cwn-1, which encodes a Wnt signaling molecule, showed a paired response to mab-5 in the Q cells: cwn-1 expression was reduced in mab-5(lof) and increased in mab-5(gof), suggesting that MAB-5 is required for cwn-1 expression in Q cells. MAB-5 is required to prevent anterior migration of the Q lineage while it transcriptionally reprograms the Q lineage for posterior migration. Functional genetic analysis revealed that CWN-1 is required downstream of MAB-5 to inhibit anterior migration of the QL lineage, likely in parallel to EGL-20/Wnt in a non-canonical Wnt pathway. In sum, work here describes a Q cell transcriptome, and a set of genes regulated by MAB-5 in the QL lineage. One of these genes, cwn-1, acts downstream of mab-5 in QL migration, indicating that this gene set includes other genes utilized by MAB-5 to facilitate posterior neuroblast migration.
Collapse
Affiliation(s)
- Vitoria K Paolillo
- KU Center for Genomics, Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Matthew E Ochs
- KU Center for Genomics, Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Erik A Lundquist
- KU Center for Genomics, Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| |
Collapse
|
4
|
Huang M, Lu L, Lin C, Zheng Y, Pan X, Wang S, Chen S, Zhang Y, Liu C, Ge G, Zeng YA, Chen J. LRP12 is an endogenous transmembrane inactivator of α4 integrins. Cell Rep 2023; 42:112667. [PMID: 37330909 DOI: 10.1016/j.celrep.2023.112667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
Dynamic regulation of integrin activation and inactivation is critical for precisely controlled cell adhesion and migration in physiological and pathological processes. The molecular basis for integrin activation has been intensively studied; however, the understanding of integrin inactivation is still limited. Here, we identify LRP12 as an endogenous transmembrane inhibitor for α4 integrin activation. The LRP12 cytoplasmic domain directly binds to the integrin α4 cytoplasmic tail and inhibits talin binding to the β subunit, thus keeping integrin inactive. In migrating cells, LRP12-α4 interaction induces nascent adhesion (NA) turnover at the leading-edge protrusion. Knockdown of LRP12 leads to increased NAs and enhanced cell migration. Consistently, LRP12-deficient T cells show an enhanced homing capability in mice and lead to aggravated chronic colitis in a T cell-transfer colitis model. Altogether, LRP12 is a transmembrane inactivator for integrins that inhibits α4 integrin activation and controls cell migration by maintaining balanced NA dynamics.
Collapse
Affiliation(s)
- MengWen Huang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ling Lu
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China
| | - ChangDong Lin
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - YaJuan Zheng
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - XingChao Pan
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - ShiHui Wang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - ShiYang Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - YouHua Zhang
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China
| | - ChunYe Liu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - GaoXiang Ge
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - JianFeng Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
5
|
Cell polarity control by Wnt morphogens. Dev Biol 2022; 487:34-41. [DOI: 10.1016/j.ydbio.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023]
|
6
|
Feng W, Li Y, Kratsios P. Emerging Roles for Hox Proteins in the Last Steps of Neuronal Development in Worms, Flies, and Mice. Front Neurosci 2022; 15:801791. [PMID: 35185450 PMCID: PMC8855150 DOI: 10.3389/fnins.2021.801791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/31/2021] [Indexed: 12/28/2022] Open
Abstract
A remarkable diversity of cell types characterizes every animal nervous system. Previous studies provided important insights into how neurons commit to a particular fate, migrate to the right place and form precise axodendritic patterns. However, the mechanisms controlling later steps of neuronal development remain poorly understood. Hox proteins represent a conserved family of homeodomain transcription factors with well-established roles in anterior-posterior (A-P) patterning and the early steps of nervous system development, including progenitor cell specification, neuronal migration, cell survival, axon guidance and dendrite morphogenesis. This review highlights recent studies in Caenorhabditis elegans, Drosophila melanogaster and mice that suggest new roles for Hox proteins in processes occurring during later steps of neuronal development, such as synapse formation and acquisition of neuronal terminal identity features (e.g., expression of ion channels, neurotransmitter receptors, and neuropeptides). Moreover, we focus on exciting findings suggesting Hox proteins are required to maintain synaptic structures and neuronal terminal identity during post-embryonic life. Altogether, these studies, in three model systems, support the hypothesis that certain Hox proteins are continuously required, from early development throughout post-embryonic life, to build and maintain a functional nervous system, significantly expanding their functional repertoire beyond the control of early A-P patterning.
Collapse
Affiliation(s)
- Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
- University of Chicago Neuroscience Institute, Chicago, IL, United States
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, United States
| | - Yinan Li
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
- University of Chicago Neuroscience Institute, Chicago, IL, United States
- Committee on Neurobiology, University of Chicago, Chicago, IL, United States
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
- University of Chicago Neuroscience Institute, Chicago, IL, United States
| |
Collapse
|
7
|
Zheng C, Lee HMT, Pham K. Nervous system-wide analysis of Hox regulation of terminal neuronal fate specification in Caenorhabditis elegans. PLoS Genet 2022; 18:e1010092. [PMID: 35226663 PMCID: PMC8912897 DOI: 10.1371/journal.pgen.1010092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/10/2022] [Accepted: 02/12/2022] [Indexed: 12/01/2022] Open
Abstract
Hox genes encode evolutionarily conserved transcription factors that specify regional identities along the anterior-posterior (A-P) axis. Although some Hox genes are known to regulate the differentiation of certain neurons, to what extent Hox genes are involved in the terminal specification of the entire nervous system is unclear. Here, we systematically mapped the expression of all six Hox genes in C. elegans nervous system and found Hox expression in 97 (32%) of the 302 neurons in adult hermaphrodites. Our results are generally consistent with previous high-throughput expression mapping and single-cell transcriptomic studies. Detailed analysis of the fate markers for these neurons revealed that Hox genes regulate the differentiation of 29 (25%) of the 118 classes of C. elegans neurons. Hox genes not only regulate the specification of terminal neuronal fates through multiple mechanisms but also control subtype diversification along the A-P axis. The widespread involvement of Hox genes in neuronal differentiation indicates their roles in establishing complex nervous systems. The nervous system contains an extraordinary array of neuron types. How this neuronal diversity arises during development and what genes regulate the differentiation of each neuron type are among the major questions of neurobiology. Hox genes are a set of transcription factors highly conserved in the animal kingdom and are involved in setting up the body plan in the embryos. Hox genes are known to regulate the differentiation of some neurons, but their contribution to the overall development of a nervous system is unclear. In this study, we analyzed the activity of the Hox genes in the differentiation of the 302 neurons of the C. elegans nervous system in its entirety. We found that the six Hox genes are expressed in 32% of all neurons and five Hox genes regulate the differentiation of 25% of all neuron types through multiple mechanisms and act at various stages of cellular development. Thus, our results suggest that a small number of Hox genes could control the development of a significant portion of the nervous system. Given the conserved functions of Hox genes across species, we suspect that the increasing number of Hox genes may have allowed increased complexity in the nervous system in animal evolution.
Collapse
Affiliation(s)
- Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
- * E-mail:
| | - Ho Ming Terence Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Kenneth Pham
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| |
Collapse
|
8
|
Rella L, Fernandes Póvoa EE, Mars J, Ebbing ALP, Schoppink L, Betist MC, Korswagen HC. A switch from noncanonical to canonical Wnt signaling stops neuroblast migration through a Slt-Robo and RGA-9b/ARHGAP-dependent mechanism. Proc Natl Acad Sci U S A 2021; 118:e2013239118. [PMID: 33737394 PMCID: PMC8000201 DOI: 10.1073/pnas.2013239118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Members of the Wnt family of secreted glycoproteins regulate cell migration through distinct canonical and noncanonical signaling pathways. Studies of vertebrate development and disease have shown that these pathways can have opposing effects on cell migration, but the mechanism of this functional interplay is not known. In the nematode Caenorhabditis elegans, a switch from noncanonical to canonical Wnt signaling terminates the long-range migration of the QR neuroblast descendants, providing a tractable system to study this mechanism in vivo. Here, we show that noncanonical Wnt signaling acts through PIX-1/RhoGEF, while canonical signaling directly activates the Slt-Robo pathway component EVA-1/EVA1C and the Rho GTPase-activating protein RGA-9b/ARHGAP, which are required for migration inhibition. Our results support a model in which cross-talk between noncanonical and canonical Wnt signaling occurs through antagonistic regulation of the Rho GTPases that drive cell migration.
Collapse
Affiliation(s)
- Lorenzo Rella
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
| | - Euclides E Fernandes Póvoa
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
| | - Jonas Mars
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
| | - Annabel L P Ebbing
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
| | - Luc Schoppink
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
| | - Marco C Betist
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
| | - Hendrik C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands;
- Institute of Biodynamics and Biocomplexity, Developmental Biology, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
9
|
Jia R, Chai Y, Xie C, Liu G, Zhu Z, Huang K, Li W, Ou G. The spectrin-based membrane skeleton is asymmetric and remodels during neural development in C. elegans. J Cell Sci 2020; 133:jcs248583. [PMID: 32620698 DOI: 10.1242/jcs.248583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/25/2020] [Indexed: 01/22/2023] Open
Abstract
Perturbation of spectrin-based membrane mechanics causes hereditary elliptocytosis and spinocerebellar ataxia, but the underlying cellular basis of pathogenesis remains unclear. Here, we introduced conserved disease-associated spectrin mutations into the Caenorhabditis elegans genome and studied the contribution of spectrin to neuronal migration and dendrite formation in developing larvae. The loss of spectrin resulted in ectopic actin polymerization outside of the existing front and secondary membrane protrusions, leading to defective neuronal positioning and dendrite morphology in adult animals. Spectrin accumulated in the lateral region and rear of migrating neuroblasts and redistributes from the soma into the newly formed dendrites, indicating that the spectrin-based membrane skeleton is asymmetric and remodels to regulate actin assembly and cell shape during development. We affinity-purified spectrin from C. elegans and showed that its binding partner ankyrin functions with spectrin. Asymmetry and remodeling of the membrane skeleton might enable spatiotemporal modulation of membrane mechanics for distinct developmental events.
Collapse
Affiliation(s)
- Ru Jia
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Chao Xie
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Gai Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhiwen Zhu
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Li
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Spatial confinement of receptor activity by tyrosine phosphatase during directional cell migration. Proc Natl Acad Sci U S A 2020; 117:14270-14279. [PMID: 32513699 DOI: 10.1073/pnas.2003019117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Directional cell migration involves signaling cascades that stimulate actin assembly at the leading edge, and additional pathways must inhibit actin polymerization at the rear. During neuroblast migration in Caenorhabditis elegans, the transmembrane protein MIG-13/Lrp12 acts through the Arp2/3 nucleation-promoting factors WAVE and WASP to guide the anterior migration. Here we show that a tyrosine kinase, SRC-1, directly phosphorylates MIG-13 and promotes its activity on actin assembly at the leading edge. In GFP knockin animals, SRC-1 and MIG-13 distribute along the entire plasma membrane of migrating cells. We reveal that a receptor-like tyrosine phosphatase, PTP-3, maintains the F-actin polarity during neuroblast migration. Recombinant PTP-3 dephosphorylates SRC-1-dependent MIG-13 phosphorylation in vitro. Importantly, the endogenous PTP-3 accumulates at the rear of the migrating neuroblast, and its extracellular domain is essential for directional cell migration. We provide evidence that the asymmetrically localized tyrosine phosphatase PTP-3 spatially restricts MIG-13/Lrp12 receptor activity in migrating cells.
Collapse
|
11
|
The netrin receptor UNC-40/DCC assembles a postsynaptic scaffold and sets the synaptic content of GABA A receptors. Nat Commun 2020; 11:2674. [PMID: 32471987 PMCID: PMC7260190 DOI: 10.1038/s41467-020-16473-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/28/2020] [Indexed: 01/11/2023] Open
Abstract
Increasing evidence indicates that guidance molecules used during development for cellular and axonal navigation also play roles in synapse maturation and homeostasis. In C. elegans the netrin receptor UNC-40/DCC controls the growth of dendritic-like muscle cell extensions towards motoneurons and is required to recruit type A GABA receptors (GABAARs) at inhibitory neuromuscular junctions. Here we show that activation of UNC-40 assembles an intracellular synaptic scaffold by physically interacting with FRM-3, a FERM protein orthologous to FARP1/2. FRM-3 then recruits LIN-2, the ortholog of CASK, that binds the synaptic adhesion molecule NLG-1/Neuroligin and physically connects GABAARs to prepositioned NLG-1 clusters. These processes are orchestrated by the synaptic organizer CePunctin/MADD-4, which controls the localization of GABAARs by positioning NLG-1/neuroligin at synapses and regulates the synaptic content of GABAARs through the UNC-40-dependent intracellular scaffold. Since DCC is detected at GABA synapses in mammals, DCC might also tune inhibitory neurotransmission in the mammalian brain. The netrin receptor UNC-40/DCC is required to recruit GABAAR at neuromuscular junctions in C. elegans. Here, the authors show that UNC-40/DCC assembles an intracellular synaptic scaffold, regulating the content of GABAAR and inhibitory neurotransmission.
Collapse
|
12
|
Khadka B, Chatterjee T, Gupta BP, Gupta RS. Genomic Analyses Identify Novel Molecular Signatures Specific for the Caenorhabditis and other Nematode Taxa Providing Novel Means for Genetic and Biochemical Studies. Genes (Basel) 2019; 10:E739. [PMID: 31554175 PMCID: PMC6826867 DOI: 10.3390/genes10100739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 11/20/2022] Open
Abstract
The phylum Nematoda encompasses numerous free-living as well as parasitic members, including the widely used animal model Caenorhabditis elegans, with significant impact on human health, agriculture, and environment. In view of the importance of nematodes, it is of much interest to identify novel molecular characteristics that are distinctive features of this phylum, or specific taxonomic groups/clades within it, thereby providing innovative means for diagnostics as well as genetic and biochemical studies. Using genome sequences for 52 available nematodes, a robust phylogenetic tree was constructed based on concatenated sequences of 17 conserved proteins. The branching of species in this tree provides important insights into the evolutionary relationships among the studied nematode species. In parallel, detailed comparative analyses on protein sequences from nematodes (Caenorhabditis) species reported here have identified 52 novel molecular signatures (or synapomorphies) consisting of conserved signature indels (CSIs) in different proteins, which are uniquely shared by the homologs from either all genome-sequenced Caenorhabditis species or a number of higher taxonomic clades of nematodes encompassing this genus. Of these molecular signatures, 39 CSIs in proteins involved in diverse functions are uniquely present in all Caenorhabditis species providing reliable means for distinguishing this group of nematodes in molecular terms. The remainder of the CSIs are specific for a number of higher clades of nematodes and offer important insights into the evolutionary relationships among these species. The structural locations of some of the nematodes-specific CSIs were also mapped in the structural models of the corresponding proteins. All of the studied CSIs are localized within the surface-exposed loops of the proteins suggesting that they may potentially be involved in mediating novel protein-protein or protein-ligand interactions, which are specific for these groups of nematodes. The identified CSIs, due to their exclusivity for the indicated groups, provide reliable means for the identification of species within these nematodes groups in molecular terms. Further, due to the predicted roles of these CSIs in cellular functions, they provide important tools for genetic and biochemical studies in Caenorhabditis and other nematodes.
Collapse
Affiliation(s)
- Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L9H 6K5, Canada.
| | - Tonuka Chatterjee
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L9H 6K5, Canada.
| | - Bhagwati P Gupta
- Department of Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L9H 6K5, Canada.
| |
Collapse
|
13
|
Necessity and Contingency in Developmental Genetic Screens: EGF, Wnt, and Semaphorin Pathways in Vulval Induction of the Nematode Oscheius tipulae. Genetics 2019; 211:1315-1330. [PMID: 30700527 PMCID: PMC6456316 DOI: 10.1534/genetics.119.301970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/27/2019] [Indexed: 02/06/2023] Open
Abstract
Genetic screens in the nematode Caenorhabditis elegans have identified EGF and Notch pathways as key for vulval precursor cell fate patterning. Here, Vargas-Velazquez, Besnard, and Félix report on the molecular identification of... Genetic screens in the nematode Caenorhabditis elegans identified the EGF/Ras and Notch pathways as central for vulval precursor cell fate patterning. Schematically, the anchor cell secretes EGF, inducing the P6.p cell to a primary (1°) vulval fate; P6.p in turn induces its neighbors to a secondary (2°) fate through Delta-Notch signaling and represses Ras signaling. In the nematode Oscheius tipulae, the anchor cell successively induces 2° then 1° vulval fates. Here, we report on the molecular identification of mutations affecting vulval induction in O. tipulae. A single Induction Vulvaless mutation was found, which we identify as a cis-regulatory deletion in a tissue-specific enhancer of the O. tipulae lin-3 homolog, confirmed by clustered regularly interspaced short palindromic repeats/Cas9 mutation. In contrast to this predictable Vulvaless mutation, mutations resulting in an excess of 2° fates unexpectedly correspond to the plexin/semaphorin pathway. Hyperinduction of P4.p and P8.p in these mutants likely results from mispositioning of these cells due to a lack of contact inhibition. The third signaling pathway found by forward genetics in O. tipulae is the Wnt pathway; a decrease in Wnt pathway activity results in loss of vulval precursor competence and induction, and 1° fate miscentering on P5.p. Our results suggest that the EGF and Wnt pathways have qualitatively similar activities in vulval induction in C. elegans and O. tipulae, albeit with quantitative differences in the effects of mutation. Thus, the derived induction process in C. elegans with an early induction of the 1° fate appeared during evolution, after the recruitment of the EGF pathway for vulval induction.
Collapse
|
14
|
Sood P, Murthy K, Kumar V, Nonet ML, Menon GI, Koushika SP. Cargo crowding at actin-rich regions along axons causes local traffic jams. Traffic 2018; 19:166-181. [PMID: 29178177 DOI: 10.1111/tra.12544] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 01/31/2023]
Abstract
Steady axonal cargo flow is central to the functioning of healthy neurons. However, a substantial fraction of cargo in axons remains stationary up to several minutes. We examine the transport of precursors of synaptic vesicles (pre-SVs), endosomes and mitochondria in Caenorhabditis elegans touch receptor neurons, showing that stationary cargo are predominantly present at actin-rich regions along the neuronal process. Stationary vesicles at actin-rich regions increase the propensity of moving vesicles to stall at the same location, resulting in traffic jams arising from physical crowding. Such local traffic jams at actin-rich regions are likely to be a general feature of axonal transport since they also occur in Drosophila neurons. Repeated touch stimulation of C. elegans reduces the density of stationary pre-SVs, indicating that these traffic jams can act as both sources and sinks of vesicles. This suggests that vesicles trapped in actin-rich regions are functional reservoirs that may contribute to maintaining robust cargo flow in the neuron. A video abstract of this article can be found at: Video S1; Video S2.
Collapse
Affiliation(s)
- Parul Sood
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Kausalya Murthy
- Neurobiology, National Centre for Biological Sciences, Bangalore, India
| | - Vinod Kumar
- The Institute of Mathematical Sciences, CIT Campus, Chennai, India
| | - Michael L Nonet
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri
| | - Gautam I Menon
- The Institute of Mathematical Sciences, CIT Campus, Chennai, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
15
|
Besnard F, Koutsovoulos G, Dieudonné S, Blaxter M, Félix MA. Toward Universal Forward Genetics: Using a Draft Genome Sequence of the Nematode Oscheius tipulae To Identify Mutations Affecting Vulva Development. Genetics 2017; 206:1747-1761. [PMID: 28630114 PMCID: PMC5560785 DOI: 10.1534/genetics.117.203521] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/15/2017] [Indexed: 12/30/2022] Open
Abstract
Mapping-by-sequencing has become a standard method to map and identify phenotype-causing mutations in model species. Here, we show that a fragmented draft assembly is sufficient to perform mapping-by-sequencing in nonmodel species. We generated a draft assembly and annotation of the genome of the free-living nematode Oscheius tipulae, a distant relative of the model Caenorhabditis elegans We used this draft to identify the likely causative mutations at the O. tipulae cov-3 locus, which affect vulval development. The cov-3 locus encodes the O. tipulae ortholog of C. elegans mig-13, and we further show that Cel-mig-13 mutants also have an unsuspected vulval-development phenotype. In a virtuous circle, we were able to use the linkage information collected during mutant mapping to improve the genome assembly. These results showcase the promise of genome-enabled forward genetics in nonmodel species.
Collapse
Affiliation(s)
- Fabrice Besnard
- École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Biologie de l'École Normale Supérieure, Paris Sciences et Lettres Research University, 75005, France
| | | | - Sana Dieudonné
- École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Biologie de l'École Normale Supérieure, Paris Sciences et Lettres Research University, 75005, France
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, EH8 9YL, United Kingdom
| | - Marie-Anne Félix
- École Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Biologie de l'École Normale Supérieure, Paris Sciences et Lettres Research University, 75005, France
| |
Collapse
|
16
|
Zhu Z, Chai Y, Jiang Y, Li W, Hu H, Li W, Wu JW, Wang ZX, Huang S, Ou G. Functional Coordination of WAVE and WASP in C. elegans Neuroblast Migration. Dev Cell 2017; 39:224-238. [PMID: 27780040 DOI: 10.1016/j.devcel.2016.09.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/08/2016] [Accepted: 09/02/2016] [Indexed: 11/29/2022]
Abstract
Directional cell migration is critical for metazoan development. We define two molecular pathways that activate the Arp2/3 complex during neuroblast migration in Caenorhabditis elegans. The transmembrane protein MIG-13/Lrp12 is linked to the Arp2/3 nucleation-promoting factors WAVE or WASP through direct interactions with ABL-1 or SEM-5/Grb2, respectively. WAVE mutations partially impaired F-actin organization and decelerated cell migration, and WASP mutations did not inhibit cell migration but enhanced migration defects in WAVE-deficient cells. Purified SEM-5 and MIG-2 synergistically stimulated the F-actin branching activity of WASP-Arp2/3 in vitro. In GFP knockin animals, WAVE and WASP were largely organized into separate clusters at the leading edge, and the amount of WASP was less than WAVE but could be elevated by WAVE mutations. Our results indicate that the MIG-13-WAVE pathway provides the major force for directional cell motility, whereas MIG-13-WASP partially compensates for its loss, underscoring their coordinated activities in facilitating robust cell migration.
Collapse
Affiliation(s)
- Zhiwen Zhu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Yuxiang Jiang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Wenjing Li
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Huifang Hu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Wei Li
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Jia-Wei Wu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Zhi-Xin Wang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Shanjin Huang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Pohlkamp T, Wasser CR, Herz J. Functional Roles of the Interaction of APP and Lipoprotein Receptors. Front Mol Neurosci 2017; 10:54. [PMID: 28298885 PMCID: PMC5331069 DOI: 10.3389/fnmol.2017.00054] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/24/2022] Open
Abstract
The biological fates of the key initiator of Alzheimer’s disease (AD), the amyloid precursor protein (APP), and a family of lipoprotein receptors, the low-density lipoprotein (LDL) receptor-related proteins (LRPs) and their molecular roles in the neurodegenerative disease process are inseparably interwoven. Not only does APP bind tightly to the extracellular domains (ECDs) of several members of the LRP group, their intracellular portions are also connected through scaffolds like the one established by FE65 proteins and through interactions with adaptor proteins such as X11/Mint and Dab1. Moreover, the ECDs of APP and LRPs share common ligands, most notably Reelin, a regulator of neuronal migration during embryonic development and modulator of synaptic transmission in the adult brain, and Agrin, another signaling protein which is essential for the formation and maintenance of the neuromuscular junction (NMJ) and which likely also has critical, though at this time less well defined, roles for the regulation of central synapses. Furthermore, the major independent risk factors for AD, Apolipoprotein (Apo) E and ApoJ/Clusterin, are lipoprotein ligands for LRPs. Receptors and ligands mutually influence their intracellular trafficking and thereby the functions and abilities of neurons and the blood-brain-barrier to turn over and remove the pathological product of APP, the amyloid-β peptide. This article will review and summarize the molecular mechanisms that are shared by APP and LRPs and discuss their relative contributions to AD.
Collapse
Affiliation(s)
- Theresa Pohlkamp
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Catherine R Wasser
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA; Department of Neuroscience, UT Southwestern Medical CenterDallas, TX, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|
18
|
Feng G, Zhu Z, Li WJ, Lin Q, Chai Y, Dong MQ, Ou G. Hippo kinases maintain polarity during directional cell migration in Caenorhabditis elegans. EMBO J 2016; 36:334-345. [PMID: 28011581 DOI: 10.15252/embj.201695734] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/07/2016] [Accepted: 11/16/2016] [Indexed: 01/21/2023] Open
Abstract
Precise positioning of cells is crucial for metazoan development. Despite immense progress in the elucidation of the attractive cues of cell migration, the repulsive mechanisms that prevent the formation of secondary leading edges remain less investigated. Here, we demonstrate that Caenorhabditis elegans Hippo kinases promote cell migration along the anterior-posterior body axis via the inhibition of dorsal-ventral (DV) migration. Ectopic DV polarization was also demonstrated in gain-of-function mutant animals for C. elegans RhoG MIG-2. We identified serine 139 of MIG-2 as a novel conserved Hippo kinase phosphorylation site and demonstrated that purified Hippo kinases directly phosphorylate MIG-2S139 Live imaging analysis of genome-edited animals indicates that MIG-2S139 phosphorylation impedes actin assembly in migrating cells. Intriguingly, Hippo kinases are excluded from the leading edge in wild-type cells, while MIG-2 loss induces uniform distribution of Hippo kinases. We provide evidence that Hippo kinases inhibit RhoG activity locally and are in turn restricted to the cell body by RhoG-mediated polarization. Therefore, we propose that the Hippo-RhoG feedback regulation maintains cell polarity during directional cell motility.
Collapse
Affiliation(s)
- Guoxin Feng
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Zhiwen Zhu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Wen-Jun Li
- National Institute of Biological Science, Beijing, China
| | - Qirong Lin
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Science, Beijing, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
The Caenorhabditis elegans NF2/Merlin Molecule NFM-1 Nonautonomously Regulates Neuroblast Migration and Interacts Genetically with the Guidance Cue SLT-1/Slit. Genetics 2016; 205:737-748. [PMID: 27913619 DOI: 10.1534/genetics.116.191957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/23/2016] [Indexed: 11/18/2022] Open
Abstract
During nervous system development, neurons and their progenitors migrate to their final destinations. In Caenorhabditis elegans, the bilateral Q neuroblasts and their descendants migrate long distances in opposite directions, despite being born in the same posterior region. QR on the right migrates anteriorly and generates the AQR neuron positioned near the head, and QL on the left migrates posteriorly, giving rise to the PQR neuron positioned near the tail. In a screen for genes required for AQR and PQR migration, we identified an allele of nfm-1, which encodes a molecule similar to vertebrate NF2/Merlin, an important tumor suppressor in humans. Mutations in NF2 lead to neurofibromatosis type II, characterized by benign tumors of glial tissues. Here we demonstrate that in C. elegans, nfm-1 is required for the ability of Q cells and their descendants to extend protrusions and to migrate, but is not required for direction of migration. Using a combination of mosaic analysis and cell-specific expression, we show that NFM-1 is required nonautonomously, possibly in muscles, to promote Q lineage migrations. We also show a genetic interaction between nfm-1 and the C. elegans Slit homolog slt-1, which encodes a conserved secreted guidance cue. Our results suggest that NFM-1 might be involved in the generation of an extracellular cue that promotes Q neuroblast protrusion and migration that acts with or in parallel to SLT-1 In vertebrates, NF2 and Slit2 interact in axon pathfinding, suggesting a conserved interaction of NF2 and Slit2 in regulating migratory events.
Collapse
|
20
|
Nonautonomous Roles of MAB-5/Hox and the Secreted Basement Membrane Molecule SPON-1/F-Spondin in Caenorhabditis elegans Neuronal Migration. Genetics 2016; 203:1747-62. [PMID: 27225683 DOI: 10.1534/genetics.116.188367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/20/2016] [Indexed: 12/22/2022] Open
Abstract
Nervous system development and circuit formation requires neurons to migrate from their birthplaces to specific destinations.Migrating neurons detect extracellular cues that provide guidance information. In Caenorhabditis elegans, the Q right (QR) and Q left (QL) neuroblast descendants migrate long distances in opposite directions. The Hox gene lin-39 cell autonomously promotes anterior QR descendant migration, and mab-5/Hox cell autonomously promotes posterior QL descendant migration. Here we describe a nonautonomous role of mab-5 in regulating both QR and QL descendant migrations, a role masked by redundancy with lin-39 A third Hox gene, egl-5/Abdominal-B, also likely nonautonomously regulates Q descendant migrations. In the lin-39 mab-5 egl-5 triple mutant, little if any QR and QL descendant migration occurs. In addition to well-described roles of lin-39 and mab-5 in the Q descendants, our results suggest that lin-39, mab-5, and egl-5 might also pattern the posterior region of the animal for Q descendant migration. Previous studies showed that the spon-1 gene might be a target of MAB-5 in Q descendant migration. spon-1 encodes a secreted basement membrane molecule similar to vertebrate F-spondin. Here we show that spon-1 acts nonautonomously to control Q descendant migration, and might function as a permissive rather than instructive signal for cell migration. We find that increased levels of MAB-5 in body wall muscle (BWM) can drive the spon-1 promoter adjacent to the Q cells, and loss of spon-1 suppresses mab-5 gain of function. Thus, MAB-5 might nonautonomously control Q descendant migrations by patterning the posterior region of the animal to which Q cells respond. spon-1 expression from BWMs might be part of the posterior patterning necessary for directed Q descendant migration.
Collapse
|
21
|
Robens BK, Gembé E, Fassunke J, Becker AJ, Schoch S, Grote A. Abundance of LRP12 C-rs9694676 allelic promoter variant in epilepsy-associated gangliogliomas. Life Sci 2016; 155:70-5. [PMID: 27142828 DOI: 10.1016/j.lfs.2016.01.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/14/2016] [Accepted: 01/30/2016] [Indexed: 11/28/2022]
Abstract
AIMS Chronic epilepsy associated gangliogliomas (GGs) represent tumors composed of irregularly distributed, often dysmorphic, neurons and neoplastic astroglia. The pathogenesis of GGs is largely unknown. Low-density lipoprotein receptor-related protein 12 (LRP12) is critical for brain development and involved in tumorigenesis of non-cerebral neoplasms. MAIN METHODS Here, we have examined a potential role of LRP12 in the pathogenesis of GGs by a combination of mRNA quantification and molecular-biological in vitro assays. KEY FINDINGS We observed a significant increase of the single nucleotide polymorphism (SNP) rs9694676 C-allele, located in the LRP12 promoter, in GGs compared to normal control individuals. C-allele expression is correlated with abundant seizure frequency. Expression of LRP12 was lower in GGs than in control brain. In luciferase assays, the C-allele of rs9694676 decreases both, the basal LRP12 core promoter activity and the stimulatory effect of the transcription factor (TF) STAT5a. SIGNIFICANCE Accumulation of functional promoter-associated allelic variants with impact on the transcriptional regulation of LRP12 provides a new pathomechanism for GGs, i.e. highly differentiated epileptogenic brain tumors.
Collapse
Affiliation(s)
- Barbara K Robens
- Dept. of Neuropathology/Section for Translational Epilepsy Research, Germany
| | - Eva Gembé
- Dept. of Neuropathology/Section for Translational Epilepsy Research, Germany
| | - Jana Fassunke
- Dept. of Pathology, University Clinic of Cologne, Germany
| | - Albert J Becker
- Dept. of Neuropathology/Section for Translational Epilepsy Research, Germany
| | - Susanne Schoch
- Dept. of Neuropathology/Section for Translational Epilepsy Research, Germany; Dept. of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Alexander Grote
- Dept. of Neurosurgery, University of Bonn Medical Center, Bonn, Germany.
| |
Collapse
|
22
|
Rella L, Fernandes Póvoa EE, Korswagen HC. The Caenorhabditis elegans Q neuroblasts: A powerful system to study cell migration at single-cell resolution in vivo. Genesis 2016; 54:198-211. [PMID: 26934462 DOI: 10.1002/dvg.22931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/09/2016] [Accepted: 02/25/2016] [Indexed: 11/08/2022]
Abstract
During development, cell migration plays a central role in the formation of tissues and organs. Understanding the molecular mechanisms that drive and control these migrations is a key challenge in developmental biology that will provide important insights into disease processes, including cancer cell metastasis. In this article, we discuss the Caenorhabditis elegans Q neuroblasts and their descendants as a tool to study cell migration at single-cell resolution in vivo. The highly stereotypical migration of these cells provides a powerful system to study the dynamic cytoskeletal processes that drive migration as well as the evolutionarily conserved signaling pathways (including different Wnt signaling cascades) that guide the cells along their specific trajectories. Here, we provide an overview of what is currently known about Q neuroblast migration and highlight the live-cell imaging, genome editing, and quantitative gene expression techniques that have been developed to study this process.
Collapse
Affiliation(s)
- Lorenzo Rella
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Euclides E Fernandes Póvoa
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Hendrik C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
23
|
Josephson MP, Chai Y, Ou G, Lundquist EA. EGL-20/Wnt and MAB-5/Hox Act Sequentially to Inhibit Anterior Migration of Neuroblasts in C. elegans. PLoS One 2016; 11:e0148658. [PMID: 26863303 PMCID: PMC4749177 DOI: 10.1371/journal.pone.0148658] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/21/2016] [Indexed: 12/31/2022] Open
Abstract
Directed neuroblast and neuronal migration is important in the proper development of nervous systems. In C. elegans the bilateral Q neuroblasts QR (on the right) and QL (on the left) undergo an identical pattern of cell division and differentiation but migrate in opposite directions (QR and descendants anteriorly and QL and descendants posteriorly). EGL-20/Wnt, via canonical Wnt signaling, drives the expression of MAB-5/Hox in QL but not QR. MAB-5 acts as a determinant of posterior migration, and mab-5 and egl-20 mutants display anterior QL descendant migrations. Here we analyze the behaviors of QR and QL descendants as they begin their anterior and posterior migrations, and the effects of EGL-20 and MAB-5 on these behaviors. The anterior and posterior daughters of QR (QR.a/p) after the first division immediately polarize and begin anterior migration, whereas QL.a/p remain rounded and non-migratory. After ~1 hour, QL.a migrates posteriorly over QL.p. We find that in egl-20/Wnt, bar-1/β-catenin, and mab-5/Hox mutants, QL.a/p polarize and migrate anteriorly, indicating that these molecules normally inhibit anterior migration of QL.a/p. In egl-20/Wnt mutants, QL.a/p immediately polarize and begin migration, whereas in bar-1/β-catenin and mab-5/Hox, the cells transiently retain a rounded, non-migratory morphology before anterior migration. Thus, EGL-20/Wnt mediates an acute inhibition of anterior migration independently of BAR-1/β-catenin and MAB-5/Hox, and a later, possible transcriptional response mediated by BAR-1/β-catenin and MAB-5/Hox. In addition to inhibiting anterior migration, MAB-5/Hox also cell-autonomously promotes posterior migration of QL.a (and QR.a in a mab-5 gain-of-function).
Collapse
Affiliation(s)
- Matthew P. Josephson
- Programs in Genetics and Molecular, Cellular and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, United States of America
| | - Yongping Chai
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guangshuo Ou
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Erik A. Lundquist
- Programs in Genetics and Molecular, Cellular and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, United States of America
- * E-mail:
| |
Collapse
|
24
|
LRP12 silencing during brain development results in cortical dyslamination and seizure sensitization. Neurobiol Dis 2015; 86:170-6. [PMID: 26639854 DOI: 10.1016/j.nbd.2015.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 10/20/2015] [Accepted: 11/26/2015] [Indexed: 02/04/2023] Open
Abstract
Correct positioning and differentiation of neurons during brain development is a key precondition for proper function. Focal cortical dysplasias (FCDs) are increasingly recognized as causes of therapy refractory epilepsies. Neuropathological analyses of respective surgical specimens from neurosurgery for seizure control often reveal aberrant cortical architecture and/or aberrantly shaped neurons in FCDs. However, the molecular pathogenesis particularly of FCDs with aberrant lamination (so-called FCD type I) is largely unresolved. Lipoproteins and particularly low-density lipoprotein receptor-related protein 12 (LRP12) are involved in brain development. Here, we have examined a potential role of LRP12 in the pathogenesis of FCDs. In vitro knockdown of LRP12 in primary neurons results in impaired neuronal arborization. In vivo ablation of LRP12 by intraventricularly in utero electroporated shRNAs elicits cortical maldevelopment, i.e. aberrant lamination by malpositioning of upper cortical layer neurons. Subsequent epilepsy phenotyping revealed pentylenetetrazol (PTZ)-induced seizures to be aggravated in cortical LRP12-silenced mice. Our data demonstrates IUE mediated cortical gene silencing as an excellent approach to study the role of distinct molecules for epilepsy associated focal brain lesions and suggests LRP12 and lipoprotein homeostasis as potential molecular target structures for the emergence of epilepsy-associated FCDs.
Collapse
|
25
|
Cytoskeletal Symmetry Breaking and Chirality: From Reconstituted Systems to Animal Development. Symmetry (Basel) 2015. [DOI: 10.3390/sym7042062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
26
|
The role of apoptosis in Caenorhabditis elegans neuronal differentiation. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1163-6. [PMID: 26501379 DOI: 10.1007/s11427-015-4952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
|
27
|
SDN-1/Syndecan Acts in Parallel to the Transmembrane Molecule MIG-13 to Promote Anterior Neuroblast Migration. G3-GENES GENOMES GENETICS 2015; 5:1567-74. [PMID: 26022293 PMCID: PMC4528313 DOI: 10.1534/g3.115.018770] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Q neuroblasts in Caenorhabditis elegans display left-right asymmetry in their migration, with QR and descendants on the right migrating anteriorly, and QL and descendants on the left migrating posteriorly. Initial QR and QL migration is controlled by the transmembrane receptors UNC-40/DCC, PTP-3/LAR, and the Fat-like cadherin CDH-4. After initial migration, QL responds to an EGL-20/Wnt signal that drives continued posterior migration by activating MAB-5/Hox activity in QL but not QR. QR expresses the transmembrane protein MIG-13, which is repressed by MAB-5 in QL and which drives anterior migration of QR descendants. A screen for new Q descendant AQR and PQR migration mutations identified mig-13 as well as hse-5, the gene encoding the glucuronyl C5-epimerase enzyme, which catalyzes epimerization of glucuronic acid to iduronic acid in the heparan sulfate side chains of heparan sulfate proteoglycans (HSPGs). Of five C. elegans HSPGs, we found that only SDN-1/Syndecan affected Q migrations. sdn-1 mutants showed QR descendant AQR anterior migration defects, and weaker QL descendant PQR migration defects. hse-5 affected initial Q migration, whereas sdn-1 did not. sdn-1 and hse-5 acted redundantly in AQR and PQR migration, but not initial Q migration, suggesting the involvement of other HSPGs in Q migration. Cell-specific expression studies indicated that SDN-1 can act in QR to promote anterior migration. Genetic interactions between sdn-1, mig-13, and mab-5 suggest that MIG-13 and SDN-1 act in parallel to promote anterior AQR migration and that SDN-1 also controls posterior migration. Together, our results indicate previously unappreciated complexity in the role of multiple signaling pathways and inherent left-right asymmetry in the control of Q neuroblast descendant migration.
Collapse
|
28
|
Wang X, Liu J, Zhu Z, Ou G. The heparan sulfate-modifying enzyme glucuronyl C5-epimerase HSE-5 controls Caenorhabditis elegans Q neuroblast polarization during migration. Dev Biol 2015; 399:306-14. [PMID: 25614236 DOI: 10.1016/j.ydbio.2015.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 01/05/2015] [Accepted: 01/10/2015] [Indexed: 10/24/2022]
Abstract
Directional cell migration is fundamental for neural development, and extracellular factors are pivotal for this process. Heparan sulfate proteoglycans (HSPGs) that carry long chains of differentially modified sugar residues contribute to extracellular matrix; however, the functions of HSPG in guiding cell migration remain elusive. Here, we used the Caenorhabditis elegans mutant pool from the Million Mutation Project and isolated a mutant allele of the heparan sulfate-modifying enzyme glucuronyl C5-epimerase HSE-5. Loss-of-function of this enzyme resulted in defective Q neuroblast migration. We showed that hse-5 controlled Q cell migration in a cell non-autonomous manner. By performing live cell imaging in hse-5 mutant animals, we found that hse-5 controlled initial polarization during Q neuroblast migration. Furthermore, our genetic epistasis analysis demonstrated that lon-2 might act downstream of hse-5. Finally, rescue of the hse-5 mutant phenotype by expression of human and mouse hse-5 homologs suggested a conserved function for this gene in neural development. Taken together, our results indicated that proper HSPG modification in the extracellular matrix by HSE-5 is essential for neuroblast polarity during migration.
Collapse
Affiliation(s)
- Xiangming Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.
| | - Jianhong Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Zhiwen Zhu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Mentink RA, Middelkoop TC, Rella L, Ji N, Tang CY, Betist MC, van Oudenaarden A, Korswagen HC. Cell intrinsic modulation of Wnt signaling controls neuroblast migration in C. elegans. Dev Cell 2014; 31:188-201. [PMID: 25373777 DOI: 10.1016/j.devcel.2014.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/11/2014] [Accepted: 08/07/2014] [Indexed: 01/25/2023]
Abstract
Members of the Wnt family of secreted signaling proteins are key regulators of cell migration and axon guidance. In the nematode C. elegans, the migration of the QR neuroblast descendants requires multiple Wnt ligands and receptors. We found that the migration of the QR descendants is divided into three sequential phases that are each mediated by a distinct Wnt signaling mechanism. Importantly, the transition from the first to the second phase, which is the main determinant of the final position of the QR descendants along the anteroposterior body axis, is mediated through a cell-autonomous process in which the time-dependent expression of a Wnt receptor turns on the canonical Wnt/β-catenin signaling response that is required to terminate long-range anterior migration. Our results show that, in addition to direct guidance of cell migration by Wnt morphogenic gradients, cell migration can also be controlled indirectly through cell-intrinsic modulation of Wnt signaling responses.
Collapse
Affiliation(s)
- Remco A Mentink
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Teije C Middelkoop
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Lorenzo Rella
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Ni Ji
- Department of Physics and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Chung Yin Tang
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Marco C Betist
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Alexander van Oudenaarden
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Physics and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Hendrik C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
30
|
Shen Z, Zhang X, Chai Y, Zhu Z, Yi P, Feng G, Li W, Ou G. Conditional knockouts generated by engineered CRISPR-Cas9 endonuclease reveal the roles of coronin in C. elegans neural development. Dev Cell 2014; 30:625-36. [PMID: 25155554 DOI: 10.1016/j.devcel.2014.07.017] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/07/2014] [Accepted: 07/21/2014] [Indexed: 10/24/2022]
Abstract
Conditional gene knockout animals are valuable tools for studying the mechanisms underlying cell and developmental biology. We developed a conditional knockout strategy by spatiotemporally manipulating the expression of an RNA-guided DNA endonuclease, CRISPR-Cas9, in Caenorhabditis elegans somatic cell lineages. We showed that this somatic CRISPR-Cas9 technology provides a quick and efficient approach to generate conditional knockouts in various cell types at different developmental stages. Furthermore, we demonstrated that this method outperforms our recently developed somatic TALEN technique and enables the one-step generation of multiple conditional knockouts. By combining these techniques with live-cell imaging, we showed that an essential embryonic gene, Coronin, which is associated with human neurobehavioral dysfunction, regulates actin organization and cell morphology during C. elegans postembryonic neuroblast migration and neuritogenesis. We propose that the somatic CRISPR-Cas9 platform is uniquely suited for conditional gene editing-based biomedical research.
Collapse
Affiliation(s)
- Zhongfu Shen
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xianliang Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhiwen Zhu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Peishan Yi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guoxin Feng
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Li
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
31
|
Sundararajan L, Norris ML, Schöneich S, Ackley BD, Lundquist EA. The fat-like cadherin CDH-4 acts cell-non-autonomously in anterior-posterior neuroblast migration. Dev Biol 2014; 392:141-52. [PMID: 24954154 DOI: 10.1016/j.ydbio.2014.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/04/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
Directed migration of neurons is critical in the normal and pathological development of the brain and central nervous system. In Caenorhabditis elegans, the bilateral Q neuroblasts, QR on the right and QL on the left, migrate anteriorly and posteriorly, respectively. Initial protrusion and migration of the Q neuroblasts is autonomously controlled by the transmembrane proteins UNC-40/DCC, PTP-3/LAR, and MIG-21. As QL migrates posteriorly, it encounters and EGL-20/Wnt signal that induces MAB-5/Hox expression that drives QL descendant posterior migration. QR migrates anteriorly away from EGL-20/Wnt and does not activate MAB-5/Hox, resulting in anterior QR descendant migration. A forward genetic screen for new mutations affecting initial Q migrations identified alleles of cdh-4, which caused defects in both QL and QR directional migration similar to unc-40, ptp-3, and mig-21. Previous studies showed that in QL, PTP-3/LAR and MIG-21 act in a pathway in parallel to UNC-40/DCC to drive posterior QL migration. Here we show genetic evidence that CDH-4 acts in the PTP-3/MIG-21 pathway in parallel to UNC-40/DCC to direct posterior QL migration. In QR, the PTP-3/MIG-21 and UNC-40/DCC pathways mutually inhibit each other, allowing anterior QR migration. We report here that CDH-4 acts in both the PTP-3/MIG-21 and UNC-40/DCC pathways in mutual inhibition in QR, and that CDH-4 acts cell-non-autonomously. Interaction of CDH-4 with UNC-40/DCC in QR but not QL represents an inherent left-right asymmetry in the Q cells, the nature of which is not understood. We conclude that CDH-4 might act as a permissive signal for each Q neuroblast to respond differently to anterior-posterior guidance information based upon inherent left-right asymmetries in the Q neuroblasts.
Collapse
Affiliation(s)
- Lakshmi Sundararajan
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States
| | - Megan L Norris
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States
| | - Sebastian Schöneich
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States
| | - Brian D Ackley
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States
| | - Erik A Lundquist
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States.
| |
Collapse
|
32
|
Zhu Z, Liu J, Yi P, Tian D, Chai Y, Li W, Ou G. A proneural gene controls C. elegans neuroblast asymmetric division and migration. FEBS Lett 2014; 588:1136-43. [PMID: 24589937 DOI: 10.1016/j.febslet.2014.02.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/14/2014] [Indexed: 12/12/2022]
Abstract
Proneural genes control the generation of neuroblasts from the neuroepithelium, but their functions in neuroblast asymmetric division and migration remain elusive. Here, we identified Caenorhabditiselegans mutants of a proneural transcription factor (TF) lin-32, in which Q neuroblasts are produced. We showed that LIN-32 functions in parallel with a storkhead TF, HAM-1, to regulate Q neuroblast asymmetric division, and that Q neuroblast migration is inhibited in lin-32 alleles. Consistently, lin-32 is expressed throughout Q neuroblast lineage, suggesting that LIN-32 may promote different target gene expression. Our studies thus uncovered previously unknown functions of a proneural gene in neuroblast development.
Collapse
Affiliation(s)
- Zhiwen Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Jianhong Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Peishan Yi
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dong Tian
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Li
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
33
|
Aitlhadj L, Stürzenbaum SR. Caenorhabditis elegans in regenerative medicine: a simple model for a complex discipline. Drug Discov Today 2014; 19:730-4. [PMID: 24513577 DOI: 10.1016/j.drudis.2014.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/21/2014] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Abstract
Stem cell research is a major focus of regenerative medicine, which amalgamates diverse disciplines ranging from developmental cell biology to chemical and genetic therapy. Although embryonic stem cells have provided the foundation of stem cell therapy, they offer an in vitro study system that might not provide the best insight into mechanisms and behaviour of cells within living organisms. Caenorhabditis elegans is a well defined model organism with highly conserved cell development and signalling processes that specify cell fate. Its genetic amenability coupled with its chemical screening applicability make the nematode well suited as an in vivo system in which regenerative therapy and stem cell processes can be explored. Here, we describe some of the major advances in stem cell research from the worm's perspective.
Collapse
Affiliation(s)
- Layla Aitlhadj
- King's College London, School of Biomedical Sciences, Analytical and Environmental Sciences Division, London SE1 9NH, UK; Kinǵs College London, School of Biomedical Sciences, MRC-PHE Centre for Environment & Health, London, SE1 9NH, UK
| | - Stephen R Stürzenbaum
- King's College London, School of Biomedical Sciences, Analytical and Environmental Sciences Division, London SE1 9NH, UK; Kinǵs College London, School of Biomedical Sciences, MRC-PHE Centre for Environment & Health, London, SE1 9NH, UK.
| |
Collapse
|
34
|
Sánchez-Herrero E. Hox targets and cellular functions. SCIENTIFICA 2013; 2013:738257. [PMID: 24490109 PMCID: PMC3892749 DOI: 10.1155/2013/738257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
Hox genes are a group of genes that specify structures along the anteroposterior axis in bilaterians. Although in many cases they do so by modifying a homologous structure with a different (or no) Hox input, there are also examples of Hox genes constructing new organs with no homology in other regions of the body. Hox genes determine structures though the regulation of targets implementing cellular functions and by coordinating cell behavior. The genetic organization to construct or modify a certain organ involves both a genetic cascade through intermediate transcription factors and a direct regulation of targets carrying out cellular functions. In this review I discuss new data from genome-wide techniques, as well as previous genetic and developmental information, to describe some examples of Hox regulation of different cell functions. I also discuss the organization of genetic cascades leading to the development of new organs, mainly using Drosophila melanogaster as the model to analyze Hox function.
Collapse
Affiliation(s)
- Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|