1
|
Ji L, Deng S, Xu JB, Li X, De Jonghe S, Schols D, Gao F. Synthesis of Thioloformate-Containing Lathyrane Diterpene Derivates via a [3,3] Sigmatropic Rearrangement and Their Anti-HIV Activity. JOURNAL OF NATURAL PRODUCTS 2025; 88:1091-1097. [PMID: 40132128 DOI: 10.1021/acs.jnatprod.5c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The [3,3] sigmatropic rearrangement of a lathyrane diterpene with various allylic thionoformates was carried out, affording C17-thioloformate-containing lathyrane derivatives (3a-3h) for the first time. The reaction features a mild, rapid, and easy operation. All newly synthesized derivatives were evaluated for potential antiviral activity against HIV-1 and HIV-2. The incorporation of an appropriate thionoformate into the lathyrane diterpene framework enhances their anti-HIV activity. The derivative 3d, featuring an O-(p-tolyl) carbonothionate substitution, exhibited the most potent anti-HIV activity, with an EC50 value of 11.3 μM against HIV-1 NL 4.3 and an EC50 value of 6.6 μM against HIV-2 ROD. Additionally, it demonstrated selectivity indices exceeding 4.0 and 6.8 against HIV-1 NL 4.3 and HIV-2 ROD, respectively.
Collapse
Affiliation(s)
- Lanfei Ji
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Sihao Deng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Jin-Bu Xu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Xiaohuan Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Steven De Jonghe
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular, Structural and Translational Virology Research Group, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular, Structural and Translational Virology Research Group, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| |
Collapse
|
2
|
Gentry ZO, McAteer OD, Hamad JL, Moran JA, Kim JT, Marsden MD, Zack JA, Wender PA. Synthesis and preclinical evaluation of tigilanol tiglate analogs as latency-reversing agents for the eradication of HIV. SCIENCE ADVANCES 2025; 11:eads1911. [PMID: 39854456 PMCID: PMC11778240 DOI: 10.1126/sciadv.ads1911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025]
Abstract
Tigilanol tiglate (EBC-46) is a selective modulator of protein kinase C (PKC) isoforms that is Food and Drug Administration (FDA) approved for the treatment of mast cell tumors in canines with up to an 88% cure rate. Recently, it has been FDA approved for the treatment of soft tissue sarcomas in humans. The role of EBC-46 and, especially, its analogs in efforts to eradicate HIV, treat neurological and cardiovascular disorders, or enhance antigen density in antigen-targeted chimeric antigen receptor-T cell and chimeric antigen receptor-natural killer cell immunotherapies has not been reported. Enabled by our previously reported scalable synthesis of EBC-46, we report herein the systematic design, synthesis, and evaluation of EBC-46 analogs, including those inaccessible from the natural source and their PKC affinities, ability to translocate PKC, nuclear factor κB activity, and efficacy in reversing HIV latency in Jurkat-Latency cells. Leading analogs show exceptional PKC affinities, isoform selectivities, and functional activities, serving as promising candidates for therapeutic applications.
Collapse
Affiliation(s)
- Zachary O. Gentry
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Owen D. McAteer
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Jennifer L. Hamad
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jose A. Moran
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Jocelyn T. Kim
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew D. Marsden
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Department of Medicine (Division of Infectious Diseases), School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Jerome A. Zack
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Overall SA, Hartmann SJ, Luu-Nguyen QH, Judge P, Pinotsi D, Marti L, Sigurdsson ST, Wender PA, Barnes AB. Topological Heterogeneity of Protein Kinase C Modulators in Human T-Cells Resolved with In-Cell Dynamic Nuclear Polarization NMR Spectroscopy. J Am Chem Soc 2024; 146:27362-27372. [PMID: 39322225 PMCID: PMC11468733 DOI: 10.1021/jacs.4c05704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Phorbol ester analogs are a promising class of anticancer therapeutics and HIV latency reversing agents that interact with cellular membranes to recruit and activate protein kinase C (PKC) isoforms. However, it is unclear how these esters interact with membranes and how this might correlate with the biological activity of different phorbol ester analogs. Here, we have employed dynamic nuclear polarization (DNP) NMR to characterize phorbol esters in a native cellular context. The enhanced NMR sensitivity afforded by DNP and cryogenic operation reveals topological heterogeneity of 13C-21,22-phorbol-myristate-acetate (PMA) within T cells utilizing 13C-13C correlation and double quantum filtered NMR spectroscopy. We demonstrate the detection of therapeutically relevant amounts of PMA in T cells down to an upper limit of ∼60.0 pmol per million cells and identify PMA to be primarily localized in cellular membranes. Furthermore, we observe distinct 13C-21,22-PMA chemical shifts under DNP conditions in cells compared to model membrane samples and homogenized cell membranes, that cannot be accounted for by differences in conformation. We provide evidence for distinct membrane topologies of 13C-21,22-PMA in cell membranes that are consistent with shallow binding modes. This is the first of its kind in-cell DNP characterization of small molecules dissolved in the membranes of living cells, establishing in-cell DNP-NMR as an important method for the characterization of drug-membrane interactions within the context of the complex heterogeneous environment of intact cellular membranes. This work sets the stage for the identification of the in-cell structural interactions that govern the biological activity of phorbol esters.
Collapse
Affiliation(s)
- Sarah A. Overall
- Institute
of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland
| | - Sina J. Hartmann
- Institute
of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland
| | - Quang H. Luu-Nguyen
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United
States
| | - Patrick Judge
- Department
of Biochemistry, Biophysics, & Structural Biology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Dorothea Pinotsi
- Scientific
Center for Optical and Electron Microscopy, ETH Zurich, 8093 Zurich, Switzerland
| | - Lea Marti
- Institute
of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Paul A. Wender
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United
States
| | - Alexander B. Barnes
- Institute
of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
4
|
Shin Y, Park CM, Kim DE, Kim S, Lee SY, Lee JY, Jeon WH, Kim HG, Bae S, Yoon CH. Discovery of new acetamide derivatives of 5-indole-1,3,4-oxadiazol-2-thiol as inhibitors of HIV-1 Tat-mediated viral transcription. Antimicrob Agents Chemother 2024; 68:e0064324. [PMID: 39230310 PMCID: PMC11459959 DOI: 10.1128/aac.00643-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) encodes a transcriptional factor called Tat, which is critical for viral transcription. Tat-mediated transcription is highly ordered apart from the cellular manner; therefore, it is considered a target for developing anti-HIV-1 drugs. However, drugs targeting Tat-mediated viral transcription are not yet available. Our high-throughput screen of a compound library employing a dual-reporter assay identified a 1,3,4-oxadiazole scaffold against Tat and HIV-1 infection. Furthermore, a serial structure-activity relation (SAR) study performed with biological assays found 1,3,4-oxadiazole derivatives (9 and 13) containing indole and acetamide that exhibited potent inhibitory effects on HIV-1 infectivity, with half-maximal effective concentrations (EC50) of 0.17 (9) and 0.24 µM (13), respectively. The prominent derivatives specifically interfered with the viral transcriptional step without targeting other infection step(s) and efficiently inhibited the HIV-1 replication cycle in the T cell lines and peripheral blood mononuclear cells infected with HIV-1. Additionally, compared to the wild type, the compounds exhibited similar potency against anti-retroviral drug-resistant HIV-1 strains. In a series of mode-of-action studies, the compounds inhibited the ejection of histone H3 for facilitating viral transcription on the long-terminal repeat (LTR) promoter. Furthermore, SAHA (a histone deacetylase inhibitor) treatment abolished the compound potency, revealing that the compounds can possibly target Tat-regulated epigenetic modulation of LTR to inhibit viral transcription. Overall, our screening identified novel 1,3,4-oxadiazole compounds that inhibited HIV-1 Tat, and subsequent SAR-based optimization led to the derivatives 9 and 13 development that could be a promising scaffold for developing a new class of therapeutic agents for HIV-1 infection.
Collapse
Affiliation(s)
- YoungHyun Shin
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Chul Min Park
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Dong-Eun Kim
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Sungmin Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Sang-Yeop Lee
- Research Center for Bioconvergence Analysis, Ochang Center, Korea Basic Science Institute, Cheongju-si, Republic of Korea
| | - Jun Young Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Won-Hui Jeon
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hong Gi Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Songmee Bae
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Cheol-Hee Yoon
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, Cheongju, Republic of Korea
| |
Collapse
|
5
|
Chou TC, Maggirwar NS, Marsden MD. HIV Persistence, Latency, and Cure Approaches: Where Are We Now? Viruses 2024; 16:1163. [PMID: 39066325 PMCID: PMC11281696 DOI: 10.3390/v16071163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The latent reservoir remains a major roadblock to curing human immunodeficiency virus (HIV) infection. Currently available antiretroviral therapy (ART) can suppress active HIV replication, reduce viral loads to undetectable levels, and halt disease progression. However, antiretroviral drugs are unable to target cells that are latently infected with HIV, which can seed viral rebound if ART is stopped. Consequently, a major focus of the field is to study the latent viral reservoir and develop safe and effective methods to eliminate it. Here, we provide an overview of the major mechanisms governing the establishment and maintenance of HIV latency, the key challenges posed by latent reservoirs, small animal models utilized to study HIV latency, and contemporary cure approaches. We also discuss ongoing efforts to apply these approaches in combination, with the goal of achieving a safe, effective, and scalable cure for HIV that can be extended to the tens of millions of people with HIV worldwide.
Collapse
Affiliation(s)
- Tessa C. Chou
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
| | - Nishad S. Maggirwar
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
| | - Matthew D. Marsden
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
- Department of Medicine, Division of Infectious Disease, School of Medicine, University of California, Irvine, CA 92617, USA
| |
Collapse
|
6
|
Owor RO, Kawuma C, Nantale G, Kiyimba K, Obakiro SB, Ouma S, Lulenzi J, Gavamukulya Y, Chebijira M, Lukwago TW, Egor M, Musagala P, Andima M, Kibuule D, Waako P, Hokello J. Ethnobotanical survey and phytochemistry of medicinal plants used in the management of HIV/AIDS in Eastern Uganda. Heliyon 2024; 10:e31908. [PMID: 38845918 PMCID: PMC11153244 DOI: 10.1016/j.heliyon.2024.e31908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Currently, highly active antiretroviral therapy is unable to cure HIV/AIDS because of HIV latency. This study aimed at documenting medicinal plants used in the management of HIV/AIDS in Eastern Uganda so as to identify phytochemicals with HIV latency reversing potential. An ethnobotanical survey was conducted across eight districts in Eastern Uganda. Traditional medicine practitioners were interviewed using semi-structured questionnaires. Qualitative and quantitative phytochemical tests were respectively, performed to determine the presence and quantity of phytochemicals in frequently mentioned plant species. Data were analysed and presented using descriptive statistics and Informant Consensus Factor (ICF). Twenty-one plant species from fourteen plant families were reported to be used in the management of HIV/AIDS. Six plant species with the highest frequency of mention were: Zanthoxylum chalybeum, Gymnosporia senegalensis, Warbugia ugandensis, Leonatis nepetifolia, Croton macrostachyus and Rhoicissus tridentata. Qualitative phytochemical analysis of all the six most frequently mentioned plant species revealed the presence of flavonoids, tannins, terpenoids, alkaloids and phenolics. Quantitative analysis revealed the highest content of flavonoids in L. nepetifolia (20.4 mg/g of dry extract) while the lowest content was determined in C. macrostachyus (7.1 mg/g of dry extract). On the other hand, the highest content of tannins was observed in L. nepetifolia. (199.9 mg/g of dry extract) while the lowest content was found in R. tridentata. (42.6 mg/g of dry extract). Medicinal plants used by traditional medicine practitioners in Eastern Uganda to manage HIV/AIDS are rich in phytochemicals including flavonoids and tannins. Further studies to evaluate the HIV-1 latency reversing ability of these phytochemicals are recommended to discover novel molecules against HIV/AIDS.
Collapse
Affiliation(s)
- Richard Oriko Owor
- Department of Chemistry, Faculty of Science and Education, Busitema University, P.O Box 236, Tororo, Uganda
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
| | - Carol Kawuma
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Biology, Faculty of Science and Education, Busitema University, P.O. Box 236, Tororo, Uganda
| | - Gauden Nantale
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Biology, Faculty of Science and Education, Busitema University, P.O. Box 236, Tororo, Uganda
| | - Kenedy Kiyimba
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Samuel Baker Obakiro
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Simple Ouma
- The AIDS Support Organization (TASO), P.O Box 10443, Kampala, Uganda
| | - Jalia Lulenzi
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Yahaya Gavamukulya
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, Busitema University P.O Box 1460, Mbale, Uganda
| | - Mercy Chebijira
- Department of Chemistry, Faculty of Science and Education, Busitema University, P.O Box 236, Tororo, Uganda
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
| | - Tonny Wotoyitide Lukwago
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Moses Egor
- Department of Chemistry, Faculty of Science and Education, Busitema University, P.O Box 236, Tororo, Uganda
| | - Peter Musagala
- Department of Chemistry, Faculty of Science and Education, Busitema University, P.O Box 236, Tororo, Uganda
| | - Moses Andima
- Department of Chemistry, Faculty of Science and Education, Busitema University, P.O Box 236, Tororo, Uganda
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
| | - Dan Kibuule
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Paul Waako
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Joseph Hokello
- Busitema University Natural Products Research and Innovation Centre, P. O. Box 1460, Mbale, Uganda
- Department of Biology, Faculty of Science and Education, Busitema University, P.O. Box 236, Tororo, Uganda
| |
Collapse
|
7
|
Dimapasoc M, Moran JA, Cole SW, Ranjan A, Hourani R, Kim JT, Wender PA, Marsden MD, Zack JA. Defining the Effects of PKC Modulator HIV Latency-Reversing Agents on Natural Killer Cells. Pathog Immun 2024; 9:108-137. [PMID: 38765786 PMCID: PMC11101012 DOI: 10.20411/pai.v9i1.673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
Background Latency reversing agents (LRAs) such as protein kinase C (PKC) modulators can reduce rebound-competent HIV reservoirs in small animal models. Furthermore, administration of natural killer (NK) cells following LRA treatment improves this reservoir reduction. It is currently unknown why the combination of a PKC modulator and NK cells is so potent and whether exposure to PKC modulators may augment NK cell function in some way. Methods Primary human NK cells were treated with PKC modulators (bryostatin-1, prostratin, or the designed, synthetic bryostatin-1 analog SUW133), and evaluated by examining expression of activation markers by flow cytometry, analyzing transcriptomic profiles by RNA sequencing, measuring cytotoxicity by co-culturing with K562 cells, assessing cytokine production by Luminex assay, and examining the ability of cytokines and secreted factors to independently reverse HIV latency by co-culturing with Jurkat-Latency (J-Lat) cells. Results PKC modulators increased expression of proteins involved in NK cell activation. Transcriptomic profiles from PKC-treated NK cells displayed signatures of cellular activation and enrichment of genes associated with the NFκB pathway. NK cell cytotoxicity was unaffected by prostratin but significantly decreased by bryostatin-1 and SUW133. Cytokines from PKC-stimulated NK cells did not induce latency reversal in J-Lat cell lines. Conclusions Although PKC modulators have some significant effects on NK cells, their contribution in "kick and kill" strategies is likely due to upregulating HIV expression in CD4+ T cells, not directly enhancing the effector functions of NK cells. This suggests that PKC modulators are primarily augmenting the "kick" rather than the "kill" arm of this HIV cure approach.
Collapse
Affiliation(s)
- Melanie Dimapasoc
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California
| | - Jose A. Moran
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, California
| | - Steve W. Cole
- UCLA Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Alok Ranjan
- Department of Chemistry, Stanford University, Stanford, California
| | - Rami Hourani
- Department of Chemistry, Stanford University, Stanford, California
| | - Jocelyn T. Kim
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, California
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, California
- Department of Chemical and Systems Biology, Stanford University, Stanford, California
| | - Matthew D. Marsden
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, California
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, California
| | - Jerome A. Zack
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
8
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
9
|
Huang X, Huang X, Li Q, Ma M, Cui Y, Yang L, Wang H, Luo R, Chen J, Yang J, Lin J, Li D, Zheng Y, Zhang J. Seco-cyclic phorbol derivatives and their anti-HIV-1 activities. Chin J Nat Med 2024; 22:365-374. [PMID: 38658099 DOI: 10.1016/s1875-5364(24)60630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 04/26/2024]
Abstract
Phorbol esters are recognized for their dual role as anti-HIV-1 agents and as activators of protein kinase C (PKC). The efficacy of phorbol esters in binding with PKC is attributed to the presence of oxygen groups at positions C20, C3/C4, and C9 of phorbol. Concurrently, the lipids located at positions C12/C13 are essential for both the anti-HIV-1 activity and the formation of the PKC-ligand complex. The influence of the cyclopropane ring at positions C13 and C14 in phorbol derivatives on their anti-HIV-1 activity requires further exploration. This research entailed the hydrolysis of phorbol, producing seco-cyclic phorbol derivatives. The anti-HIV-1 efficacy of these derivatives was assessed, and the affinity constant (Kd) for PKC-δ protein of selected seco-cyclic phorbol derivatives was determined through isothermal titration calorimetry. The findings suggest that the chemical modification of cyclopropanols could affect both the anti-HIV-1 activity and the PKC binding affinity. Remarkably, compound S11, with an EC50 of 0.27 μmol·L-1 and a CC50 of 153.92 μmol·L-1, demonstrated a potent inhibitory effect on the intermediate products of HIV-1 reverse transcription (ssDNA and 2LTR), likely acting at the viral entry stage, yet showed no affinity for the PKC-δ protein. These results position compound S11 as a potential candidate for further preclinical investigation and for studies aimed at elucidating the pharmacological mechanism underlying its anti-HIV-1 activity.
Collapse
Affiliation(s)
- Xiaolei Huang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Xusheng Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Qirun Li
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Mengdi Ma
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yadong Cui
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Liumeng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Haibo Wang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Ronghua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jinglei Chen
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Jingxuan Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Jinrong Lin
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Duxin Li
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | - Yongtang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China.
| | - Jian Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
10
|
Watanabe A, Nagatomo M, Hirose A, Hikone Y, Kishimoto N, Miura S, Yasutake T, Abe T, Misumi S, Inoue M. Total Syntheses of Phorbol and 11 Tigliane Diterpenoids and Their Evaluation as HIV Latency-Reversing Agents. J Am Chem Soc 2024; 146:8746-8756. [PMID: 38486375 DOI: 10.1021/jacs.4c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Tigliane diterpenoids possess exceptionally complex structures comprising common 5/7/6/3-membered ABCD-rings and disparate oxygen functionalities. While tiglianes display a wide range of biological activities, compounds with HIV latency-reversing activity can eliminate viral reservoirs, thereby serving as promising leads for new anti-HIV agents. Herein, we report collective total syntheses of phorbol (13) and 11 tiglianes 14-24 with various acylation patterns and oxidation states, and their evaluation as HIV latency-reversing agents. The syntheses were strategically divided into five stages to increase the structural complexity. First, our previously established sequence enabled the expeditious preparation of ABC-tricycle 9 in 15 steps. Second, hydroxylation of 9 and ring-contractive D-ring formation furnished phorbol (13). Third, site-selective attachment of two acyl groups to 13 produced four phorbol diesters 14-17. Fourth, the oxygen functionalities were regio- and stereoselectively installed to yield five tiglianes 18-22. Fifth, further oxidation to the most densely oxygenated acerifolin A (23) and tigilanol tiglate (24) was realized through organizing a 3D shape of the B-ring. Assessment of the HIV latency-reversing activities of the 12 tiglianes revealed seven tiglianes (14-17 and 22-24) with 20- to 300-fold improved efficacy compared with prostratin (12), a representative latency-reversing agent. Therefore, the robust synthetic routes to a variety of tiglianes with promising activities devised in this study provide opportunities for advancing HIV eradication strategies.
Collapse
Affiliation(s)
- Ayumu Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akira Hirose
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuto Hikone
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naoki Kishimoto
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Satoshi Miura
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Tae Yasutake
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Towa Abe
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Zhou Z, Jiang Y, Zhong X, Yang J, Yang G. Characteristics and mechanisms of latency-reversing agents in the activation of the human immunodeficiency virus 1 reservoir. Arch Virol 2023; 168:301. [PMID: 38019293 DOI: 10.1007/s00705-023-05931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
The "Shock and Kill" method is being considered as a potential treatment for eradicating HIV-1 and achieving a functional cure for acquired immunodeficiency syndrome (AIDS). This approach involves using latency-reversing agents (LRAs) to activate human immunodeficiency virus (HIV-1) transcription in latent cells, followed by treatment with antiviral drugs to kill these cells. Although LRAs have shown promise in HIV-1 patient research, their widespread clinical use is hindered by side effects and limitations. In this review, we categorize and explain the mechanisms of these agonists in activating HIV-1 in vivo and discuss their advantages and disadvantages. In the future, combining different HIV-1 LRAs may overcome their respective shortcomings and facilitate a functional cure for HIV-1.
Collapse
Affiliation(s)
- Zhujiao Zhou
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310013, China
| | - Yashuang Jiang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xinyu Zhong
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310013, China
| | - Jingyi Yang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Geng Yang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310013, China.
| |
Collapse
|
12
|
Van Gulck E, Pardons M, Nijs E, Verheyen N, Dockx K, Van Den Eynde C, Battivelli E, Vega J, Florence E, Autran B, Archin NM, Margolis DM, Katlama C, Hamimi C, Van Den Wyngaert I, Eyassu F, Vandekerckhove L, Boden D. A truncated HIV Tat demonstrates potent and specific latency reversal activity. Antimicrob Agents Chemother 2023; 67:e0041723. [PMID: 37874295 PMCID: PMC10649039 DOI: 10.1128/aac.00417-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/09/2023] [Indexed: 10/25/2023] Open
Abstract
A major barrier to HIV-1 cure is caused by the pool of latently infected CD4 T-cells that persist under combination antiretroviral therapy (cART). This latent reservoir is capable of producing replication-competent infectious viruses once prolonged suppressive cART is withdrawn. Inducing the reactivation of HIV-1 gene expression in T-cells harboring a latent provirus in people living with HIV-1 under cART may result in depletion of this latent reservoir due to cytopathic effects or immune clearance. Studies have investigated molecules that reactivate HIV-1 gene expression, but to date, no latency reversal agent has been identified to eliminate latently infected cells harboring replication-competent HIV in cART-treated individuals. Stochastic fluctuations in HIV-1 tat gene expression have been described and hypothesized to allow the progression into proviral latency. We hypothesized that exposing latently infected CD4+ T-cells to Tat would result in effective latency reversal. Our results indicate the capacity of a truncated Tat protein and mRNA to reactivate HIV-1 in latently infected T-cells ex vivo to a similar degree as the protein kinase C agonist: phorbol 12-myristate 13-acetate, without T-cell activation or any significant transcriptome perturbation.
Collapse
Affiliation(s)
- Ellen Van Gulck
- Janssen Infectious Diseases, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marion Pardons
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Erik Nijs
- Janssen Infectious Diseases, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Nick Verheyen
- Janssen Infectious Diseases, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Koen Dockx
- Janssen Infectious Diseases, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Christel Van Den Eynde
- Janssen Infectious Diseases, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Emilie Battivelli
- Janssen Infectious Diseases, A Division of Janssen Pharmaceutica NV, Brisbane, California, USA
| | - Jerel Vega
- Arcturus Therapeutics, Science Center Drive, San Diego, California, USA
| | | | - Brigitte Autran
- Faculty of Medicine Sorbonne-University, CIMI-Paris, UPMC/Inserm, Paris, France
| | - Nancie M. Archin
- University of North Carolina School of Medicine and UNC, HIV Cure Center, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- University of North Carolina School of Medicine and UNC, HIV Cure Center, Chapel Hill, North Carolina, USA
| | - Christine Katlama
- Department Infectious Diseases, Hospital Pitié Salpetière, Sorbonne-University and IPLESP, Paris, France
| | - Chiraz Hamimi
- Faculty of Medicine Sorbonne-University, CIMI-Paris, UPMC/Inserm, Paris, France
| | - Ilse Van Den Wyngaert
- Discovery Sciences, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Filmon Eyassu
- Discovery Sciences, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Daniel Boden
- Janssen Infectious Diseases, A Division of Janssen Pharmaceutica NV, Brisbane, California, USA
| |
Collapse
|
13
|
Otsuki K, Li W. Tigliane and daphnane diterpenoids from Thymelaeaceae family: chemistry, biological activity, and potential in drug discovery. J Nat Med 2023; 77:625-643. [PMID: 37294498 PMCID: PMC10465420 DOI: 10.1007/s11418-023-01713-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
Tigliane and daphnane diterpenoids are characteristically distributed in plants of the Thymelaeaceae family as well as the Euphorbiaceae family and are structurally diverse due to the presence of polyoxygenated functionalities in the polycyclic skeleton. These diterpenoids are known as toxic components, while they have been shown to exhibit a wide variety of biological activities, such as anti-cancer, anti-HIV, and analgesic activity, and are attracting attention in the field of natural product drug discovery. This review focuses on naturally occurring tigliane and daphnane diterpenoids from plants of the Thymelaeaceae family and provides an overview of their chemical structure, distribution, isolation, structure determination, chemical synthesis, and biological activities, with a prime focus on the recent findings.
Collapse
Affiliation(s)
- Kouharu Otsuki
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan.
| |
Collapse
|
14
|
Zhou D, Otsuki K, Zhang M, Chen G, Bai ZS, Yu H, Kikuchi T, Huang L, Chen CH, Li W, Li N. Anti-HIV Tigliane-Type Diterpenoids from the Aerial Parts of Wikstroemia lichiangensis. JOURNAL OF NATURAL PRODUCTS 2022; 85:1658-1664. [PMID: 35698995 PMCID: PMC9897292 DOI: 10.1021/acs.jnatprod.1c01195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Tigliane-type diterpenoids have attracted much attention in drug discovery since they have been reported to exhibit remarkable biological effects, such as tumor-promoting, antineoplastic, and anti-HIV activities. In continuing our efforts to discover novel biologically important diterpenoids from Wikstroemia species, Wikstroemia lichiangensis was investigated phytochemically for the first time. As a result, four new (1-4) and one known (5) tigliane-type diterpenoid were isolated, and their structures were elucidated by spectroscopic data analysis. Tiglianes (1-5) showed potent anti-HIV activity against HIV-1 infection of MT4 lymphocytes with IC50 values of 1.1-65.4 nM.
Collapse
Affiliation(s)
- Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Kouharu Otsuki
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Mi Zhang
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Zi-Song Bai
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Haotian Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Li Huang
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, United States
| | - Chin-Ho Chen
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, United States
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| |
Collapse
|
15
|
Wang M, Sciorillo A, Read S, Divsalar DN, Gyampoh K, Zu G, Yuan Z, Mounzer K, Williams DE, Montaner LJ, de Voogd N, Tietjen I, Andersen RJ. Ansellone J, a Potent in Vitro and ex Vivo HIV-1 Latency Reversal Agent Isolated from a Phorbas sp. Marine Sponge. JOURNAL OF NATURAL PRODUCTS 2022; 85:1274-1281. [PMID: 35522580 DOI: 10.1021/acs.jnatprod.1c01225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Five new minor sesterterpenoids, ansellones H (4), I (5), J (6), and K (7) and phorone C (8), have been isolated from a Phorbas sp. marine sponge collected in British Columbia. Their structures have been elucidated by detailed analysis of NMR and MS data. Ansellone J (6) and phorone C (8) are potent in vitro HIV-1 latency reversal agents that are more potent than the reference compound and control protein kinase C activator prostratin (3). The most potent Phorbas sesterterpenoid, ansellone J (6), was evaluated for HIV latency reversal in a primary cell context using CD4+ T cells obtained directly from four combination antiretroviral therapy-suppressed donors with HIV. To a first approximation, ansellone J (6) induced HIV latency reversal at levels similar to prostratin (3) ex vivo, but at a 10-fold lower concentration.
Collapse
Affiliation(s)
- Meng Wang
- Departments of Chemistry and Earth Ocean & Atmospheric Sciences, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Amanda Sciorillo
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Silven Read
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Donya Naz Divsalar
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Kwasi Gyampoh
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Guorui Zu
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Zhe Yuan
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Karam Mounzer
- Jonathan Lax Immune Disorders Treatment Center, Philadelphia FIGHT Community Health Centers, Philadelphia, Pennsylvania 19107, United States
| | - David E Williams
- Departments of Chemistry and Earth Ocean & Atmospheric Sciences, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Luis J Montaner
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Nicole de Voogd
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands
| | - Ian Tietjen
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Raymond J Andersen
- Departments of Chemistry and Earth Ocean & Atmospheric Sciences, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
16
|
Gene discovery and virus-induced gene silencing reveal branched pathways to major classes of bioactive diterpenoids in Euphorbia peplus. Proc Natl Acad Sci U S A 2022; 119:e2203890119. [PMID: 35584121 PMCID: PMC9173813 DOI: 10.1073/pnas.2203890119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceEuphorbia peplus, a member of the Euphorbia genus, is rich in jatrophane and ingenane diterpenoids. Using a metabolomics-guided transcriptomic approach to gene candidate identification, we have discovered a short-chain dehydrogenase gene involved in the production of the lathyrane jolkinol E. We have developed a virus-induced gene-silencing method in E. peplus that has allowed us to demonstrate the direct relationship between casbene and polycyclic diterpenoids and that jolkinol C acts as a key branch point intermediate in the production of ingenanes and jatrophanes. This work contributes both knowledge and tools for engineering production of bioactive diterpenoids in heterologous host systems, thus enabling their further evaluation and development.
Collapse
|
17
|
Wong LM, Li D, Tang Y, Méndez-Lagares G, Thompson GR, Hartigan-O'Connor DJ, Dandekar S, Jiang G. Human Immunodeficiency Virus-1 Latency Reversal via the Induction of Early Growth Response Protein 1 to Bypass Protein Kinase C Agonist-Associated Immune Activation. Front Microbiol 2022; 13:836831. [PMID: 35359743 PMCID: PMC8960990 DOI: 10.3389/fmicb.2022.836831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 01/12/2023] Open
Abstract
Human Immunodeficiency Virus-1 (HIV) remains a global health challenge due to the latent HIV reservoirs in people living with HIV (PLWH). Dormant yet replication competent HIV harbored in the resting CD4+ T cells cannot be purged by antiretroviral therapy (ART) alone. One approach of HIV cure is the "Kick and Kill" strategy where latency reversal agents (LRAs) have been implemented to disrupt latent HIV, expecting to eradicate HIV reservoirs by viral cytopathic effect or immune-mediated clearance. Protein Kinase C agonists (PKCa), a family of LRAs, have demonstrated the ability to disrupt latent HIV to an extent. However, the toxicity of PKCa remains a concern in vivo. Early growth response protein 1 (EGR1) is a downstream target of PKCa during latency reversal. Here, we show that PKCa induces EGR1 which directly drives Tat-dependent HIV transcription. Resveratrol, a natural phytoalexin found in grapes and various plants, induces Egr1 expression and disrupts latent HIV in several HIV latency models in vitro and in CD4+ T cells isolated from ART-suppressed PLWH ex vivo. In the primary CD4+ T cells, resveratrol does not induce immune activation at the dosage that it reverses latency, indicating that targeting EGR1 may be able to reverse latency and bypass PKCa-induced immune activation.
Collapse
Affiliation(s)
- Lilly M Wong
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dajiang Li
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yuyang Tang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Gema Méndez-Lagares
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - George R Thompson
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Dennis J Hartigan-O'Connor
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Guochun Jiang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
18
|
Targeting PKC in microglia to promote remyelination and repair in the CNS. Curr Opin Pharmacol 2021; 62:103-108. [PMID: 34965482 DOI: 10.1016/j.coph.2021.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/19/2021] [Indexed: 01/28/2023]
Abstract
Microglia and CNS-infiltrating macrophages play significant roles in the pathogenesis of neuroinflammatory and neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Prolonged and dysregulated inflammatory responses by these innate immune cells can have deleterious effects on the surrounding CNS microenvironment, which can worsen neurodegeneration and demyelination. However, although chronic activation of pro-inflammatory microglia is maladaptive, other functional microglial subtypes play beneficial roles during CNS repair and regeneration. Therefore, there is a tremendous interest in understanding the underlying mechanism of the activation of these reparative/regenerative microglia. In this review, we focus on the potential role of PKC, a downstream signaling molecule of TREM2 and PLCγ2, and PKC modulators in promoting the activation of reparative/regenerative microglial subtypes as a novel therapy for neuroinflammatory and neurodegenerative diseases.
Collapse
|
19
|
Affiliation(s)
- Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Rd Chengdu Sichuan 610064 China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Rd Chengdu Sichuan 610064 China
| |
Collapse
|
20
|
Molimau-Samasoni S, Woolner VH, Foliga ST, Robichon K, Patel V, Andreassend SK, Sheridan JP, Te Kawa T, Gresham D, Miller D, Sinclair DJ, La Flamme AC, Melnik AV, Aron A, Dorrestein PC, Atkinson PH, Keyzers RA, Munkacsi AB. Functional genomics and metabolomics advance the ethnobotany of the Samoan traditional medicine "matalafi". Proc Natl Acad Sci U S A 2021; 118:e2100880118. [PMID: 34725148 PMCID: PMC8609454 DOI: 10.1073/pnas.2100880118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/30/2021] [Indexed: 11/18/2022] Open
Abstract
The leaf homogenate of Psychotria insularum is widely used in Samoan traditional medicine to treat inflammation associated with fever, body aches, swellings, wounds, elephantiasis, incontinence, skin infections, vomiting, respiratory infections, and abdominal distress. However, the bioactive components and underlying mechanisms of action are unknown. We used chemical genomic analyses in the model organism Saccharomyces cerevisiae (baker's yeast) to identify and characterize an iron homeostasis mechanism of action in the traditional medicine as an unfractionated entity to emulate its traditional use. Bioactivity-guided fractionation of the homogenate identified two flavonol glycosides, rutin and nicotiflorin, each binding iron in an ion-dependent molecular networking metabolomics analysis. Translating results to mammalian immune cells and traditional application, the iron chelator activity of the P. insularum homogenate or rutin decreased proinflammatory and enhanced anti-inflammatory cytokine responses in immune cells. Together, the synergistic power of combining traditional knowledge with chemical genomics, metabolomics, and bioassay-guided fractionation provided molecular insight into a relatively understudied Samoan traditional medicine and developed methodology to advance ethnobotany.
Collapse
Affiliation(s)
- Seeseei Molimau-Samasoni
- Plant and Postharvest Technologies, Scientific Research Organization of Samoa, Apia, Samoa;
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Victoria Helen Woolner
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Su'emalo Talie Foliga
- Division of Environment and Conservation, Ministry of Natural Resources and Environment, Apia, Samoa
| | - Katharina Robichon
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Vimal Patel
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Sarah K Andreassend
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeffrey P Sheridan
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Tama Te Kawa
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - David Gresham
- Centre of Genomic and Systems Biology, New York University, New York, NY 10003
| | - Darach Miller
- Department of Genetics, Stanford University Palo Alto, CA 94305
| | - Daniel J Sinclair
- School of Geography, Environmental and Earth Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Anne C La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Alexey V Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Allegra Aron
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Paul H Atkinson
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand;
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
21
|
Nie YW, Li Y, Luo L, Zhang CY, Fan W, Gu WY, Shi KR, Zhai XX, Zhu JY. Phytochemistry and Pharmacological Activities of the Diterpenoids from the Genus Daphne. Molecules 2021; 26:6598. [PMID: 34771007 PMCID: PMC8588408 DOI: 10.3390/molecules26216598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/08/2023] Open
Abstract
There are abundant natural diterpenoids in the plants of the genus Daphne from the Thymelaeaceae family, featuring a 5/7/6-tricyclic ring system and usually with an orthoester group. So far, a total of 135 diterpenoids has been isolated from the species of the genus Daphne, which could be further classified into three main types according to the substitution pattern of ring A and oxygen-containing functions at ring B. A variety of studies have demonstrated that these compounds exert a wide range of bioactivities both in vitro and in vivo including anticancer, anti-inflammatory, anti-HIV, antifertility, neurotrophic, and cholesterol-lowering effects, which is reviewed herein. Meanwhile, the fascinating structure-activity relationship is also concluded in this review in the hope of providing an easy access to available information for the synthesis and optimization of efficient drugs.
Collapse
Affiliation(s)
- Yi-Wen Nie
- Department of Pharmacy, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China; (Y.-W.N.); (Y.L.); (W.F.); (W.-Y.G.); (K.-R.S.)
- Central Laboratory, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China;
| | - Yuan Li
- Department of Pharmacy, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China; (Y.-W.N.); (Y.L.); (W.F.); (W.-Y.G.); (K.-R.S.)
- Central Laboratory, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China;
| | - Lan Luo
- Department of Pharmacy, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China; (Y.-W.N.); (Y.L.); (W.F.); (W.-Y.G.); (K.-R.S.)
| | - Chun-Yan Zhang
- Central Laboratory, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China;
| | - Wei Fan
- Department of Pharmacy, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China; (Y.-W.N.); (Y.L.); (W.F.); (W.-Y.G.); (K.-R.S.)
| | - Wei-Ying Gu
- Department of Pharmacy, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China; (Y.-W.N.); (Y.L.); (W.F.); (W.-Y.G.); (K.-R.S.)
| | - Kou-Rong Shi
- Department of Pharmacy, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China; (Y.-W.N.); (Y.L.); (W.F.); (W.-Y.G.); (K.-R.S.)
| | - Xiao-Xiang Zhai
- Department of Dermatology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China;
| | - Jian-Yong Zhu
- Central Laboratory, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China;
| |
Collapse
|
22
|
Abstract
Combinatory antiretroviral therapy (cART) reduces human immunodeficiency virus type 1 (HIV-1) replication but is not curative because cART interruption almost invariably leads to a rapid rebound of viremia due to the persistence of stable HIV-1-infected cellular reservoirs. These reservoirs are mainly composed of CD4+ T cells harboring replication-competent latent proviruses. A broadly explored approach to reduce the HIV-1 reservoir size, the shock and kill strategy, consists of reactivating HIV-1 gene expression from the latently infected cellular reservoirs (the shock), followed by killing of the virus-producing infected cells (the kill). Based on improved understanding of the multiple molecular mechanisms controlling HIV-1 latency, distinct classes of latency reversing agents (LRAs) have been studied for their efficiency to reactivate viral gene expression in in vitro and ex vivo cell models. Here, we provide an up-to-date review of these different mechanistic classes of LRAs and discuss optimizations of the shock strategy by combining several LRAs simultaneously or sequentially.
Collapse
Affiliation(s)
- Anthony Rodari
- Service of Molecular Virology, Department of Molecular Biology, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium;
| | - Gilles Darcis
- Infectious Diseases Department, Liège University Hospital, 4000 Liège, Belgium
| | - Carine M Van Lint
- Service of Molecular Virology, Department of Molecular Biology, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium;
| |
Collapse
|
23
|
Mbonye U, Leskov K, Shukla M, Valadkhan S, Karn J. Biogenesis of P-TEFb in CD4+ T cells to reverse HIV latency is mediated by protein kinase C (PKC)-independent signaling pathways. PLoS Pathog 2021; 17:e1009581. [PMID: 34529720 PMCID: PMC8478230 DOI: 10.1371/journal.ppat.1009581] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/28/2021] [Accepted: 09/04/2021] [Indexed: 01/09/2023] Open
Abstract
The switch between HIV latency and productive transcription is regulated by an auto-feedback mechanism initiated by the viral trans-activator Tat, which functions to recruit the host transcription elongation factor P-TEFb to proviral HIV. A heterodimeric complex of CDK9 and one of three cyclin T subunits, P-TEFb is expressed at vanishingly low levels in resting memory CD4+ T cells and cellular mechanisms controlling its availability are central to regulation of the emergence of HIV from latency. Using a well-characterized primary T-cell model of HIV latency alongside healthy donor memory CD4+ T cells, we characterized specific T-cell receptor (TCR) signaling pathways that regulate the generation of transcriptionally active P-TEFb, defined as the coordinate expression of cyclin T1 and phospho-Ser175 CDK9. Protein kinase C (PKC) agonists, such as ingenol and prostratin, stimulated active P-TEFb expression and reactivated latent HIV with minimal cytotoxicity, even in the absence of intracellular calcium mobilization with an ionophore. Unexpectedly, inhibition-based experiments demonstrated that PKC agonists and TCR-mobilized diacylglycerol signal through MAP kinases ERK1/2 rather than through PKC to effect the reactivation of both P-TEFb and latent HIV. Single-cell and bulk RNA-seq analyses revealed that of the four known isoforms of the Ras guanine nucleotide exchange factor RasGRP, RasGRP1 is by far the predominantly expressed diacylglycerol-dependent isoform in CD4+ T cells. RasGRP1 should therefore mediate the activation of ERK1/2 via Ras-Raf signaling upon TCR co-stimulation or PKC agonist challenge. Combined inhibition of the PI3K-mTORC2-AKT-mTORC1 pathway and the ERK1/2 activator MEK prior to TCR co-stimulation abrogated active P-TEFb expression and substantially suppressed latent HIV reactivation. Therefore, contrary to prevailing models, the coordinate reactivation of P-TEFb and latent HIV in primary T cells following either TCR co-stimulation or PKC agonist challenge is independent of PKC but rather involves two complementary signaling arms of the TCR cascade, namely, RasGRP1-Ras-Raf-MEK-ERK1/2 and PI3K-mTORC2-AKT-mTORC1.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail: (UM); (JK)
| | - Konstantin Leskov
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Meenakshi Shukla
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail: (UM); (JK)
| |
Collapse
|
24
|
Hirose A, Watanabe A, Ogino K, Nagatomo M, Inoue M. Unified Total Syntheses of Rhamnofolane, Tigliane, and Daphnane Diterpenoids. J Am Chem Soc 2021; 143:12387-12396. [PMID: 34319739 DOI: 10.1021/jacs.1c06450] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rhamnofolane, tigliane, and daphnane diterpenoids are structurally complex natural products with multiple oxygen functionalities, making them synthetically challenging. While these diterpenoids share a 5/7/6-trans-fused ring system (ABC-ring), the three-carbon substitutions at the C13- and C14-positions on the C-ring and appending oxygen functional groups differ among them, accounting for the disparate biological activities of these natural products. Here, we developed a new, unified strategy for expeditious total syntheses of five representative members of these three families, crotophorbolone (1), langduin A (2), prostratin (3), resiniferatoxin (4), and tinyatoxin (5). Retrosynthetically, 1-5 were simplified into their common ABC-ring 6 by detaching the three-carbon units and the oxygen-appended groups. Intermediate 6 with six stereocenters was assembled from four achiral fragments in 12 steps by integrating three powerful transformations, as follows: (i) asymmetric Diels-Alder reaction to induce formation of the C-ring; (ii) π-allyl Stille coupling reaction to set the trisubstituted E-olefin of the B-ring; and (iii) Eu(fod)3-promoted 7-endo cyclization of the B-ring via the generation of a bridgehead radical. Then 6 was diversified into 1-5 by selective installation of the different functional groups. Attachment of the C14-β-isopropenyl and isopropyl groups led to 1 and 2, respectively, while oxidative acetoxylation and C13,14-β-dimethylcyclopropane formation gave rise to 3. Finally, formation of an α-oriented caged orthoester by C13-stereochemical inversion and esterification with two different homovanillic acids delivered 4 and 5 with a C13-β-isopropenyl group. This unified synthetic route to 1-5 required only 16-20 total steps, demonstrating the exceptional efficiency of the present strategy.
Collapse
Affiliation(s)
- Akira Hirose
- Graduate School of Pharmaceutical Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ayumu Watanabe
- Graduate School of Pharmaceutical Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kohei Ogino
- Graduate School of Pharmaceutical Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
25
|
Covino DA, Desimio MG, Doria M. Combinations of Histone Deacetylase Inhibitors with Distinct Latency Reversing Agents Variably Affect HIV Reactivation and Susceptibility to NK Cell-Mediated Killing of T Cells That Exit Viral Latency. Int J Mol Sci 2021; 22:ijms22136654. [PMID: 34206330 PMCID: PMC8267728 DOI: 10.3390/ijms22136654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/19/2021] [Indexed: 01/23/2023] Open
Abstract
The ‘shock-and-kill’ strategy to purge the latent HIV reservoir relies on latency-reversing agents (LRAs) to reactivate the provirus and subsequent immune-mediated killing of HIV-expressing cells. Yet, clinical trials employing histone deacetylase inhibitors (HDACis; Vorinostat, Romidepsin, Panobinostat) as LRAs failed to reduce the HIV reservoir size, stressing the need for more effective latency reversal strategies, such as 2-LRA combinations, and enhancement of the immune responses. Interestingly, several LRAs are employed to treat cancer because they up-modulate ligands for the NKG2D NK-cell activating receptor on tumor cells. Therefore, using in vitro T cell models of HIV latency and NK cells, we investigated the capacity of HDACis, either alone or combined with a distinct LRA, to potentiate the NKG2D/NKG2D ligands axis. While Bortezomib proteasome inhibitor was toxic for both T and NK cells, the GS-9620 TLR-7 agonist antagonized HIV reactivation and NKG2D ligand expression by HDACis. Conversely, co-administration of the Prostratin PKC agonist attenuated HDACi toxicity and, when combined with Romidepsin, stimulated HIV reactivation and further up-modulated NKG2D ligands on HIV+ T cells and NKG2D on NK cells, ultimately boosting NKG2D-mediated viral suppression by NK cells. These findings disclose limitations of LRA candidates and provide evidence that NK cell suppression of reactivated HIV may be modulated by specific 2-LRA combinations.
Collapse
|
26
|
Ding J, Liu Y, Lai Y. Knowledge From London and Berlin: Finding Threads to a Functional HIV Cure. Front Immunol 2021; 12:688747. [PMID: 34122453 PMCID: PMC8190402 DOI: 10.3389/fimmu.2021.688747] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/04/2021] [Indexed: 01/07/2023] Open
Abstract
Despite the ability of combination antiretroviral therapy (cART) to increase the life expectancy of patients infected with human immunodeficiency virus (HIV), viral reservoirs persist during life-long treatment. Notably, two cases of functional cure for HIV have been reported and are known as the "Berlin Patient" and the "London Patient". Both patients received allogeneic hematopoietic stem cell transplantation from donors with homozygous CCR5 delta32 mutation for an associated hematological malignancy. Therefore, there is growing interest in creating an HIV-resistant immune system through the use of gene-modified autologous hematopoietic stem cells with non-functional CCR5. Moreover, studies in CXCR4-targeted gene therapy for HIV have also shown great promise. Developing a cure for HIV infection remains a high priority. In this review, we discuss the increasing progress of coreceptor-based hematopoietic stem cell gene therapy, cART, milder conditioning regimens, and shock and kill strategies that have important implications for designing potential strategies aiming to achieve a functional cure for the majority of people with HIV.
Collapse
Affiliation(s)
- Jingyi Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanxi Liu
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yu Lai,
| |
Collapse
|
27
|
Abramson E, Hardman C, Shimizu AJ, Hwang S, Hester LD, Snyder SH, Wender PA, Kim PM, Kornberg MD. Designed PKC-targeting bryostatin analogs modulate innate immunity and neuroinflammation. Cell Chem Biol 2021; 28:537-545.e4. [PMID: 33472023 PMCID: PMC8052272 DOI: 10.1016/j.chembiol.2020.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/02/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Neuroinflammation characterizes multiple neurologic diseases, including primary inflammatory conditions such as multiple sclerosis and classical neurodegenerative diseases. Aberrant activation of the innate immune system contributes to disease progression, but drugs modulating innate immunity, particularly within the central nervous system (CNS), are lacking. The CNS-penetrant natural product bryostatin-1 attenuates neuroinflammation by targeting innate myeloid cells. Supplies of natural bryostatin-1 are limited, but a recent scalable good manufacturing practice (GMP) synthesis has enabled access to it and its analogs (bryologs), the latter providing a path to more efficacious, better tolerated, and more accessible agents. Here, we show that multiple synthetically accessible bryologs replicate the anti-inflammatory effects of bryostatin-1 on innate immune cells in vitro, and a lead bryolog attenuates neuroinflammation in vivo, actions mechanistically dependent on protein kinase C (PKC) binding. Our findings identify bryologs as promising drug candidates for targeting innate immunity in neuroinflammation and create a platform for evaluation of synthetic PKC modulators in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Efrat Abramson
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Clayton Hardman
- Departments of Chemistry and of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Akira J Shimizu
- Departments of Chemistry and of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Soonmyung Hwang
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Lynda D Hester
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Solomon H Snyder
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Paul A Wender
- Departments of Chemistry and of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Paul M Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD 21287, USA.
| | - Michael D Kornberg
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA.
| |
Collapse
|
28
|
Liu Z, Ding Z, Chen K, Xu M, Yu T, Tong G, Zhang H, Li P. Balancing skeleton and functional groups in total syntheses of complex natural products: a case study of tigliane, daphnane and ingenane diterpenoids. Nat Prod Rep 2021; 38:1589-1617. [PMID: 33508045 DOI: 10.1039/d0np00086h] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Total synthesis of natural products has greatly contributed to natural product research, organic synthesis and drug discovery and development. However, in most cases, the efficiency of total synthesis is far from sufficient for direct practical industrial application. Thus, designing a concise and efficient synthetic route with balanced efforts between building the complex skeleton and introducing functional groups is highly desirable. In this critical review, we first present an introduction of this issue and a philosophical framework that cover possible synthetic approaches. Next, we have chosen the biogenetically closely related, biologically important and synthetically extremely challenging natural products, tiglianes, daphnanes and ingenanes as the particular case for the discussion, since in the past 40 years many synthetic approaches have been reported. The successes and pitfalls included therefore serve as the basis to draw some conclusions that may inspire future development in this area.
Collapse
Affiliation(s)
- Zhi Liu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Zhengwei Ding
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Kai Chen
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Ming Xu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Tao Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Guanghu Tong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, LaJolla, California 92037, USA
| | - Hailong Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China. and State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
29
|
HIV latency reversal agents: A potential path for functional cure? Eur J Med Chem 2021; 213:113213. [PMID: 33540228 DOI: 10.1016/j.ejmech.2021.113213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 12/28/2022]
Abstract
Despite the advances in Human Immunodeficiency Virus (HIV) treatment, the cure for all HIV patients still poses a major challenge, which needs to be surpassed in the coming years. Among the strategies pursuing this aim, the 'kick-and-kill' approach, which involves the reactivation and elimination of a latent HIV reservoir that resides in some CD4+ T cells, appears promising. The first step of this approach requires the use of latency reversal agents (LRAs) that induce the reactivation of the latent virus. Although several classes of LRAs have been reported so far, some limitations of these compounds still need to be overcome before their clinical use. The complete exhaustion of the reservoir of latent virus will contribute to promote the second step of this approach, facilitating the elimination of the reactivated HIV. Therefore, potent, safe, and non-toxic LRAs are necessary to promote efficient elimination of the HIV-1 virus from its reservoir. In this review article, we focus on the promising LRAs that have been described in the literature over the past few years, highlighting the advantages and disadvantages of their use in the 'kick and kill' approach, thus opening a new avenue in the development of a potential cure.
Collapse
|
30
|
Bitnun A, Ransy DG, Brophy J, Kakkar F, Hawkes M, Samson L, Annabi B, Pagliuzza A, Morand JA, Sauve L, Chomont N, Lavoie S, Kim J, Sandstrom P, Wender PA, Lee T, Singer J, Read SE, Soudeyns H. Clinical Correlates of Human Immunodeficiency Virus-1 (HIV-1) DNA and Inducible HIV-1 RNA Reservoirs in Peripheral Blood in Children With Perinatally Acquired HIV-1 Infection With Sustained Virologic Suppression for at Least 5 Years. Clin Infect Dis 2021; 70:859-866. [PMID: 30919879 DOI: 10.1093/cid/ciz251] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/20/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The Early Pediatric Initiation Canada Child Cure Cohort (EPIC4) study is a prospective, multicenter, Canadian cohort study investigating human immunodeficiency virus-1 (HIV-1) reservoirs, chronic inflammation, and immune responses in children with perinatally acquired HIV-1 infection. The focus of this report is HIV-1 reservoirs and correlates in the peripheral blood of children who achieved sustained virologic suppression (SVS) for ≥5 years. METHODS HIV-1 reservoirs were determined by measuring HIV-1 DNA in peripheral blood mononuclear cells and inducible cell-free HIV-1 RNA in CD4+ T-cells by a prostratin analogue stimulation assay. HIV serology was quantified by signal-to-cutoff ratio (S/CO). RESULTS Of 228 enrolled participants, 69 achieved SVS for ≥5 years. HIV-1 DNA, inducible cell-free HIV-1 RNA, and S/COs correlated directly with the age of effective combination antiretroviral therapy (cART) initiation (P < .001, P = .036, and P < .001, respectively) and age when SVS was achieved (P = .002, P = .038, and P < .001, respectively) and inversely with the proportion of life spent on effective cART (P < .001, P = .01, and P < .001, respectively) and proportion of life spent with SVS (P < .001, P = .079, and P < .001, respectively). Inducible cell-free HIV-1 RNA correlated with HIV-1 DNA, most particularly in children with SVS, without virologic blips, that was achieved with the first cART regimen initiated prior to 6 months of age (rho = 0.74; P = .037) or later (rho = 0.87; P < .001). S/COs correlated with HIV-1 DNA (P = .003), but less so with inducible cell-free HIV-1 RNA (P = .09). CONCLUSIONS The prostratin analogue stimulation assay, with its lower blood volume requirement, could be a valuable method for evaluating inducible HIV-1 reservoirs in children. Standard commercial HIV serology may be a practical initial indirect measure of reservoir size in the peripheral blood of children with perinatally acquired HIV-1 infection.
Collapse
Affiliation(s)
- Ari Bitnun
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Ontario
| | - Doris G Ransy
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) Sainte-Justine, Montreal, Quebec
| | - Jason Brophy
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ontario
| | - Fatima Kakkar
- Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Quebec
| | - Michael Hawkes
- Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton
| | - Lindy Samson
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ontario
| | - Bayader Annabi
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) Sainte-Justine, Montreal, Quebec.,Department of Microbiology, Infectiology & Immunology, Université de Montréal, Quebec
| | - Amélie Pagliuzza
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Quebec
| | - Jacob-Adams Morand
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) Sainte-Justine, Montreal, Quebec.,Department of Microbiology, Infectiology & Immunology, Université de Montréal, Quebec
| | - Laura Sauve
- Oak Tree Clinic, Women's Hospital and Health Centre of British Columbia, Department of Pediatrics, University of British Columbia, Vancouver
| | - Nicolas Chomont
- Department of Microbiology, Infectiology & Immunology, Université de Montréal, Quebec.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Quebec
| | - Stephanie Lavoie
- National Human Immunodeficiency Virus (HIV) & Retrovirology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - John Kim
- National Human Immunodeficiency Virus (HIV) & Retrovirology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Paul Sandstrom
- National Human Immunodeficiency Virus (HIV) & Retrovirology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Paul A Wender
- Department of Chemistry and Department of Chemical and Systems Biology, Stanford University, California
| | - Terry Lee
- Canadian Institutes of Health Research Canadian HIV Trials Network, Vancouver, British Columbia
| | - Joel Singer
- Canadian Institutes of Health Research Canadian HIV Trials Network, Vancouver, British Columbia.,School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Stanley E Read
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Ontario
| | - Hugo Soudeyns
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) Sainte-Justine, Montreal, Quebec.,Department of Microbiology, Infectiology & Immunology, Université de Montréal, Quebec
| | | |
Collapse
|
31
|
Wong LM, Jiang G. NF-κB sub-pathways and HIV cure: A revisit. EBioMedicine 2021; 63:103159. [PMID: 33340992 PMCID: PMC7750564 DOI: 10.1016/j.ebiom.2020.103159] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022] Open
Abstract
HIV cure is thwarted by the presence of quiescent yet replication competent HIV-1 (HIV). Antiretroviral therapy (ART) is unable to eradicate reservoirs, and upon cessation of ART, HIV will rebound. This review encompasses the curative strategies of HIV in the context of NF-κB sub-pathways that are currently exploited and demonstrate promise in the disruption of latent HIV. Canonical NF-κB signaling has long been established to drive HIV proviral expression while noncanonical NF-κB signaling, a novel and perhaps more desirable mechanism of latency reversal due to its unique characteristics, has recently been shown to also promote HIV expression from latency. Furthermore, we discuss the previously unrecognized upstream signaling of NF-κB as a new avenue for exploration of a functional cure of HIV.
Collapse
Affiliation(s)
- Lilly M Wong
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, United States
| | - Guochun Jiang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, United States; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill Chapel Hill, NC 27599-7042, United States.
| |
Collapse
|
32
|
Katti S, Igumenova TI. Structural insights into C1-ligand interactions: Filling the gaps by in silico methods. Adv Biol Regul 2021; 79:100784. [PMID: 33526356 PMCID: PMC8867786 DOI: 10.1016/j.jbior.2020.100784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023]
Abstract
Protein Kinase C isoenzymes (PKCs) are the key mediators of the phosphoinositide signaling pathway, which involves regulated hydrolysis of phosphatidylinositol (4,5)-bisphosphate to diacylglycerol (DAG) and inositol-1,4,5-trisphosphate. Dysregulation of PKCs is implicated in many human diseases making this class of enzymes an important therapeutic target. Specifically, the DAG-sensing cysteine-rich conserved homology-1 (C1) domains of PKCs have emerged as promising targets for pharmaceutical modulation. Despite significant progress, the rational design of the C1 modulators remains challenging due to difficulties associated with structure determination of the C1-ligand complexes. Given the dearth of experimental structural data, computationally derived models have been instrumental in providing atomistic insight into the interactions of the C1 domains with PKC agonists. In this review, we provide an overview of the in silico approaches for seven classes of C1 modulators and outline promising future directions.
Collapse
Affiliation(s)
- Sachin Katti
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, United States
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, United States.
| |
Collapse
|
33
|
Marsden MD, Zhang TH, Du Y, Dimapasoc M, Soliman MS, Wu X, Kim JT, Shimizu A, Schrier A, Wender PA, Sun R, Zack JA. Tracking HIV Rebound following Latency Reversal Using Barcoded HIV. Cell Rep Med 2020; 1:100162. [PMID: 33377133 PMCID: PMC7762775 DOI: 10.1016/j.xcrm.2020.100162] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/31/2020] [Accepted: 11/23/2020] [Indexed: 11/26/2022]
Abstract
HIV latency prevents cure of infection with antiretroviral therapy (ART) alone. One strategy for eliminating latently infected cells involves the induction of viral protein expression via latency-reversing agents (LRAs), allowing killing of host cells by viral cytopathic effects or immune effector mechanisms. Here, we combine a barcoded HIV approach and a humanized mouse model to study the effects of a designed, synthetic protein kinase C modulating LRA on HIV rebound. We show that administration of this compound during ART results in a delay in rebound once ART is stopped. Furthermore, the rebounding virus appears composed of a smaller number of unique barcoded viruses than occurs in control-treated animals, suggesting that some reservoir cells that would have contributed virus to the rebound process are eliminated by LRA administration. These data support the use of barcoded virus to study rebound and suggest that LRAs may be useful in HIV cure efforts.
Collapse
Affiliation(s)
- Matthew D. Marsden
- Department of Microbiology and Molecular Genetics and Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Tian-hao Zhang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yushen Du
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Cancer Institute, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Melanie Dimapasoc
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mohamed S.A. Soliman
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaomeng Wu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jocelyn T. Kim
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Akira Shimizu
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Adam Schrier
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Paul A. Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jerome A. Zack
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
34
|
Sahay B, Mergia A. The Potential Contribution of Caveolin 1 to HIV Latent Infection. Pathogens 2020; 9:pathogens9110896. [PMID: 33121153 PMCID: PMC7692328 DOI: 10.3390/pathogens9110896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
Combinatorial antiretroviral therapy (cART) suppresses HIV replication to undetectable levels and has been effective in prolonging the lives of HIV infected individuals. However, cART is not capable of eradicating HIV from infected individuals mainly due to HIV’s persistence in small reservoirs of latently infected resting cells. Latent infection occurs when the HIV-1 provirus becomes transcriptionally inactive and several mechanisms that contribute to the silencing of HIV transcription have been described. Despite these advances, latent infection remains a major hurdle to cure HIV infected individuals. Therefore, there is a need for more understanding of novel mechanisms that are associated with latent infection to purge HIV from infected individuals thoroughly. Caveolin 1(Cav-1) is a multifaceted functional protein expressed in many cell types. The expression of Cav-1 in lymphocytes has been controversial. Recent evidence, however, convincingly established the expression of Cav-1 in lymphocytes. In lieu of this finding, the current review examines the potential role of Cav-1 in HIV latent infection and provides a perspective that helps uncover new insights to understand HIV latent infection.
Collapse
Affiliation(s)
| | - Ayalew Mergia
- Correspondence: ; Tel.: +352-294-4139; Fax: +352-392-9704
| |
Collapse
|
35
|
Latency-Reversing Agents Induce Differential Responses in Distinct Memory CD4 T Cell Subsets in Individuals on Antiretroviral Therapy. Cell Rep 2020; 29:2783-2795.e5. [PMID: 31775045 DOI: 10.1016/j.celrep.2019.10.101] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/11/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Latent proviruses persist in central (TCM), transitional (TTM), and effector (TEM) memory cells. We measured the levels of cellular factors involved in HIV gene expression in these subsets. The highest levels of acetylated H4, active nuclear factor κB (NF-κB), and active positive transcription elongation factor b (P-TEFb) were measured in TEM, TCM, and TTM cells, respectively. Vorinostat and romidepsin display opposite abilities to induce H4 acetylation across subsets. Protein kinase C (PKC) agonists are more efficient at inducing NF-κB phosphorylation in TCM cells but more potent at activating PTEF-b in the TEM subset. We selected the most efficient latency-reversing agents (LRAs) and measured their ability to reverse latency in each subset. While ingenol alone has modest activities in the three subsets, its combination with a histone deacetylase inhibitor (HDACi) dramatically increases latency reversal in TCM cells. Altogether, these results indicate that cellular HIV reservoirs are differentially responsive to common LRAs and suggest that combination of compounds will be required to achieve latency reversal in all subsets.
Collapse
|
36
|
Planas D, Fert A, Zhang Y, Goulet JP, Richard J, Finzi A, Ruiz MJ, Marchand LR, Chatterjee D, Chen H, Wiche Salinas TR, Gosselin A, Cohen EA, Routy JP, Chomont N, Ancuta P. Pharmacological Inhibition of PPARy Boosts HIV Reactivation and Th17 Effector Functions, While Preventing Progeny Virion Release and de novo Infection. Pathog Immun 2020; 5:177-239. [PMID: 33089034 PMCID: PMC7556414 DOI: 10.20411/pai.v5i1.348] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/04/2020] [Indexed: 01/02/2023] Open
Abstract
The frequency and functions of Th17-polarized
CCR6+RORyt+CD4+ T cells are rapidly
compromised upon HIV infection and are not restored with long-term viral
suppressive antiretroviral therapy (ART). In line with this, Th17 cells
represent selective HIV-1 infection targets mainly at mucosal sites, with
long-lived Th17 subsets carrying replication-competent HIV-DNA during ART.
Therefore, novel Th17-specific therapeutic interventions are needed as a
supplement of ART to reach the goal of HIV remission/cure. Th17 cells express
high levels of peroxisome proliferator-activated receptor gamma
(PPARy), which acts as a transcriptional repressor of the HIV provirus and the
rorc gene, which encodes for the Th17-specific master
regulator RORyt. Thus, we hypothesized that the pharmacological inhibition of
PPARy will facilitate HIV reservoir reactivation while enhancing Th17 effector
functions. Consistent with this prediction, the PPARy antagonist T0070907
significantly increased HIV transcription (cell-associated HIV-RNA) and
RORyt-mediated Th17 effector functions (IL-17A). Unexpectedly, the PPARy
antagonism limited HIV outgrowth from cells of ART-treated people living with
HIV (PLWH), as well as HIV replication in vitro.
Mechanistically, PPARy inhibition in CCR6+CD4+ T cells
induced the upregulation of transcripts linked to Th17-polarisation (RORyt,
STAT3, BCL6 IL-17A/F, IL-21) and HIV transcription (NCOA1-3, CDK9, HTATIP2).
Interestingly, several transcripts involved in HIV-restriction were upregulated
(Caveolin-1, TRIM22, TRIM5α, BST2, miR-29), whereas HIV permissiveness
transcripts were downregulated (CCR5, furin), consistent with the decrease in
HIV outgrowth/replication. Finally, PPARy inhibition increased intracellular
HIV-p24 expression and prevented BST-2 downregulation on infected T cells,
suggesting that progeny virion release is restricted by BST-2-dependent
mechanisms. These results provide a strong rationale for considering PPARy
antagonism as a novel strategy for HIV-reservoir purging and restoring
Th17-mediated mucosal immunity in ART-treated PLWH.
Collapse
Affiliation(s)
- Delphine Planas
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Augustine Fert
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Yuwei Zhang
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | | | - Jonathan Richard
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Andrés Finzi
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Maria Julia Ruiz
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | | | - Debashree Chatterjee
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Huicheng Chen
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Tomas Raul Wiche Salinas
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Annie Gosselin
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Eric A Cohen
- Institut de recherches cliniques de Montréal; Montréal, Québec, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service; Division of Hematology; McGill University Health Centre-Glen site; Montreal, Québec, Canada
| | - Nicolas Chomont
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Petronela Ancuta
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| |
Collapse
|
37
|
Chow S, Krainz T, Bettencourt CJ, Broit N, Ferguson B, Zhu M, Hull KG, Pierens GK, Bernhardt PV, Parsons PG, Romo D, Boyle GM, Williams CM. Synthetic Tigliane Intermediates Engage Thiols to Induce Potent Cell Line Selective Anti‐Cancer Activity. Chemistry 2020; 26:13372-13377. [DOI: 10.1002/chem.202003221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/31/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Sharon Chow
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Queensland Australia
| | - Tanja Krainz
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Queensland Australia
| | - Christian J. Bettencourt
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Queensland Australia
| | - Natasa Broit
- QIMR Berghofer Medical Research Institute PO Royal Brisbane Hospital Brisbane 4029 Queensland Australia
| | - Blake Ferguson
- QIMR Berghofer Medical Research Institute PO Royal Brisbane Hospital Brisbane 4029 Queensland Australia
| | - Mingzhao Zhu
- Department of Chemistry and Biochemistry CPRIT Synthesis and Drug-Lead Discovery Laboratory) Baylor University 76798 Waco Texas USA
| | - Kenneth G. Hull
- Department of Chemistry and Biochemistry CPRIT Synthesis and Drug-Lead Discovery Laboratory) Baylor University 76798 Waco Texas USA
| | - Gregory K. Pierens
- Centre for Advanced Imaging The University of Queensland Brisbane 4072 Queensland Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Queensland Australia
| | - Peter G. Parsons
- QIMR Berghofer Medical Research Institute PO Royal Brisbane Hospital Brisbane 4029 Queensland Australia
| | - Daniel Romo
- Department of Chemistry and Biochemistry CPRIT Synthesis and Drug-Lead Discovery Laboratory) Baylor University 76798 Waco Texas USA
| | - Glen M. Boyle
- QIMR Berghofer Medical Research Institute PO Royal Brisbane Hospital Brisbane 4029 Queensland Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Queensland Australia
| |
Collapse
|
38
|
Yang X, Wang Y, Lu P, Shen Y, Zhao X, Zhu Y, Jiang Z, Yang H, Pan H, Zhao L, Zhong Y, Wang J, Liang Z, Shen X, Lu D, Jiang S, Xu J, Wu H, Lu H, Jiang G, Zhu H. PEBP1 suppresses HIV transcription and induces latency by inactivating MAPK/NF-κB signaling. EMBO Rep 2020; 21:e49305. [PMID: 32924251 PMCID: PMC7645261 DOI: 10.15252/embr.201949305] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 05/28/2020] [Accepted: 08/12/2020] [Indexed: 11/09/2022] Open
Abstract
The latent HIV‐1 reservoir is a major barrier to viral eradication. However, our understanding of how HIV‐1 establishes latency is incomplete. Here, by performing a genome‐wide CRISPR‐Cas9 knockout library screen, we identify phosphatidylethanolamine‐binding protein 1 (PEBP1), also known as Raf kinase inhibitor protein (RKIP), as a novel gene inducing HIV latency. Depletion of PEBP1 leads to the reactivation of HIV‐1 in multiple models of latency. Mechanistically, PEBP1 de‐phosphorylates Raf1/ERK/IκB and IKK/IκB signaling pathways to sequestrate NF‐κB in the cytoplasm, which transcriptionally inactivates HIV‐1 to induce latency. Importantly, the induction of PEBP1 expression by the green tea compound epigallocatechin‐3‐gallate (EGCG) prevents latency reversal by inhibiting nuclear translocation of NF‐κB, thereby suppressing HIV‐1 transcription in primary CD4+ T cells isolated from patients receiving antiretroviral therapy (ART). These results suggest a critical role for PEBP1 in the regulation of upstream NF‐κB signaling pathways governing HIV transcription. Targeting of this pathway could be an option to control HIV reservoirs in patients in the future.
Collapse
Affiliation(s)
- Xinyi Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanan Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Panpan Lu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infectious Disease, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaying Zhao
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuqi Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhengtao Jiang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - He Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hanyu Pan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Lin Zhao
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yangcheng Zhong
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jing Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiming Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoting Shen
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Shibo Jiang
- Department of Infectious Disease, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianqing Xu
- Department of Infectious Disease, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Hongzhou Lu
- Department of Infectious Disease, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Guochun Jiang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases & Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Deka SJ, Trivedi V. Potentials of PKC in Cancer Progression and Anticancer Drug Development. Curr Drug Discov Technol 2020; 16:135-147. [PMID: 29468974 DOI: 10.2174/1570163815666180219113614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 01/07/2023]
Abstract
PKC is a family of serine-threonine kinases which play crucial roles in the regulation of important signal transduction pathways in mammalian cell-biology. These enzymes are themselves regulated by various molecules that can serve as ligands to the regulatory domains and translocate PKC to membrane for activity. The role of PKC in the modulation of both proliferative and apoptotic signaling in cancer has become a subject of immense interest after it was discovered that PKC regulates a myriad of enzymes and transcription factors involved in carcinogenic signaling. Therefore, PKC has served as an attractive target for the development of newer generation of anti-cancer drugs. The following review discusses the potential of PKC to be regarded as a target for anti-cancer therapy. We also review all the molecules that have been discovered so far to be regulators/activators/inhibitors of PKC and also how far these molecules can be considered as potential candidates for anti-cancer drug development based on PKC.
Collapse
Affiliation(s)
- Suman J Deka
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| | - Vishal Trivedi
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
40
|
Ly C, Shimizu AJ, Vargas MV, Duim WC, Wender PA, Olson DE. Bryostatin 1 Promotes Synaptogenesis and Reduces Dendritic Spine Density in Cortical Cultures through a PKC-Dependent Mechanism. ACS Chem Neurosci 2020; 11:1545-1554. [PMID: 32437156 PMCID: PMC7332236 DOI: 10.1021/acschemneuro.0c00175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The marine natural product bryostatin 1 has demonstrated procognitive and antidepressant effects in animals and has been entered into human clinical trials for treating Alzheimer's disease (AD). The ability of bryostatin 1 to enhance learning and memory has largely been attributed to its effects on the structure and function of hippocampal neurons. However, relatively little is known about how bryostatin 1 influences the morphology of cortical neurons, key cells that also support learning and memory processes and are negatively impacted in AD. Here, we use a combination of carefully designed chemical probes and pharmacological inhibitors to establish that bryostatin 1 increases cortical synaptogenesis while decreasing dendritic spine density in a protein kinase C (PKC)-dependent manner. The effects of bryostatin 1 on cortical neurons are distinct from those induced by neural plasticity-promoting psychoplastogens such as ketamine. Compounds capable of increasing synaptic density with concomitant loss of immature dendritic spines may represent a unique pharmacological strategy for enhancing memory by improving signal-to-noise ratio in the central nervous system.
Collapse
Affiliation(s)
- Calvin Ly
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Akira J Shimizu
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Maxemiliano V Vargas
- Neuroscience Graduate Program, University of California, Davis, 1544 Newton Ct, Davis, California 95618, United States
| | - Whitney C Duim
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Paul A Wender
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States.,Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, California 94305, United States
| | - David E Olson
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States.,Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, 2700 Stockton Blvd, Suite 2102, Sacramento, California 95817, United States.,Center for Neuroscience, University of California, Davis, 1544 Newton Ct, Davis, California 95618, United States
| |
Collapse
|
41
|
Prodrugs of PKC modulators show enhanced HIV latency reversal and an expanded therapeutic window. Proc Natl Acad Sci U S A 2020; 117:10688-10698. [PMID: 32371485 DOI: 10.1073/pnas.1919408117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIDS is a pandemic disease caused by HIV that affects 37 million people worldwide. Current antiretroviral therapy slows disease progression but does not eliminate latently infected cells, which resupply active virus, thus necessitating lifelong treatment with associated compliance, cost, and chemoexposure issues. Latency-reversing agents (LRAs) activate these cells, allowing for their potential clearance, thus presenting a strategy to eradicate the infection. Protein kinase C (PKC) modulators-including prostratin, ingenol esters, bryostatin, and their analogs-are potent LRAs in various stages of development for several clinical indications. While LRAs are promising, a major challenge associated with their clinical use is sustaining therapeutically meaningful levels of the active agent while minimizing side effects. Here we describe a strategy to address this problem based on LRA prodrugs, designed for controllable release of the active LRA after a single injection. As intended, these prodrugs exhibit comparable or superior in vitro activity relative to the parent compounds. Selected compounds induced higher in vivo expression of CD69, an activation biomarker, and, by releasing free agent over time, significantly improved tolerability when compared to the parent LRAs. More generally, selected prodrugs of PKC modulators avoid the bolus toxicities of the parent drug and exhibit greater efficacy and expanded tolerability, thereby addressing a longstanding objective for many clinical applications.
Collapse
|
42
|
De la Torre-Tarazona HE, Jiménez R, Bueno P, Camarero S, Román L, Fernández-García JL, Beltrán M, Nothias LF, Cachet X, Paolini J, Litaudon M, Alcami J, Bedoya LM. 4-Deoxyphorbol inhibits HIV-1 infection in synergism with antiretroviral drugs and reactivates viral reservoirs through PKC/MEK activation synergizing with vorinostat. Biochem Pharmacol 2020; 177:113937. [PMID: 32224142 DOI: 10.1016/j.bcp.2020.113937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/24/2020] [Indexed: 01/06/2023]
Abstract
Latent HIV reservoirs are the main obstacle to eradicate HIV infection. One strategy proposes to eliminate these viral reservoirs by pharmacologically reactivating the latently infected T cells. We show here that a 4-deoxyphorbol ester derivative isolated from Euphorbia amygdaloides ssp. semiperfoliata, 4β-dPE A, reactivates HIV-1 from latency and could potentially contribute to decrease the viral reservoir. 4β-dPE A shows two effects in the HIV replication cycle, infection inhibition and HIV transactivation, similarly to other phorboids PKC agonists such PMA and prostratin and to other diterpene esters such SJ23B. Our data suggest 4β-dPE A is non-tumorigenic, unlike the related compound PMA. As the compounds are highly similar, the lack of tumorigenicity by 4β-dPE A could be due to the lack of a long side lipophilic chain that is present in PMA. 4β-dPE activates HIV transcription at nanomolar concentrations, lower than the concentration needed by other latency reversing agents (LRAs) such as prostratin and similar to bryostatin. PKCθ/MEK activation is required for the transcriptional activity, and thus, anti-latency activity of 4β-dPE A. However, CD4, CXCR4 and CCR5 receptors down-regulation effect seems to be independent of PCK/MEK, suggesting the existence of at least two different targets for 4β-dPE A. Furthermore, NF-κb transcription factor is involved in 4β-dPE HIV reactivation, as previously shown for other PKCs agonists. We also studied the effects of 4β-dPE A in combination with other LRAs. When 4β-dPE A was combined with another PKC agonists such as prostratin an antagonic effect was achieved, while, when combined with an HDAC inhibitor such as vorinostat, a strong synergistic effect was obtained. Interestingly, the latency reversing effect of the combination was synergistically diminishing the EC50 value but also increasing the efficacy showed by the drugs alone. In addition, combinations of 4β-dPE A with antiretroviral drugs as CCR5 antagonist, NRTIs, NNRTIs and PIs, showed a consistent synergistic effect, suggesting that the combination would not interefer with antiretroviral therapy (ART). Finally, 4β-dPE A induced latent HIV reactivation in CD4 + T cells of infected patients under ART at similar levels than the tumorigenic phorbol derivative PMA, showing a clear reactivation effect. In summary, we describe here the mechanism of action of a new potent deoxyphorbol derivative as a latency reversing agent candidate to decrease the size of HIV reservoirs.
Collapse
Affiliation(s)
- H E De la Torre-Tarazona
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain
| | - R Jiménez
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain
| | - P Bueno
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain
| | - S Camarero
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain
| | - L Román
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain
| | - J L Fernández-García
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain; Pharmacology Department, Pharmacy Faculty, Universidad Complutense de Madrid, Pz. Ramón Y Cajal s/n, 28040 Madrid, Spain
| | - M Beltrán
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain
| | - L F Nothias
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - X Cachet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay, 91198 Gif-sur-Yvette, France; CiTCoM Laboratory, UMR 8038 CNRS-University of Paris, Faculty of Pharmacy, University of Paris, 75006 Paris, France
| | - J Paolini
- Laboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134, University of Corsica, 20250 Corte, France
| | - M Litaudon
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - J Alcami
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain; Infectious Diseases Unit, IBIDAPS, Hospital Clínic, University of Barcelona, Spain.
| | - L M Bedoya
- AIDS Immunopathology Department, National Centre of Microbiology, Instituto de Salud Carlos III. Ctra. Pozuelo Km. 2. Majadahonda, 28224 Madrid, Spain; Pharmacology Department, Pharmacy Faculty, Universidad Complutense de Madrid, Pz. Ramón Y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
43
|
Tong G, Ding Z, Liu Z, Ding YS, Xu L, Zhang H, Li P. Total Synthesis of Prostratin, a Bioactive Tigliane Diterpenoid: Access to Multi-Stereocenter Cyclohexanes from a Phenol. J Org Chem 2020; 85:4813-4837. [DOI: 10.1021/acs.joc.0c00022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Guanghu Tong
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Zhengwei Ding
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Zhi Liu
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - You-Song Ding
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Hailong Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
44
|
Ding Z, Liu Z, Tong G, Hu L, He Y, Bao Y, Lei Z, Zhang H, Li P. Facile synthesis of the daphnane and tigliane framework by semi-flow tube-based-bubbling photooxidation and diastereoselective conjugate addition. Org Chem Front 2020. [DOI: 10.1039/d0qo00424c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The common [5-7-6] tricyclic framework in tigliane and daphnane natural diterpenes containing five contiguous stereocenters has been synthesized in 9 steps from readily available starting materials in a completely stereocontrolled manner.
Collapse
Affiliation(s)
- Zhengwei Ding
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Zhi Liu
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Guanghu Tong
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Linlin Hu
- Department of Applied Chemistry
- Xi'an University of Technology
- Xi'an 710048
- China
| | - Yangqing He
- Department of Applied Chemistry
- Xi'an University of Technology
- Xi'an 710048
- China
| | - Yueyun Bao
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Zhouhang Lei
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Hailong Zhang
- Department of Medicinal Chemistry
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- China
| | - Pengfei Li
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
| |
Collapse
|
45
|
Sadgrove NJ, Jones GL. From Petri Dish to Patient: Bioavailability Estimation and Mechanism of Action for Antimicrobial and Immunomodulatory Natural Products. Front Microbiol 2019; 10:2470. [PMID: 31736910 PMCID: PMC6834656 DOI: 10.3389/fmicb.2019.02470] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/15/2019] [Indexed: 01/02/2023] Open
Abstract
The new era of multidrug resistance of pathogens against frontline antibiotics has compromised the immense therapeutic gains of the 'golden age,' stimulating a resurgence in antimicrobial research focused on antimicrobial and immunomodulatory components of botanical, fungal or microbial origin. While much valuable information has been amassed on the potency of crude extracts and, indeed, purified compounds there are too many reports that uncritically extrapolate observed in vitro activity to presumed ingestive and/or topical therapeutic value, particularly in the discipline of ethnopharmacology. Thus, natural product researchers would benefit from a basic pharmacokinetic and pharmacodynamic understanding. Furthermore, therapeutic success of complex mixtures or single components derived therefrom is not always proportionate to their MIC values, since immunomodulation can be the dominant mechanism of action. Researchers often fail to acknowledge this, particularly when 'null' activity is observed. In this review we introduce the most up to date theories of oral and topical bioavailability including the metabolic processes affecting xenobiotic biotransformation before and after drugs reach the site of their action in the body. We briefly examine the common methodologies employed in antimicrobial, immunomodulatory and pharmacokinetic research. Importantly, we emphasize the contribution of synergies and/or antagonisms in complex mixtures as they affect absorptive processes in the body and sometimes potentiate activity. Strictly in the context of natural product research, it is important to acknowledge the potential for chemotypic variation within important medicinal plants. Furthermore, polar head space and rotatable bonds give a priori indications of the likelihood of bioavailability of active metabolites. Considering this and other relatively simple chemical insights, we hope to provide the basis for a more rigorous scientific assessment, enabling researchers to predict the likelihood that observed in vitro anti-infective activity will translate to in vivo outcomes in a therapeutic context. We give worked examples of tentative pharmacokinetic assessment of some well-known medicinal plants.
Collapse
Affiliation(s)
- Nicholas John Sadgrove
- Pharmaceuticals and Nutraceuticals (PAN) Group, School of Science and Technology, University of New England, Armidale, NSW, Australia
- Jodrell Science Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Graham Lloyd Jones
- Pharmaceuticals and Nutraceuticals (PAN) Group, School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
46
|
Chow S, Krainz T, Bernhardt PV, Williams CM. En Route to D-Ring Inverted Phorbol Esters. Org Lett 2019; 21:8761-8764. [DOI: 10.1021/acs.orglett.9b03379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sharon Chow
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Tanja Krainz
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
47
|
Huiting ED, Gittens K, Justement JS, Shi V, Blazkova J, Benko E, Kovacs C, Wender PA, Moir S, Sneller MC, Fauci AS, Chun TW. Impact of Treatment Interruption on HIV Reservoirs and Lymphocyte Subsets in Individuals Who Initiated Antiretroviral Therapy During the Early Phase of Infection. J Infect Dis 2019; 220:270-274. [PMID: 30840763 PMCID: PMC6941494 DOI: 10.1093/infdis/jiz100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/05/2019] [Indexed: 12/26/2022] Open
Abstract
Therapeutic strategies for achieving sustained virologic remission are being explored in human immunodeficiency virus (HIV)-infected individuals who began antiretroviral therapy (ART) during the early phase of infection. In the evaluation of such therapies, clinical protocols should include analytical treatment interruption (ATI); however, the immunologic and virologic impact of ATI in individuals who initiated ART early has not been fully delineated. We demonstrate that ATI causes neither expansion of HIV reservoirs nor immunologic abnormalities following reinitiation of ART. Our findings support the use of ATI to determine whether sustained virologic remission has been achieved in clinical trials of individuals who initiated ART early during HIV infection.
Collapse
Affiliation(s)
- Erin D Huiting
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases
| | - Kathleen Gittens
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - J Shawn Justement
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases
| | - Victoria Shi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases
| | - Jana Blazkova
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases
| | | | | | | | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases
| | - Michael C Sneller
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases
| |
Collapse
|
48
|
Cao S, Slack SD, Levy CN, Hughes SM, Jiang Y, Yogodzinski C, Roychoudhury P, Jerome KR, Schiffer JT, Hladik F, Woodrow KA. Hybrid nanocarriers incorporating mechanistically distinct drugs for lymphatic CD4 + T cell activation and HIV-1 latency reversal. SCIENCE ADVANCES 2019; 5:eaav6322. [PMID: 30944862 PMCID: PMC6436934 DOI: 10.1126/sciadv.aav6322] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/06/2019] [Indexed: 05/10/2023]
Abstract
A proposed strategy to cure HIV uses latency-reversing agents (LRAs) to reactivate latent proviruses for purging HIV reservoirs. A variety of LRAs have been identified, but none has yet proven effective in reducing the reservoir size in vivo. Nanocarriers could address some major challenges by improving drug solubility and safety, providing sustained drug release, and simultaneously delivering multiple drugs to target tissues and cells. Here, we formulated hybrid nanocarriers that incorporate physicochemically diverse LRAs and target lymphatic CD4+ T cells. We identified one LRA combination that displayed synergistic latency reversal and low cytotoxicity in a cell model of HIV and in CD4+ T cells from virologically suppressed patients. Furthermore, our targeted nanocarriers selectively activated CD4+ T cells in nonhuman primate peripheral blood mononuclear cells as well as in murine lymph nodes, and substantially reduced local toxicity. This nanocarrier platform may enable new solutions for delivering anti-HIV agents for an HIV cure.
Collapse
Affiliation(s)
- Shijie Cao
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Sarah D. Slack
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Claire N. Levy
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Sean M. Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Yonghou Jiang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kim A. Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
49
|
Bobardt M, Kuo J, Chatterji U, Chanda S, Little SJ, Wiedemann N, Vuagniaux G, Gallay PA. The inhibitor apoptosis protein antagonist Debio 1143 Is an attractive HIV-1 latency reversal candidate. PLoS One 2019; 14:e0211746. [PMID: 30716099 PMCID: PMC6361451 DOI: 10.1371/journal.pone.0211746] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/18/2019] [Indexed: 01/08/2023] Open
Abstract
Antiretroviral therapy (ART) suppresses HIV replication, but does not cure the infection because replication-competent virus persists within latently infected CD4+ T cells throughout years of therapy. These reservoirs contain integrated HIV-1 genomes and can resupply active virus. Thus, the development of strategies to eliminate the reservoir of latently infected cells is a research priority of global significance. In this study, we tested efficacy of a new inhibitor of apoptosis protein antagonist (IAPa) called Debio 1143 at reversing HIV latency and investigated its mechanisms of action. Debio 1143 activates HIV transcription via NF-kB signaling by degrading the ubiquitin ligase baculoviral IAP repeat-containing 2 (BIRC2), a repressor of the non-canonical NF-kB pathway. Debio 1143-induced BIRC2 degradation results in the accumulation of NF-κB-inducing kinase (NIK) and proteolytic cleavage of p100 into p52, leading to nuclear translocation of p52 and RELB. Debio 1143 greatly enhances the binding of RELB to the HIV-1 LTR. These data indicate that Debio 1143 activates the non-canonical NF-kB signaling pathway by promoting the binding of RELB:p52 complexes to the HIV-1 LTR, resulting in the activation of the LTR-dependent HIV-1 transcription. Importantly, Debio 1143 reverses viral latency in HIV-1 latent T cell lines. Using knockdown (siRNA BIRC2), knockout (CRIPSR NIK) and proteasome machinery neutralization (MG132) approaches, we found that Debio 1143-mediated HIV latency reversal is BIRC2 degradation- and NIK stabilization-dependent. Debio 1143 also reverses HIV-1 latency in resting CD4+ T cells derived from ART-treated patients or HIV-1-infected humanized mice under ART. Interestingly, daily oral administration of Debio 1143 in cancer patients at well-tolerated doses elicited BIRC2 target engagement in PBMCs and induced a moderate increase in cytokines and chemokines mechanistically related to NF-kB signaling. In conclusion, we provide strong evidences that the IAPa Debio 1143, by initially activating the non-canonical NF-kB signaling and subsequently reactivating HIV-1 transcription, represents a new attractive viral latency reversal agent (LRA).
Collapse
Affiliation(s)
- Michael Bobardt
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joseph Kuo
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Udayan Chatterji
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sumit Chanda
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States of America
| | - Susan J. Little
- Department of Medicine, University of California, San Diego, California, United States of America
| | | | | | - Philippe A. Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
|