1
|
Huang J, Yu H, Wu J, Yin B, Hou L, Qiang B, Shu P, Peng X. ZBED6 inhibits the migration of glioblastoma cells by regulating the Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2025; 766:151830. [PMID: 40306163 DOI: 10.1016/j.bbrc.2025.151830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025]
Abstract
ZBED6, a member of the zinc-finger protein superfamily, has incompletely defined biological functions in cancer. Previous studies suggest that ZBED6 may influence colorectal cancer growth and cell cycle regulation. This study aims to investigate the biological role and regulatory mechanisms of ZBED6 in glioblastoma. Bioinformatics analysis revealed abnormal activation of the Wnt/β-catenin signaling pathway in glioblastoma and a negative correlation between ZBED6 expression and Wnt/β-catenin signaling. Survival analysis further indicated that low ZBED6 expression is associated with poor prognosis in GBM patients. Through in vitro experiments, we demonstrated that ZBED6, as a transcription factor, regulates its downstream target TCF7L2, thereby modulating the Wnt/β-catenin signaling pathway. Additionally, we found that ZBED6 acts as a critical negative regulator of glioblastoma migration. Loss of ZBED6 expression may drive malignant progression by activating mesenchymal transition signaling, alleviating cell cycle arrest, and promoting oncogenic pathway activation. Collectively, these findings suggest that reduced ZBED6 expression in glioblastoma leads to aberrant TCF7L2 expression and dysregulated Wnt/β-catenin signaling activation, which is closely linked to poor clinical outcomes in GBM.
Collapse
Affiliation(s)
- Junxiao Huang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Haoyang Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jiarui Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Bin Yin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Lin Hou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Boqin Qiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Pengcheng Shu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Xiaozhong Peng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, 100005, China; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Ali A, Contreras P, Darweesh M, Andersson L, Jin C, Essand M, Yu D. Targeting ZC3H11A elicits immunogenic cancer cell death through augmentation of antigen presentation and interferon response. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102361. [PMID: 39582529 PMCID: PMC11585804 DOI: 10.1016/j.omtn.2024.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024]
Abstract
Zinc finger CCCH containing 11A (ZC3H11A) is a stress-induced protein that is upregulated in various conditions such as heat shock and virus infection. It has also been reported to be upregulated in certain cancers. The aim of this study was to evaluate the feasibility of targeting ZC3H11A as a therapeutic approach for cancer treatment, using nuclease-resistant, affinity-enhanced antisense oligonucleotide (ASO). An ASO targeting ZC3H11A was validated and evaluated in vitro and in the B16 melanoma model in vivo. Antigen presentation, interferon response, cell proliferation, and apoptosis were transcriptionally affected. These findings were validated on the protein level by the upregulation of major histocompatibility complex class I (MHC class I), an increased secretion of interferon-β (IFN-β), and induction of apoptosis observed as upregulation of caspases and annexin V. Immunogenic features of the induced apoptosis were evidenced by the surface exposure of calreticulin (CRT) and the secretion of ATP leading to enhanced dendritic cell (DC) phagocytosis, maturation, and activation. Treatment with the ZC3H11A-targeted ASO had limited efficacy in vivo, while constitutive lentiviral shRNA knockdown of ZC3H11A in murine B16 melanoma cells and human HeLa cells led to reduced tumor growth with prolonged survival of mice, validating ZC3H11A as a relevant target for cancer therapy.
Collapse
Affiliation(s)
- Arwa Ali
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Paola Contreras
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Mahmoud Darweesh
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhr University, Assiut 71526, Egypt
- Immunolgy Laboratory, Natural and Medical Sciences Research Centre (NMSRC), University of Nizwa, PO.Box:33, P.C. 616 Nizwa, Oman
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Chuan Jin
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Di Yu
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
3
|
Liu X, Liu X, Dong W, Wang P, Liu L, Liu L, E T, Wang D, Lin Y, Lin H, Ruan X, Xue Y. KHDRBS1 regulates the pentose phosphate pathway and malignancy of GBM through SNORD51-mediated polyadenylation of ZBED6 pre-mRNA. Cell Death Dis 2024; 15:802. [PMID: 39516455 PMCID: PMC11549417 DOI: 10.1038/s41419-024-07163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma is one of the most common and aggressive primary brain tumors. The aberration of metabolism is the important character of GBM cells and is tightly related to the malignancy of GBM. We mainly verified the regulatory effects of KHDRBS1, SNORD51 and ZBED6 on pentose phosphate pathway and malignant biological behavior in glioblastoma cells, such as proliferation, migration and invasion. KHDRBS1 and SNORD51 were upregulated in GBM tissues and cells. But ZBED6 had opposite tendency in GBM tissues and cells. KHDRBS1 may improve the stability of SNORD51 by binding to SNORD51, thus elevating the expression of SNORD51. More importantly, SNORD51 can competitively bind to WDR33 with 3'UTR of ZBED6 pre-mRNA which can inhibit the 3' end processing of ZBED6 pre-mRNA, thereby inhibiting the expression of ZBED6 mRNA. ZBED6 inhibited the transcription of G6PD by binding to the promoter region of G6PD. Therefore, the KHDRBS1/SNORD51/ZBED6 pathway performs an important part in regulating the pentose phosphate pathway to influence malignant biological behavior of GBM cells, providing new insights and potential targets for the treatment of GBM.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Xiaobai Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Weiwei Dong
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ping Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Lu Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Tiange E
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Di Wang
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yang Lin
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Hongda Lin
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China.
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China.
| |
Collapse
|
4
|
Liu H, Pan D, Li P, Wang D, Xia B, Zhang R, Lu J, Xing X, Du J, Zhang X, Jin L, Jiang L, Yao L, Li M, Wu J. Loss of ZBED6 Protects Against Sepsis-Induced Muscle Atrophy by Upregulating DOCK3-Mediated RAC1/PI3K/AKT Signaling Pathway in Pigs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302298. [PMID: 37551034 PMCID: PMC10582467 DOI: 10.1002/advs.202302298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/12/2023] [Indexed: 08/09/2023]
Abstract
Sepsis-induced muscle atrophy often increases morbidity and mortality in intensive care unit (ICU) patients, yet neither therapeutic target nor optimal animal model is available for this disease. Here, by modifying the surgical strategy of cecal ligation and puncture (CLP), a novel sepsis pig model is created that for the first time recapitulates the whole course of sepsis in humans. With this model and sepsis patients, increased levels of the transcription factor zinc finger BED-type containing 6 (ZBED6) in skeletal muscle are shown. Protection against sepsis-induced muscle wasting in ZBED6-deficient pigs is further demonstrated. Mechanistically, integrated analysis of RNA-seq and ChIP-seq reveals dedicator of cytokinesis 3 (DOCK3) as the direct target of ZBED6. In septic ZBED6-deficient pigs, DOCK3 expression is increased in skeletal muscle and myocytes, activating the RAC1/PI3K/AKT pathway and protecting against sepsis-induced muscle wasting. Conversely, opposite gene expression patterns and exacerbated muscle wasting are observed in septic ZBED6-overexpressing myotubes. Notably, sepsis patients show increased ZBED6 expression along with reduced DOCK3 and downregulated RAC1/PI3K/AKT pathway. These findings suggest that ZBED6 is a potential therapeutic target for sepsis-induced muscle atrophy, and the established sepsis pig model is a valuable tool for understanding sepsis pathogenesis and developing its therapeutics.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Dengke Pan
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalChengduSichuan610072China
| | - Pu Li
- Department of Critical Care Medicinethe Second Affiliated Hospital of Air Force Medical UniversityNo.569, Xinsi RoadXi'anShaanxi710038China
| | - Dandan Wang
- Laboratory of Animal (Poultry) Genetics Breeding and ReproductionMinistry of AgricultureInstitute of Animal SciencesChinese Academy of Agricultural Sciences (CAAS)Beijing100193China
| | - Bo Xia
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Ruixin Zhang
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Junfeng Lu
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Xiangyang Xing
- Chengdu Clonorgan Biotechnology Co. LTDChengduSichuan610041China
| | - Jiaxiang Du
- Chengdu Clonorgan Biotechnology Co. LTDChengduSichuan610041China
| | - Xiao Zhang
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Long Jin
- Institute of Animal Genetics and BreedingCollege of Animal Science and TechnologySichuan Agricultural UniversityChengduSichuan611130China
| | - Lin Jiang
- Laboratory of Animal (Poultry) Genetics Breeding and ReproductionMinistry of AgricultureInstitute of Animal SciencesChinese Academy of Agricultural Sciences (CAAS)Beijing100193China
| | - Linong Yao
- Department of Critical Care Medicinethe Second Affiliated Hospital of Air Force Medical UniversityNo.569, Xinsi RoadXi'anShaanxi710038China
| | - Mingzhou Li
- Institute of Animal Genetics and BreedingCollege of Animal Science and TechnologySichuan Agricultural UniversityChengduSichuan611130China
| | - Jiangwei Wu
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
5
|
Liu L, Wang S, Tian W, Xu C, Wei C, Cui K, Jiang L, Wang D. Effect of Zbed6 Single-Allele Knockout on the Growth and Development of Skeletal Muscle in Mice. BIOLOGY 2023; 12:biology12020325. [PMID: 36829600 PMCID: PMC9953215 DOI: 10.3390/biology12020325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
ZBED6, a key transcription factor, plays an important role in skeletal muscle and organ growth. ZBED6 knockout (ZBED6-/-) leads to the upregulation of IGF2 in pig and mice muscle, thereby increasing muscle mass. However, the effects and mechanism of Zbed6 single-allele knockout (Zbed6+/-) on mice muscle remain unknown. Here, we reported that Zbed6+/- promotes muscle growth by a new potential target gene rather than Igf2 in mice muscle. Zbed6+/- mice showed markedly higher muscle mass (25%) and a markedly higher muscle weight ratio (18%) than wild-type (WT) mice, coinciding with a larger muscle fiber area (28%). Despite a significant increase in muscle growth, Zbed6+/- mice showed similar Igf2 expression with WT mice, indicating that a ZBED6-Igf2-independent regulatory pathway exists in Zbed6+/- mice muscle. RNA-seq of muscle between the Zbed6+/- and WT mice revealed two terms related to muscle growth. Overlapping the DEGs and C2C12 Chip-seq data of ZBED6 screened out a potential ZBED6 target gene Barx2, which may regulate muscle growth in Zbed6+/- mice. These results may open new research directions leading to a better understanding of the integral functions of ZBED6 and provide evidence of Zbed6+/- promoting muscle growth by regulating Barx2 in mice.
Collapse
Affiliation(s)
- Ling Liu
- National Germplasm Center of Domestic Animal Resources, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Shengnan Wang
- National Germplasm Center of Domestic Animal Resources, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Wenjie Tian
- National Germplasm Center of Domestic Animal Resources, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Cheng Xu
- National Germplasm Center of Domestic Animal Resources, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Chengjie Wei
- National Germplasm Center of Domestic Animal Resources, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Kai Cui
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Lin Jiang
- National Germplasm Center of Domestic Animal Resources, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Dandan Wang
- National Germplasm Center of Domestic Animal Resources, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Correspondence:
| |
Collapse
|
6
|
Zhu S, Zhang J, Jiang X, Wang W, Chen YQ. Free fatty acid receptor 4 deletion attenuates colitis by modulating Treg Cells via ZBED6-IL33 pathway. EBioMedicine 2022; 80:104060. [PMID: 35588628 PMCID: PMC9120243 DOI: 10.1016/j.ebiom.2022.104060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 10/26/2022] Open
|
7
|
Wang D, Pan D, Xie B, Wang S, Xing X, Liu X, Ma Y, Andersson L, Wu J, Jiang L. Porcine ZBED6 regulates growth of skeletal muscle and internal organs via multiple targets. PLoS Genet 2021; 17:e1009862. [PMID: 34710100 PMCID: PMC8577783 DOI: 10.1371/journal.pgen.1009862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/09/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
ZBED6 (zinc finger BED domain containing protein 6) is a transcription factor unique to placental mammals and its interaction with the IGF2 (insulin-like growth factor 2) locus plays a prominent role in the regulation of postnatal skeletal muscle growth. Here, we generated lean Bama miniature pigs by generating ZBED6-knockout (ZBED6−/−) and investigated the mechanism underlying ZBED6 in growth of muscle and internal organs of placental mammals. ZBED6−/− pigs show markedly higher lean mass, lean mass rate, larger muscle fiber area and heavier internal organs (heart and liver) than wild-type (WT) pigs. The striking phenotypic changes of ZBED6-/- pigs coincided with remarkable upregulation of IGF2 mRNA and protein expression across three tissues (gastrocnemius muscle, longissimus dorsi, heart). Despite a significant increase in liver weight, ZBED6-/- pigs show comparable levels of IGF2 expression to those of WT controls. A mechanistic study revealed that elevated methylation in the liver abrogates ZBED6 binding at the IGF2 locus, explaining the unaltered hepatic IGF2 expression in ZBED6-/- pigs. These results indicate that a ZBED6-IGF2-independent regulatory pathway exists in the liver. Transcriptome analysis and ChIP-PCR revealed new ZBED6 target genes other than IGF2, including cyclin dependent kinase inhibitor 1A (CDKN1A) and tsukushi, small leucine rich proteoglycan (TSKU), that regulates growth of muscle and liver, respectively. The lean meat rate is an important economic trait for the swine industry and it is determined by muscle growth and development. A single base change in intron 3 of the insulin-like growth factor 2 (IGF2) gene increases meat production in pigs by disrupting a binding site for zinc finger BED domain containing protein 6 (ZBED6). Chinese indigenous pig breeds carrying the homozygous IGF2 wild-type allele produce low lean meat. We thus generate a lean pig model in Chinese Bama pig by knocking out ZBED6. In this model, we demonstrate that ZBED6 KO increases muscle and internal organ growth through ZBED6-IGF2 axis and other target genes. These results not only open new strategies for lean meat breeding in Chinese indigenous pigs, but also provide new insights to the global function of ZBED6 in organ growth and development.
Collapse
Affiliation(s)
- Dandan Wang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Dengke Pan
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Baocai Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shengnan Wang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | | | - Xuexue Liu
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuehui Ma
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Jiangwei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (JW); (LJ)
| | - Lin Jiang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- * E-mail: (JW); (LJ)
| |
Collapse
|
8
|
Elksnis A, Schiffer TA, Palm F, Wang Y, Cen J, Turpaev K, Ngamjariyawat A, Younis S, Huang S, Shen Y, Leng Y, Bergsten P, Karlsborn T, Welsh N, Wang X. Imatinib protects against human beta-cell death via inhibition of mitochondrial respiration and activation of AMPK. Clin Sci (Lond) 2021; 135:2243-2263. [PMID: 34569605 DOI: 10.1042/cs20210604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
The protein tyrosine kinase inhibitor imatinib is used in the treatment of various malignancies but may also promote beneficial effects in the treatment of diabetes. The aim of the present investigation was to characterize the mechanisms by which imatinib protects insulin producing cells. Treatment of non-obese diabetic (NOD) mice with imatinib resulted in increased beta-cell AMP-activated kinase (AMPK) phosphorylation. Imatinib activated AMPK also in vitro, resulting in decreased ribosomal protein S6 phosphorylation and protection against islet amyloid polypeptide (IAPP)-aggregation, thioredoxin interacting protein (TXNIP) up-regulation and beta-cell death. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) mimicked and compound C counteracted the effect of imatinib on beta-cell survival. Imatinib-induced AMPK activation was preceded by reduced glucose/pyruvate-dependent respiration, increased glycolysis rates, and a lowered ATP/AMP ratio. Imatinib augmented the fractional oxidation of fatty acids/malate, possibly via a direct interaction with the beta-oxidation enzyme enoyl coenzyme A hydratase, short chain, 1, mitochondrial (ECHS1). In non-beta cells, imatinib reduced respiratory chain complex I and II-mediated respiration and acyl-CoA carboxylase (ACC) phosphorylation, suggesting that mitochondrial effects of imatinib are not beta-cell specific. In conclusion, tyrosine kinase inhibitors modestly inhibit mitochondrial respiration, leading to AMPK activation and TXNIP down-regulation, which in turn protects against beta-cell death.
Collapse
Affiliation(s)
- Andris Elksnis
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| | - Tomas A Schiffer
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| | - Fredrik Palm
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| | - Yun Wang
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| | - Jing Cen
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| | - Kyril Turpaev
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Anongnad Ngamjariyawat
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| | - Shady Younis
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, U.S.A
| | - Suling Huang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Yu Shen
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Ying Leng
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Peter Bergsten
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| | - Tony Karlsborn
- Swedish Metabolomics Centre, KBC Byggnaden, Plan 3, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Nils Welsh
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| | - Xuan Wang
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| |
Collapse
|
9
|
Wang X, Younis S, Cen J, Wang Y, Krizhanovskii C, Andersson L, Welsh N. ZBED6 counteracts high-fat diet-induced glucose intolerance by maintaining beta cell area and reducing excess mitochondrial activation. Diabetologia 2021; 64:2292-2305. [PMID: 34296320 PMCID: PMC8423654 DOI: 10.1007/s00125-021-05517-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/01/2021] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS ZBED6 (zinc finger, BED-type containing 6) is known to regulate muscle mass by suppression of Igf2 gene transcription. In insulin-producing cell lines, ZBED6 maintains proliferative capacity at the expense of differentiation and beta cell function. The aim was to study the impact of Zbed6 knockout on beta cell function and glucose tolerance in C57BL/6 mice. METHODS Beta cell area and proliferation were determined in Zbed6 knockout mice using immunohistochemical analysis. Muscle and fat distribution were assessed using micro-computed tomography. Islet gene expression was assessed by RNA sequencing. Effects of a high-fat diet were analysed by glucose tolerance and insulin tolerance tests. ZBED6 was overexpressed in EndoC-βH1 cells and human islet cells using an adenoviral vector. Beta cell cell-cycle analysis, insulin release and mitochondrial function were studied in vitro using propidium iodide staining and flow cytometry, ELISA, the Seahorse technique, and the fluorescent probes JC-1 and MitoSox. RESULTS Islets from Zbed6 knockout mice showed lowered expression of the cell cycle gene Pttg1, decreased beta cell proliferation and decreased beta cell area, which occurred independently from ZBED6 effects on Igf2 gene expression. Zbed6 knockout mice, but not wild-type mice, developed glucose intolerance when given a high-fat diet. The high-fat diet Zbed6 knockout islets displayed upregulated expression of oxidative phosphorylation genes and genes associated with beta cell differentiation. In vitro, ZBED6 overexpression resulted in increased EndoC-βH1 cell proliferation and a reduced glucose-stimulated insulin release in human islets. ZBED6 also reduced mitochondrial JC-1 J-aggregate formation, mitochondrial oxygen consumption rates (OCR) and mitochondrial reactive oxygen species (ROS) production, both at basal and palmitate + high glucose-stimulated conditions. ZBED6-induced inhibition of OCR was not rescued by IGF2 addition. ZBED6 reduced levels of the mitochondrial regulator PPAR-γ related coactivator 1 protein (PRC) and bound its promoter/enhancer region. Knockdown of PRC resulted in a lowered OCR. CONCLUSIONS/INTERPRETATION It is concluded that ZBED6 is required for normal beta cell replication and also limits excessive beta cell mitochondrial activation in response to an increased functional demand. ZBED6 may act, at least in part, by restricting PRC-mediated mitochondrial activation/ROS production, which may lead to protection against beta cell dysfunction and glucose intolerance in vivo.
Collapse
Affiliation(s)
- Xuan Wang
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Shady Younis
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Jing Cen
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Yun Wang
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Camilla Krizhanovskii
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A & M University, College Station, TX, USA.
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Nils Welsh
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Wang D, Pu Y, Li Y, Pan D, Wang S, Tian W, Ma Y, Jiang L. Comprehensive analysis of lncRNAs involved in skeletal muscle development in ZBED6-knockout Bama pigs. BMC Genomics 2021; 22:593. [PMID: 34348644 PMCID: PMC8340374 DOI: 10.1186/s12864-021-07881-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The mutation of insulin-like growth factor 2 (IGF2 mutation) that a single-nucleotide substitution (G→A) in the third intron of IGF2 abrogates the interaction with zinc finger BED-type containing 6 (ZBED6) and leads to increased muscle mass in pigs. IGF2 mutation knock-in (IGF2 KI) and ZBED6 knockout (ZBED6 KO) lead to changes in IGF2 expression and increase muscle mass in mice and pigs. Long noncoding RNAs (lncRNAs) may participate in numerous biological processes, including skeletal muscle development. However, the role of the ZBED6-lncRNA axis in skeletal muscle development is poorly characterized. RESULTS In this study, we assembled transcriptomes using RNA-seq data published in previous studies by our group and identified 11,408 known lncRNAs and 2269 potential lncRNAs in seven tissues, heart, longissimus dorsi, gastrocnemius muscle, liver, spleen, lung and kidney, of ZBED6 KO (lean mass model) and WT Bama pigs. ZBED6 affected the expression of 1570 lncRNAs (differentially expressed lncRNAs [DE-lncRNAs]; log2-fold change ≥ 1, nominal p-value ≤ 0.05) in the seven examined tissues. The expressed lncRNAs (FPKM > 0.1) exhibited tissue-specific patterns in WT pigs. Specifically, 3410 lncRNAs were expressed exclusively in only one tissue. Potential functions of lncRNAs were indirectly predicted by searching their target cis- and trans-regulated protein-coding genes. LncRNAs with tissue-specific expression influence numerous genes related to tissue functions. Weighted gene coexpression network analysis (WGCNA) of 1570 DE-lncRNAs between WT and ZBED6 KO pigs was used to define the following six lncRNA modules specific to different tissues: skeletal muscle, heart, lung, spleen, kidney and liver modules. Furthermore, by conjoint analysis of longissimus dorsi data (tissue-specific expression, muscle module and DE-lncRNAs) and ChIP-PCR revealed NONSUSG002145.1 (adjusted p-values = 0.044), which is coexpressed with the IGF2 gene and binding with ZBED6, may play important roles in ZBED6 KO pig skeletal muscle development. CONCLUSIONS These findings indicate that the identified lncRNAs may play essential roles in tissue function and regulate the mechanism of ZBED6 action in skeletal muscle development in pigs. To our knowledge, this is the first study describing lncRNAs in ZBED6 KO pigs. These results may open new research directions leading to a better understanding of the global functions of ZBED6 and of lncRNA functions in skeletal muscle development in pigs.
Collapse
Affiliation(s)
- Dandan Wang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P. R. China.,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Yabin Pu
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P. R. China.,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Yefang Li
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P. R. China.,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Dengke Pan
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China.,Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 610072, Chengdu, China
| | - Shengnan Wang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P. R. China.,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China
| | - Wenjie Tian
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, P.R. China
| | - Yuehui Ma
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P. R. China. .,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China.
| | - Lin Jiang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P. R. China. .,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, P.R. China.
| |
Collapse
|
11
|
Zhao H, Wu M, Liu S, Tang X, Yi X, Li Q, Wang S, Sun X. Liver Expression of IGF2 and Related Proteins in ZBED6 Gene-Edited Pig by RNA-Seq. Animals (Basel) 2020; 10:ani10112184. [PMID: 33266436 PMCID: PMC7700129 DOI: 10.3390/ani10112184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Zinc finger BED-type containing 6 (ZBED6), as a regulatory factor, has different regulatory mechanisms in animal development. The intron of insulin-like growth factor 2 (IGF2) regulates the development of animal muscle and adipose by combining with the binding site of ZBED6. As a member of the insulin-like growth factor family, IGF2 plays an important role in embryonic growth and development, cell proliferation, muscle growth and genome imprinting. In order to further study the regulatory mechanism of ZBED6 on IGF2, we detected the expression of IGF2 and related genes in ZBED6 single allele knockout (ZBED6-SKO) pig tissues and analyzed differently expressed genes of the transcriptome of ZBED6-SKO pig liver. The results showed that the partial knockout of ZBED6 could affect the secretion of IGF2 in pig liver but had no significant difference at the protein level. This research provides a new idea for the interaction between IGF2 and ZBED6. Abstract Zinc finger BED-type containing 6 (ZBED6), a highly conservative transcription factor of placental mammals, has conservative interaction of insulin-like growth factor 2 (IGF2) based on the 16 bp binding sites of ZBED6 on the IGF2 sequence. IGF2 is related to embryo growth and cell proliferation. At the same time, its functions in muscle and adipose in mammals have been widely mentioned in recent studies. To further investigate the mechanism of ZBED6 on IGF2, we detected the expression of IGF2 and related genes in ZBED6 single allele knockout (ZBED6-SKO) pig tissues and analyzed the transcriptome of ZBED6-SKO pig liver. Through RNA-seq, we captured nine up-regulated genes and eight down-regulated genes which related to lipid metabolism. The results showed that the mRNA of IGF2 had an upward trend after the partial knockout of ZBED6 in liver and had no significant difference in protein expression of IGF2. In summary, ZBED6-SKO could affect the secretion of IGF2 in pig liver and its own lipid metabolism. Our research has provided basic information for revealing the regulatory mechanism of the interaction between ZBED6 and IGF2 in mammals.
Collapse
Affiliation(s)
- Haidong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Mingli Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Shirong Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Xiaoqin Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Qi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
- Correspondence:
| |
Collapse
|
12
|
Zuluaga AP, Bidzinski P, Chanclud E, Ducasse A, Cayrol B, Gomez Selvaraj M, Ishitani M, Jauneau A, Deslandes L, Kroj T, Michel C, Szurek B, Koebnik R, Morel JB. The Rice DNA-Binding Protein ZBED Controls Stress Regulators and Maintains Disease Resistance After a Mild Drought. FRONTIERS IN PLANT SCIENCE 2020; 11:1265. [PMID: 33013945 PMCID: PMC7461821 DOI: 10.3389/fpls.2020.01265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Identifying new sources of disease resistance and the corresponding underlying resistance mechanisms remains very challenging, particularly in Monocots. Moreover, the modification of most disease resistance pathways made so far is detrimental to tolerance to abiotic stresses such as drought. This is largely due to negative cross-talks between disease resistance and abiotic stress tolerance signaling pathways. We have previously described the role of the rice ZBED protein containing three Zn-finger BED domains in disease resistance against the fungal pathogen Magnaporthe oryzae. The molecular and biological functions of such BED domains in plant proteins remain elusive. RESULTS Using Nicotiana benthamiana as a heterologous system, we show that ZBED localizes in the nucleus, binds DNA, and triggers basal immunity. These activities require conserved cysteine residues of the Zn-finger BED domains that are involved in DNA binding. Interestingly, ZBED overexpressor rice lines show increased drought tolerance. More importantly, the disease resistance response conferred by ZBED is not compromised by drought-induced stress. CONCLUSIONS Together our data indicate that ZBED might represent a new type of transcriptional regulator playing simultaneously a positive role in both disease resistance and drought tolerance. We demonstrate that it is possible to provide disease resistance and drought resistance simultaneously.
Collapse
Affiliation(s)
- A. Paola Zuluaga
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | | | - Emilie Chanclud
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Aurelie Ducasse
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Bastien Cayrol
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | | | | | - Alain Jauneau
- Institut Fédératif de Recherche 3450, Université de Toulouse, CNRS, UPS, Plateforme Imagerie TRI-Genotoul, Castanet-Tolosan, France
| | | | - Thomas Kroj
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Corinne Michel
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Boris Szurek
- UMR Interactions Plantes-Microorganismes-Environnement (IPME), IRD-Cirad-Université Montpellier, Institut de Recherche pour le Développement, Montpellier, France
| | - Ralf Koebnik
- UMR Interactions Plantes-Microorganismes-Environnement (IPME), IRD-Cirad-Université Montpellier, Institut de Recherche pour le Développement, Montpellier, France
| | | |
Collapse
|
13
|
Li X, Liu H, Cheng W, Wang J, Zhang H, Lu F, Chen X, Lin W. Junceellolide B, a novel inhibitor of Hepatitis B virus. Bioorg Med Chem 2020; 28:115603. [PMID: 32690259 DOI: 10.1016/j.bmc.2020.115603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023]
Abstract
HBV infection is a common cause of liver disease with a high burden worldwide. Current therapeutic strategy relies on interferon and nucleos(t)ide-type drugs with the limitation of functional cure. In this study, a structure-based screening of marine natural products from an in-house library was performed to hit HBV inhibitors, and the gorgonian-derived briarane-type diterpenoids showed inhibitory effects against HBV DNA replication in HepAD38 cells. Preliminary analyses of structure-activity relationship demonstrated that a briarane-based scaffold with an 3E,5(16)-diene and a chlorine-substitution at C-6 is required for the anti-HBV activity. Junceellolide B is one of the potent HBV inhibitors exhibiting efficient reduction of HBsAg and HBeAg production in HBV infected HepG2-NTCP cells with a dose-dependent manner (p < 0.001). It also significantly reduced the secreted HBV DNA, HBV RNA, and HBeAg in HepAD38 cells with the EC50 values of 0.83, 2.87 and 7.75 μM, respectively. Mechanistically, junceellolide B potently inhibited HBV RNA transcription without promoting HBV RNA degradation. RNA-seq analysis indicated that junceellolide B significantly decreased HBV cccDNA-transcripted products accompanying stable down-regulation of the expression of RNA polymerase II related host transcription factors (ZBED6 and ZBTB7B). These findings suggest junceellolide B to be a transcription inhibitor of cccDNA and a promising lead for the development of new anti-HBV agent.
Collapse
Affiliation(s)
- Xiaodan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Hui Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, PR China
| | - Wei Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Jie Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, PR China
| | - He Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Fengmin Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, PR China
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, PR China.
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Institute of Ocean Research, Peking University, Beijing 100875, PR China.
| |
Collapse
|
14
|
Wang X, Jiang L, Wallerman O, Younis S, Yu Q, Klaesson A, Tengholm A, Welsh N, Andersson L. ZBED6 negatively regulates insulin production, neuronal differentiation, and cell aggregation in MIN6 cells. FASEB J 2018; 33:88-100. [PMID: 29957057 DOI: 10.1096/fj.201600835r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Zinc finger BED domain containing protein 6 ( Zbed6) has evolved from a domesticated DNA transposon and encodes a transcription factor unique to placental mammals. The aim of the present study was to investigate further the role of ZBED6 in insulin-producing cells, using mouse MIN6 cells, and to evaluate the effects of Zbed6 knockdown on basal β-cell functions, such as morphology, transcriptional regulation, insulin content, and release. Zbed6-silenced cells and controls were characterized with a range of methods, including RNA sequencing, chromatin immunoprecipitation sequencing, insulin content and release, subplasma membrane Ca2+ measurements, cAMP determination, and morphologic studies. More than 700 genes showed differential expression in response to Zbed6 knockdown, which was paralleled by increased capacity to generate cAMP, as well as by augmented subplasmalemmal calcium concentration and insulin secretion in response to glucose stimulation. We identified >4000 putative ZBED6-binding sites in the MIN6 genome, with an enrichment of ZBED6 sites at upregulated genes, such as the β-cell transcription factors v-maf musculoaponeurotic fibrosarcoma oncogene homolog A and Nk6 homeobox 1. We also observed altered morphology/growth patterns, as indicated by increased cell clustering, and in the appearance of axon-like Neurofilament, medium polypeptide and tubulin β 3, class III-positive protrusions. We conclude that ZBED6 acts as a transcriptional regulator in MIN6 cells and that its activity suppresses insulin production, cell aggregation, and neuronal-like differentiation.-Wang, X., Jiang, L., Wallerman, O., Younis, S., Yu, Q., Klaesson, A., Tengholm, A., Welsh, N., Andersson, L. ZBED6 negatively regulates insulin production, neuronal differentiation, and cell aggregation in MIN6 cells.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lin Jiang
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ola Wallerman
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden; and
| | - Shady Younis
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Animal Production, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt
| | - Qian Yu
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Axel Klaesson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nils Welsh
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden; and
| |
Collapse
|
15
|
The ZBED6-IGF2 axis has a major effect on growth of skeletal muscle and internal organs in placental mammals. Proc Natl Acad Sci U S A 2018; 115:E2048-E2057. [PMID: 29440408 PMCID: PMC5834713 DOI: 10.1073/pnas.1719278115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Insulin-like growth factor 2 (IGF2) is an important growth factor with a critical role for fetal growth in mammals. The ZBED6 transcription factor is unique to placental mammals and has evolved from a domesticated DNA transposon. This study shows that ZBED6 and its interaction with the Igf2 locus play a prominent role in regulating postnatal growth of skeletal muscle and internal organs (kidney, liver, and heart) in placental mammals. This prominent role in mammalian biology provides a reasonable explanation why ZBED6 is highly conserved among all families of placental mammals and why 16 base pairs encompassing the ZBED6 binding site in an intron of Igf2 are conserved among the great majority of, if not all, placental mammals. A single nucleotide substitution in the third intron of insulin-like growth factor 2 (IGF2) is associated with increased muscle mass and reduced subcutaneous fat in domestic pigs. This mutation disrupts the binding of the ZBED6 transcription factor and leads to a threefold up-regulation of IGF2 expression in pig skeletal muscle. Here, we investigated the biological significance of ZBED6–IGF2 interaction in the growth of placental mammals using two mouse models, ZBED6 knock-out (Zbed6−/−) and Igf2 knock-in mice that carry the pig IGF2 mutation. These transgenic mice exhibit markedly higher serum IGF2 concentrations, higher growth rate, increased lean mass, and larger heart, kidney, and liver; no significant changes were observed for white adipose tissues. The changes in body and lean mass were most pronounced in female mice. The phenotypic changes were concomitant with a remarkable up-regulation of Igf2 expression in adult tissues. Transcriptome analysis of skeletal muscle identified differential expression of genes belonging to the extracellular region category. Expression analysis using fetal muscles indicated a minor role of ZBED6 in regulating Igf2 expression prenatally. Furthermore, transcriptome analysis of the adult skeletal muscle revealed that this elevated expression of Igf2 was derived from the P1 and P2 promoters. The results revealed very similar phenotypic effects in the Zbed6 knock-out mouse and in the Igf2 knock-in mouse, showing that the effect of ZBED6 on growth of muscle and internal organs is mediated through the binding site in the Igf2 gene. The results explain why this ZBED6 binding site is extremely well conserved among placental mammals.
Collapse
|
16
|
Kroj T, Chanclud E, Michel‐Romiti C, Grand X, Morel J. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. THE NEW PHYTOLOGIST 2016; 210:618-26. [PMID: 26848538 PMCID: PMC5067614 DOI: 10.1111/nph.13869] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/16/2015] [Indexed: 05/18/2023]
Abstract
Plant immune receptors of the class of nucleotide-binding and leucine-rich repeat domain (NLR) proteins can contain additional domains besides canonical NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC)) and leucine-rich repeat (LRR) domains. Recent research suggests that these additional domains act as integrated decoys recognizing effectors from pathogens. Proteins homologous to integrated decoys are suspected to be effector targets and involved in disease or resistance. Here, we scrutinized 31 entire plant genomes to identify putative integrated decoy domains in NLR proteins using the Interpro search. The involvement of the Zinc Finger-BED type (ZBED) protein containing a putative decoy domain, called BED, in rice (Oryza sativa) resistance was investigated by evaluating susceptibility to the blast fungus Magnaporthe oryzae in rice over-expression and knock-out mutants. This analysis showed that all plants tested had integrated various atypical protein domains into their NLR proteins (on average 3.5% of all NLR proteins). We also demonstrated that modifying the expression of the ZBED gene modified disease susceptibility. This study suggests that integration of decoy domains in NLR immune receptors is widespread and frequent in plants. The integrated decoy model is therefore a powerful concept to identify new proteins involved in disease resistance. Further in-depth examination of additional domains in NLR proteins promises to unravel many new proteins of the plant immune system.
Collapse
Affiliation(s)
- Thomas Kroj
- INRACIRADSupAgroUMR BGPI INRA/CIRAD/SupAgroCampus International de BaillarguetTA A 54/K34398MontpellierFrance
| | - Emilie Chanclud
- Université Montpellier2 Place Eugène Bataillon34095Montpellier Cedex 5France
| | - Corinne Michel‐Romiti
- INRACIRADSupAgroUMR BGPI INRA/CIRAD/SupAgroCampus International de BaillarguetTA A 54/K34398MontpellierFrance
| | - Xavier Grand
- INRACIRADSupAgroUMR BGPI INRA/CIRAD/SupAgroCampus International de BaillarguetTA A 54/K34398MontpellierFrance
| | - Jean‐Benoit Morel
- INRACIRADSupAgroUMR BGPI INRA/CIRAD/SupAgroCampus International de BaillarguetTA A 54/K34398MontpellierFrance
| |
Collapse
|
17
|
Wang X, Xie B, Qi Y, Wallerman O, Vasylovska S, Andersson L, Kozlova EN, Welsh N. Knock-down of ZBED6 in insulin-producing cells promotes N-cadherin junctions between beta-cells and neural crest stem cells in vitro. Sci Rep 2016; 6:19006. [PMID: 26750727 PMCID: PMC4707466 DOI: 10.1038/srep19006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/02/2015] [Indexed: 11/21/2022] Open
Abstract
The role of the novel transcription factor ZBED6 for the adhesion/clustering of insulin-producing mouse MIN6 and βTC6 cells was investigated. Zbed6-silencing in the insulin producing cells resulted in increased three-dimensional cell-cell clustering and decreased adhesion to mouse laminin and human laminin 511. This was paralleled by a weaker focal adhesion kinase phosphorylation at laminin binding sites. Zbed6-silenced cells expressed less E-cadherin and more N-cadherin at cell-to-cell junctions. A strong ZBED6-binding site close to the N-cadherin gene transcription start site was observed. Three-dimensional clustering in Zbed6-silenced cells was prevented by an N-cadherin neutralizing antibody and by N-cadherin knockdown. Co-culture of neural crest stem cells (NCSCs) with Zbed6-silenced cells, but not with control cells, stimulated the outgrowth of NCSC processes. The cell-to-cell junctions between NCSCs and βTC6 cells stained more intensely for N-cadherin when Zbed6-silenced cells were co-cultured with NCSCs. We conclude that ZBED6 decreases the ratio between N- and E-cadherin. A lower N- to E-cadherin ratio may hamper the formation of three-dimensional beta-cell clusters and cell-to-cell junctions with NCSC, and instead promote efficient attachment to a laminin support and monolayer growth. Thus, by controlling beta-cell adhesion and cell-to-cell junctions, ZBED6 might play an important role in beta-cell differentiation, proliferation and survival.
Collapse
Affiliation(s)
- Xuan Wang
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Beichen Xie
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Yu Qi
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | | | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | | | - Nils Welsh
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
18
|
Abstract
Domestic animals are unique models for biomedical research due to their long history (thousands of years) of strong phenotypic selection. This process has enriched for novel mutations that have contributed to phenotype evolution in domestic animals. The characterization of such mutations provides insights in gene function and biological mechanisms. This review summarizes genetic dissection of about 50 genetic variants affecting pigmentation, behaviour, metabolic regulation, and the pattern of locomotion. The variants are controlled by mutations in about 30 different genes, and for 10 of these our group was the first to report an association between the gene and a phenotype. Almost half of the reported mutations occur in non-coding sequences, suggesting that this is the most common type of polymorphism underlying phenotypic variation since this is a biased list where the proportion of coding mutations are inflated as they are easier to find. The review documents that structural changes (duplications, deletions, and inversions) have contributed significantly to the evolution of phenotypic diversity in domestic animals. Finally, we describe five examples of evolution of alleles, which means that alleles have evolved by the accumulation of several consecutive mutations affecting the function of the same gene.
Collapse
Affiliation(s)
- Leif Andersson
- Correspondence: Professor Leif Andersson, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
19
|
Fred RG, Kappe C, Ameur A, Cen J, Bergsten P, Ravassard P, Scharfmann R, Welsh N. Role of the AMP kinase in cytokine-induced human EndoC-βH1 cell death. Mol Cell Endocrinol 2015. [PMID: 26213325 DOI: 10.1016/j.mce.2015.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of the present investigation was to delineate cytokine-induced signaling and death using the EndoC-βH1 cells as a model for primary human beta-cells. The cytokines IL-1β and IFN-γ induced a rapid and transient activation of NF-κB, STAT-1, ERK, JNK and eIF-2α signaling. The EndoC-βH1 cells died rapidly when exposed to IL-1β + IFN-γ, and this occurred also in the presence of the actinomycin D. Inhibition of NF-κB and STAT-1 did not protect against cell death, nor did the cytokines activate iNOS expression. Instead, cytokines promoted a rapid decrease in EndoC-βH1 cell respiration and ATP levels, and we observed protection by the AMPK activator AICAR against cytokine-induced cell death. It is concluded that EndoC-βH1 cell death can be prevented by AMPK activation, which suggests a role for ATP depletion in cytokine-induced human beta-cell death.
Collapse
Affiliation(s)
- Rikard G Fred
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| | - Camilla Kappe
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Jing Cen
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| | - Peter Bergsten
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| | - Phillippe Ravassard
- Biotechnology and Biotherapy Laboratory, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, CHU Pitié-Salpêtrière, Paris, France
| | - Raphael Scharfmann
- INSERM, U1016, Institut Cochin, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Nils Welsh
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
20
|
Transcriptional modulator ZBED6 affects cell cycle and growth of human colorectal cancer cells. Proc Natl Acad Sci U S A 2015; 112:7743-8. [PMID: 26056301 DOI: 10.1073/pnas.1509193112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transcription factor ZBED6 (zinc finger, BED-type containing 6) is a repressor of IGF2 whose action impacts development, cell proliferation, and growth in placental mammals. In human colorectal cancers, IGF2 overexpression is mutually exclusive with somatic mutations in PI3K signaling components, providing genetic evidence for a role in the PI3K pathway. To understand the role of ZBED6 in tumorigenesis, we engineered and validated somatic cell ZBED6 knock-outs in the human colorectal cancer cell lines RKO and HCT116. Ablation of ZBED6 affected the cell cycle and led to increased growth rate in RKO cells but reduced growth in HCT116 cells. This striking difference was reflected in the transcriptome analyses, which revealed enrichment of cell-cycle-related processes among differentially expressed genes in both cell lines, but the direction of change often differed between the cell lines. ChIP sequencing analyses displayed enrichment of ZBED6 binding at genes up-regulated in ZBED6-knockout clones, consistent with the view that ZBED6 modulates gene expression primarily by repressing transcription. Ten differentially expressed genes were identified as putative direct gene targets, and their down-regulation by ZBED6 was validated experimentally. Eight of these genes were linked to the Wnt, Hippo, TGF-β, EGF receptor, or PI3K pathways, all involved in colorectal cancer development. The results of this study show that the effect of ZBED6 on tumor development depends on the genetic background and the transcriptional state of its target genes.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Therapies that increase functional β-cell mass may be the best long-term treatment for diabetes. Significant resources are devoted toward this goal, and progress is occurring at a rapid pace. Here, we summarize recent advances relevant to human β-cell regeneration. RECENT FINDINGS New β-cells arise from proliferation of pre-existing β-cells or transdifferentiation from other cell types. In addition, dedifferentiated β-cells may populate islets in diabetes, possibly representing a pool of cells that could redifferentiate into functional β-cells. Advances in finding strategies to drive β-cell proliferation include new insight into proproliferative factors, both circulating and local, and elements intrinsic to the β-cell, such as cell cycle machinery and regulation of gene expression through epigenetic modification and noncoding RNAs. Controversy continues in the arena of generation of β-cells by transdifferentiation from exocrine, ductal, and alpha cells, with studies producing both supporting and opposing data. Progress has been made in redifferentiation of β-cells that have lost expression of β-cell markers. SUMMARY Although significant progress has been made, and promising avenues exist, more work is needed to achieve the goal of β-cell regeneration as a treatment for diabetes.
Collapse
Affiliation(s)
- Agata Jurczyk
- University of Massachusetts Medical School, Diabetes Center of Excellence, Worcester, Massachusetts, USA
| | | | | |
Collapse
|