1
|
Tahtasakal R, Hamurcu Z, Oz AB, Balli M, Dana H, Gok M, Cinar V, Inanc M, Sener EF. miR-484 as an "OncomiR" in Breast Cancer Promotes Tumorigenesis by Suppressing Apoptosis Genes. Ann Surg Oncol 2025; 32:2994-3008. [PMID: 39692982 DOI: 10.1245/s10434-024-16656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
PURPOSE Breast cancer (BC) is one of the most common causes of death among females. Cancer cells escape from apoptosis, causing the cells to proliferate uncontrollably. MicroRNAs (miRNAs) are known to regulate apoptosis in cancer cells. OBJECTIVE This study aimed to determine the change in miR-484 in different BC cells and its relationship with the apoptosis pathway. METHODS In the study, tumor and healthy tissue samples adjacent to the tumor were collected from 42 patients (6 benign, 36 malignant). Tissue samples were classified according to tumor type, tumor histological grade, proliferation index, and molecular subtypes. Gene expression levels were determined by quantitative real-time polymerase chain reaction (qRT-PCR), and protein levels were determined using the Western Blot method. The results were analyzed using the delta-delta Ct method. RESULTS Findings showed that miR-484 expression levels were higher in malignant tumors than in benign tumors, and higher in tumor tissues than healthy tissues. Additionally, it was determined that as Ki-67 levels and histological grade and aggressiveness increased, miR-484 expression levels also increased. In tumor tissue compared with healthy adjacent tissue, there was an increase in BCL2 expression and a decrease in Casp3 and Casp9 expression. Therefore, a positive correlation was found between miR-484 expression and BCL2, and a negative correlation was found between CASP3 and CASP9 expression. CONCLUSION Our results show that miR-484 may play a roll as an onco-miR in BC. Increased miR-484 and BCL2, and decreased Casp3, in breast tumor tissues suggest that Casp9 expression may increase uncontrolled cell proliferation by suppressing apoptosis in BC cells and may contribute to tumor progression.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- MicroRNAs/genetics
- Apoptosis/genetics
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Middle Aged
- Prognosis
- Carcinogenesis/genetics
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Follow-Up Studies
- Caspase 3/genetics
- Caspase 3/metabolism
- Caspase 9/genetics
- Caspase 9/metabolism
- Case-Control Studies
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Adult
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Reyhan Tahtasakal
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Türkiye
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Zuhal Hamurcu
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Türkiye
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Abdullah Bahadir Oz
- Department of General Surgery, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Mustafa Balli
- General Surgery Clinic, Kayseri State Hospital, Kayseri, Türkiye
| | - Halime Dana
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Türkiye
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Mustafa Gok
- Department of General Surgery, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Venhar Cinar
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Türkiye
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Mevlude Inanc
- Department of Medical Oncology, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Elif Funda Sener
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Türkiye.
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Türkiye.
| |
Collapse
|
2
|
Wu L, Zhang B, Li Y, Xiong C, Yu J, Gan J, Xu Q, Wang Y, Liao H. Integrated miRNA sequencing and experimental validation Unveil that low-level laser enhances vascular endothelial cell proliferation, migration, and lumen formation via miR-90/VEGFA. Gene 2025; 935:149049. [PMID: 39490651 DOI: 10.1016/j.gene.2024.149049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The hydroxyapatite orbital implantation is widely used to treat orbital malformation, but delayed postoperative angiogenesis can hinder conjunctival wound healing, potentially leading to implant exposure and prolapse. Low-intensity laser therapy (LLLT) is recognized for its ability to promote tissue regeneration, reduce inflammation, and alleviate pain. This study aims to explore the specific mechanism of miRNAs-VEGFA pathway regulation in early vascularization after orbital implant placement induced by LLLT. A hydroxyapatite orbital implant model was established and treated with LLLT. Vascular tissues surrounding the ocular prosthesis were extracted for high-throughput sequencing to identify differentially expressed miRNAs. miRNAs predicted to bind with VEGFA were selected for validation. GO and KEGG analyses were performed to reveal the functional enrichment of target genes regulated by these miRNAs. Dual luciferase assay, qRT-PCR, and Western blotting were used to verify the targeting relationship between miR-90 and VEGFA. The effects of miR-90 on rabbit microvascular endothelial cell function were assessed through CCK-8 assay, scratch test, and tube formation assay. High-throughput sequencing revealed 32 differentially expressed miRNAs, with 8 upregulated and 24 downregulated. miR-90 was predicted to have a high binding score and expression abundance with VEGFA and was confirmed to regulate VEGFA expression. In vitro functional tests showed that miR-90 inhibited rabbit microvascular endothelial cell proliferation, migration, and tube formation. This study is the first to demonstrate that LLLT regulates ocular prosthesis angiogenesis via the miR-90/VEGFA pathway, providing a new target for treating vascular-dependent diseases.
Collapse
Affiliation(s)
- Lili Wu
- Department of Orbital Diseases, Affiliated Eye Hospital of Nanchang University, Nanchang, China; Department of Orbital Diseases, Eye Hospital of Jiangxi Province, Nanchang, China; Nanchang University School of Ophthalmology & Optometry, Nanchang, China; The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, China; The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Boyuan Zhang
- Department of Orbital Diseases, Affiliated Eye Hospital of Nanchang University, Nanchang, China; Department of Orbital Diseases, Eye Hospital of Jiangxi Province, Nanchang, China; Nanchang University School of Ophthalmology & Optometry, Nanchang, China; The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, China; Department of Medical Technology, Chongqing Three Gorges Medical College, Chongqing, China
| | - Yue Li
- Department of Orbital Diseases, Affiliated Eye Hospital of Nanchang University, Nanchang, China; Department of Orbital Diseases, Eye Hospital of Jiangxi Province, Nanchang, China; Nanchang University School of Ophthalmology & Optometry, Nanchang, China; The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, China
| | - Chao Xiong
- Department of Orbital Diseases, Affiliated Eye Hospital of Nanchang University, Nanchang, China; Department of Orbital Diseases, Eye Hospital of Jiangxi Province, Nanchang, China; Nanchang University School of Ophthalmology & Optometry, Nanchang, China; The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, China
| | - Jinhai Yu
- Department of Orbital Diseases, Affiliated Eye Hospital of Nanchang University, Nanchang, China; Department of Orbital Diseases, Eye Hospital of Jiangxi Province, Nanchang, China; Nanchang University School of Ophthalmology & Optometry, Nanchang, China; The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, China
| | - Jiancheng Gan
- Department of Orbital Diseases, Affiliated Eye Hospital of Nanchang University, Nanchang, China; Department of Orbital Diseases, Eye Hospital of Jiangxi Province, Nanchang, China; Nanchang University School of Ophthalmology & Optometry, Nanchang, China; The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, China
| | - Qihua Xu
- Department of Orbital Diseases, Affiliated Eye Hospital of Nanchang University, Nanchang, China; Department of Orbital Diseases, Eye Hospital of Jiangxi Province, Nanchang, China; Nanchang University School of Ophthalmology & Optometry, Nanchang, China; The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yaohua Wang
- Department of Orbital Diseases, Affiliated Eye Hospital of Nanchang University, Nanchang, China; Department of Orbital Diseases, Eye Hospital of Jiangxi Province, Nanchang, China; Nanchang University School of Ophthalmology & Optometry, Nanchang, China; The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, China.
| | - Hongfei Liao
- Department of Orbital Diseases, Affiliated Eye Hospital of Nanchang University, Nanchang, China; Department of Orbital Diseases, Eye Hospital of Jiangxi Province, Nanchang, China; Nanchang University School of Ophthalmology & Optometry, Nanchang, China; The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
3
|
Dey Bhowmik A, Shaw P, Gopinatha Pillai MS, Rao G, Dwivedi SKD. Evolving landscape of detection and targeting miRNA/epigenetics for therapeutic strategies in ovarian cancer. Cancer Lett 2024; 611:217357. [PMID: 39615646 DOI: 10.1016/j.canlet.2024.217357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Ovarian cancer (OC) accounts for the highest mortality rates among all gynecologic malignancies. The high mortality of OC is often associated with delayed detection, prolonged latency, enhanced metastatic potential, acquired drug resistance, and frequent recurrence. This review comprehensively explores key aspects of OC, including cancer diagnosis, mechanisms of disease resistance, and the pivotal role of epigenetic regulation, particularly by microRNAs (miRs) in cancer progression. We highlight the intricate regulatory mechanisms governing miR expression within the context of OC and the current status of epigenetic advancement in the therapeutic development and clinical trial progression. Through network analysis we elucidate the regulatory interactions between dysregulated miRs in OC and their targets which are involved in different signaling pathways. By exploring these interconnected facets and critical analysis, we endeavor to provide a nuanced understanding of the molecular dynamics underlying OC, its detection and shedding light on potential avenues for miRs and epigenetics-based therapeutic intervention and management strategies.
Collapse
Affiliation(s)
- Arpan Dey Bhowmik
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Mohan Shankar Gopinatha Pillai
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
4
|
Sarkar N, Mishra R, Gopal C, Kumar A. miR-617 interacts with the promoter of DDX27 and positively regulates its expression: implications for cancer therapeutics. Front Oncol 2024; 14:1411539. [PMID: 38939334 PMCID: PMC11208480 DOI: 10.3389/fonc.2024.1411539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Background Pervasive transcription of the eukaryotic genome generates noncoding RNAs (ncRNAs), which regulate messenger RNA (mRNA) stability and translation. MicroRNAs (miRNAs/miRs) represent a group of well-studied ncRNAs that maintain cellular homeostasis. Thus, any aberration in miRNA expression can cause diseases, including carcinogenesis. According to microRNA microarray analyses, intronic miR-617 is significantly downregulated in oral squamous cell carcinoma (OSCC) tissues compared to normal oral tissues. Methods The miR-617-mediated regulation of DDX27 is established by performing experiments on OSCC cell lines, patient samples, and xenograft nude mice model. Overexpression plasmid constructs, bisulphite sequencing PCR, bioinformatics analyses, RT-qPCR, Western blotting, dual-luciferase reporter assay, and cell-based assays are utilized to delineate the role of miR-617 in OSCC. Results The present study shows that miR-617 has an anti-proliferative role in OSCC cells and is partly downregulated in OSCC cells due to the hypermethylation of its independent promoter. Further, we demonstrate that miR-617 upregulates DDX27 gene by interacting with its promoter in a dose-dependent and sequence-specific manner, and this interaction is found to be biologically relevant in OSCC patient samples. Subsequently, we show that miR-617 regulates cell proliferation, apoptosis, and anchorage-independent growth of OSCC cells by modulating DDX27 levels. Besides, our study shows that miR-617 exerts its effects through the PI3K/AKT/MTOR pathway via regulating DDX27 levels. Furthermore, the OSCC xenograft study in nude mice shows the anti-tumorigenic potential of miR-617. Conclusion miR-617-mediated upregulation of DDX27 is a novel mechanism in OSCC and underscores the therapeutic potential of synthetic miR-617 mimics in cancer therapeutics. To the best of our knowledge, miR-617 is the 15th example of a miRNA that upregulates the expression of a protein-coding gene by interacting with its promoter.
Collapse
Affiliation(s)
- Neelanjana Sarkar
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Radha Mishra
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Champaka Gopal
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Arun Kumar
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
5
|
Pathak A, Pal AK, Roy S, Nandave M, Jain K. Role of Angiogenesis and Its Biomarkers in Development of Targeted Tumor Therapies. Stem Cells Int 2024; 2024:9077926. [PMID: 38213742 PMCID: PMC10783989 DOI: 10.1155/2024/9077926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Angiogenesis plays a significant role in the human body, from wound healing to tumor progression. "Angiogenic switch" indicates a time-restricted event where the imbalance between pro- and antiangiogenic factors results in the transition from prevascular hyperplasia to outgrowing vascularized tumor, which eventually leads to the malignant cancer progression. In the last decade, molecular players, i.e., angiogenic biomarkers and underlying molecular pathways involved in tumorigenesis, have been intensely investigated. Disrupting the initiation and halting the progression of angiogenesis by targeting these biomarkers and molecular pathways has been considered as a potential treatment approach for tumor angiogenesis. This review discusses the currently known biomarkers and available antiangiogenic therapies in cancer, i.e., monoclonal antibodies, aptamers, small molecular inhibitors, miRNAs, siRNAs, angiostatin, endostatin, and melatonin analogues, either approved by the U.S. Food and Drug Administration or currently under clinical and preclinical investigations.
Collapse
Affiliation(s)
- Anchal Pathak
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| | - Ajay Kumar Pal
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Keerti Jain
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| |
Collapse
|
6
|
Yang M, Gao X, Hu C, Wang S, Sheng H, Ma Y. Bta-miR-484 Targets SFRP1 and Affects Preadipocytes Proliferation, Differentiation, and Apoptosis. Int J Mol Sci 2023; 24:12710. [PMID: 37628891 PMCID: PMC10454478 DOI: 10.3390/ijms241612710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
MicroRNAs (miRNAs) are essential regulators of numerous biological processes in animals, including adipogenesis. Despite the abundance of miRNAs associated with adipogenesis, their exact mechanisms of action remain largely unknown. Our study highlights the role of bta-miR-484 as a major regulator of adipocyte proliferation, apoptosis, and differentiation. Here, we demonstrated that the expression of bta-miR-484 initially increased during adipogenesis before decreasing. Overexpression of bta-miR-484 in adipocytes ultimately inhibited cell proliferation and differentiation, reduced the number of EdU fluorescence-stained cells, increased the number of G1 phase cells, reduced the number of G2 and S phase cells, and downregulated the expression of proliferation markers (CDK2 and PCNA) and differentiation markers (CEBPA, FABP4, and LPL). Additionally, overexpression of bta-miR-484 promoted the expression of apoptosis-related genes (Caspase 3, Caspase 9, and BAX), and increased the number of apoptotic cells observed via flow cytometry. In contrast, bta-miR-484 inhibition in adipocytes yielded opposite effects to those observed during bta-miR-484 overexpression. Moreover, luciferase reporter assays confirmed SFRP1 as a target gene of bta-miR-484, and revealed that bta-miR-484 downregulates SFRP1 mRNA expression. These findings offer compelling evidence that bta-miR-484 targets SFRP1, inhibits proliferation and differentiation, and promotes apoptosis. Therefore, these results offer novel insights into the bta-miR-484 regulation of adipocyte growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
7
|
Hue SSS, Jin Y, Cheng H, Bin Masroni MS, Tang LWT, Ho YH, Ong DBL, Leong SM, Tan SY. Tissue-Specific microRNA Expression Profiling to Derive Novel Biomarkers for the Diagnosis and Subtyping of Small B-Cell Lymphomas. Cancers (Basel) 2023; 15:cancers15020453. [PMID: 36672402 PMCID: PMC9856483 DOI: 10.3390/cancers15020453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Accurate diagnosis of the most common histological subtypes of small B-cell lymphomas is challenging due to overlapping morphological features and limitations of ancillary testing, which involves a large number of immunostains and molecular investigations. In addition, a common diagnostic challenge is to distinguish reactive lymphoid hyperplasia that do not require additional stains from such lymphomas that need ancillary investigations. We investigated if tissue-specific microRNA (miRNA) expression may provide potential biomarkers to improve the pathology diagnostic workflow. This study seeks to distinguish reactive lymphoid proliferation (RL) from small B-cell lymphomas, and to further distinguish the four main subtypes of small B-cell lymphomas. Two datasets were included: a discovery cohort (n = 100) to screen for differentially expressed miRNAs and a validation cohort (n = 282) to develop classification models. The models were evaluated for accuracy in subtype prediction. MiRNA gene set enrichment was also performed to identify differentially regulated pathways. 306 miRNAs were detected and quantified, resulting in 90-miRNA classification models from which smaller panels of miRNAs biomarkers with good accuracy were derived. Bioinformatic analysis revealed the upregulation of known and other potentially relevant signaling pathways in such lymphomas. In conclusion, this study suggests that miRNA expression profiling may serve as a promising tool to aid the diagnosis of common lymphoid lesions.
Collapse
Affiliation(s)
- Susan Swee-Shan Hue
- Department of Pathology, National University Hospital, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Yu Jin
- MiRXES Pte Ltd., 2 Tukang Innovation Grove, JTC MedTech Hub, #08-01, Singapore 618305, Singapore
| | - He Cheng
- MiRXES Pte Ltd., 2 Tukang Innovation Grove, JTC MedTech Hub, #08-01, Singapore 618305, Singapore
| | - Muhammad Sufyan Bin Masroni
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Lloyd Wei Tat Tang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, Singapore 117543, Singapore
| | - Yong Howe Ho
- Department of Pathology, Tan Tock Seng Hospital, Level 2 Podium Block, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Diana Bee-Lan Ong
- Department of Pathology, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Sai Mun Leong
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Soo Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Advanced Molecular Pathology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Correspondence:
| |
Collapse
|
8
|
Lopacinska-Jørgensen J, Petersen PHD, Oliveira DVNP, Høgdall CK, Høgdall EV. Strategies for data normalization and missing data imputation and consequences for potential diagnostic microRNA biomarkers in epithelial ovarian cancer. PLoS One 2023; 18:e0282576. [PMID: 37141239 PMCID: PMC10159121 DOI: 10.1371/journal.pone.0282576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/21/2023] [Indexed: 05/05/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules regulating gene expression with diagnostic potential in different diseases, including epithelial ovarian carcinomas (EOC). As only a few studies have been published on the identification of stable endogenous miRNA in EOC, there is no consensus which miRNAs should be used aiming standardization. Currently, U6-snRNA is widely adopted as a normalization control in RT-qPCR when investigating miRNAs in EOC; despite its variable expression across cancers being reported. Therefore, our goal was to compare different missing data and normalization approaches to investigate their impact on the choice of stable endogenous controls and subsequent survival analysis while performing expression analysis of miRNAs by RT-qPCR in most frequent subtype of EOC: high-grade serous carcinoma (HGSC). 40 miRNAs were included based on their potential as stable endogenous controls or as biomarkers in EOC. Following RNA extraction from formalin-fixed paraffin embedded tissues from 63 HGSC patients, RT-qPCR was performed with a custom panel covering 40 target miRNAs and 8 controls. The raw data was analyzed by applying various strategies regarding choosing stable endogenous controls (geNorm, BestKeeper, NormFinder, the comparative ΔCt method and RefFinder), missing data (single/multiple imputation), and normalization (endogenous miRNA controls, U6-snRNA or global mean). Based on our study, we propose hsa-miR-23a-3p and hsa-miR-193a-5p, but not U6-snRNA as endogenous controls in HGSC patients. Our findings are validated in two external cohorts retrieved from the NCBI Gene Expression Omnibus database. We present that the outcome of stability analysis depends on the histological composition of the cohort, and it might suggest unique pattern of miRNA stability profiles for each subtype of EOC. Moreover, our data demonstrates the challenge of miRNA data analysis by presenting various outcomes from normalization and missing data imputation strategies on survival analysis.
Collapse
Affiliation(s)
| | - Patrick H D Petersen
- Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | | | - Claus K Høgdall
- Department of Gynaecology, Juliane Marie Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid V Høgdall
- Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| |
Collapse
|
9
|
Cui M, Liu Y, Cheng L, Li T, Deng Y, Liu D. Research progress on anti-ovarian cancer mechanism of miRNA regulating tumor microenvironment. Front Immunol 2022; 13:1050917. [DOI: 10.3389/fimmu.2022.1050917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Ovarian cancer is the most deadly malignancy among women, but its complex pathogenesis is unknown. Most patients with ovarian cancer have a poor prognosis due to high recurrence rates and chemotherapy resistance as well as the lack of effective early diagnostic methods. The tumor microenvironment mainly includes extracellular matrix, CAFs, tumor angiogenesis and immune-associated cells. The interaction between tumor cells and TME plays a key role in tumorigenesis, progression, metastasis and treatment, affecting tumor progression. Therefore, it is significant to find new tumor biomarkers and therapeutic targets. MicroRNAs are non-coding RNAs that post-transcriptionally regulate the expression of target genes and affect a variety of biological processes. Studies have shown that miRNAs regulate tumor development by affecting TME. In this review, we summarize the mechanisms by which miRNAs affect ovarian cancer by regulating TME and highlight the key role of miRNAs in TME, which provides new targets and theoretical basis for ovarian cancer treatment.
Collapse
|
10
|
Ismail A, Abulsoud AI, Fathi D, Elshafei A, El-Mahdy HA, Elsakka EG, Aglan A, Elkhawaga SY, Doghish AS. The role of miRNAs in Ovarian Cancer Pathogenesis and Therapeutic Resistance - A Focus on Signaling Pathways Interplay. Pathol Res Pract 2022; 240:154222. [DOI: 10.1016/j.prp.2022.154222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
|
11
|
Identification Markers of Carotid Vulnerable Plaques: An Update. Biomolecules 2022; 12:biom12091192. [PMID: 36139031 PMCID: PMC9496377 DOI: 10.3390/biom12091192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Vulnerable plaques have been a hot topic in the field of stroke and carotid atherosclerosis. Currently, risk stratification and intervention of carotid plaques are guided by the degree of luminal stenosis. Recently, it has been recognized that the vulnerability of plaques may contribute to the risk of stroke. Some classical interventions, such as carotid endarterectomy, significantly reduce the risk of stroke in symptomatic patients with severe carotid stenosis, while for asymptomatic patients, clinically silent plaques with rupture tendency may expose them to the risk of cerebrovascular events. Early identification of vulnerable plaques contributes to lowering the risk of cerebrovascular events. Previously, the identification of vulnerable plaques was commonly based on imaging technologies at the macroscopic level. Recently, some microscopic molecules pertaining to vulnerable plaques have emerged, and could be potential biomarkers or therapeutic targets. This review aimed to update the previous summarization of vulnerable plaques and identify vulnerable plaques at the microscopic and macroscopic levels.
Collapse
|
12
|
Jia YZ, Liu J, Wang GQ, Song ZF. miR-484: A Potential Biomarker in Health and Disease. Front Oncol 2022; 12:830420. [PMID: 35356223 PMCID: PMC8959652 DOI: 10.3389/fonc.2022.830420] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/11/2022] [Indexed: 01/30/2023] Open
Abstract
Disorders of miR-484 expression are observed in cancer, different diseases or pathological states. There is accumulating evidence that miR-484 plays an essential role in the development as well as the regression of different diseases, and miR-484 has been reported as a key regulator of common cancer and non-cancer diseases. The miR-484 targets that have effects on inflammation, apoptosis and mitochondrial function include SMAD7, Fis1, YAP1 and BCL2L13. For cancer, identified targets include VEGFB, VEGFR2, MAP2, MMP14, HNF1A, TUSC5 and KLF12. The effects of miR-484 on these targets have been documented separately. Moreover, miR-484 is typically described as an oncosuppressor, but this claim is simplistic and one-sided. This review will combine relevant basic and clinical studies to find that miR-484 promotes tumorigenesis and metastasis in liver, prostate and lung tissues. It will provide a basis for the possible mechanisms of miR-484 in early tumor diagnosis, prognosis determination, disease assessment, and as a potential therapeutic target for tumors.
Collapse
Affiliation(s)
- Yin-Zhao Jia
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Liu
- Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Geng-Qiao Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zi-Fang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Berner K, Hirschfeld M, Weiß D, Rücker G, Asberger J, Ritter A, Nöthling C, Jäger M, Juhasz-Böss I, Erbes T. Evaluation of circulating microRNAs as non-invasive biomarkers in the diagnosis of ovarian cancer: a case–control study. Arch Gynecol Obstet 2021; 306:151-163. [PMID: 34889994 PMCID: PMC9300512 DOI: 10.1007/s00404-021-06287-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
Purpose Ovarian cancer is the seventh most frequent form of malignant diseases in women worldwide and over 150,000 women die from it every year. More than 70 percent of all ovarian cancer patients are diagnosed at a late-stage disease with poor prognosis necessitating the development of sufficient screening biomarkers. MicroRNAs displayed promising potential as early diagnostics in various malignant diseases including ovarian cancer. The presented study aimed at identifying single microRNAs and microRNA combinations detecting ovarian cancer in vitro and in vivo. Methods Intracellular, extracellular and urinary microRNA expression levels of twelve microRNAs (let-7a, let-7d, miR-10a, miR-15a, miR-15b, miR-19b, miR-20a, miR-21, miR-100, miR-125b, miR-155, miR-222) were quantified performing quantitative real-time-PCR. Therefore, the three ovarian cancer cell lines SK-OV-3, OAW-42, EFO-27 as well as urine samples of ovarian cancer patients and healthy controls were analyzed. Results MiR-15a, miR-20a and miR-222 showed expression level alterations extracellularly, whereas miR-125b did intracellularly across the analyzed cell lines. MicroRNA expression alterations in single cell lines suggest subtype specificity in both compartments. Hypoxia and acidosis showed scarce effects on single miRNA expression levels only. Furthermore, we were able to demonstrate the feasibility to clearly detect the 12 miRNAs in urine samples. In urine, miR-15a was upregulated whereas let-7a was down-regulated in ovarian cancer patients. Conclusion Intracellular, extracellular and urinary microRNA expression alterations emphasize their great potential as biomarkers in liquid biopsies. Especially, miR-15a and let-7a qualify for possible circulating biomarkers in liquid biopsies of ovarian cancer patients. Supplementary Information The online version contains supplementary material available at 10.1007/s00404-021-06287-1.
Collapse
Affiliation(s)
- Kai Berner
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Veterinary Medicine, Georg-August-University Goettingen, Göttingen, Germany
| | - Daniela Weiß
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gerta Rücker
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Medical Biometry and Statistics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Jasmin Asberger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Ritter
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Nöthling
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingolf Juhasz-Böss
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
14
|
Khan MA, Vikramdeo KS, Sudan SK, Singh S, Wilhite A, Dasgupta S, Rocconi RP, Singh AP. Platinum-resistant ovarian cancer: From drug resistance mechanisms to liquid biopsy-based biomarkers for disease management. Semin Cancer Biol 2021; 77:99-109. [PMID: 34418576 PMCID: PMC8665066 DOI: 10.1016/j.semcancer.2021.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/09/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
Resistance to platinum-based chemotherapy is a major clinical challenge in ovarian cancer, contributing to the high mortality-to-incidence ratio. Management of the platinum-resistant disease has been difficult due to diverse underlying molecular mechanisms. Over the past several years, research has revealed several novel molecular targets that are being explored as biomarkers for treatment planning and monitoring of response. The therapeutic landscape of ovarian cancer is also rapidly evolving, and alternative therapies are becoming available for the recurrent platinum-resistant disease. This review provides a snapshot of platinum resistance mechanisms and discusses liquid-based biomarkers and their potential utility in effective management of platinum-resistant ovarian cancer.
Collapse
Affiliation(s)
- Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Kunwar Somesh Vikramdeo
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Sarabjeet Kour Sudan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States
| | - Annelise Wilhite
- Department of Gynecologic Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Santanu Dasgupta
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States
| | - Rodney Paul Rocconi
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, United States; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, United States; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, United States.
| |
Collapse
|
15
|
Epigenetic Mechanisms and Therapeutic Targets in Chemoresistant High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13235993. [PMID: 34885103 PMCID: PMC8657426 DOI: 10.3390/cancers13235993] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most common ovarian cancer subtype, and the overall survival rate has not improved in the last three decades. Currently, most patients develop recurrent disease within 3 years and succumb to the disease within 5 years. This is an important area of research, as the major obstacle to the treatment of HGSOC is the development of resistance to platinum chemotherapy. The cause of chemoresistance is still largely unknown and may be due to epigenetics modifications that are driving HGSOC metastasis and treatment resistance. The identification of epigenetic changes in chemoresistant HGSOC enables the development of epigenetic modulating drugs that may be used to improve outcomes. Several epigenetic modulating drugs have displayed promise as drug targets for HGSOC, such as demethylating agents azacitidine and decitabine. Others, such as histone deacetylase inhibitors and miRNA-targeting therapies, demonstrated promising preclinical results but resulted in off-target side effects in clinical trials. This article reviews the epigenetic modifications identified in chemoresistant HGSOC and clinical trials utilizing epigenetic therapies in HGSOC.
Collapse
|
16
|
Califano D, Gallo D, Rampioni Vinciguerra GL, De Cecio R, Arenare L, Signoriello S, Russo D, Ferrandina G, Citron F, Losito NS, Gargiulo P, Simeon V, Scambia G, Cecere SC, Montella M, Colombo N, Tognon G, Bignotti E, Zannoni GF, Canzonieri V, Ciucci A, Spina A, Scognamiglio G, Del Sesto M, Schettino C, Piccirillo MC, Perrone F, Chiodini P, Pignata S, Baldassarre G. Evaluation of Angiogenesis-Related Genes as Prognostic Biomarkers of Bevacizumab Treated Ovarian Cancer Patients: Results from the Phase IV MITO16A/ManGO OV-2 Translational Study. Cancers (Basel) 2021; 13:cancers13205152. [PMID: 34680301 PMCID: PMC8533892 DOI: 10.3390/cancers13205152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary The possibility to identify, with appropriate biomarkers, patients that might mostly benefit from any given treatment is the basis of personalized oncology. Cancer biomarkers should be properly identified and validated on a large number of patients possibly enrolled in dedicated clinical trials. Here, we report the first molecular results of the MITO16A-ManGo-OV2 phase IV trial that was specifically designed to identify prognostic biomarkers of survival in epithelial ovarian cancer patients treated in first line with carboplatin-paclitaxel plus Bevacizumab (NCT01706120), a treatment for which validated predictive or prognostic biomarkers are still lacking. With this work we propose not only novel possible biomarkers for Bevacizumab-treated patients but also a way through which they can be properly collected, analyzed and statistically evaluated in the frame of large multicenter clinical trials. Abstract Background. Epithelial ovarian cancer (EOC) is a rare, highly lethal disease. In a subset of high grade EOC patients, maintenance therapy with the antiangiogenic drug Bevacizumab (BEV) is a valuable option. To date, no validated predictive or prognostic biomarkers exist for selecting EOC patients that might benefit from BEV treatment. Methods. Immunohistochemistry and RT-qPCR evaluated the expression of seven angiogenesis-related proteins and of a twelve microRNAs angio-signature in EOC patients, treated in first line with chemotherapy plus BEV (MITO16A/ManGO OV-2 phase IV trial). Centralized statistical analyses assessed the associations between each biomarker, clinical prognostic factors and survival outcomes. Results. High miR-484 expression was associated with longer progression-free and overall survival. Notably, the combined expression of miR-484 and its target VEGFB identified a subset of patients that might mostly benefit from BEV treatment. No other significant correlations were found between the other analyzed biomarkers and patients’ survival. The application of a shrinkage procedure to adjust for over-fitting hazard ratio estimates reduced the association significance. Conclusions. The analysis of angiogenesis related biomarkers in EOC patients homogenously treated with BEV in first line provides novel insight in their prognostic value and suggests that some of them might merit to be tested as predictive markers of drug activity in dedicated randomized trials.
Collapse
Affiliation(s)
- Daniela Califano
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy; (D.C.); (D.R.); (A.S.)
| | - Daniela Gallo
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (D.G.); (G.F.); (G.S.); (G.F.Z.); (A.C.)
| | - Gian Luca Rampioni Vinciguerra
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy; (G.L.R.V.); (F.C.)
| | - Rossella De Cecio
- Pathology Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy; (R.D.C.); (N.S.L.); (G.S.); (M.D.S.)
| | - Laura Arenare
- Clinical Trials Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy; (L.A.); (P.G.); (C.S.); (M.C.P.); (F.P.)
| | - Simona Signoriello
- Department of Mental Health and Public Medicine, Section of Statistics, Università degli Studi della Campania Luigi Vanvitelli, 80138 Napoli, Italy; (S.S.); (V.S.); (P.C.)
| | - Daniela Russo
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy; (D.C.); (D.R.); (A.S.)
| | - Gabriella Ferrandina
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (D.G.); (G.F.); (G.S.); (G.F.Z.); (A.C.)
- Istituto di Ginecologia e Ostetricia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Citron
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy; (G.L.R.V.); (F.C.)
| | - Nunzia Simona Losito
- Pathology Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy; (R.D.C.); (N.S.L.); (G.S.); (M.D.S.)
| | - Piera Gargiulo
- Clinical Trials Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy; (L.A.); (P.G.); (C.S.); (M.C.P.); (F.P.)
| | - Vittorio Simeon
- Department of Mental Health and Public Medicine, Section of Statistics, Università degli Studi della Campania Luigi Vanvitelli, 80138 Napoli, Italy; (S.S.); (V.S.); (P.C.)
| | - Giovanni Scambia
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (D.G.); (G.F.); (G.S.); (G.F.Z.); (A.C.)
- Istituto di Ginecologia e Ostetricia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sabrina Chiara Cecere
- Urogynaecological Medical Oncology, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy; (S.C.C.); (S.P.)
| | - Marco Montella
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Nicoletta Colombo
- Gynecologic Cancer Program, Università degli Studi di Milano, 20126 Bicocca, Italy;
| | - Germana Tognon
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (G.T.); (E.B.)
| | - Eliana Bignotti
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (G.T.); (E.B.)
| | - Gian Franco Zannoni
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (D.G.); (G.F.); (G.S.); (G.F.Z.); (A.C.)
| | - Vincenzo Canzonieri
- Pathology Unit, IRCCS CRO Aviano, National Cancer Institute, 33081 Aviano, Italy;
| | - Alessandra Ciucci
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (D.G.); (G.F.); (G.S.); (G.F.Z.); (A.C.)
| | - Anna Spina
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy; (D.C.); (D.R.); (A.S.)
| | - Giosuè Scognamiglio
- Pathology Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy; (R.D.C.); (N.S.L.); (G.S.); (M.D.S.)
| | - Michele Del Sesto
- Pathology Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy; (R.D.C.); (N.S.L.); (G.S.); (M.D.S.)
| | - Clorinda Schettino
- Clinical Trials Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy; (L.A.); (P.G.); (C.S.); (M.C.P.); (F.P.)
| | - Maria Carmela Piccirillo
- Clinical Trials Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy; (L.A.); (P.G.); (C.S.); (M.C.P.); (F.P.)
| | - Francesco Perrone
- Clinical Trials Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy; (L.A.); (P.G.); (C.S.); (M.C.P.); (F.P.)
| | - Paolo Chiodini
- Department of Mental Health and Public Medicine, Section of Statistics, Università degli Studi della Campania Luigi Vanvitelli, 80138 Napoli, Italy; (S.S.); (V.S.); (P.C.)
| | - Sandro Pignata
- Urogynaecological Medical Oncology, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy; (S.C.C.); (S.P.)
| | - Gustavo Baldassarre
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy; (G.L.R.V.); (F.C.)
- Correspondence: ; Tel.: +39-0434-659-759
| |
Collapse
|
17
|
Marchetti C, De Felice F, Romito A, Iacobelli V, Sassu CM, Corrado G, Ricci C, Scambia G, Fagotti A. Chemotherapy resistance in epithelial ovarian cancer: Mechanisms and emerging treatments. Semin Cancer Biol 2021; 77:144-166. [PMID: 34464704 DOI: 10.1016/j.semcancer.2021.08.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
Ovarian cancer (OC) remains a fatal malignancy because most patients experience recurrent disease, which is resistant to chemotherapy. The outcomes for patients with platinum-resistant OC are poor, response rates to further chemotherapy are low and median survival is lower than 12 months. The complexity of platinum-resistant OC, which comprises a heterogeneous spectrum of diseases, is indeed far from being completely understood. Therefore, comprehending tumors' biological behaviour to identify reliable biomarkers, which may predict responses to therapies, is a demanding challenge to improve OC management. In the age of precision medicine, efforts to overcome platinum resistance in OC represent a dynamic and vast field in which innovative drugs and clinical trials rapidly develop. This review will present the exceptional biochemical environment implicated in OC and highlights mechanisms of chemoresistance. Furthermore, innovative molecules and new therapeutic opportunities are presented, along with currently available therapies and ongoing clinical trials.
Collapse
Affiliation(s)
- Claudia Marchetti
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.
| | - Francesca De Felice
- Division of Radiotherapy and Oncology, Policlinico Umberto I, Roma, Italy; Università La Sapienza, Roma, Italy
| | - Alessia Romito
- Gynecology and Breast Care Center, Mater Olbia Hospital, Olbia, Italy
| | - Valentina Iacobelli
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department Woman and Child Health Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Carolina Maria Sassu
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Polyclinic Umberto I, Rome, Italy
| | - Giacomo Corrado
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Caterina Ricci
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Giovanni Scambia
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department Woman and Child Health Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Anna Fagotti
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Department Woman and Child Health Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
18
|
Baghbani E, Noorolyai S, Duijf PHG, Silvestris N, Kolahian S, Hashemzadeh S, Baghbanzadeh Kojabad A, FallahVazirabad A, Baradaran B. The impact of microRNAs on myeloid-derived suppressor cells in cancer. Hum Immunol 2021; 82:668-678. [PMID: 34020831 DOI: 10.1016/j.humimm.2021.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/08/2023]
Abstract
Inflammation promotes cancer development. To a large extent, this can be attributed to the recruitment of myeloid-derived suppressor cells (MDSCs) to tumors. These cells are known for establishing an immunosuppressive tumor microenvironment by suppressing T cell activities. However, MDSCs also promote metastasis and angiogenesis. Critically, as small non-coding RNAs that regulate gene expression, microRNAs (miRNAs) control MDSC activities. In this review, we discuss how miRNA networks regulate key MDSC signaling pathways, how they shape MDSC development, differentiation and activation, and how this impacts tumor development. By targeting the expression of miRNAs in MDSCs, we can alter their main signaling pathways. In turn, this can compromise their ability to promote multiple hallmarks of cancer. Therefore, this may represent a new powerful strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Noorolyai
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Australia; University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Nicola Silvestris
- IRCCS Bari, Italy. Medical Oncology Unit-IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy, Department of Biomedical Sciences and Human Oncology DIMO-University of Bari, Bari, Italy
| | - Saeed Kolahian
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University of Tübingen, Tübingen, Germany; Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany; Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Shahryar Hashemzadeh
- General and Vascular Surgery Department, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Liu Y, Luo Y, Cai M, Shen P, Li J, Chen H, Bao W, Zhu Y. Anti-angiogenic therapy in ovarian cancer: current situation & prospects. Indian J Med Res 2021; 154:680-690. [PMID: 35532586 PMCID: PMC9210530 DOI: 10.4103/ijmr.ijmr_1160_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Indexed: 11/04/2022] Open
Abstract
Ovarian cancer (OC) is one of five leading causes of cancer related death among women worldwide. Although treatment has been improving, the survival rate has barely improved over the past 30 years. The fatality rate is due to asymptomatic early signs and the lack of long-term effective treatment strategies for advanced disease. Angiogenesis is an important process in tumour growth and metastasis and is the creation of new blood vessels from existing blood vessels. It is a dynamic and complex process involving various molecular regulatory pathways and multiple mechanisms. The inhibition of angiogenesis has become a recognized therapeutic strategy for many solid tumours. While benefits in progression-free survival have been observed, the OS is far from satisfactory for OC patients who receive antiangiogenic therapy. In this article, the present research status of angiogenesis in OC was reviewed and the reasons for poor antiangiogenic therapeutic effects was explored with the aim to identify potential therapeutic targets that may improve the effect of antiangiogenic therapies.
Collapse
Affiliation(s)
- Yinping Liu
- Department of Obstetrics & Gynecology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Luo
- Department of Obstetrics & Gynecology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meiling Cai
- Department of Obstetrics & Gynecology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peijun Shen
- Department of Obstetrics & Gynecology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Li
- Department of Obstetrics & Gynecology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hailin Chen
- Department of Obstetrics & Gynecology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Bao
- Department of Obstetrics & Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaping Zhu
- Department of Obstetrics & Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Pal JK, Ray SS, Pal SK. Identifying Drug Resistant miRNAs Using Entropy Based Ranking. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:973-984. [PMID: 31398129 DOI: 10.1109/tcbb.2019.2933205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
MicroRNAs play an important role in controlling drug sensitivity and resistance in cancer. Identification of responsible miRNAs for drug resistance can enhance the effectiveness of treatment. A new set theoretic entropy measure (SPEM) is defined to determine the relevance and level of confidence of miRNAs in deciding their drug resistant nature. Here, a pattern is represented by a pair of values. One of them implies the degree of its belongingness (fuzzy membership) to a class and the other represents the actual class of origin (crisp membership). A measure, called granular probability, is defined that determines the confidence level of having a particular pair of membership values. The granules used to compute the said probability are formed by a histogram based method where each bin of a histogram is considered as one granule. The width and number of the bins are automatically determined by the algorithm. The set thus defined, comprising a pair of membership values and the confidence level for having them, is used for the computation of SPEM and thereby identifying the drug resistant miRNAs. The efficiency of SPEM is demonstrated extensively on six data sets. While the achieved F-score in classifying sensitive and resistant samples ranges between 0.31 & 0.50 using all the miRNAs by SVM classifier, the same score varies from 0.67 to 0.94 using only the top 1 percent drug resistant miRNAs. Superiority of the proposed method as compared to some existing ones is established in terms of F-score. The significance of the top 1 percent miRNAs in corresponding cancer is also verified by the different articles based on biological investigations. Source code of SPEM is available at http://www.jayanta.droppages.com/SPEM.html.
Collapse
|
21
|
Rahimian N, Razavi ZS, Aslanbeigi F, Mirkhabbaz AM, Piroozmand H, Shahrzad MK, Hamblin MR, Mirzaei H. Non-coding RNAs related to angiogenesis in gynecological cancer. Gynecol Oncol 2021; 161:896-912. [PMID: 33781555 DOI: 10.1016/j.ygyno.2021.03.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Gynecological cancer affects the female reproductive system, including ovarian, uterine, endometrial, cervical, vulvar, and vaginal tumors. Non-coding RNAs (ncRNAs), and in particular microRNAs, function as regulatory molecules, which can control gene expression in a post-transcriptional manner. Normal physiological processes like cellular proliferation, differentiation, and apoptosis, and pathological processes such as oncogenesis and metastasis are regulated by microRNAs. Numerous reports have shown a direct role of microRNAs in the modulation of angiogenesis in gynecological cancer, via targeting pro-angiogenic factors and signaling pathways. Understanding the molecular mechanism involved in the regulation of angiogenesis by microRNAs may lead to new treatment options. Recently the regulatory role of some long non-coding RNAs in gynecological cancer has also been explored, but the information on this function is more limited. The aim of this article is to explore the pathways responsible for angiogenesis, and to what extent ncRNAs may be employed as biomarkers or therapeutic targets in gynecological cancer.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | | | | | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
22
|
Extracellular Vesicle-Derived microRNAs of Human Wharton's Jelly Mesenchymal Stromal Cells May Activate Endogenous VEGF-A to Promote Angiogenesis. Int J Mol Sci 2021; 22:ijms22042045. [PMID: 33669517 PMCID: PMC7922033 DOI: 10.3390/ijms22042045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
Despite low levels of vascular endothelial growth factor (VEGF)-A, the secretome of human Wharton’s jelly (WJ) mesenchymal stromal cells (MSCs) effectively promoted proangiogenic responses in vitro, which were impaired upon the depletion of small (~140 nm) extracellular vesicles (EVs). The isolated EVs shared the low VEGF-A profile of the secretome and expressed five microRNAs, which were upregulated compared to fetal dermal MSC-derived EVs. These upregulated microRNAs exclusively targeted the VEGF-A gene within 54 Gene Ontology (GO) biological processes, 18 of which are associated with angiogenesis. Moreover, 15 microRNAs of WJ-MSC-derived EVs were highly expressed (Ct value ≤ 26) and exclusively targeted the thrombospondin 1 (THBS1) gene within 75 GO biological processes, 30 of which are associated with the regulation of tissue repair. The relationship between predicted microRNA target genes and WJ-MSC-derived EVs was shown by treating human umbilical-vein endothelial cells (HUVECs) with appropriate doses of EVs. The exposure of HUVECs to EVs for 72 h significantly enhanced the release of VEGF-A and THBS1 protein expression compared to untreated control cells. Finally, WJ-MSC-derived EVs stimulated in vitro tube formation along with the migration and proliferation of HUVECs. Our findings can contribute to a better understanding of the molecular mechanisms underlying the proangiogenic responses induced by human umbilical cord-derived MSCs, suggesting a key regulatory role for microRNAs delivered by EVs.
Collapse
|
23
|
Berkel C, Cacan E. Transcriptomic analysis reveals tumor stage- or grade-dependent expression of miRNAs in serous ovarian cancer. Hum Cell 2021; 34:862-877. [PMID: 33576947 DOI: 10.1007/s13577-021-00486-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022]
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy and cellular mechanisms regulating OC progression are not completely understood. miRNAs are involved in many signaling pathways which are critical for the progression of malignant tumors, including OC. In the present study, we aim to identify miRNAs whose expression change in a tumor stage- and/or grade-dependent manner in serous OC. Computational analysis was performed in R using The Cancer Genome Atlas miRNA dataset. Kaplan-Meier plots were constructed to compare the survival of patients with low and high expressions of identified miRNAs. We found that 91 and 90 miRNAs out of 799 are differentially expressed in terms of tumor stage and grade, respectively. miR-152, miR-375 and miR-204 were top three hits in terms of tumor stage; and similarly, miR-125b, miR-768-5p and -3p in terms of tumor grade. Among top 15 miRNAs whose expression most significantly changed between tumor stages, 66.7% were upregulated in late stage. However, 53.3% of top 15 miRNAs identified in terms of tumor grade were upregulated in high grade. 11 miRNAs are differentially expressed in terms of both tumor stage and grade. Expression changes of some of the top miRNAs were found to be associated with shorter survival in serous OC. Text mining analysis showed that most of these miRNAs have not been previously studied in the context of OC. Mechanistic studies of these miRNAs in OC progression, differentiation and metastasis will be of high importance to develop novel strategies for the treatment of serous ovarian cancer.
Collapse
Affiliation(s)
- Caglar Berkel
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Tokat Gaziosmanpasa University, Tokat, 60250, Turkey.
| | - Ercan Cacan
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Tokat Gaziosmanpasa University, Tokat, 60250, Turkey.
| |
Collapse
|
24
|
Lu X, Hu S, Liao Y, Zheng J, Zeng T, Zhong X, Liu G, Gou L, Chen L. Vascular endothelial growth factor B promotes transendothelial fatty acid transport into skeletal muscle via histone modifications during catch-up growth. Am J Physiol Endocrinol Metab 2020; 319:E1031-E1043. [PMID: 32954823 DOI: 10.1152/ajpendo.00090.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Caloric restriction (CR) followed by refeeding, a phenomenon known as catch-up growth (CUG), results in excessive lipid deposition and insulin resistance in skeletal muscle, but the underlying mechanisms remain elusive. Recent reports have suggested that vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation by regulating endothelial fatty acid transport. Here, we found continuous activation of VEGF-B signaling and increased lipid uptake in skeletal muscle from CR to refeeding, as well as increased lipid deposition and impaired insulin sensitivity after refeeding in the skeletal muscle of CUG rodents. Inhibiting VEGF-B signaling reduced fatty acid uptake in and transport across endothelial cells. Knockdown of Vegfb in the tibialis anterior (TA) muscle of CUG mice significantly attenuated muscle lipid accumulation and ameliorated muscle insulin sensitivity by decreasing lipid uptake. Furthermore, we showed that aberrant histone methylation (H3K9me1) and acetylation (H3K14ac and H3K18ac) at the Vegfb promoter might be the main cause of persistent VEGF-B upregulation in skeletal muscle during CUG. Modifying these aberrant loci using their related enzymes [PHD finger protein 2 (PHF2) or E1A binding protein p300 (p300)] could regulate VEGF-B expression in vitro. Collectively, our findings indicate that VEGF-B can promote transendothelial lipid transport and lead to lipid overaccumulation and insulin resistance in skeletal muscle during CUG, which might be mediated by histone methylation and acetylation.
Collapse
Affiliation(s)
- Xiaodan Lu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Shengqing Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xueyu Zhong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Geng Liu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Luoning Gou
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| |
Collapse
|
25
|
Brunty S, Mitchell B, Bou-Zgheib N, Santanam N. Endometriosis and ovarian cancer risk, an epigenetic connection. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1715. [PMID: 33490227 PMCID: PMC7812227 DOI: 10.21037/atm-20-2449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Endometriosis is a gynecological disorder that affects 176 million women worldwide and 1 in 10 females in the United States. Endometriosis most often affects women of child-bearing age, with most going undiagnosed. Endometriosis also shares many characteristics common to invasive cancer and has been known to be associated with epithelial ovarian cancer. Ovarian cancer is the 11th most common cancer among women and over 22,000 new cases will be diagnosed within the next year. Women most commonly diagnosed with this cancer are between the ages of 55–64 years, outside the range of the age of women affected with endometriosis. While no known cause of either disease has been established, epigenetic regulation is thought to play a major role in both. This review focuses on epigenetic changes that occur within each individual disease as well as those that are similar in both, suggesting a possible etiological link between the two diseases.
Collapse
Affiliation(s)
- Sarah Brunty
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Brenda Mitchell
- Department of Obstetrics and Gynecology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Nadim Bou-Zgheib
- Department of Obstetrics and Gynecology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
26
|
Zhang W, Su X, Li S, Liu Z, Wang Q, Zeng H. Low serum exosomal miR-484 expression predicts unfavorable prognosis in ovarian cancer. Cancer Biomark 2020; 27:485-491. [PMID: 32065786 DOI: 10.3233/cbm-191123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Ovarian cancer (OC) is one of the most common malignancy worldwide. Emerging evidences have demonstrated that microRNAs (miRNAs) play an important role in regulating the initiation and development of OC. OBJECTIVE The present study was to explore the clinical significance of serum exosomal miR-484 in OC. METHODS A total of 113 OC patients and 60 healthy volunteers were enrolled in this study. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to measure serum exosomal miR-484 levels in blood samples. RESULTS Our results showed that serum exosomal miR-484 levels were significantly lower in OC patients. Serum exosomal miR-484 was able to discriminate OC cases from controls, with an area under the receiver-operating characteristics (ROC) curve (AUC) of 0.821. Combination of serum exosomal miR-484 with CA-125 showed an elevated AUC of 0.912 in identifying OC patients from controls. Moreover, decreased serum exosomal miR-484 expression was significantly associated with aggressive clinical variables as well as shorter overall survival and progression-free survival. The OC patients with simultaneously low serum exosomal miR-484 expression and high serum CA-125 levels tended to suffer the worst clinical outcomes. The multivariate analysis confirmed that low serum exosomal miR-484 level was an independent indicator. CONCLUSIONS Collectively, serum exosomal miR-484 could serve as a reliable and non-invasive marker for predicting the prognosis of OC.
Collapse
|
27
|
Kumar V, Gupta S, Varma K, Sachan M. MicroRNA as Biomarker in Ovarian Cancer Management: Advantages and Challenges. DNA Cell Biol 2020; 39:2103-2124. [PMID: 33156705 DOI: 10.1089/dna.2020.6024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the most prevalent gynecological malignancy affecting women throughout the globe. Ovarian cancer has several subtypes, including epithelial ovarian cancer (EOC) with a whopping incidence rate of 239,000 per year, making it the sixth most common gynecological malignancy worldwide. Despite advancement of detection and therapeutics, death rate accounts for 152,000 per annum. Several protein-based biomarkers such as CA125 and HE4 are currently being used for diagnosis, but their sensitivity and specificity for early detection of ovarian cancer are under question. MicroRNA (a small noncoding RNA molecule that participates in post-transcription regulation of gene expression) and its functional deregulation in most cancers have been discovered in the previous two decades. Studies support that miRNA deregulation has an epigenetic component as well. Aberrant miRNA expression is often correlated with the form of EOC tumor, histological grade, prognosis, and FIGO stage. In this review, we addressed epigenetic regulation of miRNAs, the latest research on miRs as a biomarker in the detection of EOC, and tailored assays to use miRNAs as a biomarker in ovarian cancer diagnosis.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Kachnar Varma
- Department of Pathology, Motilal Nehru Medical College, Allahabad, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
28
|
Li T, Mao C, Wang X, Shi Y, Tao Y. Epigenetic crosstalk between hypoxia and tumor driven by HIF regulation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:224. [PMID: 33109235 PMCID: PMC7592369 DOI: 10.1186/s13046-020-01733-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Hypoxia is the major influence factor in physiological and pathological courses which are mainly mediated by hypoxia-inducible factors (HIFs) in response to low oxygen tensions within solid tumors. Under normoxia, HIF signaling pathway is inhibited due to HIF-α subunits degradation. However, in hypoxic conditions, HIF-α is activated and stabilized, and HIF target genes are successively activated, resulting in a series of tumour-specific activities. The activation of HIFs, including HIF-1α, HIF-2α and HIF-3α, subsequently induce downstream target genes which leads to series of responses, the resulting abnormal processes or metabolites in turn affect HIFs stability. Given its functions in tumors progression, HIFs have been regarded as therapeutic targets for improved treatment efficacy. Epigenetics refers to alterations in gene expression that are stable between cell divisions, and sometimes between generations, but do not involve changes in the underlying DNA sequence of the organism. And with the development of research, epigenetic regulation has been found to play an important role in the development of tumors, which providing accumulating basic or clinical evidences for tumor treatments. Here, given how little has been reported about the overall association between hypoxic tumors and epigenetics, we made a more systematic review from epigenetic perspective in hope of helping others better understand hypoxia or HIF pathway, and providing more established and potential therapeutic strategies in tumors to facilitate epigenetic studies of tumors.
Collapse
Affiliation(s)
- Tiansheng Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chao Mao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ying Shi
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Yongguang Tao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
29
|
Pathway Analysis of Selected Circulating miRNAs in Plasma of Breast Cancer Patients: A Preliminary Study. Int J Mol Sci 2020; 21:ijms21197288. [PMID: 33023154 PMCID: PMC7583045 DOI: 10.3390/ijms21197288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs in the circulation of breast cancer (BC) patients have great potential for the early diagnosis, treatment and monitoring of breast cancer. The aim of this preliminary study was to obtain the expression profile of selected miRNAs in the plasma of BC patients that could discriminate BC patients from healthy volunteers and may be useful in early detection of BC. Significantly deregulated miRNAs were evaluated by pathway analysis with the prediction of potential miRNA targets. The study enrolled plasma samples from 65 BC patients and 34 healthy volunteers. Selected miRNAs were screened in pilot testing by the real-time PCR (qPCR) method, and the most appropriate reference genes were selected for normalisation by the geNorm algorithm. In the final testing, we detected miR-99a, miR-130a, miR-484 and miR-1260a (p < 0.05) as significantly up-regulated in the plasma of BC patients. Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis revealed that all significantly deregulated miRNAs are involved in the Hippo and Transforming Growth Factor-beta (TGF-beta) signalling pathways. Our study confirmed a different profile of selected circulating miRNAs in the plasma of BC patients with an emphasis on some critical points in the analysis process.
Collapse
|
30
|
Yoshida K, Yokoi A, Kato T, Ochiya T, Yamamoto Y. The clinical impact of intra- and extracellular miRNAs in ovarian cancer. Cancer Sci 2020; 111:3435-3444. [PMID: 32750177 PMCID: PMC7541008 DOI: 10.1111/cas.14599] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological cancer due to lack of early screening methods and acquired drug resistance. MicroRNAs (miRNAs) are effective post‐transcriptional regulators that are transferred by extracellular vesicles, such as exosomes. Numerous studies have revealed that miRNAs are differentially expressed in epithelial ovarian cancer and act either as oncogenes or tumor suppressor genes. Cancer cells secrete exosomes containing miRNAs, which exert various effects on the components of the tumor microenvironment, including cancer‐associated fibroblasts, macrophages, and adipocytes. Conversely, cancer cells also receive exosomes from these cells. As a result of cell‐to‐cell communication, epithelial ovarian cancer acquires a more aggressive phenotype and resistance to multiple drugs. In addition, some circulating miRNAs are protected from RNase degradation in the peripheral blood and can be potential non‐invasive biomarkers. In particular, the combination of several circulating miRNAs enhances the accuracy of cancer screening. Likewise, comprehensive analyses revealed specific miRNA signatures in non‐epithelial ovarian tumors and several miRNAs contributing to alterations of carcinogenic pathways. Overall, miRNAs play a crucial role in ovarian cancer progression. In this review, we discuss the emerging roles of intra‐ and extracellular miRNAs in ovarian cancers. In the near future, miRNAs will be practical biomarkers and computational deep learning will help in the clinical application of miRNAs. Moreover, miRNAs are potential therapeutic targets and agents, and there are ongoing clinical trials of miRNA replacement therapy. Therefore, accelerating research on miRNA might improve the prognosis of patients with ovarian cancer.
Collapse
Affiliation(s)
- Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
31
|
Hincapie V, Gallego-Gómez JC. TRANSICIÓN EPITELIO-MESÉNQUIMA INDUCIDA POR VIRUS. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v26n1.79358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La Transición Epitelio-Mesénquima (EMT) es un proceso de dediferenciación altamente conservado en vertebrados. Este ocurre en células epiteliales con la activación progresiva de la pérdida de la polaridad, la adquisición de motilidad individual y la capacidad invasiva a otros tejidos. La EMT es un proceso normal durante el desarrollo; no obstante, en condiciones patológicas está relacionada con la inducción de metástasis, lo cual representa una vía alterna al desarrollo de procesos oncogénicos tempranos. Aunque la EMT es activada principalmente por factores de crecimiento, también se puede desencadenar por infecciones de patógenos intracelulares mediante la activación de rutas moleculares inductoras de este proceso. Por lo tanto, una infección bacteriana o viral pueda generar predisposición al desarrollo de tumores. Nuestro interés está enfocado principalmente encaracterizar la relación virus-hospedero, y en el caso de los virus, varios ya se han descrito como inductores de la EMT. En este artículo de revisión se describenelfenómeno de la plasticidad celular y la ocurrencia detallada del proceso de EMT, los patógenos virales reportados como inductores, los mecanismos moleculares usados para ello y las vías de regulación mediante miRNAs. Por último, se discute cómo esta relación virus-hospedero puede explicar la patogénesis de la enfermedad causada por Dengue virus, favoreciendo la identificación de blancos moleculares para terapia, estrategia conocida como Antivirales dirigidos a blancos celulares o HTA (Host-targeting antivirals).
Collapse
|
32
|
McMullen M, Madariaga A, Lheureux S. New approaches for targeting platinum-resistant ovarian cancer. Semin Cancer Biol 2020; 77:167-181. [DOI: 10.1016/j.semcancer.2020.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
|
33
|
Ritter A, Hirschfeld M, Berner K, Jaeger M, Grundner-Culemann F, Schlosser P, Asberger J, Weiss D, Noethling C, Mayer S, Erbes T. Discovery of potential serum and urine-based microRNA as minimally-invasive biomarkers for breast and gynecological cancer. Cancer Biomark 2020; 27:225-242. [PMID: 32083575 DOI: 10.3233/cbm-190575] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Deregulated microRNAs (miRNAs) in breast and gynecological cancer might contribute to improve early detection of female malignancies. OBJECTIVE Specification of miRNA types in serum and urine as minimally-invasive biomarkers for breast (BC), endometrial (EC) and ovarian cancer (OC). METHODS In a discovery phase, serum and urine samples from 17 BC, five EC and five OC patients vs. ten healthy controls (CTRL) were analyzed with Agilent human miRNA microarray chip. Selected miRNA types were further investigated by RT-qPCR in serum (31 BC, 13 EC, 15 OC patients, 32 CTRL) and urine (25 BC, 10 EC, 10 OC patients, 30 CTRL) applying two-sample t-tests. RESULTS Several miRNA biomarker candidates exhibited diagnostic features due to distinctive expression levels (serum: 26; urine: 22). Among these, miR-518b, -4719 and -6757-3p were found specifically deregulated in BC serum. Four, non-entity-specific, novel biomarker candidates with unknown functional roles were identified in urine (miR-3973; -4426; -5089-5p and -6841). RT-qPCR identified miR-484/-23a (all p⩽ 0.001) in serum as potential diagnostic markers for EC and OC while miR-23a may also serve as an endogenous control in BC diagnosis. CONCLUSIONS Promising miRNAs as liquid biopsy-based tools in the detection of BC, EC and OC qualified for external validation in larger cohorts.
Collapse
Affiliation(s)
- Andrea Ritter
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Veterinary Medicine, Georg-August-University Goettingen, Goettingen, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Jaeger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Grundner-Culemann
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Jasmin Asberger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniela Weiss
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Noethling
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Mayer
- Department of Gynecology and Obstetrics, Hospital Memmingen, Memmingen, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Alharbi M, Sharma S, Guanzon D, Lai A, Zuñiga F, Shiddiky MJA, Yamauchi Y, Salas-Burgos A, He Y, Pejovic T, Winters C, Morgan T, Perrin L, Hooper JD, Salomon C. miRNa signature in small extracellular vesicles and their association with platinum resistance and cancer recurrence in ovarian cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102207. [PMID: 32334098 DOI: 10.1016/j.nano.2020.102207] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
Carboplatin, administered as a single drug or in combination with paclitaxel, is the standard chemotherapy treatment for patients with ovarian cancer (OVCA). Recent evidence suggests that miRNAs associated with small extracellular vesicles (sEVs) participate in the development of chemoresistance. We studied the effect of carboplatin in a heterogeneity population of OVCA cells and their derived sEVs to identify mechanisms associated with chemoresistance. sEVs were quantified using an engineered superparamagnetic material, gold-loaded ferric oxide nanotubes and a screen-printed electrode. miR-21-3p, miR-21-5p, and miR-891-5p are enriched in sEVs, and they contribute to carboplatin resistance in OVCA. Using a quantitative MS/MS, miR-21-5p activates glycolysis and increases the expression of ATP-binding cassette family and a detoxification enzyme. miR-21-3p and miR-891-5p increase the expression of proteins involved in DNA repair mechanisms. Interestingly, the levels of miR-891-5p within sEVs are significantly higher in patients at risk of ovarian cancer relapse. Identification of miRNAs in sEVs also provides the opportunity to track them in biological fluids to potentially determine patient response to chemotherapy.
Collapse
Affiliation(s)
- Mona Alharbi
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Shayna Sharma
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Dominic Guanzon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Felipe Zuñiga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University Nathan Campus, Queensland, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | | | - Yaowu He
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Tanja Pejovic
- Department of Obstetrics and Gynecology, OHSU, Portland, OR, USA
| | - Carmen Winters
- Department of Obstetrics and Gynecology, OHSU, Portland, OR, USA
| | - Terry Morgan
- Department of Obstetrics and Gynecology, OHSU, Portland, OR, USA; Department of Pathology, OHSU, Portland, OR, USA
| | - Lewis Perrin
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - John D Hooper
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia; Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile; Maternal-Fetal Medicine, Department of Obstetrics and Gynaecology, Ochsner Clinic Foundation, New Orleans, USA.
| |
Collapse
|
35
|
Caparosa EM, Sedgewick AJ, Zenonos G, Zhao Y, Carlisle DL, Stefaneanu L, Jankowitz BT, Gardner P, Chang YF, Lariviere WR, LaFramboise WA, Benos PV, Friedlander RM. Regional Molecular Signature of the Symptomatic Atherosclerotic Carotid Plaque. Neurosurgery 2020; 85:E284-E293. [PMID: 30335165 DOI: 10.1093/neuros/nyy470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Many studies have explored molecular markers of carotid plaque development and vulnerability to rupture, usually having examined whole carotid plaques. However, there are regional differences in plaque morphology and known shear-related mechanisms in areas surrounding the lipid core. OBJECTIVE To determine whether there are regional differences in protein expression along the long axis of the carotid plaque and how that might produce gaps in our understanding of the carotid plaque molecular signature. METHODS Levels of 7 inflammatory cytokines (IL-1β, IL-6, IL-8, IL-10, IL-12 p70, IFN-γ, and TNF-α) and caspase-3 were analyzed in prebifurcation, bifurcation, and postbifurcation segments of internal carotid plaques surgically removed from symptomatic and asymptomatic patients. Expression profiles of miRNAs and mRNAs were determined with microarrays for the rupture-prone postbifurcation segment for comparison with published whole plaque results. RESULTS Expression levels of all proteins examined, except IL-10, were lowest in the prebifurcation segment and significantly higher in the postbifurcation segment. Patient group differences in protein expression were observed for the prebifurcation segment; however, no significant differences were observed in the postbifurcation segment between symptomatic and asymptomatic patients. Expression profiles from postbifurcation carotid plaques identified 4 novel high priority miRNAs differentially expressed between patient groups (miR-214, miR-484, miR-942, and miR-1287) and 3 high-confidence miRNA:mRNA targets, including miR-214:APOD, miR-484:DACH1, and miR-942:GPR56. CONCLUSION The results demonstrate regional differences in protein expression for the first time and show that focus on the rupture-prone postbifurcation region leads to prioritization for further study of novel miRNA gene regulation mechanisms.
Collapse
Affiliation(s)
- Ellen M Caparosa
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew J Sedgewick
- Joint Carnegie-Mellon -University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Georgios Zenonos
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yin Zhao
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Diane L Carlisle
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lucia Stefaneanu
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian T Jankowitz
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paul Gardner
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yue-Fang Chang
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William R Lariviere
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Joint Carnegie-Mellon -University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, Pennsylvania
| | - Robert M Friedlander
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
36
|
Baskara-Yhuellou I, Tost J. The impact of microRNAs on alterations of gene regulatory networks in allergic diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:237-312. [PMID: 32085883 DOI: 10.1016/bs.apcsb.2019.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allergic diseases including asthma are worldwide on the rise and contribute significantly to health expenditures. Allergic diseases are prototypic diseases with a strong gene by environment interaction component and epigenetic mechanisms might mediate the effects of the environment on the disease phenotype. MicroRNAs, small non-coding RNAs (miRNAs), regulate gene expression post-transcriptionally. Functional single-stranded miRNAs are generated in multiple steps of enzymatic processing from their precursors and mature miRNAs are included into the RNA-induced silencing complex (RISC). They imperfectly base-pair with the 3'UTR region of targeted genes leading to translational repression or mRNA decay. The cellular context and microenvironment as well the isoform of the mRNA control the dynamics and complexity of the regulatory circuits induced by miRNAs that regulate cell fate decisions and function. MiR-21, miR-146a/b and miR-155 are among the best understood miRNAs of the immune system and implicated in different diseases including allergic diseases. MiRNAs are implicated in the induction of the allergy reinforcing the Th2 phenotype (miR-19a, miR-24, miR-27), while other miRNAs promote regulatory T cells associated with allergen tolerance or unresponsiveness. In the current chapter we describe in detail the biogenesis and regulatory function of miRNAs and summarize current knowledge on miRNAs in allergic diseases and allergy relevant cell fate decisions focusing mainly on immune cells. Furthermore, we evoke the principles of regulatory loops and feedback mechanisms involving miRNAs on examples with relevance for allergic diseases. Finally, we show the potential of miRNAs and exosomes containing miRNAs present in several biological fluids that can be exploited with non-invasive procedures for diagnostic and potentially therapeutic purposes.
Collapse
Affiliation(s)
- Indoumady Baskara-Yhuellou
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| |
Collapse
|
37
|
El-Maraghy SA, Adel O, Zayed N, Yosry A, El-Nahaas SM, Gibriel AA. Circulatory miRNA-484, 524, 615 and 628 expression profiling in HCV mediated HCC among Egyptian patients; implications for diagnosis and staging of hepatic cirrhosis and fibrosis. J Adv Res 2019; 22:57-66. [PMID: 31956442 PMCID: PMC6961223 DOI: 10.1016/j.jare.2019.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/23/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022] Open
Abstract
Circulatory microRNAs have recently emerged as non-invasive and effective biomarkers for diagnosis of various diseases. Currently there is no reliable biomarker for diagnosis, prognosis or even staging of fibrotic and cirrhotic complications arising from HCV infection. This study aimed at investigating plasma miR-484, miR-524, miR-615-5p and miR-628-3p expression signatures in Egyptian patients with HCV mediated cirrhosis, fibrosis and HCC. Plasma miRNAs expressions in 168 samples [(40 healthy controls, 47 with HCV liver fibrosis, 40 with HCV-cirrhosis and 41 with HCV-hepatocellular carcinoma (HCC)] were quantified using RT-PCR. The studied miRNAs were differentially expressed among all participating groups. Plasma miR-484 levels exhibited significant downregulation in advanced fibrosis as compared to mild fibrosis and HCC. Moreover, miR-484 showed significant upregulation in HCC versus cirrhosis. Both miR-524-5p and miR-615-5p were upregulated in cirrhotic group as compared to controls. Differential expression between HCC and controls was noticeable in miR-524-5p. Receiver operator characteristic curve analysis revealed promising diagnostic performance for miR-484 in discriminating late fibrosis from both mild fibrosis and HCC and also for miR-524 in distinguishing between cirrhosis and fibrosis. In conclusion, investigated miRNAs could serve as potential and sensitive biomarkers for staging, prognosis and early diagnosis of various HCV mediated hepatic disease progression.
Collapse
Affiliation(s)
| | - Ola Adel
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
- Center of Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Naglaa Zayed
- Endemic Medicine Department and Hepatology Unit, Faculty of Medicine, Cairo University, Egypt
| | - Ayman Yosry
- Endemic Medicine Department and Hepatology Unit, Faculty of Medicine, Cairo University, Egypt
| | - Saeed M. El-Nahaas
- Endemic Medicine Department and Hepatology Unit, Faculty of Medicine, Cairo University, Egypt
| | - Abdullah A. Gibriel
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
- Center of Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
- Corresponding author at: Biochemistry and Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt (BUE); Suez Rd, EL Sherouk City, Cairo Governorate 11837, Egypt.
| |
Collapse
|
38
|
Sonego M, Poletto E, Pivetta E, Nicoloso MS, Pellicani R, Rampioni Vinciguerra GL, Citron F, Sorio R, Mongiat M, Baldassarre G. TIMP-1 is Overexpressed and Secreted by Platinum Resistant Epithelial Ovarian Cancer Cells. Cells 2019; 9:cells9010006. [PMID: 31861382 PMCID: PMC7016675 DOI: 10.3390/cells9010006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023] Open
Abstract
Epithelial Ovarian Cancer (EOC) is the most lethal gynecological cancer in developed countries, and the development of new strategies to overcome chemoresistance is an awaited clinical need. Angiogenesis, the development of new blood vessels from pre-existing vasculature, has been validated as a therapeutic target in this tumor type. The aim of this study is to verify if EOC cells with acquired resistance to platinum (PT) treatment display an altered angiogenic potential. Using a proteomic approach, we identified the tissue inhibitor of metalloproteinases 1 (TIMP-1) as the only secreted factor whose expression was up-regulated in PT-resistant TOV-112D and OVSAHO EOC cells used as study models. We report that TIMP-1 acts as a double-edged sword in the EOC microenvironment, directly affecting the response to PT treatment on tumor cells and indirectly altering migration and proliferation of endothelial cells. Interestingly, we found that high TIMP-1 levels in stage III–IV EOC patients associate with decreased overall survival, especially if they were treated with PT or bevacizumab. Taken together, these results pinpoint TIMP-1 as a key molecule involved in the regulation of EOC PT-resistance and progression disclosing the possibility that it could be used as a new biomarker of PT-resistance and/or therapeutic target.
Collapse
Affiliation(s)
- Maura Sonego
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.P.); (E.P.); (M.S.N.); (R.P.); (G.L.R.V.); (F.C.)
- Correspondence: (M.S.); (M.M.); (G.B.); Tel.: +39-0434-659-761 (M.S.); +39-0434-659-561 (M.M.); +39-0434-659-759 (G.B.); Fax: +39-0434-659-428 (M.S. & M.M. & G.B.)
| | - Evelina Poletto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.P.); (E.P.); (M.S.N.); (R.P.); (G.L.R.V.); (F.C.)
| | - Eliana Pivetta
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.P.); (E.P.); (M.S.N.); (R.P.); (G.L.R.V.); (F.C.)
| | - Milena S. Nicoloso
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.P.); (E.P.); (M.S.N.); (R.P.); (G.L.R.V.); (F.C.)
- Deparment of Medical Oncology Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Rosanna Pellicani
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.P.); (E.P.); (M.S.N.); (R.P.); (G.L.R.V.); (F.C.)
| | - Gian Luca Rampioni Vinciguerra
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.P.); (E.P.); (M.S.N.); (R.P.); (G.L.R.V.); (F.C.)
| | - Francesca Citron
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.P.); (E.P.); (M.S.N.); (R.P.); (G.L.R.V.); (F.C.)
| | - Roberto Sorio
- Deparment of Medical Oncology Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Maurizio Mongiat
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.P.); (E.P.); (M.S.N.); (R.P.); (G.L.R.V.); (F.C.)
- Correspondence: (M.S.); (M.M.); (G.B.); Tel.: +39-0434-659-761 (M.S.); +39-0434-659-561 (M.M.); +39-0434-659-759 (G.B.); Fax: +39-0434-659-428 (M.S. & M.M. & G.B.)
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.P.); (E.P.); (M.S.N.); (R.P.); (G.L.R.V.); (F.C.)
- Correspondence: (M.S.); (M.M.); (G.B.); Tel.: +39-0434-659-761 (M.S.); +39-0434-659-561 (M.M.); +39-0434-659-759 (G.B.); Fax: +39-0434-659-428 (M.S. & M.M. & G.B.)
| |
Collapse
|
39
|
Piperigkou Z, Karamanos NK. Dynamic Interplay between miRNAs and the Extracellular Matrix Influences the Tumor Microenvironment. Trends Biochem Sci 2019; 44:1076-1088. [DOI: 10.1016/j.tibs.2019.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022]
|
40
|
Binju M, Amaya-Padilla MA, Wan G, Gunosewoyo H, Suryo Rahmanto Y, Yu Y. Therapeutic Inducers of Apoptosis in Ovarian Cancer. Cancers (Basel) 2019; 11:E1786. [PMID: 31766284 PMCID: PMC6896143 DOI: 10.3390/cancers11111786] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancers remain one of the most common causes of gynecologic cancer-related death in women worldwide. The standard treatment comprises platinum-based chemotherapy, and most tumors develop resistance to therapeutic drugs. One mechanism of developing drug resistance is alterations of molecules involved in apoptosis, ultimately assisting in the cells' capability to evade death. Thus, there is a need to focus on identifying potential drugs that restore apoptosis in cancer cells. Here, we discuss the major inducers of apoptosis mediated through various mechanisms and their usefulness as potential future treatment options for ovarian cancer. Broadly, they can target the apoptotic pathways directly or affect apoptosis indirectly through major cancer-pathways in cells. The direct apoptotic targets include the Bcl-2 family of proteins and the inhibitor of apoptotic proteins (IAPs). However, indirect targets include processes related to homologous recombination DNA repair, micro-RNA, and p53 mutation. Besides, apoptosis inducers may also disturb major pathways converging into apoptotic signals including janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3), wingless-related integration site (Wnt)/β-Catenin, mesenchymal-epithelial transition factor (MET)/hepatocyte growth factor (HGF), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), and phosphatidylinositol 3-kinase (PI3K)/v-AKT murine thymoma viral oncogene homologue (AKT)/mammalian target of rapamycin (mTOR) pathways. Several drugs in our review are undergoing clinical trials, for example, birinapant, DEBIO-1143, Alisertib, and other small molecules are in preclinical investigations showing promising results in combination with chemotherapy. Molecules that exhibit better efficacy in the treatment of chemo-resistant cancer cells are of interest but require more extensive preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Mudra Binju
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
| | - Monica Angelica Amaya-Padilla
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
| | - Graeme Wan
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
| | - Hendra Gunosewoyo
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
| | - Yohan Suryo Rahmanto
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Yu Yu
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
- University of Western Australia Medical School, Division of Obstetrics & Gynaecology, Perth, WA 6009, Australia
| |
Collapse
|
41
|
Qi X, Yu C, Wang Y, Lin Y, Shen B. Network vulnerability-based and knowledge-guided identification of microRNA biomarkers indicating platinum resistance in high-grade serous ovarian cancer. Clin Transl Med 2019; 8:28. [PMID: 31664600 PMCID: PMC6820656 DOI: 10.1186/s40169-019-0245-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/19/2019] [Indexed: 02/07/2023] Open
Abstract
Background High-grade serous ovarian cancer (HGSC), the most common ovarian carcinoma type, is associated with the highest mortality rate among all gynecological malignancies. As chemoresistance has been demonstrated as the major challenge in improving the prognosis of HGSC patients, we here aimed to identify microRNA (miRNA) biomarkers for predicting platinum resistance and further explore their functions in HGSC. Results We developed and applied our network vulnerability-based and knowledge-guided bioinformatics model first time for the study of drug-resistance in cancer. Four miRNA biomarkers (miR-454-3p, miR-98-5p, miR-183-5p and miR-22-3p) were identified with potential in stratifying platinum-sensitive and platinum-resistant HGSC patients and predicting prognostic outcome. Among them, miR-454-3p and miR-183-5p were newly discovered to be closely implicated in platinum resistance in HGSC. Functional analyses highlighted crucial roles of the four miRNA biomarkers in platinum resistance through mediating transcriptional regulation, cell proliferation and apoptosis. Moreover, expression patterns of the miRNA biomarkers were validated in both platinum-sensitive and platinum-resistant ovarian cancer cells. Conclusions With bioinformatics modeling and analysis, we identified and confirmed four novel putative miRNA biomarkers, miR-454-3p, miR-98-5p, miR-183-5p and miR-22-3p that could serve as indicators of resistance to platinum-based chemotherapy, thereby contributing to the improvement of chemotherapeutic efficiency and optimization of personalized treatments in HGSC.
Collapse
Affiliation(s)
- Xin Qi
- Center for Systems Biology, Soochow University, Suzhou, 215006, China
| | - Chunjiang Yu
- Center for Systems Biology, Soochow University, Suzhou, 215006, China.,School of Nanotechnology, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215006, China
| | - Yi Wang
- Center for Systems Biology, Soochow University, Suzhou, 215006, China
| | - Yuxin Lin
- Center for Systems Biology, Soochow University, Suzhou, 215006, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
42
|
Marí-Alexandre J, Carcelén AP, Agababyan C, Moreno-Manuel A, García-Oms J, Calabuig-Fariñas S, Gilabert-Estellés J. Interplay Between MicroRNAs and Oxidative Stress in Ovarian Conditions with a Focus on Ovarian Cancer and Endometriosis. Int J Mol Sci 2019; 20:ijms20215322. [PMID: 31731537 PMCID: PMC6862266 DOI: 10.3390/ijms20215322] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer and endometriosis are two distinct gynaecological conditions that share many biological aspects incuding proliferation, invasion of surrounding tissue, inflammation, inhibition of apoptosis, deregulation of angiogenesis and the ability to spread at a distance. miRNAs are small non-coding RNAs (19–22 nt) that act as post-transcriptional modulators of gene expression and are involved in several of the aforementioned processes. In addition, a growing body of evidence supports the contribution of oxidative stress (OS) to these gynaecological diseases: increased peritoneal OS due to the decomposition of retrograde menstruation blood facilitates both endometriotic lesion development and fallopian tube malignant transformation leading to high-grade serous ovarian cancer (HGSOC). Furthermore, as HGSOC develops, increased OS levels are associated with chemoresistance. Finally, continued bleeding within ovarian endometrioma raises OS levels and contributes to the development of endometriosis-associated ovarian cancer (EAOC). Therefore, this review aims to address the need for a better understanding of the dialogue between miRNAs and oxidative stress in the pathophysiology of ovarian conditions: endometriosis, EAOC and HGSOC.
Collapse
Affiliation(s)
- Josep Marí-Alexandre
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Correspondence: ; Tel.: +34-96-313-1893 (ext. 437211)
| | | | - Cristina Agababyan
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Comprehensive Multidisciplinary Endometriosis Unit, Consorcio Hospital General Universitario de València, 46014 València, Spain
| | - Andrea Moreno-Manuel
- Molecular Oncology Laboratory, Fundación para la Investigación del Hospital General Universitario de València, 46014, València, Spain; (A.M.-M.); (S.C.-F.)
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de València, 46014 València, Spain
| | - Javier García-Oms
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Comprehensive Multidisciplinary Endometriosis Unit, Consorcio Hospital General Universitario de València, 46014 València, Spain
| | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación para la Investigación del Hospital General Universitario de València, 46014, València, Spain; (A.M.-M.); (S.C.-F.)
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de València, 46014 València, Spain
- Department of Pathology, Universitat de València, 46010 València, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), 46014 València, Spain
| | - Juan Gilabert-Estellés
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Comprehensive Multidisciplinary Endometriosis Unit, Consorcio Hospital General Universitario de València, 46014 València, Spain
- Department of Paediatrics, Obstetrics and Gynaecology, University of València, 46010 València, Spain
| |
Collapse
|
43
|
Panda M, Biswal BK. Cell signaling and cancer: a mechanistic insight into drug resistance. Mol Biol Rep 2019; 46:5645-5659. [PMID: 31280421 DOI: 10.1007/s11033-019-04958-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022]
Abstract
Drug resistance is a major setback for advanced therapeutics in multiple cancers. The increasing prevalence of this resistance is a growing concern and bitter headache for the researchers since a decade. Hence, it is essential to revalidate the existing strategies available for cancer treatment and to look after a novel therapeutic approach for target based killing of cancer cells at the genetic level. This review outlines the different mechanisms enabling resistance including drug efflux, drug target alternation, alternative splicing, the release of the extracellular vesicle, tumor heterogeneity, epithelial-mesenchymal transition, tumor microenvironment, the secondary mutation in the receptor, epigenetic alternation, heterodimerization of receptors, amplification of target and amplification of components rather than the target. Furthermore, existing evidence and the role of various signaling pathways like EGFR, Ras, PI3K/Akt, Wnt, Notch, TGF-β, Integrin-ECM signaling in drug resistance are explained. Lastly, the prevention of this resistance by a contemporary therapeutic strategy, i.e., a combination of specific signaling pathway inhibitors and the cocktail of a cancer drug is summarized showing the new treatment strategies.
Collapse
Affiliation(s)
- Munmun Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Sundargarh, Rourkela, Odisha, 769008, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Sundargarh, Rourkela, Odisha, 769008, India.
| |
Collapse
|
44
|
Yang C, Zhao N, Li D, Zou G, Chen Y. Metformin improves the sensitivity of ovarian cancer cells to chemotherapeutic agents. Oncol Lett 2019; 18:2404-2411. [PMID: 31402943 PMCID: PMC6676676 DOI: 10.3892/ol.2019.10564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 06/11/2019] [Indexed: 01/22/2023] Open
Abstract
Ovarian cancer is a common tumor of the reproductive system, and primarily responds to cytoreductive surgery and cisplatin (DDP)-based chemotherapy. However, chemoresistance results in high ovarian cancer mortality. Therefore, the aim of the present study was to investigate the effects of metformin on the apoptosis and autophagy of ovarian cancer drug-resistant SKOV3/DDP cells. To do so, MTT assay, flow cytometry, electron microscopy and western blotting were used in the present study. Metformin could inhibit the growth of SKOV3 and SKOV3/DDP cells in a concentration- and time-dependent manner (P<0.05). The half-inhibitory concentration (IC50) values of DDP and methotrexate (MTX) were 14.35 and 4.21 µg/ml for SKOV3 cells, and 70.26 and 15.27 µg/ml for SKOV3/DDP cells, respectively. In addition, the resistance index of SKOV3/DDP for DDP and MTX was 4.89 and 3.62, respectively. After combining metformin with DDP and MTX, the IC50 values for SKOV3 cells were 11.20 and 2.80 µg/ml, and 6.21 and 2.74 µg/ml for SKOV3/DDP cells, respectively. Metformin decreased the IC50 of DDP and MTX in drug-resistant cancer cells SKOV3/DDP by 11.31- and 6.18-fold. This indicated that cell proliferation was inhibited when treated with the combination of metformin and chemotherapeutic agents, compared with chemotherapeutic agents alone. In addition, autophagy was not observed in SKOV3 and SKOV3/DDP cells; however, it was observed in SKOV3/DDP cells following incubation with 10 mmol/l metformin for 48 h. Furthermore, the expression levels of microtubule-associated protein 1 light chain 3-II protein in SKOV3/DDP cells were upregulated compared with in SKOV3 cells (P<0.05). These results demonstrated that metformin can sensitize drug-resistant ovarian cancer cells to chemotherapeutic agents, and that it may be associated with the induction of autophagy.
Collapse
Affiliation(s)
- Chen Yang
- School of Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Nanan Zhao
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Dandan Li
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Ge Zou
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yan Chen
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
45
|
Integrative Network Analysis Reveals a MicroRNA-Based Signature for Prognosis Prediction of Epithelial Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1056431. [PMID: 31275959 PMCID: PMC6582839 DOI: 10.1155/2019/1056431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
Background Epithelial ovarian cancer (EOC) is a heterogeneous disease, which has been recently classified into four molecular subtypes, of which the mesenchymal subtype exhibited the worst prognosis. We aimed to identify a microRNA- (miRNA-) based signature by incorporating the molecular modalities involved in the mesenchymal subtype for risk stratification, which would allow the identification of patients who might benefit from more rigorous treatments. Method We characterized the regulatory mechanisms underlying the mesenchymal subtype using network analyses integrating gene and miRNA expression profiles from The Cancer Genome Atlas (TCGA) cohort to identify a miRNA signature for prognosis prediction. Results We identified four miRNAs as the master regulators of the mesenchymal subtype and developed a risk score model. The 4-miRNA signature significantly predicted overall survival (OS) and progression-free survival (PFS) in discovery (p=0.004 and p=0.04) and two independent public datasets (GSE73582: OS, HR: 2.26 (1.26-4.05), p=0.005, PFS, HR: 2.03 (1.34-3.09), p<0.001; GSE25204: OS, HR: 3.07 (1.73-5.46), p<0.001, PFS, HR: 2.59 (1.72-3.88), p<0.001). Moreover, in multivariate analyses, the miRNA signature maintained as an independent prognostic predictor and achieved superior efficiency compared to the currently used clinical factors. Conclusions In conclusion, our network analysis identified a 4-miRNA signature which has prognostic value superior to currently reported clinical covariates. This signature warrants further testing and validation for use in clinical practice.
Collapse
|
46
|
Shi W, Dong F, Jiang Y, Lu L, Wang C, Tan J, Yang W, Guo H, Ming J, Huang T. Construction of prognostic microRNA signature for human invasive breast cancer by integrated analysis. Onco Targets Ther 2019; 12:1979-2010. [PMID: 30936717 PMCID: PMC6430069 DOI: 10.2147/ott.s189265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Despite the advances in early detection and treatment methods, breast cancer still has a high mortality rate, even in those patients predicted to have a good prognosis. The purpose of this study is to identify a microRNA signature that could better predict prognosis in breast cancer and add new insights to the current classification criteria. Materials and methods We downloaded microRNA sequencing data along with corresponding clinicopathological data from The Cancer Genome Atlas (TCGA). Of 1,098 breast cancer patients identified, 253 patients with fully characterized microRNA profiles were selected for analysis. A three-microRNA signature was generated in the training set. Subsequently, the performance of the signature was confirmed in a validation set. After construction of the signature, we conducted additional experiments, including flow cytometry and the Cell Counting Kit-8 assay, to illustrate the correlation of this microRNA signature with breast cancer cell cycle, apoptosis, and proliferation. Results Three microRNAs (hsa-mir-31, hsa-mir-16-2, and hsa-mir-484) were identified to be significantly and independently correlated with patient prognosis, and performed with good stability. Our results suggest that higher expression of hsa-mir-484 indicated worse prognosis, while higher expression of hsa-mir-31 and hsa-mir-16-2 indicated better prognosis. Moreover, additional experiments confirmed that this microRNA signature was related to breast cancer cell cycle and proliferation. Conclusion Our results indicate a three-microRNA signature that can accurately predict the prognosis of breast cancer, especially in basal-like and hormone receptor-positive breast cancer subtypes. We recommend more aggressive therapy and more frequent follow-up for high-risk groups.
Collapse
Affiliation(s)
- Wei Shi
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China, ;
| | - Fang Dong
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China, ;
| | - Yujia Jiang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China, ;
| | - Linlin Lu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China, ;
| | - Changwen Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China, ;
| | - Jie Tan
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China, ;
| | - Wen Yang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China, ;
| | - Hui Guo
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China, ;
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China, ;
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China, ;
| |
Collapse
|
47
|
Zhuang RJ, Bai XX, Liu W. MicroRNA-23a depletion promotes apoptosis of ovarian cancer stem cell and inhibits cell migration by targeting DLG2. Cancer Biol Ther 2019; 20:897-911. [PMID: 30862230 DOI: 10.1080/15384047.2019.1579960] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer (OC) is xenogeneic that is influenced by many generated factors related to epigenetic factors to accelerate tumor metastasis. This study was conducted with the objective of investigating the effect of microRNA-23a-3p (miR-23a) on the biological characteristics of OC stem cells by targeting discs large homolog 2 (DLG2). OC-related differentially expressed genes were screened by microarray-based gene expression analysis, after which a list of miRNAs that regulate the genes was predicted. In total, 50 patients diagnosed with OC were enrolled in this study. DLG2 positive protein expression was measured in OC tissues. The interaction between DLG2 and miR-23a was predicted and analyzed through luciferase activity measurement. With the intervention of miR-23a and/or DLG2 expression in OC stem cells, the expression of miR-23a, DLG2, Bax, Bcl-2, Oct-4, and Nanog was determined. Afterward, different cell experiments were conducted to examine the regulation effect of miR-23a in OC stem cells. Tumor formation in vivo was also evaluated in nude mice. DLG2 had low expression in OC. The results showed that there was a decrease in the expression of Bcl-2, Oct-4, and Nanog, while DLG2 and Bax were increased as a result of miR-23a depletion. In addition, when miR-23a was suppressed, cell viability, migration, invasion, cloning, and renewal abilities of OC stem cells were decreased, while apoptosis ability was enhanced. As a target gene of miR-23a, DLG2 downregulation reversed the suppressive function of miR-23a in the inhibition of OC development. Finally, in vivo experiment verified that miR-23a downregulation restrained the tumor growth in OC stem cells. In conclusion, our findings suggested that the inhibition of miR-23a results in the suppression of OC progression by releasing DLG2, which provides new understanding on the potential therapeutic effect of miR-23a inhibition in OC patients.
Collapse
Affiliation(s)
- Ru-Jin Zhuang
- a Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Harbin Medical University , Harbin , P.R. China
| | - Xiao-Xu Bai
- a Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Harbin Medical University , Harbin , P.R. China
| | - Wei Liu
- a Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Harbin Medical University , Harbin , P.R. China
| |
Collapse
|
48
|
Salinas-Vera YM, Marchat LA, Gallardo-Rincón D, Ruiz-García E, Astudillo-De La Vega H, Echavarría-Zepeda R, López-Camarillo C. AngiomiRs: MicroRNAs driving angiogenesis in cancer (Review). Int J Mol Med 2019; 43:657-670. [PMID: 30483765 DOI: 10.3892/ijmm.2018.4003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/22/2018] [Indexed: 01/13/2023] Open
Abstract
Angiogenesis is an important hallmark of cancer serving a key role in tumor growth and metastasis. Therefore, tumor angiogenesis has become an attractive target for development of novel drug therapies. An increased amount of anti‑angiogenic compounds is currently in preclinical and clinical development for personalized therapies. However, resistance to current angiogenesis inhibitors is emerging, indicating that there is a need to identify novel anti‑angiogenic agents. In the last decade, the field of microRNA biology has exploded revealing unsuspected functions in tumor angiogenesis. These small non‑coding RNAs, which have been dubbed as angiomiRs, may target regulatory molecules driving angiogenesis, such as cytokines, metalloproteinases and growth factors, including vascular endothelial growth factor, platelet‑derived growth factor, fibroblast growth factor, epidermal growth factor, hypoxia inducible factor‑1, as well as mitogen‑activated protein kinase, phosphoinositide 3‑kinase and transforming growth factor signaling pathways. The present review discusses the current progress towards understanding the functions of miRNAs in tumor angiogenesis regulation in diverse types of human cancer. Furthermore, the potential clinical application of angiomiRs towards anti‑angiogenic tumor therapy was explored.
Collapse
Affiliation(s)
- Yarely M Salinas-Vera
- Posgrado en Ciencias Genomicas, Universidad Autonoma de la Ciudad de Mexico, Ciudad de Mexico 03100, Mexico
| | - Laurence A Marchat
- Programa en Biomedicina Molecular y Red de Biotecnologia, Instituto Politecnico Nacional, Ciudad de Mexico 07320, Mexico
| | - Dolores Gallardo-Rincón
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, Ciudad de Mexico 14080, Mexico
| | - Erika Ruiz-García
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, Ciudad de Mexico 14080, Mexico
| | - Horacio Astudillo-De La Vega
- Laboratorio de Investigacion Translacional en Cáncer y Terapia Celular, Hospital de Oncologia, Centro Médico Nacional Siglo XXI, Ciudad de Mexico 06720, Mexico
| | | | - César López-Camarillo
- Posgrado en Ciencias Genomicas, Universidad Autonoma de la Ciudad de Mexico, Ciudad de Mexico 03100, Mexico
| |
Collapse
|
49
|
Hisamatsu T, McGuire M, Wu SY, Rupaimoole R, Pradeep S, Bayraktar E, Noh K, Hu W, Hansen JM, Lyons Y, Gharpure KM, Nagaraja AS, Mangala LS, Mitamura T, Rodriguez-Aguayo C, Eun YG, Rose J, Bartholomeusz G, Ivan C, Lee JS, Matsuo K, Frumovitz M, Wong KK, Lopez-Berestein G, Sood AK. PRKRA/PACT Expression Promotes Chemoresistance of Mucinous Ovarian Cancer. Mol Cancer Ther 2019; 18:162-172. [PMID: 30305341 PMCID: PMC6318044 DOI: 10.1158/1535-7163.mct-17-1050] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 07/11/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Abstract
For mucinous ovarian cancer (MOC), standard platinum-based therapy is largely ineffective. We sought to identify possible mechanisms of oxaliplatin resistance of MOC and develop strategies to overcome this resistance. A kinome-based siRNA library screen was carried out using human MOC cells to identify novel targets to enhance the efficacy of chemotherapy. In vitro and in vivo validations of antitumor effects were performed using mouse MOC models. Specifically, the role of PRKRA/PACT in oxaliplatin resistance was interrogated. We focused on PRKRA, a known activator of PKR kinase, and its encoded protein PACT because it was one of the five most significantly downregulated genes in the siRNA screen. In orthotopic mouse models of MOC, we observed a significant antitumor effect of PRKRA siRNA plus oxaliplatin. In addition, expression of miR-515-3p was regulated by PACT-Dicer interaction, and miR-515-3p increased the sensitivity of MOC to oxaliplatin. Mechanistically, miR-515-3p regulated chemosensitivity, in part, by targeting AXL. The PRKRA/PACT axis represents an important therapeutic target in MOC to enhance sensitivity to oxaliplatin.
Collapse
Affiliation(s)
- Takeshi Hisamatsu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael McGuire
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherry Y Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajesha Rupaimoole
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Emine Bayraktar
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyunghee Noh
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Gene Therapy Research Unit, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jean M Hansen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasmin Lyons
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kshipra M Gharpure
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Archana S Nagaraja
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Takashi Mitamura
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Young Gyu Eun
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Johnathon Rose
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Geoffrey Bartholomeusz
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristina Ivan
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Koji Matsuo
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, California
| | - Michael Frumovitz
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kwong K Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
50
|
Panoutsopoulou K, Avgeris M, Scorilas A. miRNA and long non-coding RNA: molecular function and clinical value in breast and ovarian cancers. Expert Rev Mol Diagn 2018; 18:963-979. [DOI: 10.1080/14737159.2018.1538794] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|