1
|
Shahi A, Kidane D. Decoding mitochondrial DNA damage and repair associated with H. pylori infection. Front Cell Infect Microbiol 2025; 14:1529441. [PMID: 39906209 PMCID: PMC11790445 DOI: 10.3389/fcimb.2024.1529441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
Mitochondrial genomic stability is critical to prevent various human inflammatory diseases. Bacterial infection significantly increases oxidative stress, driving mitochondrial genomic instability and initiating inflammatory human disease. Oxidative DNA base damage is predominantly repaired by base excision repair (BER) in the nucleus (nBER) as well as in the mitochondria (mtBER). In this review, we summarize the molecular mechanisms of spontaneous and H. pylori infection-associated oxidative mtDNA damage, mtDNA replication stress, and its impact on innate immune signaling. Additionally, we discuss how mutations located on mitochondria targeting sequence (MTS) of BER genes may contribute to mtDNA genome instability and innate immune signaling activation. Overall, the review summarizes evidence to understand the dynamics of mitochondria genome and the impact of mtBER in innate immune response during H. pylori-associated pathological outcomes.
Collapse
Affiliation(s)
| | - Dawit Kidane
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| |
Collapse
|
2
|
Xia K, Luo P, Yu J, He S, Dong L, Gao F, Chen X, Ye Y, Gao Y, Ma Y, Yang C, Zhang Y, Yang Q, Han D, Feng X, Wan Z, Cai H, Ke Q, Wang T, Li W, Tu X, Sun X, Deng C, Xiang AP. Single-cell RNA sequencing reveals transcriptomic landscape and potential targets for human testicular ageing. Hum Reprod 2024; 39:2189-2209. [PMID: 39241251 PMCID: PMC11447013 DOI: 10.1093/humrep/deae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/05/2024] [Indexed: 09/08/2024] Open
Abstract
STUDY QUESTION What is the molecular landscape underlying the functional decline of human testicular ageing? SUMMARY ANSWER The present study provides a comprehensive single-cell transcriptomic atlas of testes from young and old humans and offers insights into the molecular mechanisms and potential targets for human testicular ageing. WHAT IS KNOWN ALREADY Testicular ageing is known to cause male age-related fertility decline and hypogonadism. Dysfunction of testicular cells has been considered as a key factor for testicular ageing. STUDY DESIGN, SIZE, DURATION Human testicular biopsies were collected from three young individuals and three old individuals to perform single-cell RNA sequencing (scRNA-seq). The key results were validated in a larger cohort containing human testicular samples from 10 young donors and 10 old donors. PARTICIPANTS/MATERIALS, SETTING, METHODS scRNA-seq was used to identify gene expression signatures for human testicular cells during ageing. Ageing-associated changes of gene expression in spermatogonial stem cells (SSCs) and Leydig cells (LCs) were analysed by gene set enrichment analysis and validated by immunofluorescent and functional assays. Cell-cell communication analysis was performed using CellChat. MAIN RESULTS AND THE ROLE OF CHANCE The single-cell transcriptomic landscape of testes from young and old men was surveyed, revealing age-related changes in germline and somatic niche cells. In-depth evaluation of the gene expression dynamics in germ cells revealed that the disruption of the base-excision repair pathway is a prominent characteristic of old SSCs, suggesting that defective DNA repair in SSCs may serve as a potential driver for increased de novo germline mutations with age. Further analysis of ageing-associated transcriptional changes demonstrated that stress-related changes and cytokine pathways accumulate in old somatic cells. Age-related impairment of redox homeostasis in old LCs was identified and pharmacological treatment with antioxidants alleviated this cellular dysfunction of LCs and promoted testosterone production. Lastly, our results revealed that decreased pleiotrophin signalling was a contributing factor for impaired spermatogenesis in testicular ageing. LARGE SCALE DATA The scRNA-seq sequencing and processed data reported in this paper were deposited at the Genome Sequence Archive (https://ngdc.cncb.ac.cn/), under the accession number HRA002349. LIMITATIONS, REASONS FOR CAUTION Owing to the difficulty in collecting human testis tissue, the sample size was limited. Further in-depth functional and mechanistic studies are warranted in future. WIDER IMPLICATIONS OF THE FINDINGS These findings provide a comprehensive understanding of the cell type-specific mechanisms underlying human testicular ageing at a single-cell resolution, and suggest potential therapeutic targets that may be leveraged to address age-related male fertility decline and hypogonadism. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Key Research and Development Program of China (2022YFA1104100), the National Natural Science Foundation of China (32130046, 82171564, 82101669, 82371611, 82371609, 82301796), the Natural Science Foundation of Guangdong Province, China (2022A1515010371), the Major Project of Medical Science and Technology Development Research Center of National Health Planning Commission, China (HDSL202001000), the Open Project of NHC Key Laboratory of Male Reproduction and Genetics (KF202001), the Guangdong Province Regional Joint Fund-Youth Fund Project (2021A1515110921, 2022A1515111201), and the China Postdoctoral Science Foundation (2021M703736). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Kai Xia
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Peng Luo
- Reproductive Medicine Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Jiajie Yu
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Siyuan He
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Lin Dong
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Feng Gao
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Reproductive Medicine Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xuren Chen
- Reproductive Medicine Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yunlin Ye
- Department of Urology, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Yong Gao
- Reproductive Medicine Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Cuifeng Yang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yadong Zhang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiyun Yang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dayu Han
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Feng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zi Wan
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongcai Cai
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- Guangdong Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- Guangdong Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiang'an Tu
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiangzhou Sun
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chunhua Deng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Odstrcil RE, Dutta P, Liu J. Enhanced Sampling for Conformational Changes and Molecular Mechanisms of Human NTHL1. J Phys Chem Lett 2024; 15:3206-3213. [PMID: 38483510 PMCID: PMC11059236 DOI: 10.1021/acs.jpclett.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The functionalities of proteins rely on protein conformational changes during many processes. Identification of the protein conformations and capturing transitions among different conformations are important but extremely challenging in both experiments and simulations. In this work, we develop a machine learning based approach to identify a reaction coordinate that accelerates the exploration of protein conformational changes in molecular simulations. We implement our approach to study the conformational changes of human NTHL1 during DNA repair. Our results identified three distinct conformations: open (stable), closed (unstable), and bundle (stable). The existence of the bundle conformation can rationalize recent experimental observations. Comparison with an NTHL1 mutant demonstrates that a closely packed cluster of positively charged residues in the linker could be a factor to search when screening for genetic abnormalities. Results will lead to a better modulation of the DNA repair pathway to protect against carcinogenesis.
Collapse
Affiliation(s)
- Ryan E. Odstrcil
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA
| | - Jin Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
4
|
Cherbuin N, Patel H, Walsh EI, Ambikairajah A, Burns R, Brüstle A, Rasmussen LJ. Cognitive Function Is Associated with the Genetically Determined Efficiency of DNA Repair Mechanisms. Genes (Basel) 2024; 15:153. [PMID: 38397143 PMCID: PMC10888195 DOI: 10.3390/genes15020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Several modifiable risk factors for neurodegeneration and dementia have been identified, although individuals vary in their vulnerability despite a similar risk of exposure. This difference in vulnerability could be explained at least in part by the variability in DNA repair mechanisms' efficiency between individuals. Therefore, the aim of this study was to test associations between documented, prevalent genetic variation (single nucleotide polymorphism, SNP) in DNA repair genes, cognitive function, and brain structure. Community-living participants (n = 488,159; 56.54 years (8.09); 54.2% female) taking part in the UK Biobank study and for whom cognitive and genetic measures were available were included. SNPs in base excision repair (BER) genes of the bifunctional DNA glycosylases OGG1 (rs1052133, rs104893751), NEIL1 (rs7402844, rs5745906), NEIL2 (rs6601606), NEIL3 (rs10013040, rs13112390, rs13112358, rs1395479), MUTYH (rs34612342, rs200165598), NTHL1 (rs150766139, rs2516739) were considered. Cognitive measures included fluid intelligence, the symbol-digit matching task, visual matching, and trail-making. Hierarchical regression and latent class analyses were used to test the associations between SNPs and cognitive measures. Associations between SNPs and brain measures were also tested in a subset of 39,060 participants. Statistically significant associations with cognition were detected for 12 out of the 13 SNPs analyzed. The strongest effects amounted to a 1-6% difference in cognitive function detected for NEIL1 (rs7402844), NEIL2 (rs6601606), and NTHL1 (rs2516739). Associations varied by age and sex, with stronger effects detected in middle-aged women. Weaker associations with brain measures were also detected. Variability in some BER genes is associated with cognitive function and brain structure and may explain variability in the risk for neurodegeneration and dementia.
Collapse
Affiliation(s)
- Nicolas Cherbuin
- National Centre for Epidemiology and Population Health, Australian National University, Canberra 2601, Australia; (E.I.W.); (A.A.); (R.B.)
| | - Hardip Patel
- John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia; (H.P.); (A.B.)
| | - Erin I. Walsh
- National Centre for Epidemiology and Population Health, Australian National University, Canberra 2601, Australia; (E.I.W.); (A.A.); (R.B.)
| | - Ananthan Ambikairajah
- National Centre for Epidemiology and Population Health, Australian National University, Canberra 2601, Australia; (E.I.W.); (A.A.); (R.B.)
- Discipline of Psychology, University of Canberra, Canberra 2617, Australia
- Centre for Ageing Research and Translation, Faculty of Health, University of Canberra, Canberra 2617, Australia
| | - Richard Burns
- National Centre for Epidemiology and Population Health, Australian National University, Canberra 2601, Australia; (E.I.W.); (A.A.); (R.B.)
| | - Anne Brüstle
- John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia; (H.P.); (A.B.)
| | - Lene Juel Rasmussen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark;
| |
Collapse
|
5
|
Dolan M, St. John N, Zaidi F, Doyle F, Fasullo M. High-throughput screening of the Saccharomyces cerevisiae genome for 2-amino-3-methylimidazo [4,5-f] quinoline resistance identifies colon cancer-associated genes. G3 (BETHESDA, MD.) 2023; 13:jkad219. [PMID: 37738679 PMCID: PMC11025384 DOI: 10.1093/g3journal/jkad219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 10/25/2022] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Heterocyclic aromatic amines (HAAs) are potent carcinogenic agents found in charred meats and cigarette smoke. However, few eukaryotic resistance genes have been identified. We used Saccharomyces cerevisiae (budding yeast) to identify genes that confer resistance to 2-amino-3-methylimidazo[4,5-f] quinoline (IQ). CYP1A2 and NAT2 activate IQ to become a mutagenic nitrenium compound. Deletion libraries expressing human CYP1A2 and NAT2 or no human genes were exposed to either 400 or 800 µM IQ for 5 or 10 generations. DNA barcodes were sequenced using the Illumina HiSeq 2500 platform and statistical significance was determined for exactly matched barcodes. We identified 424 ORFs, including 337 genes of known function, in duplicate screens of the "humanized" collection for IQ resistance; resistance was further validated for a select group of 51 genes by growth curves, competitive growth, or trypan blue assays. Screens of the library not expressing human genes identified 143 ORFs conferring resistance to IQ per se. Ribosomal protein and protein modification genes were identified as IQ resistance genes in both the original and "humanized" libraries, while nitrogen metabolism, DNA repair, and growth control genes were also prominent in the "humanized" library. Protein complexes identified included the casein kinase 2 (CK2) and histone chaperone (HIR) complex. Among DNA Repair and checkpoint genes, we identified those that function in postreplication repair (RAD18, UBC13, REV7), base excision repair (NTG1), and checkpoint signaling (CHK1, PSY2). These studies underscore the role of ribosomal protein genes in conferring IQ resistance, and illuminate DNA repair pathways for conferring resistance to activated IQ.
Collapse
Affiliation(s)
- Michael Dolan
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Nick St. John
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Faizan Zaidi
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Francis Doyle
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Michael Fasullo
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| |
Collapse
|
6
|
Gohil D, Sarker AH, Roy R. Base Excision Repair: Mechanisms and Impact in Biology, Disease, and Medicine. Int J Mol Sci 2023; 24:14186. [PMID: 37762489 PMCID: PMC10531636 DOI: 10.3390/ijms241814186] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Base excision repair (BER) corrects forms of oxidative, deamination, alkylation, and abasic single-base damage that appear to have minimal effects on the helix. Since its discovery in 1974, the field has grown in several facets: mechanisms, biology and physiology, understanding deficiencies and human disease, and using BER genes as potential inhibitory targets to develop therapeutics. Within its segregation of short nucleotide (SN-) and long patch (LP-), there are currently six known global mechanisms, with emerging work in transcription- and replication-associated BER. Knockouts (KOs) of BER genes in mouse models showed that single glycosylase knockout had minimal phenotypic impact, but the effects were clearly seen in double knockouts. However, KOs of downstream enzymes showed critical impact on the health and survival of mice. BER gene deficiency contributes to cancer, inflammation, aging, and neurodegenerative disorders. Medicinal targets are being developed for single or combinatorial therapies, but only PARP and APE1 have yet to reach the clinical stage.
Collapse
Affiliation(s)
- Dhara Gohil
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| | - Altaf H. Sarker
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
| | - Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| |
Collapse
|
7
|
Polymorphic variant Asp239Tyr of human DNA glycosylase NTHL1 is inactive for removal of a variety of oxidatively-induced DNA base lesions from genomic DNA. DNA Repair (Amst) 2022; 117:103372. [PMID: 35870279 DOI: 10.1016/j.dnarep.2022.103372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022]
Abstract
Base excision repair is the major pathway for the repair of oxidatively-induced DNA damage, with DNA glycosylases removing modified bases in the first step. Human NTHL1 is specific for excision of several pyrimidine- and purine-derived lesions from DNA, with loss of function NTHL1 showing a predisposition to carcinogenesis. A rare single nucleotide polymorphism of the Nthl1 gene leading to the substitution of Asp239 with Tyr within the active site, occurs within global populations. In this work, we overexpressed and purified the variant NTHL1-Asp239Tyr (NTHL1-D239Y) and determined the substrate specificity of this variant relative to wild-type NTHL1 using gas chromatography-tandem mass spectrometry with isotope-dilution, and oxidatively-damaged genomic DNA containing multiple pyrimidine- and purine-derived lesions. Wild-type NTHL1 excised seven DNA base lesions with different efficiencies, whereas NTHL1-D239Y exhibited no glycosylase activity for any of these lesions. We also measured the activities of human glycosylases OGG1 and NEIL1, and E. coli glycosylases Nth and Fpg under identical experimental conditions. Different substrate specificities among these DNA glycosylases were observed. When mixed with NTHL1-D239Y, the activity of NTHL1 was not reduced, indicating no substrate binding competition. These results and the inactivity of the variant D239Y toward the major oxidatively-induced DNA lesions points to the importance of the understanding of this variant's role in carcinogenesis and the potential of individual susceptibility to cancer in individuals carrying this variant.
Collapse
|
8
|
Cho E, Allemang A, Audebert M, Chauhan V, Dertinger S, Hendriks G, Luijten M, Marchetti F, Minocherhomji S, Pfuhler S, Roberts DJ, Trenz K, Yauk CL. AOP report: Development of an adverse outcome pathway for oxidative DNA damage leading to mutations and chromosomal aberrations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:118-134. [PMID: 35315142 PMCID: PMC9322445 DOI: 10.1002/em.22479] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/18/2022] [Indexed: 05/22/2023]
Abstract
The Genetic Toxicology Technical Committee (GTTC) of the Health and Environmental Sciences Institute (HESI) is developing adverse outcome pathways (AOPs) that describe modes of action leading to potentially heritable genomic damage. The goal was to enhance the use of mechanistic information in genotoxicity assessment by building empirical support for the relationships between relevant molecular initiating events (MIEs) and regulatory endpoints in genetic toxicology. Herein, we present an AOP network that links oxidative DNA damage to two adverse outcomes (AOs): mutations and chromosomal aberrations. We collected empirical evidence from the literature to evaluate the key event relationships between the MIE and the AOs, and assessed the weight of evidence using the modified Bradford-Hill criteria for causality. Oxidative DNA damage is constantly induced and repaired in cells given the ubiquitous presence of reactive oxygen species and free radicals. However, xenobiotic exposures may increase damage above baseline levels through a variety of mechanisms and overwhelm DNA repair and endogenous antioxidant capacity. Unrepaired oxidative DNA base damage can lead to base substitutions during replication and, along with repair intermediates, can also cause DNA strand breaks that can lead to mutations and chromosomal aberrations if not repaired adequately. This AOP network identifies knowledge gaps that could be filled by targeted studies designed to better define the quantitative relationships between key events, which could be leveraged for quantitative chemical safety assessment. We anticipate that this AOP network will provide the building blocks for additional genotoxicity-associated AOPs and aid in designing novel integrated testing approaches for genotoxicity.
Collapse
Affiliation(s)
- Eunnara Cho
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
- Department of BiologyCarleton UniversityOttawaOntarioCanada
| | | | | | - Vinita Chauhan
- Consumer and Clinical Radiation Protection BureauHealth CanadaOttawaOntarioCanada
| | | | | | - Mirjam Luijten
- Centre for Health ProtectionNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Francesco Marchetti
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
- Department of BiologyCarleton UniversityOttawaOntarioCanada
| | - Sheroy Minocherhomji
- Amgen Research, Translational Safety and Bioanalytical SciencesAmgen Inc.Thousand OaksCaliforniaUSA
| | | | | | | | - Carole L. Yauk
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
- Department of BiologyCarleton UniversityOttawaOntarioCanada
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
9
|
Marsden CG, Das L, Nottoli TP, Kathe SD, Doublié S, Wallace SS, Sweasy JB. Mouse Embryonic Fibroblasts Isolated From Nthl1 D227Y Knockin Mice Exhibit Defective DNA Repair and Increased Genome Instability. DNA Repair (Amst) 2022; 109:103247. [PMID: 34826736 PMCID: PMC8787541 DOI: 10.1016/j.dnarep.2021.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023]
Abstract
Oxidative DNA damage as a result of normal cellular metabolism, inflammation, or exposure to exogenous DNA damaging agents if left unrepaired, can result in genomic instability, a precursor to cancer and other diseases. Nth-like DNA glycosylase 1 (NTHL1) is an evolutionarily conserved bifunctional DNA glycosylase that primarily removes oxidized pyrimidine lesions. NTHL1 D239Y is a germline variant identified in both heterozygous and homozygous state in the human population. Here, we have generated a knockin mouse model carrying Nthl1 D227Y (mouse homologue of D239Y) using CRISPR-cas9 genome editing technology and investigated the cellular effects of the variant in the heterozygous (Y/+) and homozygous (Y/Y) state using murine embryonic fibroblasts. We identified a significant increase in double stranded breaks, genomic instability, replication stress and impaired proliferation in both the Nthl1 D227Y heterozygous Y/+ and homozygous mutant Y/Y MEFs. Importantly, we identified that the presence of the D227Y variant interferes with repair by the WT protein, possibly by binding and shielding the lesions. The cellular phenotypes observed in D227Y mutant MEFs suggest that both the heterozygous and homozygous carriers of this NTHL1 germline mutation may be at increased risk for the development of DNA damage-associated diseases, including cancer.
Collapse
Affiliation(s)
- Carolyn G. Marsden
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405-0068
| | - Lipsa Das
- Present address: Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, AZ 85724-5024, USA
| | - Timothy P. Nottoli
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Scott D. Kathe
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405-0068
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405-0068
| | - Susan S. Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405-0068
| | - Joann B. Sweasy
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405-0068,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510,Present address: Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, AZ 85724-5024, USA,Corresponding author contact information: Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, 1515 N Campbell Avenue, Tucson, AZ 85724-5024, USA,
| |
Collapse
|
10
|
Carroll BL, Zahn KE, Hanley JP, Wallace SS, Dragon JA, Doublié S. Caught in motion: human NTHL1 undergoes interdomain rearrangement necessary for catalysis. Nucleic Acids Res 2021; 49:13165-13178. [PMID: 34871433 PMCID: PMC8682792 DOI: 10.1093/nar/gkab1162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/02/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Base excision repair (BER) is the main pathway protecting cells from the continuous damage to DNA inflicted by reactive oxygen species. BER is initiated by DNA glycosylases, each of which repairs a particular class of base damage. NTHL1, a bifunctional DNA glycosylase, possesses both glycolytic and β-lytic activities with a preference for oxidized pyrimidine substrates. Defects in human NTHL1 drive a class of polyposis colorectal cancer. We report the first X-ray crystal structure of hNTHL1, revealing an open conformation not previously observed in the bacterial orthologs. In this conformation, the six-helical barrel domain comprising the helix-hairpin-helix (HhH) DNA binding motif is tipped away from the iron sulphur cluster-containing domain, requiring a conformational change to assemble a catalytic site upon DNA binding. We found that the flexibility of hNTHL1 and its ability to adopt an open configuration can be attributed to an interdomain linker. Swapping the human linker sequence for that of Escherichia coli yielded a protein chimera that crystallized in a closed conformation and had a reduced activity on lesion-containing DNA. This large scale interdomain rearrangement during catalysis is unprecedented for a HhH superfamily DNA glycosylase and provides important insight into the molecular mechanism of hNTHL1.
Collapse
Affiliation(s)
- Brittany L Carroll
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Karl E Zahn
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - John P Hanley
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Julie A Dragon
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
11
|
Wallace SS. Consequences and repair of radiation-induced DNA damage: fifty years of fun questions and answers. Int J Radiat Biol 2021; 98:367-382. [PMID: 34187282 DOI: 10.1080/09553002.2021.1948141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To summarize succinctly the 50 years of research undertaken in my laboratory and to provide an overview of my career in science. It is certainly a privilege to have been asked by Carmel Mothersill and Penny Jeggo to contribute to this special issue of the International Journal of Radiation Biology focusing on the work of women in the radiation sciences. CONCLUSION My students, post-docs and I identified and characterized a number of the enzymes that recognize and remove radiation-damaged DNA bases, the DNA glycosylases, which are the first enzymes in the Base Excision Repair (BER) pathway. Although this pathway actually evolved to repair oxidative and other endogenous DNA damages, it is also responsible for removing the vast majority of radiation-induced DNA damages including base damages, alkali-labile lesions and single strand breaks. However, because of its high efficiency, attempted BER of clustered lesions produced by ionizing radiation, can have disastrous effects on cellular DNA. We also evaluated the potential biological consequences of many of the radiation-induced DNA lesions. In addition, with collaborators, we employed computational techniques, x-ray crystallography and single molecule approaches to answer many questions at the molecular level.
Collapse
Affiliation(s)
- Susan S Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
12
|
Li N, Zethoven M, McInerny S, Devereux L, Huang YK, Thio N, Cheasley D, Gutiérrez-Enríquez S, Moles-Fernández A, Diez O, Nguyen-Dumont T, Southey MC, Hopper JL, Simard J, Dumont M, Soucy P, Meindl A, Schmutzler R, Schmidt MK, Adank MA, Andrulis IL, Hahnen E, Engel C, Lesueur F, Girard E, Neuhausen SL, Ziv E, Allen J, Easton DF, Scott RJ, Gorringe KL, James PA, Campbell IG. Evaluation of the association of heterozygous germline variants in NTHL1 with breast cancer predisposition: an international multi-center study of 47,180 subjects. NPJ Breast Cancer 2021; 7:52. [PMID: 33980861 PMCID: PMC8115524 DOI: 10.1038/s41523-021-00255-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Bi-allelic loss-of-function (LoF) variants in the base excision repair (BER) gene NTHL1 cause a high-risk hereditary multi-tumor syndrome that includes breast cancer, but the contribution of heterozygous variants to hereditary breast cancer is unknown. An analysis of 4985 women with breast cancer, enriched for familial features, and 4786 cancer-free women revealed significant enrichment for NTHL1 LoF variants. Immunohistochemistry confirmed reduced NTHL1 expression in tumors from heterozygous carriers but the NTHL1 bi-allelic loss characteristic mutational signature (SBS 30) was not present. The analysis was extended to 27,421 breast cancer cases and 19,759 controls from 10 international studies revealing 138 cases and 93 controls with a heterozygous LoF variant (OR 1.06, 95% CI: 0.82-1.39) and 316 cases and 179 controls with a missense variant (OR 1.31, 95% CI: 1.09-1.57). Missense variants selected for deleterious features by a number of in silico bioinformatic prediction tools or located within the endonuclease III functional domain showed a stronger association with breast cancer. Somatic sequencing of breast cancers from carriers indicated that the risk associated with NTHL1 appears to operate through haploinsufficiency, consistent with other described low-penetrance breast cancer genes. Data from this very large international multicenter study suggests that heterozygous pathogenic germline coding variants in NTHL1 may be associated with low- to moderate- increased risk of breast cancer.
Collapse
Affiliation(s)
- Na Li
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Vic, Australia
| | - Magnus Zethoven
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Simone McInerny
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Vic, Australia
| | - Lisa Devereux
- Lifepool, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Yu-Kuan Huang
- Upper Gastrointestinal Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Vic, Australia
| | - Niko Thio
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Dane Cheasley
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia
| | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO); Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Alejandro Moles-Fernández
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO); Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Orland Diez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO); Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Area of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Tu Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Quebec, Canada
| | - Martine Dumont
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Quebec, Canada
| | - Penny Soucy
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Quebec, Canada
| | - Alfons Meindl
- University of Munich, Campus Großhadern, Department of Gynecology and Obstetrics, Munich, Germany
| | - Rita Schmutzler
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Familial Breast and Ovarian Cancer, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Integrated Oncology (CIO), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Muriel A Adank
- Family Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eric Hahnen
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Familial Breast and Ovarian Cancer, Cologne, Germany
| | - Christoph Engel
- Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Elodie Girard
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Elad Ziv
- Department of Medicine, University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Discipline of Medical Genetics, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Division of Molecular Medicine, Pathology North, Newcastle, NSW, Australia
| | - Kylie L Gorringe
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Paul A James
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Vic, Australia
| | - Ian G Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia.
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Zhang T, Zheng S, Liu Y, Li X, Wu J, Sun Y, Liu G. DNA damage response and PD-1/PD-L1 pathway in ovarian cancer. DNA Repair (Amst) 2021; 102:103112. [PMID: 33838550 DOI: 10.1016/j.dnarep.2021.103112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/17/2021] [Accepted: 03/27/2021] [Indexed: 12/15/2022]
Abstract
Ovarian cancer has a poor prognosis due to drug resistance, relapse and metastasis. In recent years, immunotherapy has been applied in numerous cancers clinically. However, the effect of immunotherapy monotherapy in ovarian cancer is limited. DNA damage response (DDR) is an essential factor affecting the efficacy of tumor immunotherapy. Defective DNA repair may lead to carcinogenesis and tumor genomic instability, but on the other hand, it may also portend particular vulnerability of tumors and can be used as biomarkers for immunotherapy patient selection. Programmed cell death 1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway mediates tumor immune escape, which may be a promising target for immunotherapy. Therefore, further understanding of the mechanism of PD-L1 expression after DDR may help guide the development of immunotherapy in ovarian cancer. In this review, we present the DNA damage repair pathway and summarize how DNA damage repair affects the PD-1/PD-L1 pathway in cancer cells. And then we look for biomarkers that affect efficacy or prognosis. Finally, we review the progress of PD-1/PD-L1-based immunotherapy in combination with other therapies that may affect the DDR pathway in ovarian cancer.
Collapse
Affiliation(s)
- Tianyu Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Shuangshuang Zheng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Yang Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Xiao Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Jing Wu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Yue Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Guoyan Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| |
Collapse
|
14
|
Abstract
Efficient DNA repair is essential to maintain genomic integrity. An average of 30,000 base lesions per cell are removed daily by the DNA glycosylases of the base excision repair machinery. With the advent of whole genome sequencing, many germline mutations in these DNA glycosylases have been identified and associated with various diseases, including cancer. In this graphical review, we discuss the function of the NTHL1 DNA glycosylase and how genomic mutations and altered function of this protein contributes to cancer and aging. We highlight its role in a rare tumor syndrome, NTHL1-associated polyposis (NAP), and summarize various other polymorphisms in NTHL1 that can induce early hallmarks of cancer, including genomic instability and cellular transformation.
Collapse
Affiliation(s)
- Lipsa Das
- Department of Cellular and Molecular Medicine and University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ, 85724, United States
| | - Victoria G Quintana
- Department of Cellular and Molecular Medicine and University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ, 85724, United States
| | - Joann B Sweasy
- Department of Cellular and Molecular Medicine and University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ, 85724, United States.
| |
Collapse
|
15
|
Alvarado-Cruz I, Meas R, Paluri SLA, Carufe KEW, Khan M, Sweasy JB. The double-edged sword of cancer mutations: exploiting neoepitopes for the fight against cancer. Mutagenesis 2021; 35:69-78. [PMID: 31880305 DOI: 10.1093/mutage/gez049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Defects in DNA repair have been linked to the accumulation of somatic mutations in tumours. These mutations can promote oncogenesis; however, recent developments have indicated that they may also lead to a targeted immune response against the tumour. This response is initiated by the development of new antigenic epitopes (neoepitopes) arising from mutations in protein-coding genes that are processed and then presented on the surface of tumour cells. These neoepitopes are unique to the tumour, thus enabling lymphocytes to launch an immune response against the cancer cells. Immunotherapies, such as checkpoint inhibitors (CPIs) and tumour-derived vaccines, have been shown to enhance the immunogenic response to cancers and have led to complete remission in some cancer patients. There are tumours that are not responsive to immunotherapy or conventional tumour therapeutics; therefore, there is a push for new treatments to combat these unresponsive cancers. Recently, combinatorial treatments have been developed to further utilise the immune system in the fight against cancer. These treatments have the potential to exploit the defects in DNA repair by inducing more DNA damage and mutations. This can potentially lead to the expression of high levels of neoepitopes on the surface of tumour cells that will stimulate an immunological response. Overall, exploiting DNA repair defects in tumours may provide an edge in this long fight against cancer.
Collapse
Affiliation(s)
| | - Rithy Meas
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | | | | | - Mohammed Khan
- Department of Cellular and Molecular Medicine, UA College of Medicine, Tucson, AZ, USA
| | | |
Collapse
|
16
|
Bacolla A, Sengupta S, Ye Z, Yang C, Mitra J, De-Paula R, Hegde ML, Ahmed Z, Mort M, Cooper D, Mitra S, Tainer JA. Heritable pattern of oxidized DNA base repair coincides with pre-targeting of repair complexes to open chromatin. Nucleic Acids Res 2021; 49:221-243. [PMID: 33300026 PMCID: PMC7797072 DOI: 10.1093/nar/gkaa1120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/12/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Human genome stability requires efficient repair of oxidized bases, which is initiated via damage recognition and excision by NEIL1 and other base excision repair (BER) pathway DNA glycosylases (DGs). However, the biological mechanisms underlying detection of damaged bases among the million-fold excess of undamaged bases remain enigmatic. Indeed, mutation rates vary greatly within individual genomes, and lesion recognition by purified DGs in the chromatin context is inefficient. Employing super-resolution microscopy and co-immunoprecipitation assays, we find that acetylated NEIL1 (AcNEIL1), but not its non-acetylated form, is predominantly localized in the nucleus in association with epigenetic marks of uncondensed chromatin. Furthermore, chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) revealed non-random AcNEIL1 binding near transcription start sites of weakly transcribed genes and along highly transcribed chromatin domains. Bioinformatic analyses revealed a striking correspondence between AcNEIL1 occupancy along the genome and mutation rates, with AcNEIL1-occupied sites exhibiting fewer mutations compared to AcNEIL1-free domains, both in cancer genomes and in population variation. Intriguingly, from the evolutionarily conserved unstructured domain that targets NEIL1 to open chromatin, its damage surveillance of highly oxidation-susceptible sites to preserve essential gene function and to limit instability and cancer likely originated ∼500 million years ago during the buildup of free atmospheric oxygen.
Collapse
Affiliation(s)
- Albino Bacolla
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shiladitya Sengupta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Zu Ye
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunying Yang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Ruth B De-Paula
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Zamal Ahmed
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - John A Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
17
|
Hans F, Senarisoy M, Bhaskar Naidu C, Timmins J. Focus on DNA Glycosylases-A Set of Tightly Regulated Enzymes with a High Potential as Anticancer Drug Targets. Int J Mol Sci 2020; 21:ijms21239226. [PMID: 33287345 PMCID: PMC7730500 DOI: 10.3390/ijms21239226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer is the second leading cause of death with tens of millions of people diagnosed with cancer every year around the world. Most radio- and chemotherapies aim to eliminate cancer cells, notably by causing severe damage to the DNA. However, efficient repair of such damage represents a common mechanism of resistance to initially effective cytotoxic agents. Thus, development of new generation anticancer drugs that target DNA repair pathways, and more particularly the base excision repair (BER) pathway that is responsible for removal of damaged bases, is of growing interest. The BER pathway is initiated by a set of enzymes known as DNA glycosylases. Unlike several downstream BER enzymes, DNA glycosylases have so far received little attention and the development of specific inhibitors of these enzymes has been lagging. Yet, dysregulation of DNA glycosylases is also known to play a central role in numerous cancers and at different stages of the disease, and thus inhibiting DNA glycosylases is now considered a valid strategy to eliminate cancer cells. This review provides a detailed overview of the activities of DNA glycosylases in normal and cancer cells, their modes of regulation, and their potential as anticancer drug targets.
Collapse
|
18
|
Marsden CG, Jaruga P, Coskun E, Maher RL, Pederson DS, Dizdaroglu M, Sweasy JB. Expression of a germline variant in the N-terminal domain of the human DNA glycosylase NTHL1 induces cellular transformation without impairing enzymatic function or substrate specificity. Oncotarget 2020; 11:2262-2272. [PMID: 32595826 PMCID: PMC7299534 DOI: 10.18632/oncotarget.27548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/14/2020] [Indexed: 01/04/2023] Open
Abstract
Oxidatively-induced DNA damage, widely accepted as a key player in the onset of cancer, is predominantly repaired by base excision repair (BER). BER is initiated by DNA glycosylases, which locate and remove damaged bases from DNA. NTHL1 is a bifunctional DNA glycosylase in mammalian cells that predominantly removes oxidized pyrimidines. In this study, we investigated a germline variant in the N-terminal domain of NTHL1, R33K. Expression of NTHL1 R33K in human MCF10A cells resulted in increased proliferation and anchorage-independent growth compared to NTHL1 WT-expressing cells. However, wt-NTHL1 and R33K-NTHL1 exhibited similar substrate specificity, excision kinetics, and enzyme turnover in vitro and in vivo. The results of this study indicate an important function of R33 in BER that is disrupted by the R33K mutation. Furthermore, the cellular transformation induced by R33K-NTHL1 expression suggests that humans harboring this germline variant may be at increased risk for cancer incidence.
Collapse
Affiliation(s)
- Carolyn G Marsden
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405, USA.,Present address: Saint Michael's College, Colchester, VT 05439, USA
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Erdem Coskun
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.,Present address: Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Robyn L Maher
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - David S Pederson
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Joann B Sweasy
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA
| |
Collapse
|
19
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Jun YW, Wilson DL, Kietrys AM, Lotsof ER, Conlon SG, David SS, Kool ET. An Excimer Clamp for Measuring Damaged-Base Excision by the DNA Repair Enzyme NTH1. Angew Chem Int Ed Engl 2020; 59:7450-7455. [PMID: 32109332 PMCID: PMC7180134 DOI: 10.1002/anie.202001516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Indexed: 11/10/2022]
Abstract
Direct measurement of DNA repair enzyme activities is important both for the basic study of cellular repair pathways as well as for potential new translational applications in their associated diseases. NTH1, a major glycosylase targeting oxidized pyrimidines, prevents mutations arising from this damage, and the regulation of NTH1 activity is important in resisting oxidative stress and in suppressing tumor formation. Herein, we describe a novel molecular strategy for the direct detection of damaged DNA base excision activity by a ratiometric fluorescence change. This strategy utilizes glycosylase-induced excimer formation of pyrenes, and modified DNA probes, incorporating two pyrene deoxynucleotides and a damaged base, enable the direct, real-time detection of NTH1 activity in vitro and in cellular lysates. The probe design was also applied in screening for potential NTH1 inhibitors, leading to the identification of a new small-molecule inhibitor with sub-micromolar potency.
Collapse
Affiliation(s)
- Yong Woong Jun
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - David L Wilson
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Anna M Kietrys
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Elizabeth R Lotsof
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Savannah G Conlon
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Sheila S David
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
21
|
Jun YW, Wilson DL, Kietrys AM, Lotsof ER, Conlon SG, David SS, Kool ET. An Excimer Clamp for Measuring Damaged‐Base Excision by the DNA Repair Enzyme NTH1. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong Woong Jun
- Department of ChemistryStanford University Stanford CA 94305 USA
| | - David L. Wilson
- Department of ChemistryStanford University Stanford CA 94305 USA
| | - Anna M. Kietrys
- Department of ChemistryStanford University Stanford CA 94305 USA
| | | | - Savannah G. Conlon
- Department of ChemistryUniversity of California, Davis Davis CA 95616 USA
| | - Sheila S. David
- Department of ChemistryUniversity of California, Davis Davis CA 95616 USA
| | - Eric T. Kool
- Department of ChemistryStanford University Stanford CA 94305 USA
| |
Collapse
|
22
|
Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases in Colorectal Cancer Patients. Int J Mol Sci 2020; 21:ijms21072473. [PMID: 32252452 PMCID: PMC7177219 DOI: 10.3390/ijms21072473] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress with subsequent premutagenic oxidative DNA damage has been implicated in colorectal carcinogenesis. The repair of oxidative DNA damage is initiated by lesion-specific DNA glycosylases (hOGG1, NTH1, MUTYH). The direct evidence of the role of oxidative DNA damage and its repair is proven by hereditary syndromes (MUTYH-associated polyposis, NTHL1-associated tumor syndrome), where germline mutations cause loss-of-function in glycosylases of base excision repair, thus enabling the accumulation of oxidative DNA damage and leading to the adenoma-colorectal cancer transition. Unrepaired oxidative DNA damage often results in G:C>T:A mutations in tumor suppressor genes and proto-oncogenes and widespread occurrence of chromosomal copy-neutral loss of heterozygosity. However, the situation is more complicated in complex and heterogeneous disease, such as sporadic colorectal cancer. Here we summarized our current knowledge of the role of oxidative DNA damage and its repair on the onset, prognosis and treatment of sporadic colorectal cancer. Molecular and histological tumor heterogeneity was considered. Our study has also suggested an additional important source of oxidative DNA damage due to intestinal dysbiosis. The roles of base excision repair glycosylases (hOGG1, MUTYH) in tumor and adjacent mucosa tissues of colorectal cancer patients, particularly in the interplay with other factors (especially microenvironment), deserve further attention. Base excision repair characteristics determined in colorectal cancer tissues reflect, rather, a disease prognosis. Finally, we discuss the role of DNA repair in the treatment of colon cancer, since acquired or inherited defects in DNA repair pathways can be effectively used in therapy.
Collapse
|
23
|
Nelson SR, Kathe SD, Hilzinger TS, Averill AM, Warshaw DM, Wallace SS, Lee AJ. Single molecule glycosylase studies with engineered 8-oxoguanine DNA damage sites show functional defects of a MUTYH polyposis variant. Nucleic Acids Res 2019; 47:3058-3071. [PMID: 30698731 PMCID: PMC6451117 DOI: 10.1093/nar/gkz045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/03/2019] [Accepted: 01/17/2019] [Indexed: 01/09/2023] Open
Abstract
Proper repair of oxidatively damaged DNA bases is essential to maintain genome stability. 8-Oxoguanine (7,8-dihydro-8-oxoguanine, 8-oxoG) is a dangerous DNA lesion because it can mispair with adenine (A) during replication resulting in guanine to thymine transversion mutations. MUTYH DNA glycosylase is responsible for recognizing and removing the adenine from 8-oxoG:adenine (8-oxoG:A) sites. Biallelic mutations in the MUTYH gene predispose individuals to MUTYH-associated polyposis (MAP), and the most commonly observed mutation in some MAP populations is Y165C. Tyr165 is a ‘wedge’ residue that intercalates into the DNA duplex in the lesion bound state. Here, we utilize single molecule fluorescence microscopy to visualize the real-time search behavior of Escherichia coli and Mus musculus MUTYH WT and wedge variant orthologs on DNA tightropes that contain 8-oxoG:A, 8-oxoG:cytosine, or apurinic product analog sites. We observe that MUTYH WT is able to efficiently find 8-oxoG:A damage and form highly stable bound complexes. In contrast, MUTYH Y150C shows decreased binding lifetimes on undamaged DNA and fails to form a stable lesion recognition complex at damage sites. These findings suggest that MUTYH does not rely upon the wedge residue for damage site recognition, but this residue stabilizes the lesion recognition complex.
Collapse
Affiliation(s)
- Shane R Nelson
- Department of Molecular Physiology and Biophysics, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Scott D Kathe
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Thomas S Hilzinger
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - April M Averill
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Andrea J Lee
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
24
|
Maher RL, Wallace SS, Pederson DS. The lyase activity of bifunctional DNA glycosylases and the 3'-diesterase activity of APE1 contribute to the repair of oxidized bases in nucleosomes. Nucleic Acids Res 2019; 47:2922-2931. [PMID: 30649547 PMCID: PMC6451105 DOI: 10.1093/nar/gky1315] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/20/2018] [Accepted: 12/31/2018] [Indexed: 12/22/2022] Open
Abstract
The vast majority of oxidized bases that form in DNA are subject to base excision repair (BER). The DNA intermediates generated during successive steps in BER may prove mutagenic or lethal, making it critical that they be 'handed' from one BER enzyme to the next in a coordinated fashion. Here, we report that the handoff of BER intermediates that occurs during the repair of naked DNA substrates differs significantly from that in nucleosomes. During BER of oxidized bases in naked DNA, products generated by the DNA glycosylase NTHL1 were efficiently processed by the downstream enzyme, AP-endonuclease (APE1). In nucleosomes, however, NTHL1-generated products accumulated to significant levels and persisted for some time. During BER of naked DNA substrates, APE1 completely bypasses the inefficient lyase activity of NTHL1. In nucleosomes, the NTHL1-associated lyase contributes to BER, even in the presence of APE1. Moreover, in nucleosomes but not in naked DNA, APE1 was able to process NTHL1 lyase-generated substrates just as efficiently as it processed abasic sites. Thus, the lyase activity of hNTHL1, and the 3' diesterase activity of APE1, which had been seen as relatively dispensable, may have been preserved during evolution to enhance BER in chromatin.
Collapse
Affiliation(s)
- Robyn L Maher
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405-0068, USA
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405-0068, USA
| | - David S Pederson
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405-0068, USA
| |
Collapse
|
25
|
NTH1 Is a New Target for Ubiquitylation-Dependent Regulation by TRIM26 Required for the Cellular Response to Oxidative Stress. Mol Cell Biol 2018; 38:MCB.00616-17. [PMID: 29610152 PMCID: PMC5974432 DOI: 10.1128/mcb.00616-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/23/2018] [Indexed: 11/20/2022] Open
Abstract
Endonuclease III-like protein 1 (NTH1) is a DNA glycosylase required for the repair of oxidized bases, such as thymine glycol, within the base excision repair pathway. We examined regulation of NTH1 protein by the ubiquitin proteasome pathway and identified the E3 ubiquitin ligase tripartite motif 26 (TRIM26) as the major enzyme targeting NTH1 for polyubiquitylation. We demonstrate that TRIM26 catalyzes ubiquitylation of NTH1 predominantly on lysine 67 present within the N terminus of the protein in vitro In addition, the stability of a ubiquitylation-deficient protein mutant of NTH1 (lysine to arginine) at this specific residue was significantly increased in comparison to the wild-type protein when transiently expressed in cultured cells. We also demonstrate that cellular NTH1 protein is induced in response to oxidative stress following hydrogen peroxide treatment of cells and that accumulation of NTH1 on chromatin is exacerbated in the absence of TRIM26 through small interfering RNA (siRNA) depletion. Stabilization of NTH1 following TRIM26 siRNA also causes significant acceleration in the kinetics of DNA damage repair and cellular resistance to oxidative stress, which can be recapitulated by moderate overexpression of NTH1. This demonstrates the importance of TRIM26 in regulating the cellular levels of NTH1, particularly under conditions of oxidative stress.
Collapse
|
26
|
Limpose KL, Trego KS, Li Z, Leung SW, Sarker AH, Shah JA, Ramalingam SS, Werner EM, Dynan WS, Cooper PK, Corbett AH, Doetsch PW. Overexpression of the base excision repair NTHL1 glycosylase causes genomic instability and early cellular hallmarks of cancer. Nucleic Acids Res 2018; 46:4515-4532. [PMID: 29522130 PMCID: PMC5961185 DOI: 10.1093/nar/gky162] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
Base excision repair (BER), which is initiated by DNA N-glycosylase proteins, is the frontline for repairing potentially mutagenic DNA base damage. The NTHL1 glycosylase, which excises DNA base damage caused by reactive oxygen species, is thought to be a tumor suppressor. However, in addition to NTHL1 loss-of-function mutations, our analysis of cancer genomic datasets reveals that NTHL1 frequently undergoes amplification or upregulation in some cancers. Whether NTHL1 overexpression could contribute to cancer phenotypes has not yet been explored. To address the functional consequences of NTHL1 overexpression, we employed transient overexpression. Both NTHL1 and a catalytically-dead NTHL1 (CATmut) induce DNA damage and genomic instability in non-transformed human bronchial epithelial cells (HBEC) when overexpressed. Strikingly, overexpression of either NTHL1 or CATmut causes replication stress signaling and a decrease in homologous recombination (HR). HBEC cells that overexpress NTHL1 or CATmut acquire the ability to grow in soft agar and exhibit loss of contact inhibition, suggesting that a mechanism independent of NTHL1 catalytic activity contributes to acquisition of cancer-related cellular phenotypes. We provide evidence that NTHL1 interacts with the multifunctional DNA repair protein XPG suggesting that interference with HR is a possible mechanism that contributes to acquisition of early cellular hallmarks of cancer.
Collapse
Affiliation(s)
- Kristin L Limpose
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA
| | - Kelly S Trego
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zhentian Li
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sara W Leung
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Altaf H Sarker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jason A Shah
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Erica M Werner
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William S Dynan
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Priscilla K Cooper
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| |
Collapse
|
27
|
Galick HA, Marsden CG, Kathe S, Dragon JA, Volk L, Nemec AA, Wallace SS, Prakash A, Doublié S, Sweasy JB. The NEIL1 G83D germline DNA glycosylase variant induces genomic instability and cellular transformation. Oncotarget 2017; 8:85883-85895. [PMID: 29156764 PMCID: PMC5689654 DOI: 10.18632/oncotarget.20716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023] Open
Abstract
Base excision repair (BER) is a key genome maintenance pathway. The NEIL1 DNA glycosylase recognizes oxidized bases, and likely removes damage in advance of the replication fork. The rs5745906 SNP of the NEIL1 gene is a rare human germline variant that encodes the NEIL1 G83D protein, which is devoid of DNA glycosylase activity. Here we show that expression of G83D NEIL1 in MCF10A immortalized but non-transformed mammary epithelial cells leads to replication fork stress. Upon treatment with hydrogen peroxide, we observe increased levels of stalled replication forks in cells expressing G83D NEIL1 versus cells expressing the wild-type (WT) protein. Double-strand breaks (DSBs) arise in G83D-expressing cells during the S and G2/M phases of the cell cycle. Interestingly, these breaks result in genomic instability in the form of high levels of chromosomal aberrations and micronuclei. Cells expressing G83D also grow in an anchorage independent manner, suggesting that the genomic instability results in a carcinogenic phenotype. Our results are consistent with the idea that an inability to remove oxidative damage in an efficient manner at the replication fork leads to genomic instability and mutagenesis. We suggest that individuals who harbor the G83D NEIL1 variant face an increased risk for human cancer.
Collapse
Affiliation(s)
- Heather A Galick
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - Carolyn G Marsden
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - Scott Kathe
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - Julie A Dragon
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - Lindsay Volk
- Present address: University of New Mexico, Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Antonia A Nemec
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - Aishwarya Prakash
- Present address: University of South Alabama, Mitchell Cancer Institute, Mobile, AL, 36604, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - Joann B Sweasy
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
28
|
Maher RL, Marsden CG, Averill AM, Wallace SS, Sweasy JB, Pederson DS. Human cells contain a factor that facilitates the DNA glycosylase-mediated excision of oxidized bases from occluded sites in nucleosomes. DNA Repair (Amst) 2017; 57:91-97. [PMID: 28709015 PMCID: PMC5569575 DOI: 10.1016/j.dnarep.2017.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 11/29/2022]
Abstract
Reactive oxygen species generate some 20,000 base lesions per human cell per day. The vast majority of these potentially mutagenic or cytotoxic lesions are subject to base excision repair (BER). Although chromatin remodelers have been shown to enhance the excision of oxidized bases from nucleosomes in vitro, it is not clear that they are recruited to and act at sites of BER in vivo. To test the hypothesis that cells possess factors that enhance BER in chromatin, we assessed the capacity of nuclear extracts from human cells to excise thymine glycol (Tg) lesions from exogenously added, model nucleosomes. The DNA glycosylase NTHL1 in these extracts was able to excise Tg from both naked DNA and sites in nucleosomes that earlier studies had shown to be sterically accessible. However, the same extracts were able to excise lesions from sterically-occluded sites in nucleosomes only after the addition of Mg2+/ATP. Gel mobility shift assays indicated that nucleosomes remain largely intact following the Mg2+/ATP -dependent excision reaction. Size exclusion chromatography indicated that the NTHL1-stimulating activity has a relatively low molecular weight, close to that of NTHL1 and other BER glycosylases; column fractions that contained the very large chromatin remodeling complexes did not exhibit this same stimulatory activity. These results indicate that cells possess a factor(s) that promotes the initiation of BER in chromatin, but differs from most known chromatin remodeling complexes.
Collapse
Affiliation(s)
- R L Maher
- Department of Microbiology and Molecular Genetics, and The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - C G Marsden
- Department of Microbiology and Molecular Genetics, and The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - A M Averill
- Department of Microbiology and Molecular Genetics, and The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - S S Wallace
- Department of Microbiology and Molecular Genetics, and The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - J B Sweasy
- Department of Microbiology and Molecular Genetics, and The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA; Departments of Therapeutic Radiology and Human Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - D S Pederson
- Department of Microbiology and Molecular Genetics, and The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
29
|
D'Errico M, Parlanti E, Pascucci B, Fortini P, Baccarini S, Simonelli V, Dogliotti E. Single nucleotide polymorphisms in DNA glycosylases: From function to disease. Free Radic Biol Med 2017; 107:278-291. [PMID: 27932076 DOI: 10.1016/j.freeradbiomed.2016.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 02/08/2023]
Abstract
Oxidative stress is associated with a growing number of diseases that span from cancer to neurodegeneration. Most oxidatively induced DNA base lesions are repaired by the base excision repair (BER) pathway which involves the action of various DNA glycosylases. There are numerous genome wide studies attempting to associate single-nucleotide polymorphisms (SNPs) with predispositions to various types of disease; often, these common variants do not have significant alterations in their biochemical function and do not exhibit a convincing phenotype. Nevertheless several lines of evidence indicate that SNPs in DNA repair genes may modulate DNA repair capacity and contribute to risk of disease. This overview provides a convincing picture that SNPs of DNA glycosylases that remove oxidatively generated DNA lesions are susceptibility factors for a wide disease spectrum that includes besides cancer (particularly lung, breast and gastrointestinal tract), cochlear/ocular disorders, myocardial infarction and neurodegenerative disorders which can be all grouped under the umbrella of oxidative stress-related pathologies.
Collapse
Affiliation(s)
- Mariarosaria D'Errico
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Eleonora Parlanti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Barbara Pascucci
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Salaria, Km 29,300, 00016 Monterotondo Stazione, Rome, Italy
| | - Paola Fortini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Sara Baccarini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Valeria Simonelli
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Eugenia Dogliotti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
30
|
Abstract
Base excision repair (BER) is a key genome maintenance pathway that removes endogenously damaged DNA bases that arise in cells at very high levels on a daily basis. Failure to remove these damaged DNA bases leads to increased levels of mutagenesis and chromosomal instability, which have the potential to drive carcinogenesis. Next-generation sequencing of the germline and tumor genomes of thousands of individuals has uncovered many rare mutations in BER genes. Given that BER is critical for genome maintenance, it is important to determine whether BER genomic variants have functional phenotypes. In this chapter, we present our in silico methods for the identification and prioritization of BER variants for further study. We also provide detailed instructions and commentary on the initial cellular assays we employ to dissect potentially important phenotypes of human BER variants and highlight the strengths and weaknesses of our approaches. BER variants possessing interesting functional phenotypes can then be studied in more detail to provide important mechanistic insights regarding the role of aberrant BER in carcinogenesis.
Collapse
|
31
|
Abstract
Human alkyladenine DNA glycosylase (AAG) initiates base excision repair (BER) to guard against mutations by excising alkylated and deaminated purines. Counterintuitively, increased expression of AAG has been implicated in increased rates of spontaneous mutation in microsatellite repeats. This microsatellite mutator phenotype is consistent with a model in which AAG excises bulged (unpaired) bases, altering repeat length. To directly test the role of base excision in AAG-induced mutagenesis, we conducted mutation accumulation experiments in yeast overexpressing different variants of AAG and detected mutations via high-depth genome resequencing. We also developed a new software tool, hp_caller, to perform accurate genotyping at homopolymeric repeat loci. Overexpression of wild-type AAG elevated indel mutations in homopolymeric sequences distributed throughout the genome. However, catalytically inactive variants (E125Q/E125A) caused equal or greater increases in frameshift mutations. These results disprove the hypothesis that base excision is the key step in mutagenesis by overexpressed wild-type AAG. Instead, our results provide additional support for the previously published model wherein overexpressed AAG interferes with the mismatch repair (MMR) pathway. In addition to the above results, we observed a dramatic mutator phenotype for N169S AAG, which has increased rates of excision of undamaged purines. This mutant caused a 10-fold increase in point mutations at G:C base pairs and a 50-fold increase in frameshifts in A:T homopolymers. These results demonstrate that it is necessary to consider the relative activities and abundance of many DNA replication and repair proteins when considering mutator phenotypes, as they are relevant to the development of cancer and its resistance to treatment.
Collapse
|
32
|
Whitaker AM, Schaich MA, Smith MR, Flynn TS, Freudenthal BD. Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci (Landmark Ed) 2017; 22:1493-1522. [PMID: 28199214 DOI: 10.2741/4555] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species continuously assault the structure of DNA resulting in oxidation and fragmentation of the nucleobases. Both oxidative DNA damage itself and its repair mediate the progression of many prevalent human maladies. The major pathway tasked with removal of oxidative DNA damage, and hence maintaining genomic integrity, is base excision repair (BER). The aphorism that structure often dictates function has proven true, as numerous recent structural biology studies have aided in clarifying the molecular mechanisms used by key BER enzymes during the repair of damaged DNA. This review focuses on the mechanistic details of the individual BER enzymes and the association of these enzymes during the development and progression of human diseases, including cancer and neurological diseases. Expanding on these structural and biochemical studies to further clarify still elusive BER mechanisms, and focusing our efforts toward gaining an improved appreciation of how these enzymes form co-complexes to facilitate DNA repair is a crucial next step toward understanding how BER contributes to human maladies and how it can be manipulated to alter patient outcomes.
Collapse
Affiliation(s)
- Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Matthew A Schaich
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Mallory R Smith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Tony S Flynn
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160,
| |
Collapse
|
33
|
Illuzzi JL, McNeill DR, Bastian P, Brenerman B, Wersto R, Russell HR, Bunz F, McKinnon PJ, Becker KG, Wilson DM. Tumor-associated APE1 variant exhibits reduced complementation efficiency but does not promote cancer cell phenotypes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:84-98. [PMID: 28181292 PMCID: PMC5321783 DOI: 10.1002/em.22074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
Base excision repair (BER) is the major pathway for coping with most forms of endogenous DNA damage, and defects in the process have been associated with carcinogenesis. Apurinic/apyrimidinic endonuclease 1 (APE1) is a central participant in BER, functioning as a critical endonuclease in the processing of noncoding abasic sites in DNA. Evidence has suggested that APE1 missense mutants, as well as altered expression or localization of the protein, can contribute to disease manifestation. We report herein that the tumor-associated APE1 variant, R237C, shows reduced complementation efficiency of the methyl methanesulfonate hypersensitivity and impaired cell growth exhibited by APE1-deficient mouse embryonic fibroblasts. Overexpression of wild-type APE1 or the R237C variant in the nontransformed C127I mouse cell line had no effect on proliferation, cell cycle status, steady-state DNA damage levels, mitochondrial function, or cellular transformation. A human cell line heterozygous for an APE1 knockout allele had lower levels of endogenous APE1, increased cellular sensitivity to DNA-damaging agents, impaired proliferation with time, and a distinct global gene expression pattern consistent with a stress phenotype. Our results indicate that: (i) the tumor-associated R237C variant is a possible susceptibility factor, but not likely a driver of cancer cell phenotypes, (ii) overexpression of APE1 does not readily promote cellular transformation, and (iii) haploinsufficiency at the APE1 locus can have profound cellular consequences, consistent with BER playing a critical role in proliferating cells. Environ. Mol. Mutagen. 58:84-98, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer L. Illuzzi
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Daniel R. McNeill
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Paul Bastian
- Laboratory of Genetics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Boris Brenerman
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Robert Wersto
- Flow Cytometry Unit, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Helen R. Russell
- Genetics Department, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Peter J. McKinnon
- Genetics Department, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Kevin G. Becker
- Laboratory of Genetics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - David M. Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
34
|
Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 771:99-127. [PMID: 28342455 DOI: 10.1016/j.mrrev.2017.02.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 02/07/2023]
Abstract
Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy.
Collapse
|
35
|
Nemec AA, Bush KB, Towle-Weicksel JB, Taylor BF, Schulz V, Weidhaas JB, Tuck DP, Sweasy JB. Estrogen Drives Cellular Transformation and Mutagenesis in Cells Expressing the Breast Cancer-Associated R438W DNA Polymerase Lambda Protein. Mol Cancer Res 2016; 14:1068-1077. [PMID: 27621267 DOI: 10.1158/1541-7786.mcr-16-0209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/22/2016] [Accepted: 08/30/2016] [Indexed: 11/16/2022]
Abstract
Repair of DNA damage is critical for maintaining the genomic integrity of cells. DNA polymerase lambda (POLL/Pol λ) is suggested to function in base excision repair (BER) and nonhomologous end-joining (NHEJ), and is likely to play a role in damage tolerance at the replication fork. Here, using next-generation sequencing, it was discovered that the POLL rs3730477 single-nucleotide polymorphism (SNP) encoding R438W Pol λ was significantly enriched in the germlines of breast cancer patients. Expression of R438W Pol λ in human breast epithelial cells induces cellular transformation and chromosomal aberrations. The role of estrogen was assessed as it is commonly used in hormone replacement therapies and is a known breast cancer risk factor. Interestingly, the combination of estrogen treatment and the expression of the R438W Pol λ SNP drastically accelerated the rate of transformation. Estrogen exposure produces 8-oxoguanine lesions that persist in cells expressing R438W Pol λ compared with wild-type (WT) Pol λ-expressing cells. Unlike WT Pol λ, which performs error-free bypass of 8-oxoguanine lesions, expression of R438W Pol λ leads to an increase in mutagenesis and replicative stress in cells treated with estrogen. Together, these data suggest that individuals who carry the rs3730477 POLL germline variant have an increased risk of estrogen-associated breast cancer. IMPLICATIONS The Pol λ R438W mutation can serve as a biomarker to predict cancer risk and implicates that treatment with estrogen in individuals with this mutation may further increase their risk of breast cancer. Mol Cancer Res; 14(11); 1068-77. ©2016 AACR.
Collapse
Affiliation(s)
- Antonia A Nemec
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Korie B Bush
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut
| | | | - B Frazier Taylor
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut
| | - Vincent Schulz
- Department of Pediatrics, Yale University, New Haven, Connecticut
| | - Joanne B Weidhaas
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.,Division of Molecular and Cellular Oncology, UCLA, Los Angeles, California
| | - David P Tuck
- Departmentof Pathology, Yale University, New Haven, Connecticut
| | - Joann B Sweasy
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| |
Collapse
|
36
|
Couto PG, Bastos-Rodrigues L, Carneiro JG, Guieiro F, Bicalho MA, Leidenz FB, Bicalho AJ, Friedman E, De Marco L. DNA Base-Excision Repair Genes OGG1 and NTH1 in Brazilian Lung Cancer Patients. Mol Diagn Ther 2016; 19:389-95. [PMID: 26400813 DOI: 10.1007/s40291-015-0164-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Lung cancer is the leading global cause of cancer-related mortality and is associated with poor prognosis. To improve survival rates of lung cancer patients, better understanding of tumorigenic mechanisms is necessary, which may lead to development of new therapeutic strategies. The hOGG1 and NTH1 genes act in the DNA BER repair pathway and their involvement in lung cancer pathogenesis has been analyzed in several populations. METHODS We analyzed targeted regions of the hOGG1 and NTH1 genes in 96 Brazilian patients with non-small-cell lung cancer (NSCLC) and 89 cancer-free, ethnically matched controls. RESULTS The NTH1 c.98G>T polymorphism rs2302172 (p = 0.02 and p = 0.02 for allele and genotype frequency between cases and controls, respectively) and the 140-17C> T variant (rs2233518) (p = 0.02 and p = 0.02 for allele and genotype frequency between cases and controls, respectively) were detected in four lung cancer cases (4 %) while the NTH1 Q131K (C391A) polymorphism was found in seven lung cancer cases (7 %) (p = 0.001 and p = 0.008, for allele and genotype frequency between cases and controls, respectively). None of these sequence variants were detected in controls. The Ser326Cys (C1245G, rs1052133) polymorphism in the OGG1 gene was detected in 42 % of analyzed NSCLC patients and in 34 % of the controls (p = 0.11 and p = 0.25 for allele and genotype frequency between cases and controls, respectively). CONCLUSIONS Our study provides preliminary evidence that polymorphisms in OGG1 do not contribute to development of NSCLC in Brazilian patients and that NTH1 polymorphisms may be associated with NSCLC pathogenesis.
Collapse
Affiliation(s)
- Patricia G Couto
- Department of Surgery, Universidade Federal de Minas Gerais, Av. Alfredo Balena 190, Room 114, Belo Horizonte, 30130-100, Brazil
| | - Luciana Bastos-Rodrigues
- Universidade Federal de Juiz de Fora, Campus Governador Valadares, Governador Valadares, Minas Gerais, Brazil
| | - Juliana G Carneiro
- Faculty of Medical Science, Centro de Ensino Superior e Desenvolvimento, Campina Grande, Brazil
| | - Fernanda Guieiro
- Department of Surgery, Universidade Federal de Minas Gerais, Av. Alfredo Balena 190, Room 114, Belo Horizonte, 30130-100, Brazil
| | | | - Franciele B Leidenz
- Department of Surgery, Universidade Federal de Minas Gerais, Av. Alfredo Balena 190, Room 114, Belo Horizonte, 30130-100, Brazil
| | - Ana J Bicalho
- Department of Surgery, Universidade Federal de Minas Gerais, Av. Alfredo Balena 190, Room 114, Belo Horizonte, 30130-100, Brazil
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Luiz De Marco
- Department of Surgery, Universidade Federal de Minas Gerais, Av. Alfredo Balena 190, Room 114, Belo Horizonte, 30130-100, Brazil.
| |
Collapse
|
37
|
Rozacky J, Nemec AA, Sweasy JB, Kidane D. Gastric cancer associated variant of DNA polymerase beta (Leu22Pro) promotes DNA replication associated double strand breaks. Oncotarget 2016; 6:24474-87. [PMID: 26090616 PMCID: PMC4695199 DOI: 10.18632/oncotarget.4426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/31/2015] [Indexed: 12/14/2022] Open
Abstract
DNA polymerase beta (Pol β) is a key enzymefor the protection against oxidative DNA lesions via itsrole in base excision repair (BER). Approximately 1/3 of tumors studied to date express Pol β variant proteins, and several tumors overexpress Pol β. Pol β possesses DNA polymerase and dRP lyase activities, both of which are known to be important for efficient BER. The dRP lyase activity resides within the 8kDa amino terminal domain of Pol β, is responsible for removal of the 5′ phosphate group (5′-dRP). The DNA polymerase subsequently fills the gaps. Previously, we demonstrated that the human gastric cancer-associated variant of Pol β (Leu22Pro (L22P)) lacks dRP lyase function in vitro. Here, we report that L22P-expressing cells harbor significantly increased replication associated DNA double strand breaks (DSBs) and defective maintenance of the nascent DNA strand (NDS) during replication stress. Moreover, L22P-expressing cells are sensitive to PARP1 inhibitors, which suggests trapped PARP1 binds to the 5′-dRP group and blocks replications forks, resulting in fork collapse and DSBs. Our data suggest that the normal function of the dRP lyase is critical to maintain replication fork integrity and prevent replication fork collapse to DSBs and cellular transformation.
Collapse
Affiliation(s)
- Jenna Rozacky
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, USA
| | - Antoni A Nemec
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Joann B Sweasy
- Departments of Therapeutic Radiology and Genetics, The Yale Comprehensive Cancer Center, New Haven CT, USA
| | - Dawit Kidane
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, USA
| |
Collapse
|
38
|
Almohaini M, Chalasani SL, Bafail D, Akopiants K, Zhou T, Yannone SM, Ramsden DA, Hartman MCT, Povirk LF. Nonhomologous end joining of complex DNA double-strand breaks with proximal thymine glycol and interplay with base excision repair. DNA Repair (Amst) 2016; 41:16-26. [PMID: 27049455 DOI: 10.1016/j.dnarep.2016.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 01/08/2023]
Abstract
DNA double-strand breaks induced by ionizing radiation are often accompanied by ancillary oxidative base damage that may prevent or delay their repair. In order to better define the features that make some DSBs repair-resistant, XLF-dependent nonhomologous end joining of blunt-ended DSB substrates having the oxidatively modified nonplanar base thymine glycol at the first (Tg1), second (Tg2), third (Tg3) or fifth (Tg5) positions from one 3' terminus, was examined in human whole-cell extracts. Tg at the third position had little effect on end-joining even when present on both ends of the break. However, Tg as the terminal or penultimate base was a major barrier to end joining (>10-fold reduction in ligated products) and an absolute barrier when present at both ends. Dideoxy trapping of base excision repair intermediates indicated that Tg was excised from Tg1, Tg2 and Tg3 largely if not exclusively after DSB ligation. However, Tg was rapidly excised from the Tg5 substrate, resulting in a reduced level of DSB ligation, as well as slow concomitant resection of the opposite strand. Ligase reactions containing only purified Ku, XRCC4, ligase IV and XLF showed that ligation of Tg3 and Tg5 was efficient and only partially XLF-dependent, whereas ligation of Tg1 and Tg2 was inefficient and only detectable in the presence of XLF. Overall, the results suggest that promoting ligation of DSBs with proximal base damage may be an important function of XLF, but that Tg can still be a major impediment to repair, being relatively resistant to both trimming and ligation. Moreover, it appears that base excision repair of Tg can sometimes interfere with repair of DSBs that would otherwise be readily rejoined.
Collapse
Affiliation(s)
- Mohammed Almohaini
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Sri Lakshmi Chalasani
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Duaa Bafail
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Konstantin Akopiants
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Tong Zhou
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Steven M Yannone
- Life Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, United States
| | - Dale A Ramsden
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Matthew C T Hartman
- Department of Chemistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Lawrence F Povirk
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
39
|
Xu X, Watt DS, Liu C. Multifaceted roles for thymine DNA glycosylase in embryonic development and human carcinogenesis. Acta Biochim Biophys Sin (Shanghai) 2016; 48:82-9. [PMID: 26370152 DOI: 10.1093/abbs/gmv083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/12/2015] [Indexed: 01/03/2023] Open
Abstract
Thymine DNA glycosylase (TDG) is a multifunctional protein that plays important roles in DNA repair, DNA demethylation, and transcriptional regulation. These diverse functions make TDG a unique enzyme in embryonic development and carcinogenesis. This review discusses the molecular function of TDG in human cancers and the previously unrecognized value of TDG as a potential target for drug therapy.
Collapse
Affiliation(s)
- Xuehe Xu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| |
Collapse
|
40
|
Sizova DV, Keh A, Taylor BF, Sweasy JB. The R280H X-ray cross-complementing 1 germline variant induces genomic instability and cellular transformation. DNA Repair (Amst) 2015; 31:73-9. [PMID: 26011397 DOI: 10.1016/j.dnarep.2015.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 05/03/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
X-ray repair cross complementing protein 1 (XRCC1) plays an important role in base excision DNA repair (BER) as a scaffolding protein for BER enzymes. BER is one of the basic DNA repair pathways repairing greater than 20,000 endogenous lesions per cell per day. Proper functioning of XRCC1, one of the most important players in BER, was suggested to be indispensable for effective DNA repair. Despite accumulating evidence of an important role that XRCC1 plays in maintaining genomic stability, the relationship between one of its most predominant variants, R280H (rs25489), and cancer prevalence remains ambiguous. In the current study we functionally characterized the effect of the R280H variant expression on immortal non-transformed mouse mammary epithelial C127 and human breast epithelial MCF10A cells. We found that expression of R280H results in increased focus formation in mouse C127 cells and induces cellular transformation in human MCF10A cells. Cells expressing R280H showed significantly increased levels of chromosomal aberrations and accumulate double strand breaks in the G1 cell cycle phase. Our results confirm a possible link between R280H and genomic instability and suggest that individuals carrying this mutation may be at increased risk of cancer development.
Collapse
Affiliation(s)
- Daria V Sizova
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06437, USA
| | - Agnes Keh
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06437, USA
| | - Ben F Taylor
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06437, USA
| | - Joann B Sweasy
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06437, USA.
| |
Collapse
|
41
|
Adhikari S, Chetram MA, Woodrick J, Mitra PS, Manthena PV, Khatkar P, Dakshanamurthy S, Dixon M, Karmahapatra SK, Nuthalapati NK, Gupta S, Narasimhan G, Mazumder R, Loffredo CA, Üren A, Roy R. Germ line variants of human N-methylpurine DNA glycosylase show impaired DNA repair activity and facilitate 1,N6-ethenoadenine-induced mutations. J Biol Chem 2014; 290:4966-4980. [PMID: 25538240 DOI: 10.1074/jbc.m114.627000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human N-methylpurine DNA glycosylase (hMPG) initiates base excision repair of a number of structurally diverse purine bases including 1,N(6)-ethenoadenine, hypoxanthine, and alkylation adducts in DNA. Genetic studies discovered at least eight validated non-synonymous single nucleotide polymorphisms (nsSNPs) of the hMPG gene in human populations that result in specific single amino acid substitutions. In this study, we tested the functional consequences of these nsSNPs of hMPG. Our results showed that two specific arginine residues, Arg-141 and Arg-120, are important for the activity of hMPG as the germ line variants R120C and R141Q had reduced enzymatic activity in vitro as well as in mammalian cells. Expression of these two variants in mammalian cells lacking endogenous MPG also showed an increase in mutations and sensitivity to an alkylating agent compared with the WT hMPG. Real time binding experiments by surface plasmon resonance spectroscopy suggested that these variants have substantial reduction in the equilibrium dissociation constant of binding (KD) of hMPG toward 1,N(6)-ethenoadenine-containing oligonucleotide (ϵA-DNA). Pre-steady-state kinetic studies showed that the substitutions at arginine residues affected the turnover of the enzyme significantly under multiple turnover condition. Surface plasmon resonance spectroscopy further showed that both variants had significantly decreased nonspecific (undamaged) DNA binding. Molecular modeling suggested that R141Q substitution may have resulted in a direct loss of the salt bridge between ϵA-DNA and hMPG, whereas R120C substitution redistributed, at a distance, the interactions among residues in the catalytic pocket. Together our results suggest that individuals carrying R120C and R141Q MPG variants may be at risk for genomic instability and associated diseases as a consequence.
Collapse
Affiliation(s)
- Sanjay Adhikari
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057,; Cancer Research Program, Houston Methodist Hospital Research Institute, Houston, Texas 77030, and
| | - Mahandranauth A Chetram
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Jordan Woodrick
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Partha S Mitra
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Praveen V Manthena
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Pooja Khatkar
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Sivanesan Dakshanamurthy
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Monica Dixon
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Soumendra K Karmahapatra
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Nikhil K Nuthalapati
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Suhani Gupta
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Ganga Narasimhan
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Raja Mazumder
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, D. C. 20037
| | - Christopher A Loffredo
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Aykut Üren
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Rabindra Roy
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057,.
| |
Collapse
|
42
|
A germline polymorphism of thymine DNA glycosylase induces genomic instability and cellular transformation. PLoS Genet 2014; 10:e1004753. [PMID: 25375110 PMCID: PMC4222680 DOI: 10.1371/journal.pgen.1004753] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/14/2014] [Indexed: 11/19/2022] Open
Abstract
Thymine DNA glycosylase (TDG) functions in base excision repair, a DNA repair pathway that acts in a lesion-specific manner to correct individual damaged or altered bases. TDG preferentially catalyzes the removal of thymine and uracil paired with guanine, and is also active on 5-fluorouracil (5-FU) paired with adenine or guanine. The rs4135113 single nucleotide polymorphism (SNP) of TDG is found in 10% of the global population. This coding SNP results in the alteration of Gly199 to Ser. Gly199 is part of a loop responsible for stabilizing the flipped abasic nucleotide in the active site pocket. Biochemical analyses indicate that G199S exhibits tighter binding to both its substrate and abasic product. The persistent accumulation of abasic sites in cells expressing G199S leads to the induction of double-strand breaks (DSBs). Cells expressing the G199S variant also activate a DNA damage response. When expressed in cells, G199S induces genomic instability and cellular transformation. Together, these results suggest that individuals harboring the G199S variant may have increased risk for developing cancer. DNA repair is vital to the survival and propagation of cells. It helps protect DNA from becoming permanently damaged and prevents cells from becoming cancerous. The base excision repair (BER) pathway is responsible for the removal of up to 20,000 lesions/cell/day. Thymine DNA glycosylase (TDG) is one of the DNA glycosylases that initiates BER. There is a germline variant of TDG that is found in 10% of the global population, where amino acid residue glycine 199 is mutated to serine. Here, we provide evidence that TDG variant G199S binds significantly more tightly to its abasic product and leads to increased DNA strand breaks in cells. We go on to show that G199S induces genomic instability, in the form of chromosomal aberrations, and leads to cellular transformation, both hallmarks of tumorigenesis. Collectively, our work suggests that a germline variant of TDG can drive carcinogenesis.
Collapse
|
43
|
Abstract
This perspective reviews the many dimensions of base excision repair from a 10,000 foot vantage point and provides one person's view on where the field is headed. Enzyme function is considered under the lens of X-ray diffraction and single molecule studies. Base excision repair in chromatin and telomeres, regulation of expression and the role of posttranslational modifications are also discussed in the context of enzyme activities, cellular localization and interacting partners. The specialized roles that base excision repair play in transcriptional activation by active demethylation and targeted oxidation as well as how base excision repair functions in the immune processes of somatic hypermutation and class switch recombination and its possible involvement in retroviral infection are also discussed. Finally the complexities of oxidative damage and its repair and its link to neurodegenerative disorders, as well as the role of base excision repair as a tumor suppressor are examined in the context of damage, repair and aging. By outlining the many base excision repair-related mysteries that have yet to be unraveled, hopefully this perspective will stimulate further interest in the field.
Collapse
Affiliation(s)
- Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Stafford Hall, Burlington, VT 05405-0084, USA.
| |
Collapse
|
44
|
Zhu X, You Y, Li Q, Zeng C, Fu F, Guo A, Zhang H, Zou P, Zhong Z, Wang H, Wu Y, Li Q, Kong F, Chen Z. BCR-ABL1–positive microvesicles transform normal hematopoietic transplants through genomic instability: implications for donor cell leukemia. Leukemia 2014; 28:1666-75. [DOI: 10.1038/leu.2014.51] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/19/2014] [Accepted: 01/24/2014] [Indexed: 12/20/2022]
|