1
|
Lee JW, Lee KA, Jang IH, Nam K, Kim SH, Kyung M, Cho KC, Lee JH, You H, Kim EK, Koh YH, Lee H, Park J, Hwang SY, Chung YW, Ryu CM, Kwon Y, Roh SH, Ryu JH, Lee WJ. Microbiome-emitted scents activate olfactory neuron-independent airway-gut-brain axis to promote host growth in Drosophila. Nat Commun 2025; 16:2199. [PMID: 40038269 PMCID: PMC11880416 DOI: 10.1038/s41467-025-57484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/13/2025] [Indexed: 03/06/2025] Open
Abstract
While it is now accepted that the microbiome has strong impacts on animal growth promotion, the exact mechanism has remained elusive. Here we show that microbiome-emitted scents contain volatile somatotrophic factors (VSFs), which promote host growth in an olfaction-independent manner in Drosophila. We found that inhaled VSFs are readily sensed by olfactory receptor 42b non-neuronally expressed in subsets of tracheal airway cells, enteroendocrine cells, and enterocytes. Olfaction-independent sensing of VSFs activates the airway-gut-brain axis by regulating Hippo, FGF and insulin-like growth factor signaling pathways, which are required for airway branching, organ oxygenation and body growth. We found that a mutant microbiome that did not produce (2R,3R)-2,3-butanediol failed to activate the airway-gut-brain axis for host growth. Importantly, forced inhalation of (2R,3R)-2,3-butanediol completely reversed these defects. Our discovery of contact-independent and olfaction-independent airborne interactions between host and microbiome provides a novel perspective on the role of the airway-gut-brain axis in microbiome-controlled host development.
Collapse
Affiliation(s)
- Jin-Woo Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyung-Ah Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Saeloun Bio Inc., Seoul, South Korea
| | - In-Hwan Jang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kibum Nam
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sung-Hee Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Minsoo Kyung
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyu-Chan Cho
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Hoon Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Hyejin You
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Eun-Kyoung Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Young Hoon Koh
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Hansol Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Junsun Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Soo-Yeon Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Youn Wook Chung
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Soung-Hun Roh
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Ji-Hwan Ryu
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Won-Jae Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea.
| |
Collapse
|
2
|
Lüdke A, Kumaraswamy A, Galizia C. Olfactory Receptor Responses to Pure Odorants in Drosophila melanogaster. Eur J Neurosci 2025; 61:e70036. [PMID: 40062376 PMCID: PMC11891828 DOI: 10.1111/ejn.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 05/13/2025]
Abstract
Olfactory coding relies on primary information from olfactory receptor cells that respond to volatile airborne substances. Despite extensive efforts, our understanding of odor-response profiles across receptors is still poor, because of the vast number of possible ligands (odorants), the high sensitivity even to trace compounds (creating false positive responses), and the diversity of olfactory receptors. Here, we linked chemical purification with a gas chromatograph to single-receptor type recording with transgenic flies using calcium imaging to record olfactory responses to a large panel of chemicals in seven Drosophila ORs: Or10a, Or13a, Or22a, Or42b, Or47a, Or56a, and Or92a. We analyze the data using linear-nonlinear modeling and reveal that most receptors have "simple" response types (mostly positive: Or10a, Or13a, Or22a, Or47a, and Or56a). However, two receptors (Or42b and Or92a) have, in addition to "simple" responses, "complex" response types to some ligands, either positive with a negative second phase or negative with a positive second phase, suggesting the presence of multiple binding sites and/or transduction cascades. We show that some ligands reported in the literature are false positives, because of contaminations in the stimulus. We recorded all stimuli across concentrations, showing that at different concentrations, different substances appear as best ligands. Our data show that studying combinatorial olfactory coding must consider temporal response properties and odorant concentration and, in addition, is strongly influenced by the presence of trace amounts of ligands (contaminations) in the samples. These observations have important repercussions for our thinking about how animals navigate their olfactory environment.
Collapse
|
3
|
Xiang F, Zhang S, Tang M, Li P, Zhang H, Xiong J, Zhang Q, Li X. Optogenetics Neuromodulation of the Nose. Behav Neurol 2024; 2024:2627406. [PMID: 39165250 PMCID: PMC11335419 DOI: 10.1155/2024/2627406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Recently developed optogenetic technology, which allows high-fidelity control of neuronal activity, has been applied to investigate the neural circuits underlying sensory processing and behavior. The nasal cavity is innervated by the olfactory nerve and trigeminal nerve, which are closely related to common symptoms of rhinitis, such as impairment of smell, itching, and sneezing. The olfactory system has an amazing ability to distinguish thousands of odorant molecules at trace levels. However, there are many issues in olfactory sensing mechanisms that need to be addressed. Optogenetics offers a novel technical approach to solve this dilemma. Therefore, we review the recent advances in olfactory optogenetics to clarify the mechanisms of chemical sensing, which may help identify the mechanism of dysfunction and suggest possible treatments for impaired smell. Additionally, in rhinitis patients, alterations in the other nerve (trigeminal nerve) that innervates the nasal cavity can lead to hyperresponsiveness to various nociceptive stimuli and central sensitization, causing frequent and persistent itching and sneezing. In the last several years, the application of optogenetics in regulating nociceptive receptors, which are distributed in sensory nerve endings, and amino acid receptors, which are distributed in vital brain regions, to alleviate overreaction to nociceptive stimuli, has gained significant attention. Therefore, we focus on the progress in optogenetics and its application in neuromodulation of nociceptive stimuli and discuss the potential clinical translation for treating rhinitis in the future.
Collapse
Affiliation(s)
- Feng Xiang
- TCM DepartmentChongqing University Cancer HospitalChongqing Cancer Hospital, Chongqing, China
| | - Shipeng Zhang
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- E.N.T. DepartmentChengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mi Tang
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- E.N.T. DepartmentChengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peijia Li
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- E.N.T. DepartmentChengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Zhang
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- E.N.T. DepartmentChengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiahui Xiong
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- E.N.T. DepartmentChengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinxiu Zhang
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- E.N.T. DepartmentChengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinrong Li
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Tadres D, Saxena N, Louis M. Tracking the Navigation Behavior of Drosophila Larvae in Real and Virtual Odor Gradients by Using the Raspberry Pi Virtual Reality (PiVR) System. Cold Spring Harb Protoc 2024; 2024:pdb.top108098. [PMID: 37258056 DOI: 10.1101/pdb.top108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In a closed-loop experimental paradigm, an animal experiences a modulation of its sensory input as a function of its own behavior. Tools enabling closed-loop experiments are crucial for delineating causal relationships between the activity of genetically labeled neurons and specific behavioral responses. We have recently developed an experimental platform known as "Raspberry Pi Virtual Reality" (PiVR) that is used to perform closed-loop optogenetic stimulation of neurons in unrestrained animals. PiVR is a system that operates at high temporal resolution (>30-Hz) and with low latencies. Larvae of the fruit fly Drosophila melanogaster are ideal to study the role of individual neurons in modulating behavior to aid the understanding of the neural pathways underlying various guided behaviors. Here, we introduce larval chemotaxis as an example of a navigational behavior in which an animal seeks to locate a target-in this case, the attractive source of an odor-by tracking a concentration gradient. The methodologies that we describe here combine the use of PiVR with the study of larval chemotaxis in real and virtual odor gradients, but these can also be readily adapted to other sensory modalities.
Collapse
Affiliation(s)
- David Tadres
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106, USA
- Department of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Nitesh Saxena
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Matthieu Louis
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106, USA
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
5
|
Perry S, Clark JT, Ngo P, Ray A. Receptors underlying an odorant's valence across concentrations in Drosophila larvae. J Exp Biol 2024; 227:jeb247215. [PMID: 38511428 PMCID: PMC11166451 DOI: 10.1242/jeb.247215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
Odorants interact with receptors expressed in specialized olfactory neurons, and neurons of the same class send their axons to distinct glomeruli in the brain. The stereotypic spatial glomerular activity map generates recognition and the behavioral response for the odorant. The valence of an odorant changes with concentration, typically becoming aversive at higher concentrations. Interestingly, in Drosophila larvae, the odorant (E)-2-hexenal is aversive at low concentrations and attractive at higher concentrations. We investigated the molecular and neural basis of this phenomenon, focusing on how activities of different olfactory neurons conveying opposing effects dictate behaviors. We identified the repellant neuron in the larvae as one expressing the olfactory receptor Or7a, whose activation alone at low concentrations of (E)-2-hexenal elicits an avoidance response in an Or7a-dependent manner. We demonstrate that avoidance can be overcome at higher concentrations by activation of additional neurons that are known to be attractive, most notably odorants that are known activators of Or42a and Or85c. These findings suggest that in the larval stage, the attraction-conveying neurons can overcome the aversion-conveying channels for (E)-2-hexenal.
Collapse
Affiliation(s)
- Sarah Perry
- Graduate program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, Riverside, CA 92521, USA
| | - Jonathan T. Clark
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Paulina Ngo
- Department of Molecular Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Anandasankar Ray
- Graduate program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, Riverside, CA 92521, USA
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
- Department of Molecular Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
- Center for Disease Vector Research, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
6
|
Jürgensen AM, Sakagiannis P, Schleyer M, Gerber B, Nawrot MP. Prediction error drives associative learning and conditioned behavior in a spiking model of Drosophila larva. iScience 2024; 27:108640. [PMID: 38292165 PMCID: PMC10824792 DOI: 10.1016/j.isci.2023.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024] Open
Abstract
Predicting reinforcement from sensory cues is beneficial for goal-directed behavior. In insect brains, underlying associations between cues and reinforcement, encoded by dopaminergic neurons, are formed in the mushroom body. We propose a spiking model of the Drosophila larva mushroom body. It includes a feedback motif conveying learned reinforcement expectation to dopaminergic neurons, which can compute prediction error as the difference between expected and present reinforcement. We demonstrate that this can serve as a driving force in learning. When combined with synaptic homeostasis, our model accounts for theoretically derived features of acquisition and loss of associations that depend on the intensity of the reinforcement and its temporal proximity to the cue. From modeling olfactory learning over the time course of behavioral experiments and simulating the locomotion of individual larvae toward or away from odor sources in a virtual environment, we conclude that learning driven by prediction errors can explain larval behavior.
Collapse
Affiliation(s)
- Anna-Maria Jürgensen
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Panagiotis Sakagiannis
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Michael Schleyer
- Leibniz Institute for Neurobiology (LIN), Department of Genetics, 39118 Magdeburg, Germany
- Institute for the Advancement of Higher Education, Faculty of Science, Hokkaido University, Sapporo 060-08080, Japan
| | - Bertram Gerber
- Leibniz Institute for Neurobiology (LIN), Department of Genetics, 39118 Magdeburg, Germany
- Institute for Biology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Brain and Behavioral Sciences (CBBS), Otto-von-Guericke University, 39118 Magdeburg, Germany
| | - Martin Paul Nawrot
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
7
|
Baleba SBS, Mahadevan VP, Knaden M, Hansson BS. Temperature-dependent modulation of odor-dependent behavior in three drosophilid fly species of differing thermal preference. Commun Biol 2023; 6:905. [PMID: 37666902 PMCID: PMC10477191 DOI: 10.1038/s42003-023-05280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Rapid and ongoing climate change increases global temperature, impacts feeding, and reproduction in insects. The olfaction plays an important underlying role in these behaviors in most insect species. Here, we investigated how changing temperatures affect odor detection and ensuing behavior in three drosophilid flies: Drosophila novamexicana, D. virilis and D. ezoana, species adapted to life in desert, global, and subarctic climates, respectively. Using a series of thermal preference assays, we confirmed that the three species indeed exhibit distinct temperature preferences. Next, using single sensillum recording technique, we classified olfactory sensory neurons (OSNs) present in basiconic sensilla on the antenna of the three species and thereby identified ligands for each OSN type. In a series of trap assays we proceeded to establish the behavioral valence of the best ligands and chose guaiacol, methyl salicylate and isopropyl benzoate as representatives of a repellent, attractant and neutral odor. Next, we assessed the behavioral valence of these three odors in all three species across a thermal range (10-35 °C), with flies reared at 18 °C and 25 °C. We found that both developmental and experimental temperatures affected the behavioral performance of the flies. Our study thus reveals temperature-dependent changes in odor-guided behavior in drosophilid flies.
Collapse
Affiliation(s)
- Steve B S Baleba
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Venkatesh Pal Mahadevan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| |
Collapse
|
8
|
Tatarko AR, Leonard AS, Mathew D. A neonicotinoid pesticide alters Drosophila olfactory processing. Sci Rep 2023; 13:10606. [PMID: 37391495 PMCID: PMC10313779 DOI: 10.1038/s41598-023-37589-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023] Open
Abstract
Neonicotinoid pesticides are well-known for their sublethal effects on insect behavior and physiology. Recent work suggests neonicotinoids can impair insect olfactory processing, with potential downstream effects on behavior and possibly survival. However, it is unclear whether impairment occurs during peripheral olfactory detection, during information processing in central brain regions, or in both contexts. We used Drosophila melanogaster to explore the potential for neonicotinoids to disrupt olfaction by conducting electrophysiological analyses of single neurons and whole antennae of flies exposed to varying concentrations of the neonicotinoid imidacloprid (IMD) that were shown to cause relative differences in fly survival. Our results demonstrated that IMD exposure significantly reduced the activity of a single focal olfactory neuron and delayed the return to baseline activity of the whole antenna. To determine if IMD also impacts olfactory-guided behavior, we compared flies' relative preference for odor sources varying in ethanol content. Flies exposed to IMD had a greater relative preference for ethanol-laced pineapple juice than control flies, demonstrating that neuronal shifts induced by IMD that we observed are associated with changes in relative preference. Given the interest in the sensory impacts of agrochemical exposure on wild insect behavior and physiology, we highlight the potential of Drosophila as a tractable model for investigating the effects of pesticides at scales ranging from single-neuron physiology to olfactory-guided behavior.
Collapse
Affiliation(s)
- Anna R Tatarko
- Department of Biology, University of Nevada-Reno, Reno, NV, 89557, USA.
| | - Anne S Leonard
- Department of Biology, University of Nevada-Reno, Reno, NV, 89557, USA
| | - Dennis Mathew
- Department of Biology, University of Nevada-Reno, Reno, NV, 89557, USA
| |
Collapse
|
9
|
Talross GJS, Carlson JR. The rich non-coding RNA landscape of the Drosophila antenna. Cell Rep 2023; 42:112482. [PMID: 37167060 PMCID: PMC10431215 DOI: 10.1016/j.celrep.2023.112482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/07/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNAs) play diverse and critical roles in neural development, function, and disease. Here, we examine neuronal lncRNAs in a model system that offers enormous advantages for deciphering their functions: the Drosophila olfactory system. This system is numerically simple, its neurons are exquisitely well defined, and it drives multiple complex behaviors. We undertake a comprehensive survey of linear and circular lncRNAs in the Drosophila antenna and identify a wealth of lncRNAs enriched in it. We generate an unprecedented lncRNA-to-neuron map, which reveals that olfactory receptor neurons are defined not only by their receptors but also by the combination of lncRNAs they express. We identify species-specific lncRNAs, including many that are expressed primarily in pheromone-sensing neurons and that may act in modulation of pheromonal responses or in speciation. This resource opens many new opportunities for investigating the roles of lncRNAs in the nervous system.
Collapse
Affiliation(s)
- Gaëlle J S Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
10
|
Walker WB, Mori BA, Cattaneo AM, Gonzalez F, Witzgall P, Becher PG. Comparative transcriptomic assessment of the chemosensory receptor repertoire of Drosophila suzukii adult and larval olfactory organs. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101049. [PMID: 36528931 DOI: 10.1016/j.cbd.2022.101049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The spotted wing Drosophila, Drosophila suzukii, has emerged within the past decade as an invasive species on a global scale, and is one of the most economically important pests in fruit and berry production in Europe and North America. Insect ecology, to a strong degree, depends on the chemosensory modalities of smell and taste. Extensive research on the sensory receptors of the olfactory and gustatory systems in Drosophila melanogaster provide an excellent frame of reference to better understand the fundamentals of the chemosensory systems of D. suzukii. This knowledge may enhance the development of semiochemicals for sustainable management of D. suzukii, which is urgently needed. Here, using a transcriptomic approach we report the chemosensory receptor expression profiles in D. suzukii female and male antennae, and for the first time, in larval heads including the dorsal organ that houses larval olfactory sensory neurons. In D. suzukii adults, we generally observed a lack of sexually dimorphic expression levels in male and female antennae. While there was generally conservation of antennal expression of odorant and ionotropic receptor orthologues for D. melanogaster and D. suzukii, gustatory receptors showed more distinct species-specific profiles. In larval head tissues, for all three receptor gene families, there was also a greater degree of species-specific gene expression patterns. Analysis of chemosensory receptor repertoires in the pest species, D. suzukii relative to those of the genetic model D. melanogaster enables comparative studies of the chemosensory, physiology, and ecology of D. suzukii.
Collapse
Affiliation(s)
- William B Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden; USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA.
| | - Boyd A Mori
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden; Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Alberto M Cattaneo
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Francisco Gonzalez
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden; Department of Research and Development, ChemTica Internacional S.A., Apdo. 640-3100, Santo Domingo, Heredia, Costa Rica.
| | - Peter Witzgall
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Paul G Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
11
|
Odell SR, Zito N, Clark D, Mathew D. Stability of olfactory behavior syndromes in the Drosophila larva. Sci Rep 2023; 13:2398. [PMID: 36765192 PMCID: PMC9918538 DOI: 10.1038/s41598-023-29523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Individuals of many animal populations exhibit idiosyncratic behaviors. One measure of idiosyncratic behavior is a behavior syndrome, defined as the stability of one or more behavior traits in an individual across different situations. While behavior syndromes have been described in various animal systems, their properties and the circuit mechanisms that generate them are poorly understood. We thus have an incomplete understanding of how circuit properties influence animal behavior. Here, we characterize olfactory behavior syndromes in the Drosophila larva. We show that larvae exhibit idiosyncrasies in their olfactory behavior over short time scales. They are influenced by the larva's satiety state and odor environment. Additionally, we identified a group of antennal lobe local neurons that influence the larva's idiosyncratic behavior. These findings reveal previously unsuspected influences on idiosyncratic behavior. They further affirm the idea that idiosyncrasies are not simply statistical phenomena but manifestations of neural mechanisms. In light of these findings, we discuss more broadly the importance of idiosyncrasies to animal survival and how they might be studied.
Collapse
Affiliation(s)
- Seth R Odell
- Integrative Neuroscience Program, University of Nevada, Reno, NV, 89557, USA
| | - Nicholas Zito
- Integrative Neuroscience Program, University of Nevada, Reno, NV, 89557, USA
| | - David Clark
- Integrative Neuroscience Program, University of Nevada, Reno, NV, 89557, USA
| | - Dennis Mathew
- Integrative Neuroscience Program, University of Nevada, Reno, NV, 89557, USA. .,Department of Biology, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
12
|
Hernández K, Godoy L, Newquist G, Kellermeyer R, Alavi M, Mathew D, Kidd T. Dscam1 overexpression impairs the function of the gut nervous system in Drosophila. Dev Dyn 2023; 252:156-171. [PMID: 36454543 PMCID: PMC9812936 DOI: 10.1002/dvdy.554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Down syndrome (DS) patients have a 100-fold increase in the risk of Hirschsprung syndrome of the colon and rectum (HSCR), a lack of enteric neurons in the colon. The leading DS candidate gene is trisomy of the Down syndrome cell adhesion molecule (DSCAM). RESULTS We find that Dscam1 protein is expressed in the Drosophila enteric/stomatogastric nervous system (SNS). Axonal Dscam1 phenotypes can be rescued equally by diverse isoforms. Overexpression of Dscam1 resulted in frontal and hindgut nerve overgrowth. Expression of dominant negative Dscam1-ΔC led to a truncated frontal nerve and increased branching of the hindgut nerve. Larval locomotion is influenced by feeding state, and we found that the average speed of larvae with Dscam1 SNS expression was reduced, whereas overexpression of Dscam1-ΔC significantly increased the speed. Dscam1 overexpression reduced the efficiency of food clearance from the larval gut. CONCLUSION Our work demonstrates that overexpression of Dscam1 can perturb gut function in a model system.
Collapse
Affiliation(s)
| | - Luis Godoy
- Biology/MS 314, University of Nevada, Reno, NV 89557, USA
| | | | | | - Maryam Alavi
- Biology/MS 314, University of Nevada, Reno, NV 89557, USA
| | - Dennis Mathew
- Biology/MS 314, University of Nevada, Reno, NV 89557, USA
| | - Thomas Kidd
- Biology/MS 314, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
13
|
Odell SR, Clark D, Zito N, Jain R, Gong H, Warnock K, Carrion-Lopez R, Maixner C, Prieto-Godino L, Mathew D. Internal state affects local neuron function in an early sensory processing center to shape olfactory behavior in Drosophila larvae. Sci Rep 2022; 12:15767. [PMID: 36131078 PMCID: PMC9492728 DOI: 10.1038/s41598-022-20147-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/09/2022] [Indexed: 02/03/2023] Open
Abstract
Crawling insects, when starved, tend to have fewer head wavings and travel in straighter tracks in search of food. We used the Drosophila melanogaster larva to investigate whether this flexibility in the insect's navigation strategy arises during early olfactory processing and, if so, how. We demonstrate a critical role for Keystone-LN, an inhibitory local neuron in the antennal lobe, in implementing head-sweep behavior. Keystone-LN responds to odor stimuli, and its inhibitory output is required for a larva to successfully navigate attractive and aversive odor gradients. We show that insulin signaling in Keystone-LN likely mediates the starvation-dependent changes in head-sweep magnitude, shaping the larva's odor-guided movement. Our findings demonstrate how flexibility in an insect's navigation strategy can arise from context-dependent modulation of inhibitory neurons in an early sensory processing center. They raise new questions about modulating a circuit's inhibitory output to implement changes in a goal-directed movement.
Collapse
Affiliation(s)
- Seth R Odell
- Integrative Neuroscience Program, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA
| | - David Clark
- Integrative Neuroscience Program, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA
| | - Nicholas Zito
- Integrative Neuroscience Program, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA
| | - Roshni Jain
- Molecular Biosciences Program, University of Nevada, Reno, NV, 89557, USA
| | - Hui Gong
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Kendall Warnock
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | | | - Coral Maixner
- NSF-REU (BioSoRo) Program, University of Nevada, Reno, NV, 89557, USA
| | | | - Dennis Mathew
- Integrative Neuroscience Program, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA.
- Molecular Biosciences Program, University of Nevada, Reno, NV, 89557, USA.
- Department of Biology, University of Nevada, Reno, NV, 89557, USA.
- NSF-REU (BioSoRo) Program, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
14
|
Zhang S, Wang X, Wang G, Liu F, Liu Y. An odorant receptor of the green mirid bug, Apolygus lucorum, tuned to linalool. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 144:103764. [PMID: 35367588 DOI: 10.1016/j.ibmb.2022.103764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
A highly sensitive olfactory system is required for various insect behaviors, including oviposition site selection, host location, and mate recognition. Odorant receptors (ORs) play a critical role in odorant detection. In this study, we cloned four OR genes referred to as AlucORs (AlucOR4, AlucOR39, AlucOR43, and AlucOR47) from the green mirid bug, Apolygus lucorum, and used Real-time quantitative PCR to show that expression of all four ORs was considerably biased to antennae. Functional analysis, performed using a Xenopus oocyte expression system, revealed that AlucOR47 was robustly and sensitively tuned to the important plant volatile, linalool, and its analogs, linalyl acetate and linalool tetrahydride. Electroantennogram recordings showed that all three ligands elicited obvious responses in male and female mirid bug antennae, with the response to linalool being the strongest. In behavioral assays, male and female mirid bugs displayed significant aversions to linalool. Additionally, the repellent behavior effect of A. lucorum in response to linalool disappeared after knocking down AlucOR47 by RNA interference (RNAi). Taken together, these results indicate that AlucOR47 is necessary for linalool perception in A. lucorum. Our results suggest that AlucOR47 may play a role in plant-insect interactions and provide insight into potential means of biological control against mirid bugs.
Collapse
Affiliation(s)
- Sai Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
15
|
Keesey IW, Zhang J, Depetris-Chauvin A, Obiero GF, Gupta A, Gupta N, Vogel H, Knaden M, Hansson BS. Functional olfactory evolution in Drosophila suzukii and the subgenus Sophophora. iScience 2022; 25:104212. [PMID: 35573203 PMCID: PMC9093017 DOI: 10.1016/j.isci.2022.104212] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 10/25/2022] Open
|
16
|
Tumkaya T, Burhanudin S, Khalilnezhad A, Stewart J, Choi H, Claridge-Chang A. Most primary olfactory neurons have individually neutral effects on behavior. eLife 2022; 11:e71238. [PMID: 35044905 PMCID: PMC8806191 DOI: 10.7554/elife.71238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Animals use olfactory receptors to navigate mates, food, and danger. However, for complex olfactory systems, it is unknown what proportion of primary olfactory sensory neurons can individually drive avoidance or attraction. Similarly, the rules that govern behavioral responses to receptor combinations are unclear. We used optogenetic analysis in Drosophila to map the behavior elicited by olfactory-receptor neuron (ORN) classes: just one-fifth of ORN-types drove either avoidance or attraction. Although wind and hunger are closely linked to olfaction, neither had much effect on single-class responses. Several pooling rules have been invoked to explain how ORN types combine their behavioral influences; we activated two-way combinations and compared patterns of single- and double-ORN responses: these comparisons were inconsistent with simple pooling. We infer that the majority of primary olfactory sensory neurons have neutral behavioral effects individually, but participate in broad, odor-elicited ensembles with potent behavioral effects arising from complex interactions.
Collapse
Affiliation(s)
- Tayfun Tumkaya
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
- Program in Neuroscience and Behavioral Disorders, Duke NUS Graduate Medical SchoolSingaporeSingapore
| | | | | | - James Stewart
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
| | - Hyungwon Choi
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
- Department of Medicine, National University of SingaporeSingaporeSingapore
| | - Adam Claridge-Chang
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
- Program in Neuroscience and Behavioral Disorders, Duke NUS Graduate Medical SchoolSingaporeSingapore
- Department of Physiology, National University of SingaporeSingaporeSingapore
| |
Collapse
|
17
|
Zhou 周绍群 S, Jander G. Molecular ecology of plant volatiles in interactions with insect herbivores. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:449-462. [PMID: 34581787 DOI: 10.1093/jxb/erab413] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Plant-derived volatile organic compounds (VOCs) play pivotal roles in interactions with insect herbivores. Individual VOCs can be directly toxic or deterrent, serve as signal molecules to attract natural enemies, and/or be perceived by distal plant tissues as a priming signal to prepare for expected herbivory. Environmental conditions, as well as the specific plant-insect interaction being investigated, strongly influence the observed functions of VOC blends. The complexity of plant-insect chemical communication via VOCs is further enriched by the sophisticated molecular perception mechanisms of insects, which can respond to one or more VOCs and thereby influence insect behavior in a manner that has yet to be fully elucidated. Despite numerous gaps in the current understanding of VOC-mediated plant-insect interactions, successful pest management strategies such as push-pull systems, synthetic odorant traps, and crop cultivars with modified VOC profiles have been developed to supplement chemical pesticide applications and enable more sustainable agricultural practices. Future studies in this field would benefit from examining the responses of both plants and insects in the same experiment to gain a more complete view of these interactive systems. Furthermore, a molecular evolutionary study of key genetic elements of the ecological interaction phenotypes could provide new insights into VOC-mediated plant communication with insect herbivores.
Collapse
Affiliation(s)
- Shaoqun Zhou 周绍群
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | |
Collapse
|
18
|
Abstract
In this review, we highlight sources of alcohols in nature, as well as the behavioral and ecological roles that these fermentation cues play in the short lifespan of Drosophila melanogaster. With a focus on neuroethology, we describe the olfactory detection of alcohol as well as ensuing neural signaling within the brain of the fly. We proceed to explain the plethora of behaviors related to alcohol, including attraction, feeding, and oviposition, as well as general effects on aggression and courtship. All of these behaviors are shaped by physiological state and social contexts. In a comparative perspective, we also discuss inter- and intraspecies differences related to alcohol tolerance and metabolism. Lastly, we provide corollaries with other dipteran and coleopteran insect species that also have olfactory systems attuned to ethanol detection and describe ecological and evolutionary directions for further studies of the natural history of alcohol and the fly.
Collapse
Affiliation(s)
- Ian W Keesey
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA;
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany;
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany;
| |
Collapse
|
19
|
Li DZ, Duan SG, Yang RN, Yi SC, Liu A, Abdelnabby HE, Wang MQ. BarH1 regulates odorant-binding proteins expression and olfactory perception of Monochamus alternatus Hope. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 140:103677. [PMID: 34763091 DOI: 10.1016/j.ibmb.2021.103677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Insect odorant-binding proteins (OBPs) are a class of small soluble proteins that can be found in various tissues wherein binding and transport of small molecules are required. Thus, OBPs are not only involved in typical olfactory function by specific activities with odorants but also participate in other physiological processes in non-chemosensory tissues. To better understand the complex biological functions of OBPs, it is necessary to study the transcriptional regulation of their expression patterns. In this paper, an apparent gradient expression pattern of Obp19, that was highly and specifically expressed in antennae and played an essential role in the detection of camphene, was defined in the antennae of the Japanese pine sawyer. Further, the transcription factor BarH1, that also presented gradient expression pattern in antennae, was found to regulate expression of Obp19 directly through binding to its upstream DNA sequence. The condition of BarH1 gene silence, the gene expression levels of Obp19 significantly decreased. At the same time, additional olfactory genes also were regulated and thus influence camphene reception. These findings provide us an opportunity to incorporate Obps in the gene regulatory networks of insects, which contribute to a better understanding of the multiplicity and diversity of OBPs and the olfactory mediated behaviors.
Collapse
Affiliation(s)
- Dong-Zhen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, PR China
| | - Shuang-Gang Duan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Rui-Nan Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shan-Cheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ao Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hazem Elewa Abdelnabby
- Department of Plant Protection, Faculty of Agriculture, Benha University, Banha, Qalyubia, 13736, Egypt
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
20
|
Eschbach C, Fushiki A, Winding M, Afonso B, Andrade IV, Cocanougher BT, Eichler K, Gepner R, Si G, Valdes-Aleman J, Fetter RD, Gershow M, Jefferis GS, Samuel AD, Truman JW, Cardona A, Zlatic M. Circuits for integrating learned and innate valences in the insect brain. eLife 2021; 10:62567. [PMID: 34755599 PMCID: PMC8616581 DOI: 10.7554/elife.62567] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Animal behavior is shaped both by evolution and by individual experience. Parallel brain pathways encode innate and learned valences of cues, but the way in which they are integrated during action-selection is not well understood. We used electron microscopy to comprehensively map with synaptic resolution all neurons downstream of all mushroom body (MB) output neurons (encoding learned valences) and characterized their patterns of interaction with lateral horn (LH) neurons (encoding innate valences) in Drosophila larva. The connectome revealed multiple convergence neuron types that receive convergent MB and LH inputs. A subset of these receives excitatory input from positive-valence MB and LH pathways and inhibitory input from negative-valence MB pathways. We confirmed functional connectivity from LH and MB pathways and behavioral roles of two of these neurons. These neurons encode integrated odor value and bidirectionally regulate turning. Based on this, we speculate that learning could potentially skew the balance of excitation and inhibition onto these neurons and thereby modulate turning. Together, our study provides insights into the circuits that integrate learned and innate valences to modify behavior.
Collapse
Affiliation(s)
- Claire Eschbach
- HHMI Janelia Research Campus, Richmond, United Kingdom.,Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Akira Fushiki
- HHMI Janelia Research Campus, Richmond, United Kingdom.,Department of Neuroscience & Neurology, & Zuckerman Mind Brain Institute, Columbia University, New York, United States
| | - Michael Winding
- HHMI Janelia Research Campus, Richmond, United Kingdom.,Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Bruno Afonso
- HHMI Janelia Research Campus, Richmond, United Kingdom
| | - Ingrid V Andrade
- HHMI Janelia Research Campus, Richmond, United Kingdom.,Department of Molecular, Cell and Developmental Biology, University California Los Angeles, Los Angeles, United States
| | - Benjamin T Cocanougher
- HHMI Janelia Research Campus, Richmond, United Kingdom.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Katharina Eichler
- HHMI Janelia Research Campus, Richmond, United Kingdom.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Ruben Gepner
- Department of Physics, New York University, New York, United States
| | - Guangwei Si
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Javier Valdes-Aleman
- HHMI Janelia Research Campus, Richmond, United Kingdom.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Department of Molecular, Cell and Developmental Biology, University California Los Angeles, Los Angeles, United States
| | | | - Marc Gershow
- Department of Physics, New York University, New York, United States.,Center for Neural Science, New York University, New York, United States.,Neuroscience Institute, New York University, New York, United States
| | - Gregory Sxe Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Aravinthan Dt Samuel
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - James W Truman
- HHMI Janelia Research Campus, Richmond, United Kingdom.,Department of Biology, University of Washington, Seattle, United States
| | - Albert Cardona
- HHMI Janelia Research Campus, Richmond, United Kingdom.,Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Marta Zlatic
- HHMI Janelia Research Campus, Richmond, United Kingdom.,Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
21
|
Komarov N, Sprecher SG. The chemosensory system of the Drosophila larva: an overview of current understanding. Fly (Austin) 2021; 16:1-12. [PMID: 34612150 PMCID: PMC8496535 DOI: 10.1080/19336934.2021.1953364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Animals must sense their surroundings and be able to distinguish between relevant and irrelevant cues. An enticing area of research aims to uncover the mechanisms by which animals respond to chemical signals that constitute critical sensory input. In this review, we describe the principles of a model chemosensory system: the Drosophila larva. While distinct in many ways, larval behaviour is reminiscent of the dogmatic goals of life: to reach a stage of reproductive potential. It takes into account a number of distinct and identifiable parameters to ultimately provoke or modulate appropriate behavioural output. In this light, we describe current knowledge of chemosensory anatomy, genetic components, and the processing logic of chemical cues. We outline recent advancements and summarize the hypothesized neural circuits of sensory systems. Furthermore, we note yet-unanswered questions to create a basis for further investigation of molecular and systemic mechanisms of chemosensation in Drosophila and beyond.
Collapse
Affiliation(s)
- Nikita Komarov
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Simon G Sprecher
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
22
|
Ji T, Xu Z, Jia Q, Wang G, Hou Y. Non-palm Plant Volatile α-Pinene Is Detected by Antenna-Biased Expressed Odorant Receptor 6 in the Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). Front Physiol 2021; 12:701545. [PMID: 34434116 PMCID: PMC8381602 DOI: 10.3389/fphys.2021.701545] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022] Open
Abstract
The majority of insects rely on a highly complex and precise olfactory system to detect various volatile organic compounds released by host and non-host plants in environments. The odorant receptors (ORs) are considered to play an important role in odor recognition and the molecular basis of ORs, particularly in coleopterans they are relatively poorly understood. The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae), is one of the most destructive pests of the global palm industry. Although feeding and egg oviposition behaviors of RPW can be repelled by some non-palm plant volatiles, such as α-pinene, geraniol, or 1-octen-3-ol, there is limited understanding of how RPW recognizes the non-host plant volatiles. In this study, three candidate RferOrs were identified from the Rfer-specific clade, and the tissue expression analysis used was mainly expressed in the antennae of both sexes. Functional characterization of RferOr6, RferOr40, and RferOr87 was analyzed by using the Xenopus oocyte expression system, and the results indicated that RferOr6/RferOrco was narrowly tuned to α-pinene. The behavioral experiment showed that α-pinene at the concentrations of 10 and 100 μg/μl can cause a significantly repelled behavioral response of RPW. In conclusion, this study reveals that RferOr6 is an antenna-biased expressed OR used by RPW to detect the volatile compound α-pinene in non-palm plants, and our results provide a foundation for further in vivo functional studies of Or6 in RPW, including in vivo knockout/knockdown and feeding/ovipositing behavioral studies of RPW and further pest control.
Collapse
Affiliation(s)
- Tianliang Ji
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingchen Jia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
23
|
Legan AW, Jernigan CM, Miller SE, Fuchs MF, Sheehan MJ. Expansion and Accelerated Evolution of 9-Exon Odorant Receptors in Polistes Paper Wasps. Mol Biol Evol 2021; 38:3832-3846. [PMID: 34151983 PMCID: PMC8383895 DOI: 10.1093/molbev/msab023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Independent origins of sociality in bees and ants are associated with independent expansions of particular odorant receptor (OR) gene subfamilies. In ants, one clade within the OR gene family, the 9-exon subfamily, has dramatically expanded. These receptors detect cuticular hydrocarbons (CHCs), key social signaling molecules in insects. It is unclear to what extent 9-exon OR subfamily expansion is associated with the independent evolution of sociality across Hymenoptera, warranting studies of taxa with independently derived social behavior. Here, we describe OR gene family evolution in the northern paper wasp, Polistes fuscatus, and compare it to four additional paper wasp species spanning ∼40 million years of evolutionary divergence. We find 200 putatively functional OR genes in P. fuscatus, matching predictions from neuroanatomy, and more than half of these are in the 9-exon subfamily. Most OR gene expansions are tandemly arrayed at orthologous loci in Polistes genomes, and microsynteny analysis shows species-specific gain and loss of 9-exon ORs within tandem arrays. There is evidence of episodic positive diversifying selection shaping ORs in expanded subfamilies. Values of omega (dN/dS) are higher among 9-exon ORs compared to other OR subfamilies. Within the Polistes OR gene tree, branches in the 9-exon OR clade experience relaxed negative (relaxed purifying) selection relative to other branches in the tree. Patterns of OR evolution within Polistes are consistent with 9-exon OR function in CHC perception by combinatorial coding, with both natural selection and neutral drift contributing to interspecies differences in gene copy number and sequence.
Collapse
Affiliation(s)
- Andrew W Legan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Christopher M Jernigan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Sara E Miller
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Matthieu F Fuchs
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
24
|
Abstract
Olfaction is fundamentally distinct from other sensory modalities. Natural odor stimuli are complex mixtures of volatile chemicals that interact in the nose with a receptor array that, in rodents, is built from more than 1,000 unique receptors. These interactions dictate a peripheral olfactory code, which in the brain is transformed and reformatted as it is broadcast across a set of highly interconnected olfactory regions. Here we discuss the problems of characterizing peripheral population codes for olfactory stimuli, of inferring the specific functions of different higher olfactory areas given their extensive recurrence, and of ultimately understanding how odor representations are linked to perception and action. We argue that, despite the differences between olfaction and other sensory modalities, addressing these specific questions will reveal general principles underlying brain function.
Collapse
Affiliation(s)
- David H Brann
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Sandeep Robert Datta
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
25
|
Identification of multiple odorant receptors essential for pyrethrum repellency in Drosophila melanogaster. PLoS Genet 2021; 17:e1009677. [PMID: 34237075 PMCID: PMC8291717 DOI: 10.1371/journal.pgen.1009677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/20/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Abstract
Pyrethrum extract from dry flowers of Tanacetum cinerariifolium (formally Chrysanthemum cinerariifolium) has been used globally as a popular insect repellent against arthropod pests for thousands of years. However, the mechanistic basis of pyrethrum repellency remains unknown. In this study, we found that pyrethrum spatially repels and activates olfactory responses in Drosophila melanogaster, a genetically tractable model insect, and the closely-related D. suzukii which is a serious invasive fruit crop pest. The discovery of spatial pyrethrum repellency and olfactory response to pyrethrum in D. melanogaster facilitated our identification of four odorant receptors, Or7a, Or42b, Or59b and Or98a that are responsive to pyrethrum. Further analysis showed that the first three Ors are activated by pyrethrins, the major insecticidal components in pyrethrum, whereas Or98a is activated by (E)-β-farnesene (EBF), a sesquiterpene and a minor component in pyrethrum. Importantly, knockout of Or7a, Or59b or Or98a individually abolished fly avoidance to pyrethrum, while knockout of Or42b had no effect, demonstrating that simultaneous activation of Or7a, Or59b and Or98a is required for pyrethrum repellency in D. melanogaster. Our study provides insights into the molecular basis of repellency of one of the most ancient and globally used insect repellents. Identification of pyrethrum-responsive Ors opens the door to develop new synthetic insect repellent mixtures that are highly effective and broad-spectrum. Pyrethrum extract began to be used as an insect repellent against biting arthropods and blood-sucking mosquitoes since ancient times. However, the mechanisms underlying pyrethrum repellency remains unknown. In this study, we took advantage of Drosophila melanogaster as a model insect system for olfaction studies and conducted a series of electrophysiological, molecular genetic and behavioral experiments to understand the mechanism of pyrethrum repellency in D. melanogaster. We discovered that pyrethrum repels D. melanogaster by activating multiple odorant receptors (Ors). Apparently simultaneous activation of these Ors by various components in pyrethrum extract makes pyrethrum one of the most potent and the longest used insect repellents in the human history.
Collapse
|
26
|
Speth Z, Kaur G, Mazolewski D, Sisomphou R, Siao DDC, Pooraiiouby R, Vasquez-Gross H, Petereit J, Gulia-Nuss M, Mathew D, Nuss AB. Characterization of Anopheles stephensi Odorant Receptor 8, an Abundant Component of the Mouthpart Chemosensory Transcriptome. INSECTS 2021; 12:593. [PMID: 34208911 PMCID: PMC8304465 DOI: 10.3390/insects12070593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 01/25/2023]
Abstract
Several mosquito species within the genus Anopheles are vectors for human malaria, and the spread of this disease is driven by the propensity of certain species to feed preferentially on humans. The study of olfaction in mosquitoes is important to understand dynamics of host-seeking and host-selection; however, the majority of these studies focus on Anopheles gambiae or An. coluzzii, both vectors of malaria in Sub-Saharan Africa. Other malaria vectors may recognize different chemical cues from potential hosts; therefore, in this study, we investigated An. stephensi, the south Asian malaria mosquito. We specifically focused on the mouthparts (primarily the maxillary palp and labella) that have been much less investigated compared to the antennae but are also important for host-seeking. To provide a broad view of chemoreceptor expression, RNAseq was used to examine the transcriptomes from the mouthparts of host-seeking females, blood-fed females, and males. Notably, AsOr8 had a high transcript abundance in all transcriptomes and was, therefore, cloned and expressed in the Drosophila empty neuron system. This permitted characterization with a panel of odorants that were selected, in part, for their presence in the human odor profile. The responsiveness of AsOr8 to odorants was highly similar to An. gambiae Or8 (AgOr8), except for sulcatone, which was detected by AsOr8 but not AgOr8. Subtle differences in the receptor sensitivity to specific odorants may provide clues to species- or strain-specific approaches to host-seeking and host selection. Further exploration of the profile of An. stephensi chemosensory proteins may yield a better understanding of how different malaria vectors navigate host-finding and host-choice.
Collapse
Affiliation(s)
- Zachary Speth
- Cell and Molecular Biology Graduate Program, University of Nevada, Reno, NV 89557, USA; (Z.S.); (G.K.); (D.M.)
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Gurlaz Kaur
- Cell and Molecular Biology Graduate Program, University of Nevada, Reno, NV 89557, USA; (Z.S.); (G.K.); (D.M.)
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Devin Mazolewski
- Cell and Molecular Biology Graduate Program, University of Nevada, Reno, NV 89557, USA; (Z.S.); (G.K.); (D.M.)
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Rayden Sisomphou
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Danielle Denise C. Siao
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Rana Pooraiiouby
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Hans Vasquez-Gross
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA; (H.V.-G.); (J.P.)
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA; (H.V.-G.); (J.P.)
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA;
| | - Dennis Mathew
- Department of Biology, University of Nevada, Reno, NV 89557, USA;
| | - Andrew B. Nuss
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA;
| |
Collapse
|
27
|
Dynamics of Glutamatergic Drive Underlie Diverse Responses of Olfactory Bulb Outputs In Vivo. eNeuro 2021; 8:ENEURO.0110-21.2021. [PMID: 33795414 PMCID: PMC8059884 DOI: 10.1523/eneuro.0110-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022] Open
Abstract
Mitral/tufted (MT) cells of the olfactory bulb (OB) show diverse temporal responses to odorant stimulation that are thought to encode odor information. Much of this diversity is thought to arise from inhibitory OB circuits, but the dynamics of excitatory input to MT cells, which is driven in a feedforward manner by sensory afferents, may also be important. To examine the contribution of excitatory input dynamics to generating temporal diversity in MT cells, we imaged glutamate signaling onto MT cell dendrites in anesthetized and awake mice. We found surprising diversity in the temporal dynamics of these signals. Inhalation-linked glutamate transients were variable in onset latency and duration, and in awake mice the degree of coupling to inhalation varied substantially with odorant identity and concentration. Successive inhalations of odorant produced nonlinear changes in glutamate signaling that included facilitating, adapting and suppressive responses and which varied with odorant identity and concentration. Dual-color imaging of glutamate and calcium signals from MT cells in the same glomerulus revealed highly correlated presynaptic and postsynaptic signals across these different response types. Suppressive calcium responses in MT cells were nearly always accompanied by suppression in the glutamate signal, providing little evidence for MT cell suppression by lateral or feedforward inhibition. These results indicate a high degree of diversity in the dynamics of excitatory input to MT cells, and suggest that these dynamics may account for much of the diversity in MT cell responses that underlies OB odor representations.
Collapse
|
28
|
Glomerulus-Selective Regulation of a Critical Period for Interneuron Plasticity in the Drosophila Antennal Lobe. J Neurosci 2020; 40:5549-5560. [PMID: 32532889 PMCID: PMC7363474 DOI: 10.1523/jneurosci.2192-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 11/21/2022] Open
Abstract
Several features of the adult nervous systems develop in a "critical period" (CP), during which high levels of plasticity allow neural circuits to be tuned for optimal performance. Through an analysis of long-term olfactory habituation (LTH) in female Drosophila, we provide new insight into mechanisms by which CPs are regulated in vivo LTH manifests as a persistently reduced behavioral response to an odorant encountered for 4 continuous days and occurs together with the growth of specific, odorant-responsive glomeruli in the antennal lobe. We show that the CP for behavioral and structural plasticity induced by ethyl butyrate (EB) or carbon dioxide (CO2) closes within 48 h after eclosion. The elaboration of excitatory projection neuron (PN) processes likely contribute to glomerular volume increases, as follows: both occur together and similarly require cAMP signaling in the antennal lobe inhibitory local interneurons. Further, the CP for structural plasticity could be extended beyond 48 h if EB- or CO2-responsive olfactory sensory neurons (OSNs) are silenced after eclosion; thus, OSN activity is required for closing the CP. Strikingly, silencing of glomerulus-selective OSNs extends the CP for structural plasticity only in respective target glomeruli. This indicates the existence of a local, short-range mechanism for regulating CP closure. Such a local mechanism for CP regulation can explain why plasticity induced by the odorant geranyl acetate (which is attractive) shows no CP although it involves the same core plasticity mechanisms as CO2 and EB. Local control of closure mechanisms during the critical period can potentially impart evolutionarily adaptive, odorant-specific features to behavioral plasticity.SIGNIFICANCE STATEMENT The critical period for plasticity represents a stage of life at which animals learn specific tasks or features with particular facility. This work provides fresh evidence that mechanisms for regulating critical periods are broadly conserved across evolution. Thus, a critical period for long-term olfactory habituation in Drosophila, which closes early in adulthood can, like the critical period for ocular dominance plasticity in mammals, be extended by blocking sensory neurons early in life. Further observations show that critical periods for plasticity can be regulated by spatially restricted mechanisms, potentially allowing varied critical periods for plasticity to stimuli of different ethological relevance.
Collapse
|
29
|
Slankster E, Kollala S, Baria D, Dailey-Krempel B, Jain R, Odell SR, Mathew D. Mechanism underlying starvation-dependent modulation of olfactory behavior in Drosophila larva. Sci Rep 2020; 10:3119. [PMID: 32080342 PMCID: PMC7033209 DOI: 10.1038/s41598-020-60098-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Starvation enhances olfactory sensitivity that encourage animals to search for food. The molecular mechanisms that enable sensory neurons to remain flexible and adapt to a particular internal state remain poorly understood. Here, we study the roles of GABA and insulin signaling in starvation-dependent modulation of olfactory sensory neuron (OSN) function in the Drosophila larva. We show that GABAB-receptor and insulin-receptor play important roles during OSN modulation. Using an OSN-specific gene expression analysis, we explore downstream targets of insulin signaling in OSNs. Our results suggest that insulin and GABA signaling pathways interact within OSNs and modulate OSN function by impacting olfactory information processing. We further show that manipulating these signaling pathways specifically in the OSNs impact larval feeding behavior and its body weight. These results challenge the prevailing model of OSN modulation and highlight opportunities to better understand OSN modulation mechanisms and their relationship to animal physiology.
Collapse
Affiliation(s)
- Eryn Slankster
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | - Sai Kollala
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | - Dominique Baria
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | | | - Roshni Jain
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
- Cell and Molecular Biology Graduate Program, University of Nevada, Reno, NV, 89557, USA
| | - Seth R Odell
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
- Integrated Neuroscience Graduate Program, University of Nevada, Reno, NV, 89557, USA
| | - Dennis Mathew
- Department of Biology, University of Nevada, Reno, NV, 89557, USA.
- Cell and Molecular Biology Graduate Program, University of Nevada, Reno, NV, 89557, USA.
- Integrated Neuroscience Graduate Program, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
30
|
Caballero-Vidal G, Bouysset C, Grunig H, Fiorucci S, Montagné N, Golebiowski J, Jacquin-Joly E. Machine learning decodes chemical features to identify novel agonists of a moth odorant receptor. Sci Rep 2020; 10:1655. [PMID: 32015393 PMCID: PMC6997167 DOI: 10.1038/s41598-020-58564-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/09/2020] [Indexed: 11/24/2022] Open
Abstract
Odorant receptors expressed at the peripheral olfactory organs are key proteins for animal volatile sensing. Although they determine the odor space of a given species, their functional characterization is a long process and remains limited. To date, machine learning virtual screening has been used to predict new ligands for such receptors in both mammals and insects, using chemical features of known ligands. In insects, such approach is yet limited to Diptera, whereas insect odorant receptors are known to be highly divergent between orders. Here, we extend this strategy to a Lepidoptera receptor, SlitOR25, involved in the recognition of attractive odorants in the crop pest Spodoptera littoralis larvae. Virtual screening of 3 million molecules predicted 32 purchasable ones whose function has been systematically tested on SlitOR25, revealing 11 novel agonists with a success rate of 28%. Our results show that Support Vector Machine optimizes the discovery of novel agonists and expands the chemical space of a Lepidoptera OR. More, it opens up structure-function relationship analyses through a comparison of the agonist chemical structures. This proof-of-concept in a crop pest could ultimately enable the identification of OR agonists or antagonists, capable of modifying olfactory behaviors in a context of biocontrol.
Collapse
Affiliation(s)
- Gabriela Caballero-Vidal
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris, Versailles, France
| | - Cédric Bouysset
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d'Azur, Nice, France
| | - Hubert Grunig
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d'Azur, Nice, France
| | - Sébastien Fiorucci
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d'Azur, Nice, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris, Versailles, France.
| | - Jérôme Golebiowski
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d'Azur, Nice, France. .,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, South Korea.
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris, Versailles, France.
| |
Collapse
|
31
|
Chin SG, Maguire SE, Huoviala P, Jefferis GSXE, Potter CJ. Olfactory Neurons and Brain Centers Directing Oviposition Decisions in Drosophila. Cell Rep 2020; 24:1667-1678. [PMID: 30089274 PMCID: PMC6290906 DOI: 10.1016/j.celrep.2018.07.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/30/2018] [Accepted: 07/04/2018] [Indexed: 01/19/2023] Open
Abstract
The sense of smell influences many behaviors, yet how odors are represented in the brain remains unclear. A major challenge to studying olfaction is the lack of methods allowing activation of specific types of olfactory neurons in an ethologically relevant setting. To address this, we developed a genetic method in Drosophila called olfactogenetics in which a narrowly tuned odorant receptor, Or56a, is ectopically expressed in different olfactory neuron types. Stimulation with geosmin (the only known Or56a ligand) in an Or56a mutant background leads to specific activation of only target olfactory neuron types. We used this approach to identify olfactory sensory neurons (OSNs) that directly guide oviposition decisions. We identify 5 OSN-types (Or71a, Or47b, Or49a, Or67b, and Or7a) that, when activated alone, suppress oviposition. Projection neurons partnering with these OSNs share a region of innervation in the lateral horn, suggesting that oviposition site selection might be encoded in this brain region.
Collapse
Affiliation(s)
- Sonia G Chin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Sarah E Maguire
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Paavo Huoviala
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 OQH, UK
| | - Gregory S X E Jefferis
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 OQH, UK
| | - Christopher J Potter
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
32
|
Young BD, Escalon JA, Mathew D. Odors: from chemical structures to gaseous plumes. Neurosci Biobehav Rev 2020; 111:19-29. [PMID: 31931034 DOI: 10.1016/j.neubiorev.2020.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
We are immersed within an odorous sea of chemical currents that we parse into individual odors with complex structures. Odors have been posited as determined by the structural relation between the molecules that compose the chemical compounds and their interactions with the receptor site. But, naturally occurring smells are parsed from gaseous odor plumes. To give a comprehensive account of the nature of odors the chemosciences must account for these large distributed entities as well. We offer a focused review of what is known about the perception of odor plumes for olfactory navigation and tracking, which we then connect to what is known about the role odorants play as properties of the plume in determining odor identity with respect to odor quality. We end by motivating our central claim that more research needs to be conducted on the role that odorants play within the odor plume in determining odor identity.
Collapse
Affiliation(s)
- Benjamin D Young
- Philosophy and Neuroscience, University of Nevada, 1664 N Virginia St, Reno, NV 89557, United States.
| | | | - Dennis Mathew
- Biology and Neuroscience, University of Nevada, Reno, United States.
| |
Collapse
|
33
|
Mbaluto CM, Ayelo PM, Duffy AG, Erdei AL, Tallon AK, Xia S, Caballero-Vidal G, Spitaler U, Szelényi MO, Duarte GA, Walker WB, Becher PG. Insect chemical ecology: chemically mediated interactions and novel applications in agriculture. ARTHROPOD-PLANT INTERACTIONS 2020; 14:671-684. [PMID: 33193908 PMCID: PMC7650581 DOI: 10.1007/s11829-020-09791-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/16/2020] [Indexed: 05/19/2023]
Abstract
Insect chemical ecology (ICE) evolved as a discipline concerned with plant-insect interactions, and also with a strong focus on intraspecific pheromone-mediated communication. Progress in this field has rendered a more complete picture of how insects exploit chemical information in their surroundings in order to survive and navigate their world successfully. Simultaneously, this progress has prompted new research questions about the evolution of insect chemosensation and related ecological adaptations, molecular mechanisms that mediate commonly observed behaviors, and the consequences of chemically mediated interactions in different ecosystems. Themed meetings, workshops, and summer schools are ideal platforms for discussing scientific advancements as well as identifying gaps and challenges within the discipline. From the 11th to the 22nd of June 2018, the 11th annual PhD course in ICE was held at the Swedish University of Agricultural Sciences (SLU) Alnarp, Sweden. The course was made up of 35 student participants from 22 nationalities (Fig. 1a) as well as 32 lecturers. Lectures and laboratory demonstrations were supported by literature seminars, and four broad research areas were covered: (1) multitrophic interactions and plant defenses, (2) chemical communication focusing on odor sensing, processing, and behavior, (3) disease vectors, and (4) applied aspects of basic ICE research in agriculture. This particular article contains a summary and brief synthesis of these main emergent themes and discussions from the ICE 2018 course. In addition, we also provide suggestions on teaching the next generation of ICE scientists, especially during unprecedented global situations.
Collapse
Affiliation(s)
- Crispus M. Mbaluto
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Pusch straße 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Pascal M. Ayelo
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Hatfield, Private Bag X20, Pretoria, 0028 South Africa
| | - Alexandra G. Duffy
- Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT 84602 USA
| | - Anna L. Erdei
- Zoology Department, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó str. 15, Budapest, 1022 Hungary
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, 23053 Alnarp, Sweden
| | - Anaїs K. Tallon
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, 23053 Alnarp, Sweden
| | - Siyang Xia
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT 06511 USA
| | - Gabriela Caballero-Vidal
- INRAE, Institute of Ecology and Environmental Sciences of Paris, CNRS, IRD, UPEC, Sorbonne Université, Université Paris Diderot, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - Urban Spitaler
- Institute of Plant Health, Laimburg Research Centre, Laimburg 6, 3904 Ora, South Tyrol Italy
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Magdolna O. Szelényi
- Zoology Department, Plant Protection Institute, Centre for Agricultural Research, Herman Ottó str. 15, Budapest, 1022 Hungary
| | - Gonçalo A. Duarte
- LEAF-Linking Landscape, Environment, Agriculture and Food Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - William B. Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, 23053 Alnarp, Sweden
| | - Paul G. Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, 23053 Alnarp, Sweden
| |
Collapse
|
34
|
Slankster E, Lee C, Hess KM, Odell S, Mathew D. Effect of gut microbes on olfactory behavior of Drosophila melanogaster larva. BIOS 2019; 90:227-238. [PMID: 34045768 DOI: 10.1893/0005-3155-90.4.227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The symbiotic relationship between an animal and its gut microbiota is known to influence host neural function and behavior. The mechanisms by which gut microbiota influence brain function are not well understood. This study measures the impact of gut microbiota on olfactory behavior of Drosophila larvae and explores possible mechanisms by which gut microbiota communicate with neural circuits. The microbiota load in Drosophila larvae was altered by treating them with antibiotics or probiotics. Control larvae and larvae with altered microbiota loads were subjected to olfactory assays to analyze the chemotaxis response of larvae to odorants. Larvae treated with antibiotics had reduced microbiota load and exhibited reduced chemotaxis response toward odorants compared to control animals. This behavioral phenotype was partially rescued in larvae treated with probiotics that resulted in partial recovery of microbiota loads. Expression levels of several olfactory genes in larvae subjected to different treatments were analyzed. The results suggest that the expression of certain components of the GABA signaling pathway is sensitive to microbiota load. The study concludes that the microbiota influences homeostatic mechanisms in the host that control GABA production and GABA-receptor expression, which are known to impact host olfactory behavior. These results have implications for understanding the bidirectional communication between a host organism and its microbiota as well as for understanding the modulation of olfactory neuron function.
Collapse
Affiliation(s)
- Eryn Slankster
- Department of Biology, University of Nevada, Reno, NV 89557
| | - Cammie Lee
- Department of Biology, University of Nevada, Reno, NV 89557
| | - Kristen M Hess
- Department of Biology, University of Nevada, Reno, NV 89557
| | - Seth Odell
- Department of Biology, University of Nevada, Reno, NV 89557.,Integrative Neuroscience Program, University of Nevada, Reno, NV 89557
| | - Dennis Mathew
- Department of Biology, University of Nevada, Reno, NV 89557.,Integrative Neuroscience Program, University of Nevada, Reno, NV 89557
| |
Collapse
|
35
|
Gorur-Shandilya S, Martelli C, Demir M, Emonet T. Controlling and measuring dynamic odorant stimuli in the laboratory. ACTA ACUST UNITED AC 2019; 222:jeb.207787. [PMID: 31672728 DOI: 10.1242/jeb.207787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022]
Abstract
Animals experience complex odorant stimuli that vary widely in composition, intensity and temporal properties. However, stimuli used to study olfaction in the laboratory are much simpler. This mismatch arises from the challenges in measuring and controlling them precisely and accurately. Even simple pulses can have diverse kinetics that depend on their molecular identity. Here, we introduce a model that describes how stimulus kinetics depend on the molecular identity of the odorant and the geometry of the delivery system. We describe methods to deliver dynamic odorant stimuli of several types, including broadly distributed stimuli that reproduce some of the statistics of naturalistic plumes, in a reproducible and precise manner. Finally, we introduce a method to calibrate a photo-ionization detector to any odorant it can detect, using no additional components. Our approaches are affordable and flexible and can be used to advance our understanding of how olfactory neurons encode real-world odor signals.
Collapse
Affiliation(s)
- Srinivas Gorur-Shandilya
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Carlotta Martelli
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.,Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Mahmut Demir
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Thierry Emonet
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA .,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.,Department of Physics, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
36
|
Du Y, Grodowitz MJ, Chen J. Electrophysiological Responses of Eighteen Species of Insects to Fire Ant Alarm Pheromone. INSECTS 2019; 10:insects10110403. [PMID: 31739452 PMCID: PMC6920760 DOI: 10.3390/insects10110403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022]
Abstract
Olfaction plays a dominant role in insect communication. Alarm pheromones, which alert other insects of the same species of impending danger, are a major class of releaser pheromones. The major components of alarm pheromones in red imported fire ants, honeybees and aphids have been identified as 2-ethyl-3,6-dimethylpyrazine (2E-3,6-DP), isopentyl acetate (IPA), and E-β-farnesene (EβF), respectively. In this study, electroantennography (EAG) responses to EDP (a mixture of 2-ethyl-3,6-dimethylpyrazine and 2-ethyl-3,5-dimethylpyrazine), IPA and EβF were investigated in a wide range of insect species. Beside imported fire ants, the EDP (2-ethyl-3,6(5)-dimethylpyrazine) elicited significant EAG response from all other tested insects, including six ant species and one hybrid ant, honeybee, bagrada bug, lady beetle, housefly, small hive beetle, yellow fever mosquito, termite, bedbug, water hyacinth weevil, southern green stink bug and two aphid species. In contrast, IPA elicited significant EAG response only in the honeybee, red imported fire ant, an Aphaenogaster ant, and the water hyacinth weevil. The EβF only elicited EAG responses in two aphids, small hive beetle and housefly. The results clearly indicate that EDP can be detected by widespread insect species that did not coevolve with S. invicta and further suggested alkylpyrazine may activate multiple generally tuned olfactory receptors (ORs) across a wide number of insect species.
Collapse
Affiliation(s)
| | | | - Jian Chen
- Correspondence: ; Tel.: +662-686-3066
| |
Collapse
|
37
|
Murugathas T, Zheng HY, Colbert D, Kralicek AV, Carraher C, Plank NOV. Biosensing with Insect Odorant Receptor Nanodiscs and Carbon Nanotube Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9530-9538. [PMID: 30740970 DOI: 10.1021/acsami.8b19433] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Insect odorant receptors have been reconstituted into lipid nanodiscs and tethered to carbon nanotube field-effect transistors to function as a biosensor. Here, four different insect odorant receptors (ORs) from Drosophila melanogaster (DmelOR10a, DmelOR22a, DmelOR35a, and DmelOR71a) were expressed in Sf9 cells, purified, and reconstituted into lipid nanodiscs. We have demonstrated that each of these ORs produce a selective and highly sensitive electrical response to their respective positive ligands, methyl salicylate, methyl hexanoate, trans-2-hexen-1-al, and 4-ethylguaiacol, with limits of detection in the low femtomolar range. No detection was observed for each OR against control ligands, and empty nanodiscs showed no specific sensor signal for any of the odorant molecules. Our results are the first evidence that insect ORs can be integrated into lipid nanodiscs and used as primary sensing elements for bioelectronic nose technologies.
Collapse
Affiliation(s)
- Thanihaichelvan Murugathas
- School of Chemical and Physical Sciences , Victoria University of Wellington , Wellington 6021 , New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6021 , New Zealand
- Department of Physics , University of Jaffna , Jaffna 40000 , Sri Lanka
| | - Han Yue Zheng
- School of Chemical and Physical Sciences , Victoria University of Wellington , Wellington 6021 , New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6021 , New Zealand
| | - Damon Colbert
- The New Zealand Institute for Plant & Food Research Ltd. , Auckland 1142 , New Zealand
| | - Andrew V Kralicek
- The New Zealand Institute for Plant & Food Research Ltd. , Auckland 1142 , New Zealand
| | - Colm Carraher
- The New Zealand Institute for Plant & Food Research Ltd. , Auckland 1142 , New Zealand
| | - Natalie O V Plank
- School of Chemical and Physical Sciences , Victoria University of Wellington , Wellington 6021 , New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6021 , New Zealand
| |
Collapse
|
38
|
Slankster E, Odell SR, Mathew D. Strength in diversity: functional diversity among olfactory neurons of the same type. J Bioenerg Biomembr 2019; 51:65-75. [PMID: 30604088 PMCID: PMC6382560 DOI: 10.1007/s10863-018-9779-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/13/2018] [Indexed: 01/01/2023]
Abstract
Most animals depend upon olfaction to find food, mates, and to avoid predators. An animal's olfactory circuit helps it sense its olfactory environment and generate critical behavioral responses. The general architecture of the olfactory circuit, which is conserved across species, is made up of a few different neuronal types including first-order receptor neurons, second- and third-order neurons, and local interneurons. Each neuronal type differs in their morphology, physiology, and neurochemistry. However, several recent studies have suggested that there is intrinsic diversity even among neurons of the same type and that this diversity is important for neural function. In this review, we first examine instances of intrinsic diversity observed among individual types of olfactory neurons. Next, we review potential genetic and experience-based plasticity mechanisms that underlie this diversity. Finally, we consider the implications of intrinsic neuronal diversity for circuit function. Overall, we hope to highlight the importance of intrinsic diversity as a previously underestimated property of circuit function.
Collapse
Affiliation(s)
- Eryn Slankster
- Department of Biology, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA
| | - Seth R Odell
- Department of Biology, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA
- Integrated Neuroscience Program, University of Nevada, Reno, NV, 89557, USA
| | - Dennis Mathew
- Department of Biology, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA.
- Integrated Neuroscience Program, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
39
|
Si G, Kanwal JK, Hu Y, Tabone CJ, Baron J, Berck M, Vignoud G, Samuel ADT. Structured Odorant Response Patterns across a Complete Olfactory Receptor Neuron Population. Neuron 2019; 101:950-962.e7. [PMID: 30683545 DOI: 10.1016/j.neuron.2018.12.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 10/29/2018] [Accepted: 12/20/2018] [Indexed: 11/15/2022]
Abstract
Odor perception allows animals to distinguish odors, recognize the same odor across concentrations, and determine concentration changes. How the activity patterns of primary olfactory receptor neurons (ORNs), at the individual and population levels, facilitate distinguishing these functions remains poorly understood. Here, we interrogate the complete ORN population of the Drosophila larva across a broadly sampled panel of odorants at varying concentrations. We find that the activity of each ORN scales with the concentration of any odorant via a fixed dose-response function with a variable sensitivity. Sensitivities across odorants and ORNs follow a power-law distribution. Much of receptor sensitivity to odorants is accounted for by a single geometrical property of molecular structure. Similarity in the shape of temporal response filters across odorants and ORNs extend these relationships to fluctuating environments. These results uncover shared individual- and population-level patterns that together lend structure to support odor perceptions.
Collapse
Affiliation(s)
- Guangwei Si
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jessleen K Kanwal
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA
| | - Yu Hu
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Christopher J Tabone
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jacob Baron
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Matthew Berck
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Gaetan Vignoud
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Aravinthan D T Samuel
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
40
|
Clark DA, Odell SR, Armstrong JM, Turcotte M, Kohler D, Mathis A, Schmidt DR, Mathew D. Behavior Responses to Chemical and Optogenetic Stimuli in Drosophila Larvae. Front Behav Neurosci 2018; 12:324. [PMID: 30622461 PMCID: PMC6308144 DOI: 10.3389/fnbeh.2018.00324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/10/2018] [Indexed: 11/13/2022] Open
Abstract
An animal’s ability to navigate an olfactory environment is critically dependent on the activities of its first-order olfactory receptor neurons (ORNs). While considerable research has focused on ORN responses to odorants, the mechanisms by which olfactory information is encoded in the activities of ORNs and translated into navigational behavior remain poorly understood. We sought to determine the contributions of most Drosophila melanogaster larval ORNs to navigational behavior. Using odorants to activate ORNs and a larval tracking assay to measure the corresponding behavioral response, we observed that larval ORN activators cluster into four groups based on the behavior responses elicited from larvae. This is significant because it provides new insights into the functional relationship between ORN activity and behavioral response. Subsequent optogenetic analyses of a subset of ORNs revealed previously undescribed properties of larval ORNs. Furthermore, our results indicated that different temporal patterns of ORN activation elicit different behavioral outputs: some ORNs respond to stimulus increments while others respond to stimulus decrements. These results suggest that the ability of ORNs to encode temporal patterns of stimulation increases the coding capacity of the olfactory circuit. Moreover, the ability of ORNs to sense stimulus increments and decrements facilitates instantaneous evaluations of concentration changes in the environment. Together, these ORN properties enable larvae to efficiently navigate a complex olfactory environment. Ultimately, knowledge of how ORN activity patterns and their weighted contributions influence odor coding may eventually reveal how peripheral information is organized and transmitted to subsequent layers of a neural circuit.
Collapse
Affiliation(s)
- David A Clark
- Department of Biology, University of Nevada, Reno, NV, United States.,Integrated Neuroscience Graduate Program, University of Nevada, Reno, NV, United States
| | - Seth R Odell
- Department of Biology, University of Nevada, Reno, NV, United States.,Integrated Neuroscience Graduate Program, University of Nevada, Reno, NV, United States
| | - Joanna M Armstrong
- Department of Mathematics & Statistics, University of Nevada, Reno, NV, United States
| | - Mariah Turcotte
- Department of Biology, University of Nevada, Reno, NV, United States
| | - Donovan Kohler
- Department of Biology, University of Nevada, Reno, NV, United States
| | - America Mathis
- Department of Biology, University of Nevada, Reno, NV, United States
| | - Deena R Schmidt
- Integrated Neuroscience Graduate Program, University of Nevada, Reno, NV, United States.,Department of Mathematics & Statistics, University of Nevada, Reno, NV, United States
| | - Dennis Mathew
- Department of Biology, University of Nevada, Reno, NV, United States.,Integrated Neuroscience Graduate Program, University of Nevada, Reno, NV, United States
| |
Collapse
|
41
|
Tastekin I, Khandelwal A, Tadres D, Fessner ND, Truman JW, Zlatic M, Cardona A, Louis M. Sensorimotor pathway controlling stopping behavior during chemotaxis in the Drosophila melanogaster larva. eLife 2018; 7:e38740. [PMID: 30465650 PMCID: PMC6264072 DOI: 10.7554/elife.38740] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/07/2018] [Indexed: 02/02/2023] Open
Abstract
Sensory navigation results from coordinated transitions between distinct behavioral programs. During chemotaxis in the Drosophila melanogaster larva, the detection of positive odor gradients extends runs while negative gradients promote stops and turns. This algorithm represents a foundation for the control of sensory navigation across phyla. In the present work, we identified an olfactory descending neuron, PDM-DN, which plays a pivotal role in the organization of stops and turns in response to the detection of graded changes in odor concentrations. Artificial activation of this descending neuron induces deterministic stops followed by the initiation of turning maneuvers through head casts. Using electron microscopy, we reconstructed the main pathway that connects the PDM-DN neuron to the peripheral olfactory system and to the pre-motor circuit responsible for the actuation of forward peristalsis. Our results set the stage for a detailed mechanistic analysis of the sensorimotor conversion of graded olfactory inputs into action selection to perform goal-oriented navigation.
Collapse
Affiliation(s)
- Ibrahim Tastekin
- EMBL-CRG Systems Biology Research UnitCentre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Avinash Khandelwal
- EMBL-CRG Systems Biology Research UnitCentre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - David Tadres
- EMBL-CRG Systems Biology Research UnitCentre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Department of Molecular, Cellular and Developmental Biology & Neuroscience Research InstituteUniversity of CaliforniaSanta BarbaraUnited States
| | - Nico D Fessner
- EMBL-CRG Systems Biology Research UnitCentre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - James W Truman
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Marta Zlatic
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
- Department of ZoologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Albert Cardona
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Matthieu Louis
- EMBL-CRG Systems Biology Research UnitCentre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- Department of Molecular, Cellular and Developmental Biology & Neuroscience Research InstituteUniversity of CaliforniaSanta BarbaraUnited States
- Department of PhysicsUniversity of California Santa BarbaraCaliforniaUnited States
| |
Collapse
|
42
|
Gomez-Diaz C, Martin F, Garcia-Fernandez JM, Alcorta E. The Two Main Olfactory Receptor Families in Drosophila, ORs and IRs: A Comparative Approach. Front Cell Neurosci 2018; 12:253. [PMID: 30214396 PMCID: PMC6125307 DOI: 10.3389/fncel.2018.00253] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
Most insect species rely on the detection of olfactory cues for critical behaviors for the survival of the species, e.g., finding food, suitable mates and appropriate egg-laying sites. Although insects show a diverse array of molecular receptors dedicated to the detection of sensory cues, two main types of molecular receptors have been described as responsible for olfactory reception in Drosophila, the odorant receptors (ORs) and the ionotropic receptors (IRs). Although both receptor families share the role of being the first chemosensors in the insect olfactory system, they show distinct evolutionary origins and several distinct structural and functional characteristics. While ORs are seven-transmembrane-domain receptor proteins, IRs are related to the ionotropic glutamate receptor (iGluR) family. Both types of receptors are expressed on the olfactory sensory neurons (OSNs) of the main olfactory organ, the antenna, but they are housed in different types of sensilla, IRs in coeloconic sensilla and ORs in basiconic and trichoid sensilla. More importantly, from the functional point of view, they display different odorant specificity profiles. Research advances in the last decade have improved our understanding of the molecular basis, evolution and functional roles of these two families, but there are still controversies and unsolved key questions that remain to be answered. Here, we present an updated review on the advances of the genetic basis, evolution, structure, functional response and regulation of both types of chemosensory receptors. We use a comparative approach to highlight the similarities and differences among them. Moreover, we will discuss major open questions in the field of olfactory reception in insects. A comprehensive analysis of the structural and functional convergence and divergence of both types of receptors will help in elucidating the molecular basis of the function and regulation of chemoreception in insects.
Collapse
Affiliation(s)
- Carolina Gomez-Diaz
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Fernando Martin
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | | | - Esther Alcorta
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| |
Collapse
|
43
|
Tomasiunaite U, Widmann A, Thum AS. Maggot Instructor: Semi-Automated Analysis of Learning and Memory in Drosophila Larvae. Front Psychol 2018; 9:1010. [PMID: 29973900 PMCID: PMC6019503 DOI: 10.3389/fpsyg.2018.01010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/31/2018] [Indexed: 11/21/2022] Open
Abstract
For several decades, Drosophila has been widely used as a suitable model organism to study the fundamental processes of associative olfactory learning and memory. More recently, this condition also became true for the Drosophila larva, which has become a focus for learning and memory studies based on a number of technical advances in the field of anatomical, molecular, and neuronal analyses. The ongoing efforts should be mentioned to reconstruct the complete connectome of the larval brain featuring a total of about 10,000 neurons and the development of neurogenic tools that allow individual manipulation of each neuron. By contrast, standardized behavioral assays that are commonly used to analyze learning and memory in Drosophila larvae exhibit no such technical development. Most commonly, a simple assay with Petri dishes and odor containers is used; in this method, the animals must be manually transferred in several steps. The behavioral approach is therefore labor-intensive and limits the capacity to conduct large-scale genetic screenings in small laboratories. To circumvent these limitations, we introduce a training device called the Maggot Instructor. This device allows automatic training up to 10 groups of larvae in parallel. To achieve such goal, we used fully automated, computer-controlled optogenetic activation of single olfactory neurons in combination with the application of electric shocks. We showed that Drosophila larvae trained with the Maggot Instructor establish an odor-specific memory, which is independent of handling and non-associative effects. The Maggot Instructor will allow to investigate the large collections of genetically modified larvae in a short period and with minimal human resources. Therefore, the Maggot Instructor should be able to help extensive behavioral experiments in Drosophila larvae to keep up with the current technical advancements. In the longer term, this condition will lead to a better understanding of how learning and memory are organized at the cellular, synaptic, and molecular levels in Drosophila larvae.
Collapse
Affiliation(s)
| | - Annekathrin Widmann
- Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Molecular Neurobiology of Behavior, Georg-August-University Göttingen, Göttingen, Germany
| | - Andreas S Thum
- Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Genetics, University of Leipzig, Leipzig, Germany
| |
Collapse
|
44
|
Zhang L, Yuan Y, Ren T, Guo Y, Li C, Pu X. Shining Light on Molecular Mechanism for Odor-selectivity of CNT-immobilized Olfactory Receptor. Sci Rep 2018; 8:7824. [PMID: 29777138 PMCID: PMC5959861 DOI: 10.1038/s41598-018-26105-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/20/2018] [Indexed: 01/17/2023] Open
Abstract
Olfactory receptor (OR)-based bioelectronic nose is a new type of bio-affinity sensor applied for detecting numerous odorant molecules. In order to elucidate the effect of the adsorption of nanomaterial carriers on the receptor structure and its selectivity to odors, we used a systematic computation-scheme to study two OR models immobilized onto carbon nanotube. Our result indicates that there is a multistep OR-adsorption process driven by hydrophobic interaction. Many allosteric communication pathways exist between the absorbed residues and the pocket ones, leading to a significant shrinkage of the pocket. Consequently, the size-selectivity of the receptor to the odors is changed to some extent. But, the odor size and its hydrophobicity, rather than specific functional groups of the odor, still play a determinant role in binding OR, at least for the 132 odors under study. Regardless of the limitation for the odor size in initial recognition, the different-size odors could induce significant changes in the pocket conformation so that it could better match the pocket space, indicating the importance of the ligand-fit binding. Due to the CNT-induced shrinkage of the pocket, the CNT immobilization could increase the binding affinity through enhancing van der Waals interaction, in particular for the large odors.
Collapse
Affiliation(s)
- Liyun Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Yuan Yuan
- College of Management, Southwest University for Nationalities, Chengdu, 610041, P.R. China
| | - Tian Ren
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Chuan Li
- College of Computer Science, Sichuan University, Chengdu, 610064, P.R. China.
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China.
| |
Collapse
|
45
|
Ouedraogo L, den Otter CJ. Comparison of single cell sensitivities to acetone, 1-octen-3-ol and 3-methylphenol in the riverine tsetse species Glossina fuscipes fuscipes and G. palpalis palpalis. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:144-151. [PMID: 29559304 DOI: 10.1016/j.jinsphys.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Action potentials from individual cells were recorded from antennae (funiculi) of living tsetse flies, Glossina p. palpalis and Glossina f. fuscipes using a "surface-contact" recording technique. Stimuli were vapours of 1-octen-3-ol, acetone and 3-methylphenol. Of the 101 and 128 olfactory cells tested for their sensitivity to odour stimuli in G. p. palpalis and G. f. fuscipes, respectively, the majority (83 and 77%) were activated by more than one chemical. The numbers of these "generalist" cells were 20 and 15% higher in females than in males. Response intensity increased with increasing odour dose. Temporal patterns of excitation were phasic-tonic and showed cells with relatively rapid cessation of spike activity after the end of stimulation and cells which continued firing for several seconds or even minutes after stimulation. Inhibition by odours only occurred in a minority of cells and was dose-dependent. For each of the three substances the excitatory response was significantly higher in G. f. fuscipes than in G. p. palpalis, whereas no significant differences between inhibitory responses were found. In G. f. fuscipes each stimulus evoked equal excitatory responses. In G. p. palpalis, however, acetone induced significantly higher responses than 1-octen-3-ol and 3-methylphenol. Response intensities to each of the three chemicals did not differ between male and female G. p. palpalis, whereas in G. f. fuscipes 1-octen-3-ol evoked significantly higher responses in males. Possible mechanisms of receptor cell odour coding and behavioural effects of the various cell type activities are discussed.
Collapse
Affiliation(s)
- Lamini Ouedraogo
- Laboratoire de Physiologie Animale, Unité de Formation et de la Recherche en Sciences de la Vie et de la Terre (UFR/SVT), Universite Ouaga I Pr Joseph KI-ZERBO, Burkina Faso.
| | - C J den Otter
- FRES, Rijksstraatweg 377, 9752 CH Haren, The Netherlands.
| |
Collapse
|
46
|
The Olfactory Logic behind Fruit Odor Preferences in Larval and Adult Drosophila. Cell Rep 2018; 23:2524-2531. [DOI: 10.1016/j.celrep.2018.04.085] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/22/2018] [Accepted: 04/19/2018] [Indexed: 01/22/2023] Open
|
47
|
Contribution of DA Signaling to Appetitive Odor Perception in a Drosophila Model. Sci Rep 2018; 8:5978. [PMID: 29654277 PMCID: PMC5899149 DOI: 10.1038/s41598-018-24334-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
Understanding cognitive processes that translate chemically diverse olfactory stimuli to specific appetitive drives remains challenging. We have shown that food-related odors arouse impulsive-like feeding of food media that are palatable and readily accessible in well-nourished Drosophila larvae. Here we provide evidence that two assemblies of four dopamine (DA) neurons, one per brain hemisphere, contribute to perceptual processing of the qualitative and quantitative attributes of food scents. These DA neurons receive neural representations of chemically diverse food-related odors, and their combined neuronal activities become increasingly important as the chemical complexity of an appetizing odor stimulus increases. Furthermore, in each assembly of DA neurons, integrated odor signals are transformed to one-dimensional DA outputs that have no intrinsic reward values. Finally, a genetic analysis has revealed a D1-type DA receptor (Dop1R1)-gated mechanism in neuropeptide Y-like neurons that assigns appetitive significance to selected DA outputs. Our findings suggest that fly larvae provide a useful platform for elucidation of molecular and circuit mechanisms underlying cognitive processing of olfactory and possibly other sensory cues.
Collapse
|
48
|
Clark DA, Kohler D, Mathis A, Slankster E, Kafle S, Odell SR, Mathew D. Tracking Drosophila Larval Behavior in Response to Optogenetic Stimulation of Olfactory Neurons. J Vis Exp 2018. [PMID: 29630041 DOI: 10.3791/57353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The ability of insects to navigate toward odor sources is based on the activities of their first-order olfactory receptor neurons (ORNs). While a considerable amount of information has been generated regarding ORN responses to odorants, the role of specific ORNs in driving behavioral responses remains poorly understood. Complications in behavior analyses arise due to different volatilities of odorants that activate individual ORNs, multiple ORNs activated by single odorants, and the difficulty in replicating naturally observed temporal variations in olfactory stimuli using conventional odor-delivery methods in the laboratory. Here, we describe a protocol that analyzes Drosophila larval behavior in response to simultaneous optogenetic stimulation of its ORNs. The optogenetic technology used here allows for specificity of ORN activation and precise control of temporal patterns of ORN activation. Corresponding larval movement is tracked, digitally recorded, and analyzed using custom written software. By replacing odor stimuli with light stimuli, this method allows for a more precise control of individual ORN activation in order to study its impact on larval behavior. Our method could be further extended to study the impact of second-order projection neurons (PNs) as well as local neurons (LNs) on larval behavior. This method will thus enable a comprehensive dissection of olfactory circuit function and complement studies on how olfactory neuron activities translate in to behavior responses.
Collapse
Affiliation(s)
- David A Clark
- Department of Biology, MS-0314, University of Nevada; Integrated Neuroscience Graduate Program, University of Nevada
| | | | | | | | - Samipya Kafle
- Department of Biology, MS-0314, University of Nevada
| | - Seth R Odell
- Department of Biology, MS-0314, University of Nevada; Integrated Neuroscience Graduate Program, University of Nevada
| | - Dennis Mathew
- Department of Biology, MS-0314, University of Nevada; Integrated Neuroscience Graduate Program, University of Nevada;
| |
Collapse
|
49
|
Fleischer J, Pregitzer P, Breer H, Krieger J. Access to the odor world: olfactory receptors and their role for signal transduction in insects. Cell Mol Life Sci 2018; 75:485-508. [PMID: 28828501 PMCID: PMC11105692 DOI: 10.1007/s00018-017-2627-5] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 12/26/2022]
Abstract
The sense of smell enables insects to recognize and discriminate a broad range of volatile chemicals in their environment originating from prey, host plants and conspecifics. These olfactory cues are received by olfactory sensory neurons (OSNs) that relay information about food sources, oviposition sites and mates to the brain and thus elicit distinct odor-evoked behaviors. Research over the last decades has greatly advanced our knowledge concerning the molecular basis underlying the reception of odorous compounds and the mechanisms of signal transduction in OSNs. The emerging picture clearly indicates that OSNs of insects recognize odorants and pheromones by means of ligand-binding membrane proteins encoded by large and diverse families of receptor genes. In contrast, the mechanisms of the chemo-electrical transduction process are not fully understood; the present status suggests a contribution of ionotropic as well as metabotropic mechanisms. In this review, we will summarize current knowledge on the peripheral mechanisms of odor sensing in insects focusing on olfactory receptors and their specific role in the recognition and transduction of odorant and pheromone signals by OSNs.
Collapse
Affiliation(s)
- Joerg Fleischer
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Pablo Pregitzer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Heinz Breer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Jürgen Krieger
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
50
|
Kim D, Alvarez M, Lechuga LM, Louis M. Species-specific modulation of food-search behavior by respiration and chemosensation in Drosophila larvae. eLife 2017; 6:27057. [PMID: 28871963 PMCID: PMC5584988 DOI: 10.7554/elife.27057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/08/2017] [Indexed: 12/17/2022] Open
Abstract
Animals explore their environment to encounter suitable food resources. Despite its vital importance, this behavior puts individuals at risk by consuming limited internal energy during locomotion. We have developed a novel assay to investigate how food-search behavior is organized in Drosophila melanogaster larvae dwelling in hydrogels mimicking their natural habitat. We define three main behavioral modes: resting at the gel's surface, digging while feeding near the surface, and apneic dives. In unstimulated conditions, larvae spend most of their time digging. By contrast, deep and long exploratory dives are promoted by olfactory stimulations. Hypoxia and chemical repellents impair diving. We report remarkable differences in the dig-and-dive behavior of D. melanogaster and the fruit-pest D. suzukii. The present paradigm offers an opportunity to study how sensory and physiological cues are integrated to balance the limitations of dwelling in imperfect environmental conditions and the risks associated with searching for potentially more favorable conditions.
Collapse
Affiliation(s)
- Daeyeon Kim
- EMBL-CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Mar Alvarez
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, CIBER-BBN, Barcelona, Spain
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, CIBER-BBN, Barcelona, Spain
| | - Matthieu Louis
- EMBL-CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| |
Collapse
|