1
|
Stewart JR, Alsos IG, Brown AG, Dalén L, Heintzman PD. The progressive evolution of cold-adapted species. Trends Ecol Evol 2025:S0169-5347(25)00094-1. [PMID: 40393839 DOI: 10.1016/j.tree.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/30/2025] [Accepted: 04/03/2025] [Indexed: 05/22/2025]
Abstract
The evolution of cold-adapted terrestrial species underwent two main phases. First, the genera of cold-adapted taxa appeared during the Late Pliocene to Early Pleistocene. The modern day and Late Pleistocene cold-adapted species then arose during and after the Middle Pleistocene Transition. These species evolved through one or more of the following processes: out of the temperate zone, evolving in situ, or through montane preadaptation. Palaeogenetic studies are greatly contributing to our understanding of the timings and modes of evolution of cold-adapted species as well as when their specialised traits evolved. The evolution of polar plant and beetle species is claimed to show greater stasis than that of vertebrates, but could instead reflect morphological conservatism that can be tested with palaeogenetics.
Collapse
Affiliation(s)
- John R Stewart
- Bournemouth University, Faculty of Science and Technology, Talbot Campus, Fern Barrow, Poole, BH12 5BB, UK.
| | - Inger G Alsos
- The Arctic University Museum of Norway, UiT, The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Antony G Brown
- The Arctic University Museum of Norway, UiT, The Arctic University of Norway, N-9037 Tromsø, Norway; The Palaeolab., Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK
| | - Love Dalén
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405 Stockholm, Sweden
| | - Peter D Heintzman
- Centre for Palaeogenetics, 10691 Stockholm, Sweden; Department of Geological Sciences, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
2
|
Igamberdiev AU. Human-driven evolution of cultivated plants and the origin of early civilizations: The concept of Neolithic revolution in the works of Nikolai Vavilov. Biosystems 2025; 247:105359. [PMID: 39486570 DOI: 10.1016/j.biosystems.2024.105359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
The concept of centers of origin of cultivated plants (crop biodiversity hotspots) developed by Nikolai Vavilov (1887-1943) is essential for understanding the origin and evolution of human civilization. Vavilov formulated the principles of the Neolithic agricultural revolution and substantiated the basic patterns for the emergence of agricultural civilizations. He established that the center of speciation of the plants that have a potential for cultivation determines the origin of primary civilization. Humans actively performed the selection of plants with valuable properties, which led to the formation of new cultivated species and varieties, while the starting point for such unconsciously human-directed evolution was the presence of potentially useful traits due to the increased genetic diversity in the center of origin. The spreading of agriculturally important cultivars from the center of their origin led to the propagation of beneficial farming technologies over large areas. The establishment of human civilization resulted from the dynamic quasi-symbiotic relationship between humans and domesticated plants and animals, which human-driven evolution became an essential factor for the transformation and dynamics of human societies. In the addendum, we present archive materials on the cooperation of Nikolai Vavilov with the historians and ethnologists from the editorial board of the journal "Novy Vostok" ("Nouvel Orient"). These materials include his letters to Professor Ilya Borozdin.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
3
|
Quirk ZJ, Smith SY, Paul Acosta R, Poulsen CJ. Where did they come from, where did they go? Niche conservatism in woody and herbaceous plants and implications for plant-based paleoclimatic reconstructions. AMERICAN JOURNAL OF BOTANY 2024; 111:e16426. [PMID: 39449637 PMCID: PMC11584045 DOI: 10.1002/ajb2.16426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 10/26/2024]
Abstract
PREMISE The ecological conditions that constrain plants to an environmental niche are assumed to be constant through time. While the fossil record has been used previously to test for niche conservatism of woody flowering plants, additional studies are needed in other plant groups especially since they can provide insight with paleoclimatic reconstructions, high biodiversity in modern terrestrial ecosystems, and significant contributions to agriculture. METHODS We tested climatic niche conservatism across time by characterizing the climatic niches of living herbaceous ginger plants (Zingiberaceae) and woody dawn redwood (Metasequoia) against paleoniches reconstructed based on fossil distribution data and paleoclimatic models. RESULTS Despite few fossil Zingiberaceae occurrences in the latitudinal tropics, unlike living Zingiberaceae, extinct Zingiberaceae likely experienced paratropical conditions in the higher latitudes, especially in the Cretaceous and Paleogene. The living and fossil distributions of Metasequoia largely remain in the upper latitudes of the northern hemisphere. The Zingiberaceae shifted from an initial subtropical climatic paleoniche in the Cretaceous, toward a temperate regime in the late Cenozoic; Metasequoia occupied a more consistent climatic niche over the same time intervals. CONCLUSIONS Because of the inconsistent climatic niches of Zingiberaceae over geologic time, we are less confident of using them for taxonomic-based paleoclimatic reconstruction methods like nearest living relative, which assume a consistent climatic niche between extant and extinct relatives; we argue that the consistent climatic niche of Metasequoia is more appropriate for these reconstructions. Niche conservatism cannot be assumed between extant and extinct plants and should be tested further in groups used for paleoclimatic reconstructions.
Collapse
Affiliation(s)
- Zack J Quirk
- Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, North University Building, 1100 North University Ave., Ann Arbor, 48109-1005, MI, USA
- U.S. Department of Energy, Forrestal Building, Washington, 20585, D.C, USA
| | - Selena Y Smith
- Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, North University Building, 1100 North University Ave., Ann Arbor, 48109-1005, MI, USA
| | - R Paul Acosta
- Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, North University Building, 1100 North University Ave., Ann Arbor, 48109-1005, MI, USA
- Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, 4400 University Dr., Fairfax, 22030, VA, USA
| | - Christopher J Poulsen
- Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, North University Building, 1100 North University Ave., Ann Arbor, 48109-1005, MI, USA
- Department of Earth Sciences, University of Oregon, Eugene, 97403, OR, USA
| |
Collapse
|
4
|
Amarasekare P. Pattern and Process in a Rapidly Changing World: Ideas and Approaches. Am Nat 2024; 204:361-369. [PMID: 39326058 DOI: 10.1086/731993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
AbstractScience is as dynamic as the world around us. Our ideas continually change, as do the approaches we use to study science. Few things remain invariant in this changing landscape, but a fascination with pattern and process is one that has endured throughout the history of science. Paying homage to this long-held tradition, the 2023 Vice Presidential Symposium of the American Society of Naturalists focused on the role of pattern and process in ecology and evolution. It brought together a group of early-career researchers working on topics ranging from genetic diversity in microbes to changing patterns of species interactions in the geological record. Their work spanned the taxonomic spectrum from microbes to mammals, the temporal dimension from the Cenozoic to the present, and approaches ranging from manipulative experiments to comparative approaches. In this introductory article, I discuss how these diverse topics are linked by the common thread of elucidating processes underlying patterns and how they collectively generate novel insights into diversity maintenance at different levels of organization.
Collapse
|
5
|
Zhou DH, Zhang QG. Warmer is better for evolutionary rescue, driving a warm-to-cold bias in habitat colonization dynamics. Proc Biol Sci 2024; 291:20241605. [PMID: 39353560 PMCID: PMC11444777 DOI: 10.1098/rspb.2024.1605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024] Open
Abstract
Evolutionary rescue occurs when populations survive lethal environmental stresses through the rising and fixation of tolerant genotypes. Temperature has long been believed to determine the evolutionary speed of populations and species. Here, we suggest that warmer temperatures can facilitate evolutionary rescue. Moreover, with dispersal among habitats, the advantage in evolutionary rescue for warmer populations may cause a bias in habitat colonization dynamics towards the warm-to-cold direction. We experimentally tested these hypotheses with a model microbial system. Our first experiment showed that bacterial populations at warmer temperatures had a greater chance to evolve resistance and escape the fate of extinction under an antibiotic treatment. In the second experiment, metapopulations that consisted of warm and cold habitats were exposed to the antibiotic stress; local populations that went extinct might be recolonized, and such recolonization events were biased to the warm-to-cold direction. We also examined possible mechanisms underlying the temperature effect on the rapid evolution of resistance in our study system. Our results may help to understand the mechanisms of maintenance of biodiversity and patterns of gene flow among climatic regions, particularly in pest species subject to chemical control treatments.
Collapse
Affiliation(s)
- Dong-Hao Zhou
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
6
|
Ma LL, Seibold S, Cadotte MW, Zou JY, Song J, Mo ZQ, Tan SL, Ye LJ, Zheng W, Burgess KS, Chen ZF, Liu DT, Yang XL, Shi XC, Zhao W, Liu J, Li DZ, Gao LM, Luo YH. Niche convergence and biogeographic history shape elevational tree community assembly in a subtropical mountain forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173343. [PMID: 38777069 DOI: 10.1016/j.scitotenv.2024.173343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Niche convergence or conservatism have been proposed as essential mechanisms underlying elevational plant community assembly in tropical mountain ecosystems. Subtropical mountains, compared to tropical mountains, are likely to be shaped by a mixing of different geographic affinities of species and remain somehow unclear. Here, we used 31 0.1-ha permanent plots distributed in subtropical forests on the eastern and western aspects of the Gaoligong Mountains, southwest China between 1498 m and 3204 m a.sl. to evaluate how niche-based and biogeographic processes shape tree community assembly along elevational gradients. We analyzed the elevational patterns of taxonomic, phylogenetic and functional diversity, as well as of individual traits, and assessed the relative importance of environmental effects on these diversity measures. We then classified tree species as being either tropical affiliated or temperate affiliated and estimated their contribution to the composition of biogeographic affinities. Species richness decreased with elevation, and species composition showed apparent turnover across the aspects and elevations. Most traits exhibited convergent patterns across the entire elevational gradient. Phylogenetic and functional diversity showed opposing patterns, with phylogenetic diversity increasing and functional diversity decreasing with elevation. Soil nutrients, especially phosphorus and nitrogen, appeared to be the main abiotic variables driving the elevational diversity patterns. Communities at lower elevations were occupied by tropical genera, while highlands contained species of tropical and temperate biogeographic affinities. Moreover, the high phylogenetic diversity at high elevations were likely due to differences in evolutionary history between temperate and tropical species. Our results highlight the importance of niche convergence of tropical species and the legacy of biogeographic history on the composition and structure of subtropical mountain forests. Furthermore, limited soil phosphorus caused traits divergence and the partitioning for different forms of phosphorus may explain the high biodiversity found in phosphorus-limited subtropical forests.
Collapse
Affiliation(s)
- Liang-Liang Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Sebastian Seibold
- TUD Dresden University of Technology, Forest Zoology, Tharandt, Germany
| | - Marc W Cadotte
- Biological Sciences, University of Toronto-Scarborough, Toronto, Ontario, Canada
| | - Jia-Yun Zou
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; TUD Dresden University of Technology, Forest Zoology, Tharandt, Germany; Ecosystem Dynamics and Forest Management Research Group, Department for Ecology and Ecosystem Management, Technical University of Munich, Freising, Germany
| | - Jie Song
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Qiong Mo
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shao-Lin Tan
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lin-Jiang Ye
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei Zheng
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Kevin S Burgess
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA, USA
| | - Zhi-Fa Chen
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - De-Tuan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xing-Liang Yang
- Gaoligongshan National Nature Reserve Baoshan Bureau, Baoshan, China
| | - Xiao-Chun Shi
- Gaoligongshan National Nature Reserve Baoshan Bureau, Baoshan, China
| | - Wei Zhao
- Gaoligongshan National Nature Reserve Baoshan Bureau, Baoshan, China
| | - Jie Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, China
| | - Lian-Ming Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, China.
| | - Ya-Huang Luo
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, China.
| |
Collapse
|
7
|
Huang YY, Chen TR, Lai KP, Kuo CY, Ho MJ, Hsieh HJ, Hsin YC, Chen CA. Poleward migration of tropical corals inhibited by future trends of seawater temperature and calcium carbonate (CaCO 3) saturation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172562. [PMID: 38641098 DOI: 10.1016/j.scitotenv.2024.172562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Poleward range expansion of marine organisms is commonly attributed to anthropogenic ocean warming. However, the extent to which a single species can migrate poleward remains unclear. In this study, we used molecular data to examine the current distribution of the Pocillopora damicornis species complex in Taiwan waters and applied niche modeling to predict its potential range through the end of the 21st Century. The P. damicornis species complex is widespread across shallow, tropical and subtropical waters of the Indo-Pacific regions. Our results revealed that populations from subtropical nonreefal coral communities are P. damicornis, whose native geographical ranges are approximately between 23°N and 35°N. In contrast, those from tropical reefs are P. acuta. Our analysis of 50 environmental data layers demonstrated that the concentrations of CaCO3 polymorphs had the greatest contributions to the distributions of the two species. Future projections under intermediate shared socioeconomic pathways (SSP) 2-4.5 and very high (SSP5-8.5) scenarios of greenhouse gas emissions showed that while sea surface temperature (SST) isotherms would shift northwards, saturation isolines of two CaCO3 polymorphs, calcite (Ωcal) and aragonite (Ωarag), would shift southwards by 2100. Subsequent predictions of future suitable habitats under those conditions indicated that distinct delimitation of geographical ranges for the two species would persist, and neither would extend beyond its native geographical zones, indicating that tropical Taiwan waters are the northern limit for P. acuta. In contrast, subtropical waters are the southern limit for P. damicornis. We concluded that the decline in CaCO3 saturation would make high latitudes less inhabitable, which could be one of the boundary elements that limit poleward range expansion driven by rising SSTs and preserve the latitudinal diversity gradient (LDG) on Earth. Consequently, poleward migration of tropical reef corals to cope with warming oceans should be reevaluated.
Collapse
Affiliation(s)
- Ya-Yi Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ting-Ru Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Kim Phuong Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan; Faculty of Biology and Biotechnology, University of Science, Vietnam National University, Ho Chi Minh, Viet Nam
| | - Chao-Yang Kuo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Jay Ho
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan; Marine Science Center-Green Island Marine Research Station, Biodiversity Research Center, Academia Sinica, Taitung, Taiwan
| | - Hernyi Justin Hsieh
- Penghu Marine Biology Research Center, Fisheries Research Institute, Penghu, Taiwan
| | - Yi-Chia Hsin
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| | - Chaolun A Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan; Department of Life Science, National Taiwan Normal University, Taipei, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
8
|
Simon MW, Amarasekare P. Predicting the fundamental thermal niche of ectotherms. Ecology 2024; 105:e4289. [PMID: 38578245 PMCID: PMC11374413 DOI: 10.1002/ecy.4289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/04/2023] [Accepted: 02/01/2024] [Indexed: 04/06/2024]
Abstract
Climate warming is predicted to increase mean temperatures and thermal extremes on a global scale. Because their body temperature depends on the environmental temperature, ectotherms bear the full brunt of climate warming. Predicting the impact of climate warming on ectotherm diversity and distributions requires a framework that can translate temperature effects on ectotherm life-history traits into population- and community-level outcomes. Here we present a mechanistic theoretical framework that can predict the fundamental thermal niche and climate envelope of ectotherm species based on how temperature affects the underlying life-history traits. The advantage of this framework is twofold. First, it can translate temperature effects on the phenotypic traits of individual organisms to population-level patterns observed in nature. Second, it can predict thermal niches and climate envelopes based solely on trait response data and, hence, completely independently of any population-level information. We find that the temperature at which the intrinsic growth rate is maximized exceeds the temperature at which abundance is maximized under density-dependent growth. As a result, the temperature at which a species will increase the fastest when rare is lower than the temperature at which it will recover from a perturbation the fastest when abundant. We test model predictions using data from a naturalized-invasive interaction to identify the temperatures at which the invasive can most easily invade the naturalized's habitat and the naturalized is most likely to resist the invasive. The framework is sufficiently mechanistic to yield reliable predictions for individual species and sufficiently broad to apply across a range of ectothermic taxa. This ability to predict the thermal niche before a species encounters a new thermal environment is essential to mitigating some of the major effects of climate change on ectotherm populations around the globe.
Collapse
Affiliation(s)
- Margaret W Simon
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, Los Angeles, USA
| | - Priyanga Amarasekare
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, Los Angeles, USA
| |
Collapse
|
9
|
Amarasekare P. Temperature-dependent dispersal and ectotherm species' distributions in a warming world. J Anim Ecol 2024; 93:428-446. [PMID: 38406823 DOI: 10.1111/1365-2656.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/12/2023] [Indexed: 02/27/2024]
Abstract
Dispersal is a crucial component of species' responses to climate warming. Warming-induced changes in species' distributions are the outcome of how temperature affects dispersal at the individual level. Yet, there is little or no theory that considers the temperature dependence of dispersal when investigating the impacts of warming on species' distributions. Here I take a first step towards filling this key gap in our knowledge. I focus on ectotherms, species whose body temperature depends on the environmental temperature, not least because they constitute the majority of biodiversity on the planet. I develop a mathematical model of spatial population dynamics that explicitly incorporates mechanistic descriptions of ectotherm life history trait responses to temperature. A novel feature of this framework is the explicit temperature dependence of all phases of dispersal: emigration, transfer and settlement. I report three key findings. First, dispersal, regardless of whether it is random or temperature-dependent, allows both tropical and temperate ectotherms to track warming-induced changes in their thermal environments and to expand their distributions beyond the lower and upper thermal limits of their respective climate envelopes. In the absence of dispersal mortality, warming does not alter these new distributional limits. Second, an analysis based solely on trait response data predicts that tropical ectotherms should be able to expand their distributions polewards to a greater degree than temperate ectotherms. Analysis of the dynamical model confirms this prediction. Tropical ectotherms have an advantage when moving to cooler climates because they experience lower within-patch and dispersal mortality, and their higher thermal optima and maximal birth rates allow them to take advantage of the warmer parts of the year. Previous theory has shown that tropical ectotherms are more successful in invading and adapting the temperate climates than vice versa. This study provides the key missing piece, by showing how temperature-dependent dispersal could facilitate both invasion and adaptation. Third, dispersal mortality does not affect the poleward expansion of ectotherm distributions. But, it prevents both tropical and temperate ectotherms from maintaining sink populations in localities that are too warm to be viable in the absence of dispersal. Dispersal mortality also affects species' abundance patterns, causing a larger decline in abundance throughout the range when species disperse randomly rather than in response to thermal habitat suitability. In this way, dispersal mortality can facilitate the evolution of dispersal modes that maximize fitness in warmer thermal environments.
Collapse
Affiliation(s)
- Priyanga Amarasekare
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
10
|
Zarzyczny KM, Rius M, Williams ST, Fenberg PB. The ecological and evolutionary consequences of tropicalisation. Trends Ecol Evol 2024; 39:267-279. [PMID: 38030539 DOI: 10.1016/j.tree.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Tropicalisation is a marine phenomenon arising from contemporary climate change, and is characterised by the range expansion of tropical/subtropical species and the retraction of temperate species. Tropicalisation occurs globally and can be detected in both tropical/temperate transition zones and temperate regions. The ecological consequences of tropicalisation range from single-species impacts (e.g., altered behaviour) to whole ecosystem changes (e.g., phase shifts in intertidal and subtidal habitats). Our understanding of the evolutionary consequences of tropicalisation is limited, but emerging evidence suggests that tropicalisation could induce phenotypic change as well as shifts in the genotypic composition of both expanding and retracting species. Given the rapid rate of contemporary climate change, research on tropicalisation focusing on shifts in ecosystem functioning, biodiversity change, and socioeconomic impacts is urgently needed.
Collapse
Affiliation(s)
- Karolina M Zarzyczny
- School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UK; Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | - Marc Rius
- Centre for Advanced Studies of Blanes (CEAB), Consejo Superior de Investigaciones Científicas (CSIC), Accés a la Cala Sant Francesc 14, Blanes 17300, Spain; Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park, 2006 Johannesburg, South Africa
| | | | - Phillip B Fenberg
- School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UK; Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
11
|
Zamorano D, Labra FA, Matthaei CD, Romero Ú. Biogeographical patterns of species richness in stream diatoms from southwestern South America. Ecol Evol 2024; 14:e11156. [PMID: 38510542 PMCID: PMC10954374 DOI: 10.1002/ece3.11156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
The latitudinal diversity gradient (LDG) hypothesis has been validated for many taxon groups, but so far, stream diatoms have not conformed to this pattern. Research on diatoms that includes data from South America is lacking, and our study aims to address this knowledge gap. Previous studies have successfully explained stream diatom species richness by considering niche dimensionality of physicochemical variables. Moreover, in southwestern South America, the observed biogeographical pattern differs from LDG and has been shown to be determined by historical factors. We used a dataset comprising 373 records of stream diatom communities located between 35° S and 52° S latitude, southwestern South America. The dataset included physicochemical river water variables, climate data, and ice sheet cover from the Last Glacial Maximum. We explored geographical patterns of diatom species richness and evaluated 12 different causal mechanisms, including climate-related theories, physicochemical and climatical exploratory analyses, historical factors, and niche dimensionality. A metacommunity analysis was conducted to evaluate the possible nested structure due to historical factors. We observed an increase in diatom species richness from south to north. Models containing both physicochemical and climatic predictors explained the highest proportion of variation in the data. Silica, which was correlated with latitude, and flow velocity, which did not show any spatial pattern, were the most important predictors. Historical factors and nested structure did not play any role. Contrary to what has been reported in the literature, we found no support for climate-related explanations of species richness. Instead, theories related to niche dimensionality and local factors provided better explanations, consistent with previous related research. We suggest that the increase in diatom richness in the north of our study region is due to a higher nutrient supply in these rivers, rather than a due to larger species pool in the area.
Collapse
Affiliation(s)
- Daniel Zamorano
- Centro de Investigación e Innovación para el Cambio Climático, Facultad de CienciasUniversidad Santo TomásSantiagoChile
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
| | - Fabio A. Labra
- Centro de Investigación e Innovación para el Cambio Climático, Facultad de CienciasUniversidad Santo TomásSantiagoChile
- Programa de Doctorado en Conservación y Gestión de la Biodiversidad, Facultad de CienciasUniversidad Santo TomásSantiagoChile
| | | | - Úrsula Romero
- Laboratorio de Limnología, Facultad de CienciasUniversidad de ChileSantiagoChile
| |
Collapse
|
12
|
Ito HC, Sasaki A. The Adaptation Front Equation Explains Innovation-Driven Taxonomic Turnovers and Living Fossilization. Am Nat 2023; 202:E163-E180. [PMID: 38033181 DOI: 10.1086/727046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractEvolutionary taxonomic turnovers are often associated with innovations beneficial in various ecological niches. Such innovations can repeatedly occur in species occupying optimum niches for a focal species group, resulting in their repeated diversifications and species flows from optimum to suboptimum niches, at the expense of less innovated ones. By combining species packing theory and adaptive dynamics theory, we develop an equation that allows analytical prediction for such innovation-driven species flows over a niche space of arbitrary dimension under a unimodal carrying capacity distribution. The developed equation and simulated evolution show that central niches (with the highest carrying capacities) tend to attain the fastest innovation speeds to become biodiversity sources. Species that diverge from the central niches outcompete the indigenous species in peripheral niches. The outcompeted species become extinct or evolve directionally toward far more peripheral niches. Because of this globally acting process over niches, species occupying the most peripheral niches are the least innovated and have deep divergence times from their closest relatives, and thus they correspond to living fossils. The extension of this analysis for multiple geographic regions shows that living fossils are also expected in geographically peripheral regions for the focal species group.
Collapse
|
13
|
Chen N, Zhang QG. Linking temperature dependence of fitness effects of mutations to thermal niche adaptation. J Evol Biol 2023; 36:1517-1524. [PMID: 37750539 DOI: 10.1111/jeb.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/28/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023]
Abstract
Fitness effects of mutations may generally depend on temperature that influences all rate-limiting biophysical and biochemical processes. Earlier studies suggested that high temperatures may increase the availability of beneficial mutations ('more beneficial mutations'), or allow beneficial mutations to show stronger fitness effects ('stronger beneficial mutation effects'). The 'more beneficial mutations' scenario would inevitably be associated with increased proportion of conditionally beneficial mutations at higher temperatures. This in turn predicts that populations in warm environments show faster evolutionary adaptation but suffer fitness loss when faced with cold conditions, and those evolving in cold environments become thermal-niche generalists ('hotter is narrower'). Under the 'stronger beneficial mutation effects' scenario, populations evolving in warm environments would show faster adaptation without fitness costs in cold environments, leading to a 'hotter is (universally) better' pattern in thermal niche adaptation. We tested predictions of the two competing hypotheses using an experimental evolution study in which populations of two model bacterial species, Escherichia coli and Pseudomonas fluorescens, evolved for 2400 generations at three experimental temperatures. Results of reciprocal transplant experiments with our P. fluorescens populations were largely consistent with the 'hotter is narrower' prediction. Results from the E. coli populations clearly suggested stronger beneficial mutation effects at higher assay temperatures, but failed to detect faster adaptation in populations evolving in warmer experimental environments (presumably because of limitation in the supply of genetic variation). Our results suggest that the influence of temperature on mutational effects may provide insight into the patterns of thermal niche adaptation and population diversification across thermal conditions.
Collapse
Affiliation(s)
- Nan Chen
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
14
|
Nanglu K, de Carle D, Cullen TM, Anderson EB, Arif S, Castañeda RA, Chang LM, Iwama RE, Fellin E, Manglicmot RC, Massey MD, Astudillo‐Clavijo V. The nature of science: The fundamental role of natural history in ecology, evolution, conservation, and education. Ecol Evol 2023; 13:e10621. [PMID: 37877102 PMCID: PMC10591213 DOI: 10.1002/ece3.10621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
There is a contemporary trend in many major research institutions to de-emphasize the importance of natural history education in favor of theoretical, laboratory, or simulation-based research programs. This may take the form of removing biodiversity and field courses from the curriculum and the sometimes subtle maligning of natural history research as a "lesser" branch of science. Additional threats include massive funding cuts to natural history museums and the maintenance of their collections, the extirpation of taxonomists across disciplines, and a critical under-appreciation of the role that natural history data (and other forms of observational data, including Indigenous knowledge) play in the scientific process. In this paper, we demonstrate that natural history knowledge is integral to any competitive science program through a comprehensive review of the ways in which they continue to shape modern theory and the public perception of science. We do so by reviewing how natural history research has guided the disciplines of ecology, evolution, and conservation and how natural history data are crucial for effective education programs and public policy. We underscore these insights with contemporary case studies, including: how understanding the dynamics of evolutionary radiation relies on natural history data; methods for extracting novel data from museum specimens; insights provided by multi-decade natural history programs; and how natural history is the most logical venue for creating an informed and scientifically literate society. We conclude with recommendations aimed at students, university faculty, and administrators for integrating and supporting natural history in their mandates. Fundamentally, we are all interested in understanding the natural world, but we can often fall into the habit of abstracting our research away from its natural contexts and complexities. Doing so risks losing sight of entire vistas of new questions and insights in favor of an over-emphasis on simulated or overly controlled studies.
Collapse
Affiliation(s)
- Karma Nanglu
- Museum of Comparative Zoology and Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| | - Danielle de Carle
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Department of Invertebrate ZoologyRoyal Ontario MuseumTorontoOntarioCanada
| | - Thomas M. Cullen
- Department of GeosciencesAuburn UniversityAuburnAlabamaUSA
- Negaunee Integrative Research CenterField Museum of Natural HistoryChicagoIllinoisUSA
| | - Erika B. Anderson
- The HunterianUniversity of GlasgowGlasgowUK
- Department of Earth and SpaceRoyal Ontario MuseumTorontoOntarioCanada
| | - Suchinta Arif
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Rowshyra A. Castañeda
- Ecosystems and Ocean SciencesPacific Region, Fisheries and Oceans CanadaSidneyBritish ColumbiaCanada
| | | | - Rafael Eiji Iwama
- Departamento de Genética e Biologia Evolutiva, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | - Erica Fellin
- Department of BiologyMcGill UniversityMontrealQuebecCanada
| | | | | | | |
Collapse
|
15
|
Huang S, Edie SM, Collins KS, Crouch NMA, Roy K, Jablonski D. Diversity, distribution and intrinsic extinction vulnerability of exploited marine bivalves. Nat Commun 2023; 14:4639. [PMID: 37582749 PMCID: PMC10427664 DOI: 10.1038/s41467-023-40053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Marine bivalves are important components of ecosystems and exploited by humans for food across the world, but the intrinsic vulnerability of exploited bivalve species to global changes is poorly known. Here, we expand the list of shallow-marine bivalves known to be exploited worldwide, with 720 exploited bivalve species added beyond the 81 in the United Nations FAO Production Database, and investigate their diversity, distribution and extinction vulnerability using a metric based on ecological traits and evolutionary history. The added species shift the richness hotspot of exploited species from the northeast Atlantic to the west Pacific, with 55% of bivalve families being exploited, concentrated mostly in two major clades but all major body plans. We find that exploited species tend to be larger in size, occur in shallower waters, and have larger geographic and thermal ranges-the last two traits are known to confer extinction-resistance in marine bivalves. However, exploited bivalve species in certain regions such as the tropical east Atlantic and the temperate northeast and southeast Pacific, are among those with high intrinsic vulnerability and are a large fraction of regional faunal diversity. Our results pinpoint regional faunas and specific taxa of likely concern for management and conservation.
Collapse
Affiliation(s)
- Shan Huang
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Senckenberg Biodiversity and Climate Research Center (SBiK-F), Frankfurt (Main), Germany.
| | - Stewart M Edie
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | | | - Nicholas M A Crouch
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Kaustuv Roy
- Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - David Jablonski
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
16
|
Lerner D, Martínez MF, Livne-Luzon S, Belmaker J, Peñuelas J, Klein T. A biome-dependent distribution gradient of tree species range edges is strongly dictated by climate spatial heterogeneity. NATURE PLANTS 2023; 9:544-553. [PMID: 36894625 DOI: 10.1038/s41477-023-01369-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Understanding the causes of the arrest of species distributions has been a fundamental question in ecology and evolution. These questions are of particular interest for trees owing to their long lifespan and sessile nature. A surge in data availability evokes a macro-ecological analysis to determine the underlying forces limiting distributions. Here we analyse the spatial distribution of >3,600 major tree species to determine geographical areas of range-edge hotspots and find drivers for their arrest. We confirmed biome edges to be strong delineators of distributions. Importantly, we identified a stronger contribution of temperate than tropical biomes to range edges, adding strength to the notion that tropical areas are centres of radiation. We subsequently identified a strong association of range-edge hotspots with steep spatial climatic gradients. We linked spatial and temporal homogeneity and high potential evapotranspiration in the tropics as the strongest predictors of this phenomenon. We propose that the poleward migration of species in light of climate change might be hindered because of steep climatic gradients.
Collapse
Affiliation(s)
- David Lerner
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | | | - Stav Livne-Luzon
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan Belmaker
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
- Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | - Josep Peñuelas
- CREAF, Cerdanyola de Vallès, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
Hong S, Park B, Kim G, Choi EH, Hwang UW. Possible species discrimination of a blotched nerite Nerita albicilla with their distribution pattern and demographic history in the Indo-Pacific. Sci Rep 2023; 13:4545. [PMID: 36941299 PMCID: PMC10027673 DOI: 10.1038/s41598-023-31004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
The blotched nerite Nerita albicilla (Linnaeus 1758) is distributed in intertidal areas of the Indo-Pacific. In South Korea, it has been found only in the southernmost region of Jeju Island so far. Owing to its limited distribution, it can be a promising intertidal species helpful for monitoring global climate change effects in the Korean Peninsula. We performed population genetic analyses based on 393 COI haplotypes from 697 N. albicilla, including 167 from this study and 530 from public databases. The results showed that there are two distinct genetic lineages in N. albicilla: PAIO (Palearctic, Australasia, Indo-Malay, and Oceania) and Afrotropic lineages. DNA barcoding gap analyses indicated that the two lineages could be differentiated into two different species: N. albicilla (PAIO) and N. originalis sp. nov. (Afrotropic) (3.96%). Additionally, it was revealed that their divergence time was ca. 5.96 Ma and dramatic diversification of COI haplotypes occurred during the late Pliocene and Pleistocene. The results of MDA, BSP, and neutrality test implied recent population size expansion, which was estimated to be ca. 250 Ka. Finally, we discussed whether the observation of N. originalis sp. nov. in South Korea is due to the northward migration through ocean currents caused by global warming or due to artificial activity through marine transportation.
Collapse
Affiliation(s)
- Seonghyeon Hong
- Department of Biology, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Bia Park
- Department of Biology, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Gyeongmin Kim
- Department of Biology, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eun Hwa Choi
- Department of Biology, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, 41566, Republic of Korea
- Phylomics Inc., Daegu, 41910, Republic of Korea
| | - Ui Wook Hwang
- Department of Biology, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Phylomics Inc., Daegu, 41910, Republic of Korea.
- Institute for Korean Herb-Bio Convergence Promotion, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Industrial Technology Advances, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
18
|
Friedman ST, Muñoz MM. A latitudinal gradient of deep-sea invasions for marine fishes. Nat Commun 2023; 14:773. [PMID: 36774385 PMCID: PMC9922314 DOI: 10.1038/s41467-023-36501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/03/2023] [Indexed: 02/13/2023] Open
Abstract
Although the tropics harbor the greatest species richness globally, recent work has demonstrated that, for many taxa, speciation rates are faster at higher latitudes. Here, we explore lability in oceanic depth as a potential mechanism for this pattern in the most biodiverse vertebrates - fishes. We demonstrate that clades with the highest speciation rates also diversify more rapidly along the depth gradient, drawing a fundamental link between evolutionary and ecological processes on a global scale. Crucially, these same clades also inhabit higher latitudes, creating a prevailing latitudinal gradient of deep-sea invasions concentrated in poleward regions. We interpret these findings in the light of classic ecological theory, unifying the latitudinal variation of oceanic features and the physiological tolerances of the species living there. This work advances the understanding of how niche lability sculpts global patterns of species distributions and underscores the vulnerability of polar ecosystems to changing environmental conditions.
Collapse
Affiliation(s)
- Sarah T Friedman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA. .,Yale Institute for Biospheric Studies, Yale University, New Haven, CT, 06511, USA.
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
19
|
Rogers AD, Appeltans W, Assis J, Ballance LT, Cury P, Duarte C, Favoretto F, Hynes LA, Kumagai JA, Lovelock CE, Miloslavich P, Niamir A, Obura D, O'Leary BC, Ramirez-Llodra E, Reygondeau G, Roberts C, Sadovy Y, Steeds O, Sutton T, Tittensor DP, Velarde E, Woodall L, Aburto-Oropeza O. Discovering marine biodiversity in the 21st century. ADVANCES IN MARINE BIOLOGY 2022; 93:23-115. [PMID: 36435592 DOI: 10.1016/bs.amb.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We review the current knowledge of the biodiversity of the ocean as well as the levels of decline and threat for species and habitats. The lack of understanding of the distribution of life in the ocean is identified as a significant barrier to restoring its biodiversity and health. We explore why the science of taxonomy has failed to deliver knowledge of what species are present in the ocean, how they are distributed and how they are responding to global and regional to local anthropogenic pressures. This failure prevents nations from meeting their international commitments to conserve marine biodiversity with the results that investment in taxonomy has declined in many countries. We explore a range of new technologies and approaches for discovery of marine species and their detection and monitoring. These include: imaging methods, molecular approaches, active and passive acoustics, the use of interconnected databases and citizen science. Whilst no one method is suitable for discovering or detecting all groups of organisms many are complementary and have been combined to give a more complete picture of biodiversity in marine ecosystems. We conclude that integrated approaches represent the best way forwards for accelerating species discovery, description and biodiversity assessment. Examples of integrated taxonomic approaches are identified from terrestrial ecosystems. Such integrated taxonomic approaches require the adoption of cybertaxonomy approaches and will be boosted by new autonomous sampling platforms and development of machine-speed exchange of digital information between databases.
Collapse
Affiliation(s)
- Alex D Rogers
- REV Ocean, Lysaker, Norway; Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom.
| | - Ward Appeltans
- Intergovernmental Oceanographic Commission of UNESCO, Oostende, Belgium
| | - Jorge Assis
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Lisa T Ballance
- Marine Mammal Institute, Oregon State University, Newport, OR, United States
| | | | - Carlos Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), Thuwal, Kingdom of Saudi Arabia
| | - Fabio Favoretto
- Autonomous University of Baja California Sur, La Paz, Baja California Sur, Mexico
| | - Lisa A Hynes
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Joy A Kumagai
- Senckenberg Biodiversity and Climate Research Institute, Frankfurt am Main, Germany
| | - Catherine E Lovelock
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Patricia Miloslavich
- Scientific Committee on Oceanic Research (SCOR), College of Earth, Ocean and Environment, University of Delaware, Newark, DE, United States; Departamento de Estudios Ambientales, Universidad Simón Bolívar, Venezuela & Scientific Committee for Oceanic Research (SCOR), Newark, DE, United States
| | - Aidin Niamir
- Senckenberg Biodiversity and Climate Research Institute, Frankfurt am Main, Germany
| | | | - Bethan C O'Leary
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom; Department of Environment and Geography, University of York, York, United Kingdom
| | - Eva Ramirez-Llodra
- REV Ocean, Lysaker, Norway; Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Gabriel Reygondeau
- Yale Center for Biodiversity Movement and Global Change, Yale University, New Haven, CT, United States; Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Callum Roberts
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Yvonne Sadovy
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong
| | - Oliver Steeds
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Tracey Sutton
- Nova Southeastern University, Halmos College of Natural Sciences and Oceanography, Dania Beach, FL, United States
| | | | - Enriqueta Velarde
- Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Veracruz, Mexico
| | - Lucy Woodall
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom; Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
20
|
Abstract
One of the most investigated patterns in species diversity is the so-called latitudinal gradient, that is, a decrease in species richness from the equator to the poles. However, few studies investigated this pattern in insects at a global scale because of insufficient taxonomic and biogeographical information. Using estimates of earwig species richness at country level, their latitudinal diversity gradient was modelled globally and for the two hemispheres separately after correcting for differences in country areas. Separate analyses were also conducted for mainland and island countries. All analyses clearly indicated the existence of latitudinal gradients. The most plausible explanation for the observed pattern is the so-called tropical conservatism hypothesis, which postulates (1) a tropical origin of many extant clades, (2) a longer time for cladogenesis in tropical environments thanks to their environmental stability, and (3) a limited ability of historically tropical lineages to adapt to temperate climates. Earwigs probably evolved on Gondwana and secondarily colonized the Northern Hemisphere. This colonization was hampered by both geographical and climatic factors. The Himalayan orogenesis obstructed earwig dispersal into the Palearctic region. Additionally, earwig preferences for warm/hot and humid climates hampered the colonization of temperate regions. Pleistocene glaciation further contributed to reducing diversity at northern latitudes.
Collapse
|
21
|
Kopperud BT, Lidgard S, Liow LH. Enhancing georeferenced biodiversity inventories: automated information extraction from literature records reveal the gaps. PeerJ 2022; 10:e13921. [PMID: 35999848 PMCID: PMC9393005 DOI: 10.7717/peerj.13921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/29/2022] [Indexed: 01/19/2023] Open
Abstract
We use natural language processing (NLP) to retrieve location data for cheilostome bryozoan species (text-mined occurrences (TMO)) in an automated procedure. We compare these results with data combined from two major public databases (DB): the Ocean Biodiversity Information System (OBIS), and the Global Biodiversity Information Facility (GBIF). Using DB and TMO data separately and in combination, we present latitudinal species richness curves using standard estimators (Chao2 and the Jackknife) and range-through approaches. Our combined DB and TMO species richness curves quantitatively document a bimodal global latitudinal diversity gradient for extant cheilostomes for the first time, with peaks in the temperate zones. A total of 79% of the georeferenced species we retrieved from TMO (N = 1,408) and DB (N = 4,549) are non-overlapping. Despite clear indications that global location data compiled for cheilostomes should be improved with concerted effort, our study supports the view that many marine latitudinal species richness patterns deviate from the canonical latitudinal diversity gradient (LDG). Moreover, combining online biodiversity databases with automated information retrieval from the published literature is a promising avenue for expanding taxon-location datasets.
Collapse
Affiliation(s)
- Bjørn Tore Kopperud
- Natural History Museum, University of Oslo, Oslo, Norway,GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany,Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, München, Germany
| | - Scott Lidgard
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, U.S.A.
| | - Lee Hsiang Liow
- Natural History Museum, University of Oslo, Oslo, Norway,Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Reichelt-Brushett A, Hewitt J, Kaiser S, Kim RE, Wood R. Deep seabed mining and communities: A transdisciplinary approach to ecological risk assessment in the South Pacific. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:664-673. [PMID: 34396697 DOI: 10.1002/ieam.4509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Deep-sea mineral extraction is a fledgling industry whose guiding principles, legislation, protocols, and regulations are still evolving. Responsible management of the industry is difficult when it is not clearly understood what biological and environmental diversity or ecosystem services may be at risk. But the industry's infancy provides an opportunity to address this challenge by stakeholder-led development and implementation of a multidisciplinary risk assessment framework. This article aims to present the findings of a workshop held in New Zealand that hosted stakeholders from a broad range of interests and regions in the South Pacific associated with the deep-sea mineral activity. The outputs provide stakeholder-informed ecological risk assessment approaches for deep-sea mining activities, identifying tools and techniques to improve the relevance of risk assessment of deep seabed mining projects to communities in the South Pacific. Discussions highlighted the importance of trust or respect among stakeholders, valuing the "life force" of the ocean, the importance of scientific data, and the complications associated with defining acceptable change. This research highlighted the need for a holistic transdisciplinary approach that connects science, management, industry, and community, an approach most likely to provide a "social license" to operate. There is also a need to revise traditional risk assessment methods to make them more relevant to stakeholders. The development of ecotoxicological tools and approaches is an example of how existing practices could be improved to better support deep-sea mineral management. A case study is provided that highlights the current challenges within the legislative framework of New Zealand. Integr Environ Assess Manag 2022;18:664-673. © 2021 SETAC.
Collapse
Affiliation(s)
- Amanda Reichelt-Brushett
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Judi Hewitt
- National Institute of Water and Atmosphere (NIWA), Auckland, New Zealand
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Stefanie Kaiser
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Lodz, Poland
| | - Rakhyun E Kim
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Ray Wood
- Chatham Rock Phosphate, Wellington, New Zealand
| |
Collapse
|
23
|
Latitudinal Diversity Gradient in the Changing World: Retrospectives and Perspectives. DIVERSITY 2022. [DOI: 10.3390/d14050334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The latitudinal diversity gradient (LDG) is one of the most extensive and important biodiversity patterns on the Earth. Various studies have established that species diversity increases with higher taxa numbers from the polar to the tropics. Studies of multicellular biotas have supported the LDG patterns from land (e.g., plants, animals, forests, wetlands, grasslands, fungi, and so forth) to oceans (e.g., marine organisms from freshwater invertebrates, continental shelve, open ocean, even to the deep sea invertebrates). So far, there are several hypotheses proposed to explore the diversity patterns and mechanisms of LDG, however, there has been no consensus on the underlying causes of LDG over the past few decades. Thus, we reviewed the progress of LDG studies in recent years. Although several explanations for the LDG have been proposed, these hypotheses are only based on species richness, evolution and the ecosystems. In this review, we summarize the effects of evolution and ecology on the LDG patterns to synthesize the formation mechanisms of the general biodiversity distribution patterns. These intertwined factors from ecology and evolution in the LDG are generally due to the wider distribution of tropical areas, which hinders efforts to distinguish their relative contributions. However, the mechanisms of LDG always engaged controversies, especially in such a context that the human activity and climate change has affected the biodiversity. With the development of molecular biology, more genetic/genomic data are available to facilitate the estimation of global biodiversity patterns with regard to climate, latitude, and other factors. Given that human activity and climate change have inevitably impacted on biodiversity loss, biodiversity conservation should focus on the change in LDG pattern. Using large-scale genetic/genomic data to disentangle the diversity mechanisms and patterns of LDG, will provide insights into biodiversity conservation and management measures. Future perspectives of LDG with integrative genetic/genomic, species, evolution, and ecosystem diversity patterns, as well as the mechanisms that apply to biodiversity conservation, are discussed. It is imperative to explore integrated approaches for recognizing the causes of LDG in the context of rapid loss of diversity in a changing world.
Collapse
|
24
|
Lagourgue L, Leliaert F, Payri CE. Historical biogeographical analysis of the Udoteaceae (Bryopsidales, Chlorophyta) elucidates origins of high species diversity in the Central Indo-Pacific, Western Indian Ocean and Greater Caribbean regions. Mol Phylogenet Evol 2022; 169:107412. [PMID: 35031470 DOI: 10.1016/j.ympev.2022.107412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022]
Abstract
There is a growing interest in elucidating the biogeographical processes underlying biodiversity patterns of seaweeds, with recent studies largely focusing on red and brown macroalgae. This study focuses on the siphonous green algal family Udoteaceae, which is diverse and globally distributed in tropical to warm-temperate seas, and includes species that form important components of tropical reefs. We explored the historical processes that have shaped current biodiversity patterns in the family by analyzing a comprehensive dataset of 568 specimens sampled across its geographical range, and including 45 species, corresponding to 59% of the known diversity. Historical biogeographical analysis was based on a three-locus time-calibrated phylogeny, and probabilistic modeling of geographical range evolution. Many species were found to have restricted ranges, indicative of low dispersal capacity. Our analysis points toward a Western Tethys origin and early diversification of the Udoteaceae in the Triassic period. Three centers of diversity were identified, which are, in order of highest species richness, the Central Indo-Pacific, the Western Indian Ocean, and the Greater Caribbean. Different drivers have likely played a role in shaping these diversity centres. Species richness in the Central Indo-Pacific likely resulted from speciation within the region, as well as recolonization from neighbouring regions, and overlap of some wider ranged species, corroborating the "biodiversity feedback" model. Species richness in the Western Indian Ocean can be explained by ancient and more recent diversification within the region, and dispersal from the Central Indo-Pacific. The Greater Caribbean region was colonized more recently, followed by diversification within the region.
Collapse
Affiliation(s)
- Laura Lagourgue
- Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, 75252 Paris Cedex 05, France; UMR ENTROPIE (IRD, UR, UNC, CNRS, IFREMER), Institut de Recherche pour le Développement, B.P. A5 Nouméa Cedex, Nouvelle-Calédonie, 98848, France.
| | | | - Claude E Payri
- UMR ENTROPIE (IRD, UR, UNC, CNRS, IFREMER), Institut de Recherche pour le Développement, B.P. A5 Nouméa Cedex, Nouvelle-Calédonie, 98848, France
| |
Collapse
|
25
|
Caballero‐Herrera JA, Olivero J, Cosel R, Gofas S. An analytically derived delineation of the West African Coastal Province based on bivalves. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
| | - Jesús Olivero
- Departamento de Biología Animal Facultad de Ciencias Universidad de Málaga Málaga Spain
| | - Rudo Cosel
- Muséum National d'Histoire Naturelle Paris France
| | - Serge Gofas
- Departamento de Biología Animal Facultad de Ciencias Universidad de Málaga Málaga Spain
- Muséum National d'Histoire Naturelle Paris France
| |
Collapse
|
26
|
Vasconcelos T, O’Meara BC, Beaulieu JM. Retiring “Cradles” and “Museums” of Biodiversity. Am Nat 2021; 199:194-205. [DOI: 10.1086/717412] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Thais Vasconcelos
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| | - Brian C. O’Meara
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Jeremy M. Beaulieu
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| |
Collapse
|
27
|
Kerr MR, Alroy J. Marine diversity patterns in Australia are filtered through biogeography. Proc Biol Sci 2021; 288:20211534. [PMID: 34753352 PMCID: PMC8580438 DOI: 10.1098/rspb.2021.1534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/19/2021] [Indexed: 11/12/2022] Open
Abstract
Latitudinal diversity gradients are among the most striking patterns in nature. Despite a large body of work investigating both geographic and environmental drivers, biogeographical provinces have not been included in statistical models of diversity patterns. Instead, spatial studies tend to focus on species-area and local-regional relationships. Here, we investigate correlates of a latitudinal diversity pattern in Australian coastal molluscs. We use an online database of greater than 300 000 specimens and quantify diversity using four methods to account for sampling variation. Additionally, we present a biogeographic scheme using factor analysis that allows for both gradients and sharp boundaries between clusters. The factors are defined on the basis of species composition and are independent of diversity. Regardless of the measure used, diversity is not directly explained by combinations of abiotic variables. Instead, transitions between regions better explain the observed patterns. Biogeographic gradients can in turn be explained by environmental variables, suggesting that environmental controls on diversity may be indirect. Faunas within provinces are homogeneous regardless of environmental variability. Thus, transitions between provinces explain most of the variation in diversity because small-scale factors are dampened. This explanation contrasts with the species-energy hypothesis. Future work should more carefully consider biogeographic gradients when investigating diversity patterns.
Collapse
Affiliation(s)
- Matthew R. Kerr
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft NR33 0HT, UK
| | - John Alroy
- Department of Biological Sciences, Macquarie University, Sydney 2109, Australia
| |
Collapse
|
28
|
Moreno RA, Labra FA, Cotoras DD, Camus PA, Gutiérrez D, Aguirre L, Rozbaczylo N, Poulin E, Lagos NA, Zamorano D, Rivadeneira MM. Evolutionary drivers of the hump-shaped latitudinal gradient of benthic polychaete species richness along the Southeastern Pacific coast. PeerJ 2021; 9:e12010. [PMID: 34692242 PMCID: PMC8483006 DOI: 10.7717/peerj.12010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/28/2021] [Indexed: 11/20/2022] Open
Abstract
Latitudinal diversity gradients (LDG) and their explanatory factors are among the most challenging topics in macroecology and biogeography. Despite of its apparent generality, a growing body of evidence shows that 'anomalous' LDG (i.e., inverse or hump-shaped trends) are common among marine organisms along the Southeastern Pacific (SEP) coast. Here, we evaluate the shape of the LDG of marine benthic polychaetes and its underlying causes using a dataset of 643 species inhabiting the continental shelf (<200 m depth), using latitudinal bands with a spatial resolution of 0.5°, along the SEP (3-56° S). The explanatory value of six oceanographic (Sea Surface Temperature (SST), SST range, salinity, salinity range, primary productivity and shelf area), and one macroecological proxy (median latitudinal range of species) were assessed using a random forest model. The taxonomic structure was used to estimate the degree of niche conservatism of predictor variables and to estimate latitudinal trends in phylogenetic diversity, based on three indices (phylogenetic richness (PDSES), mean pairwise distance (MPDSES), and variation of pairwise distances (VPD)). The LDG exhibits a hump-shaped trend, with a maximum peak of species richness at ca. 42° S, declining towards northern and southern areas of SEP. The latitudinal pattern was also evident in local samples controlled by sampling effort. The random forest model had a high accuracy (pseudo-r2 = 0.95) and showed that the LDG could be explained by four variables (median latitudinal range, SST, salinity, and SST range), yet the functional relationship between species richness and these predictors was variable. A significant degree of phylogenetic conservatism was detected for the median latitudinal range and SST. PDSES increased toward the southern region, whereas VPD showed the opposite trend, both statistically significant. MPDSES has the same trend as PDSES, but it is not significant. Our results reinforce the idea that the south Chile fjord area, particularly the Chiloé region, was likely the evolutionary source of new species of marine polychaetes along SEP, creating a hotspot of diversity. Therefore, in the same way as the canonical LDG shows a decline in diversity while moving away from the tropics; on this case the decline occurs while moving away from Chiloé Island. These results, coupled with a strong phylogenetic signal of the main predictor variables suggest that processes operating mainly at evolutionary timescales govern the LDG.
Collapse
Affiliation(s)
- Rodrigo A Moreno
- Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile.,Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad Santo Tomás, Santiago, Chile
| | - Fabio A Labra
- Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile.,Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad Santo Tomás, Santiago, Chile
| | - Darko D Cotoras
- Entomology Department, California Academy of Sciences, San Francisco, California, United States
| | - Patricio A Camus
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile.,Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Dimitri Gutiérrez
- Dirección de Investigaciones Oceanográficas y de Cambio Climático, Instituto del Mar del Perú (IMARPE), Callao, Perú
| | - Luis Aguirre
- Laboratorio de Biología y Sistemática de Invertebrados Marinos (LaBSIM), Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Nicolás Rozbaczylo
- FAUNAMAR Ltda. Consultorías Medio Ambientales e Investigación Marina, Santiago, Chile
| | - Elie Poulin
- Instituto Milenio de Ecología y Biodiversidad (IEB), Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Nelson A Lagos
- Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile.,Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad Santo Tomás, Santiago, Chile
| | - Daniel Zamorano
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad Santo Tomás, Santiago, Chile.,Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Marcelo M Rivadeneira
- Laboratorio de Paleobiología, Centro de Estudios Avanzados en Zonas Aridas (CEAZA), Coquimbo, Chile.,Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile.,Departamento de Biología, Universidad de La Serena, La Serena, Chile
| |
Collapse
|
29
|
Benson RBJ, Butler R, Close RA, Saupe E, Rabosky DL. Biodiversity across space and time in the fossil record. Curr Biol 2021; 31:R1225-R1236. [PMID: 34637736 DOI: 10.1016/j.cub.2021.07.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fossil record is the primary source of information on how biodiversity has varied in deep time, providing unique insight on the long-term dynamics of diversification and their drivers. However, interpretations of fossil record diversity patterns have been much debated, with a traditional focus on global diversity through time. Problems arise because the fossil record is spatially and temporally patchy, so 'global' diversity estimates actually represent the summed diversity across a set of geographically and environmentally distinct regions that vary substantially in number and identity through time. Furthermore, a focus on global diversity lumps the signal of ecological drivers at local and regional scales with the signal of global-scale processes, including variation in the distribution of environments and in provincialism (the extent of subdivision into distinct biogeographic regions). These signals cannot be untangled by studying global diversity measures alone. These conceptual and empirical concerns necessitate a shift away from the study of 'biodiversity through time' and towards the study of 'biodiversity across time and space'. Spatially explicit investigations, including analyses of local- and regional-scale datasets, are central to achieving this and allow analysis of geographic scale, location and the environmental parameters directly experienced by organisms. So far, research in this area has revealed the stability of species richness variation among environments through time, and the potential climatic and Earth-system drivers of changing biodiversity. Ultimately, this research program promises to address key questions regarding the assembly of biodiversity, and the contributions of local-, regional- and global-scale processes to the diversification of life on Earth.
Collapse
Affiliation(s)
- Roger B J Benson
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK.
| | - Richard Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Roger A Close
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - Erin Saupe
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - Daniel L Rabosky
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Abstract
Species' traits, rather than taxonomic identities, determine community assembly and ecosystem functioning, yet biogeographic patterns have been far less studied for traits. While both environmental conditions and evolutionary history shape trait biogeography, their relative contributions are largely unknown for most organisms. Here, we explore the global biogeography of reef fish traits for 2,786 species from 89 ecoregions spanning eight marine realms with contrasting environmental conditions and evolutionary histories. Across realms, we found a common structure in the distribution of species traits despite a 10-fold gradient in species richness, with a defined "backbone" of 21 trait combinations shared by all realms globally, both temperate and tropical. Across ecoregions, assemblages under similar environmental conditions had similar trait compositions despite hosting drastically different species pools from separate evolutionary lineages. Thus, despite being separated by thousands of kilometers and millions of years of evolution, similar environments host similar trait compositions in reef fish assemblages worldwide. Our findings suggest that similar trait-based management strategies can be applied among regions with distinct species pools, potentially improving conservation outcomes across diverse jurisdictions.
Collapse
|
31
|
Raja NB, Kiessling W. Out of the extratropics: the evolution of the latitudinal diversity gradient of Cenozoic marine plankton. Proc Biol Sci 2021; 288:20210545. [PMID: 33975476 DOI: 10.1098/rspb.2021.0545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many ecological and evolutionary hypotheses have been proposed to explain the latitudinal diversity gradient, i.e. the increase in species richness from the poles to the tropics. Among the evolutionary hypotheses, the 'out of the tropics' (OTT) hypothesis has received considerable attention. The OTT posits that the tropics are both a cradle and source of biodiversity for extratropical regions. To test the generality of the OTT hypothesis, we explored the spatial biodiversity dynamics of unicellular marine plankton over the Cenozoic era (the last 66 Myr). We find large-scale climatic changes during the Cenozoic shaped the diversification and dispersal of marine plankton. Origination was generally more likely in the extratropics and net dispersal was towards the tropics rather than in the opposite direction, especially during the warmer climates of the early Cenozoic. Although migration proportions varied among major plankton groups and climate phases, we provide evidence that the extratropics were a source of tropical microplankton biodiversity over the last 66 Myr.
Collapse
Affiliation(s)
- Nussaïbah B Raja
- GeoZentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander University Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany
| | - Wolfgang Kiessling
- GeoZentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander University Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany
| |
Collapse
|
32
|
Zacaï A, Monnet C, Pohl A, Beaugrand G, Mullins G, Kroeck DM, Servais T. Truncated bimodal latitudinal diversity gradient in early Paleozoic phytoplankton. SCIENCE ADVANCES 2021; 7:eabd6709. [PMID: 33827811 PMCID: PMC8026127 DOI: 10.1126/sciadv.abd6709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The latitudinal diversity gradient (LDG)-the decline in species richness from the equator to the poles-is classically considered as the most pervasive macroecological pattern on Earth, but the timing of its establishment, its ubiquity in the geological past, and explanatory mechanisms remain uncertain. By combining empirical and modeling approaches, we show that the first representatives of marine phytoplankton exhibited an LDG from the beginning of the Cambrian, when most major phyla appeared. However, this LDG showed a single peak of diversity centered on the Southern Hemisphere, in contrast to the equatorial peak classically observed for most modern taxa. We find that this LDG most likely corresponds to a truncated bimodal gradient, which probably results from an uneven sediment preservation, smaller sampling effort, and/or lower initial diversity in the Northern Hemisphere. Variation of the documented LDG through time resulted primarily from fluctuations in annual sea-surface temperature and long-term climate changes.
Collapse
Affiliation(s)
- Axelle Zacaï
- Evo-Eco-Paleo, UMR 8198, CNRS, Univ. Lille, F-59000 Lille, France.
- PALEVOPRIM, UMR 7262, CNRS, Université de Poitiers, 86073 Poitiers Cedex 9, France
| | - Claude Monnet
- Evo-Eco-Paleo, UMR 8198, CNRS, Univ. Lille, F-59000 Lille, France
| | - Alexandre Pohl
- Department of Earth and Planetary Sciences, University of California, Riverside, Riverside, CA, USA
- Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-Comté, 6 boulevard Gabriel, F-21000 Dijon, France
| | - Grégory Beaugrand
- Laboratoire d'Océanologie et de Géosciences, UMR 8187, CNRS, Univ. Lille, F-59000 Lille, France
| | | | - David M Kroeck
- Evo-Eco-Paleo, UMR 8198, CNRS, Univ. Lille, F-59000 Lille, France
| | - Thomas Servais
- Evo-Eco-Paleo, UMR 8198, CNRS, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
33
|
Affiliation(s)
- Craig R. McClain
- Louisiana Universities Marine Consortium (LUMCON) Chauvin LA USA
| |
Collapse
|
34
|
Bonachela JA, Burrows MT, Pinsky ML. Shape of species climate response curves affects community response to climate change. Ecol Lett 2021; 24:708-718. [PMID: 33583096 DOI: 10.1111/ele.13688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/26/2022]
Abstract
Understanding how community composition is reshaped by changing climate is important for interpreting and predicting patterns of community assembly through time or across space. Community composition often does not perfectly correspond to expectations from current environmental conditions, leading to community-climate mismatches. Here, we combine data analysis and theory development to explore how species climate response curves affect the community response to climate change. We show that strong mismatches between community and climate can appear in the absence of demographic delays or limited species pools. Communities simulated using species response curves showed temporal changes of similar magnitude to those observed in natural communities of fishes and plankton, suggesting no overall delays in community change despite substantial unexplained variation from community assembly and other processes. Our approach can be considered as a null model that will be important to use when interpreting observed community responses to climate change and variability.
Collapse
Affiliation(s)
- Juan A Bonachela
- Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Michael T Burrows
- Scottish Association for Marine Science, Scottish Marine Institute, Dunbeg, Oban, Argyll, PA37 1QA, UK
| | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
35
|
S Meseguer A, Condamine FL. Ancient tropical extinctions at high latitudes contributed to the latitudinal diversity gradient. Evolution 2020; 74:1966-1987. [PMID: 32246727 DOI: 10.1111/evo.13967] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 03/04/2020] [Accepted: 03/21/2020] [Indexed: 01/15/2023]
Abstract
Global biodiversity currently peaks at the equator and decreases toward the poles. Growing fossil evidence suggest this hump-shaped latitudinal diversity gradient (LDG) has not been persistent through time, with similar diversity across latitudes flattening out the LDG during past greenhouse periods. However, when and how diversity declined at high latitudes to generate the modern LDG remains an open question. Although diversity-loss scenarios have been proposed, they remain mostly undemonstrated. We outline the "asymmetric gradient of extinction and dispersal" framework that contextualizes previous ideas behind the LDG under a time-variable scenario. Using phylogenies and fossils of Testudines, Crocodilia, and Lepidosauria, we find that the hump-shaped LDG could be explained by (1) disproportionate extinctions of high-latitude tropical-adapted clades when climate transitioned from greenhouse to icehouse, and (2) equator-ward biotic dispersals tracking their climatic preferences when tropical biomes became restricted to the equator. Conversely, equivalent diversification rates across latitudes can account for the formation of an ancient flat LDG. The inclusion of fossils in macroevolutionary studies allows revealing time-dependent extinction rates hardly detectable from phylogenies only. This study underscores that the prevailing evolutionary processes generating the LDG during greenhouses differed from those operating during icehouses.
Collapse
Affiliation(s)
- Andrea S Meseguer
- INRA, UMR 1062 Centre de Biologie pour la Gestion des Populations (INRA | IRD | CIRAD | Montpellier SupAgro), Montferrier-sur-Lez, France
- CNRS, UMR 5554 Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Montpellier, France
- Real Jardín Botánico de Madrid (RJB-CSIC), Madrid, Spain
| | - Fabien L Condamine
- CNRS, UMR 5554 Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Montpellier, France
| |
Collapse
|
36
|
Global biodiversity and biogeography of mangrove crabs: Temperature, the key driver of latitudinal gradients of species richness. J Therm Biol 2020; 92:102692. [PMID: 32888577 DOI: 10.1016/j.jtherbio.2020.102692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022]
Abstract
Mangroves are ideal habitat for a variety of marine species especially brachyuran crabs as the dominant macrofauna. However, the global distribution, endemicity, and latitudinal gradients of species richness in mangrove crabs remains poorly understood. Here, we assessed whether species richness of mangrove crabs decreases towards the higher latitudes and tested the importance of environmental factors such as Sea Surface Temperature (SST) in creating the latitudinal gradients in species richness of mangrove crabs. A total of 8262 distribution records of 481 species belonging to six families of mangrove crabs including Camptandriidae, Dotillidae, Macrophthalmidae, Ocypodidae, Sesarmidae, and Oziidae were extracted from open-access databases or collected by the authors, quality controlled, cleaned, and analyzed. Species richness was plotted against 5° latitudinal bands in relation to environmental factors. The R software and ArcGIS 10.6.1 were used to analyze the species latitudinal range and richness as well as to map the distribution of mangrove forest, endemic species, species geographical distribution records, and biogeographic regions. The Indo-West Pacific showed the highest species richness of mangrove crabs where more than 65% of species were found in the Indian Ocean and along the western Pacific Ocean. Our results showed that there are 11 significantly different biogeographic regions of mangrove crabs. The highest endemicity rate was observed in the NW Pacific Ocean (29%). Latitudinal patterns of species richness in Macrophthalmidae, Ocypodidae, and Sesarmidae showed an increasing trend from the poles toward the intermediate latitudes including one dip near the equator. However, latitudinal gradients in Camptandriidae, Dotillidae, and Oziidae were unimodal increasing from the higher latitudes towards the equator. Species richness per 5° latitudinal bands significantly increased following mean SST mean (°C), calcite, euphotic depth (m), and mangrove area (km2) across all latitudes, and tide average within each hemisphere. Species richness significantly decreased with dissolved O2 (ml l-1) and nitrate (μmol l-1) over all latitudes and in the southern hemisphere. The climax of global latitudinal species richness for some mangrove was observed along latitudes 20° N and 15°-25° S, not at the equator. This can suggest that temperature is probably the key driver of latitudinal gradients of mangrove crabs' species richness. Species richness and mangrove area were also highly correlated.
Collapse
|
37
|
Song H, Huang S, Jia E, Dai X, Wignall PB, Dunhill AM. Flat latitudinal diversity gradient caused by the Permian-Triassic mass extinction. Proc Natl Acad Sci U S A 2020; 117:17578-17583. [PMID: 32631978 PMCID: PMC7395496 DOI: 10.1073/pnas.1918953117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The latitudinal diversity gradient (LDG) is recognized as one of the most pervasive, global patterns of present-day biodiversity. However, the controlling mechanisms have proved difficult to identify because many potential drivers covary in space. The geological record presents a unique opportunity for understanding the mechanisms which drive the LDG by providing a direct window to deep-time biogeographic dynamics. Here we used a comprehensive database containing 52,318 occurrences of marine fossils to show that the shape of the LDG changed greatly during the Permian-Triassic mass extinction from showing a significant tropical peak to a flattened LDG. The flat LDG lasted for the entire Early Triassic (∼5 My) before reverting to a modern-like shape in the Middle Triassic. The environmental extremes that prevailed globally, especially the dramatic warming, likely induced selective extinction in low latitudes and accumulation of diversity in high latitudes through origination and poleward migration, which combined together account for the flat LDG of the Early Triassic.
Collapse
Affiliation(s)
- Haijun Song
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, 430074 Wuhan, China;
| | - Shan Huang
- Senckenberg Biodiversity and Climate Research Center, 60325 Frankfurt am Main, Germany
| | - Enhao Jia
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, 430074 Wuhan, China
| | - Xu Dai
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, 430074 Wuhan, China
| | - Paul B Wignall
- School of Earth and Environment, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Alexander M Dunhill
- School of Earth and Environment, University of Leeds, LS2 9JT Leeds, United Kingdom
| |
Collapse
|
38
|
Carotenuto F, Di Febbraro M, Mondanaro A, Castiglione S, Serio C, Melchionna M, Rook L, Raia P. MInOSSE: A new method to reconstruct geographic ranges of fossil species. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Francesco Carotenuto
- Dipartimento di Scienze della Terra dell'Ambiente e delle RisorseUniversità degli Studi di Napoli Federico Napoli Italy
| | - Mirko Di Febbraro
- Dipartimento di Bioscienze e Territorio University of Molise Campobasso Italy
| | | | - Silvia Castiglione
- Dipartimento di Scienze della Terra dell'Ambiente e delle RisorseUniversità degli Studi di Napoli Federico Napoli Italy
| | - Carmela Serio
- Dipartimento di Scienze della Terra dell'Ambiente e delle RisorseUniversità degli Studi di Napoli Federico Napoli Italy
| | - Marina Melchionna
- Dipartimento di Scienze della Terra dell'Ambiente e delle RisorseUniversità degli Studi di Napoli Federico Napoli Italy
| | - Lorenzo Rook
- Dipartimento di Scienze della Terra Università di Firenze Firenze Italy
| | - Pasquale Raia
- Dipartimento di Scienze della Terra dell'Ambiente e delle RisorseUniversità degli Studi di Napoli Federico Napoli Italy
| |
Collapse
|
39
|
Yip ZT, Quek RZB, Huang D. Historical biogeography of the widespread macroalga Sargassum (Fucales, Phaeophyceae). JOURNAL OF PHYCOLOGY 2020; 56:300-309. [PMID: 31677168 PMCID: PMC7187439 DOI: 10.1111/jpy.12945] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 10/16/2019] [Indexed: 05/13/2023]
Abstract
Sargassum is a cosmopolitan brown algal genus spanning the three ocean basins of the Atlantic, Pacific and Indian Oceans, inhabiting temperate, subtropical and tropical habitats. Sargassum has been postulated to have originated in the Oligocene epoch approximately 30 mya according to a broad phylogenetic analysis of brown macroalgae, but its diversification to become one of the most widespread and speciose macroalgal genera remains unclear. Here, we present a Bayesian molecular clock study, which analyzed data from the order Fucales of the brown algal crown radiation (BACR) group to reconstruct a time-calibrated phylogeny of the Sargassum clade. Our phylogeny included a total of 120 taxa with 99 Sargassum species sampled for three molecular markers - ITS-2, cox3 and rbcLS - calibrated with an unambiguous Sargassaceae fossil from between the lower and middle Miocene. The analysis revealed a much later origin of Sargassum than expected at about 6.7 mya, with the genus diversifying since approximately 4.3 mya. Current geographic distributions of Sargassum species were then analyzed in conjunction with the time-calibrated phylogeny using the dispersal-extinction-cladogenesis (DEC) model to estimate ancestral ranges of clades in the genus. Results strongly support origination of Sargassum in the Central Indo-Pacific (CIP) region with subsequent independent dispersal events into other marine realms. The longer history of diversification in the ancestral CIP range could explain the much greater diversity there relative to other marine areas today. Analyses of these dynamic processes, when fine-tuned to a higher spatial resolution, enable the identification of evolutionary hotspots and provide insights into long-term dispersal patterns.
Collapse
Affiliation(s)
- Zhi Ting Yip
- Department of Biological SciencesNational University of SingaporeSingapore City117558Singapore
| | - Randolph Z. B. Quek
- Department of Biological SciencesNational University of SingaporeSingapore City117558Singapore
| | - Danwei Huang
- Department of Biological SciencesNational University of SingaporeSingapore City117558Singapore
- Tropical Marine Science InstituteNational University of SingaporeSingapore City119227Singapore
| |
Collapse
|
40
|
Amarasekare P, Simon MW. Latitudinal directionality in ectotherm invasion success. Proc Biol Sci 2020; 287:20191411. [PMID: 32075530 PMCID: PMC7031664 DOI: 10.1098/rspb.2019.1411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/16/2020] [Indexed: 11/12/2022] Open
Abstract
A striking pattern, seen in both fossil and extant taxa, is that tropical ectotherms are better at invading temperate habitats than vice versa. This is puzzling because tropical ectotherms, being thermal specialists, face a harsher abiotic environment and competition from temperate residents that are thermal generalists. We develop a mathematical framework to address this puzzle. We find that (i) tropical ectotherms can invade temperate habitats if they have higher consumption rates and lower mortality during warmer summers, (ii) stronger seasonal fluctuations at higher latitudes create more temporal niches, allowing coexistence of tropical invaders and temperate residents, and (iii) temperate ectotherms' failure to invade tropical habitats is due to greater mortality rather than lower competitive ability. Our framework yields predictions about population-level outcomes of invasion success based solely on species' trait responses to temperature. It provides a potential ecological explanation for why the tropics constitute both a cradle and a museum of biodiversity.
Collapse
Affiliation(s)
- Priyanga Amarasekare
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
41
|
Silvestro D, Castiglione S, Mondanaro A, Serio C, Melchionna M, Piras P, Di Febbraro M, Carotenuto F, Rook L, Raia P. A 450 million years long latitudinal gradient in age-dependent extinction. Ecol Lett 2019; 23:439-446. [PMID: 31854097 PMCID: PMC7027860 DOI: 10.1111/ele.13441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/06/2019] [Accepted: 11/16/2019] [Indexed: 01/08/2023]
Abstract
Leigh Van Valen famously stated that under constant conditions extinction probability is independent of species age. To test this 'law of constant extinction', we developed a new method using deep learning to infer age‐dependent extinction and analysed 450 myr of marine life across 21 invertebrate clades. We show that extinction rate significantly decreases with age in > 90% of the cases, indicating that most species died out soon after their appearance while those which survived experienced ever decreasing extinction risk. This age‐dependent extinction pattern is stronger towards the Equator and holds true when the potential effects of mass extinctions and taxonomic inflation are accounted for. These results suggest that the effect of biological interactions on age‐dependent extinction rate is more intense towards the tropics. We propose that the latitudinal diversity gradient and selection at the species level account for this exceptional, yet little recognised, macroevolutionary and macroecological pattern.
Collapse
Affiliation(s)
- Daniele Silvestro
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Gothenburg, Sweden.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Silvia Castiglione
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Monte Sant'Angelo, Via Cinthia, 21, 80126, Napoli, Italy
| | - Alessandro Mondanaro
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Monte Sant'Angelo, Via Cinthia, 21, 80126, Napoli, Italy.,Dipartimento di Scienze della Terra, Via G. La Pira, 4, 50121, Firenze, Italy
| | - Carmela Serio
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Monte Sant'Angelo, Via Cinthia, 21, 80126, Napoli, Italy
| | - Marina Melchionna
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Monte Sant'Angelo, Via Cinthia, 21, 80126, Napoli, Italy
| | - Paolo Piras
- Dipartimento di Scienze Cardiovascolari, Respiratorie, Nefrologiche, Anestesiologiche e Geriatriche, "Sapienza", Rome, Italy.,Dipartimento di Ingegneria Strutturale e Geotecnica, Sapienza, Università di Roma, Via Eudossiana 18, 00100, Rome, Italy.,Università di Roma, Via del Policlinico 155, 00161, Rome, Italy
| | - Mirko Di Febbraro
- Dipartimento di Bioscienze e Territorio, University of Molise, C. da Fonte Lappone 15, 86090, Pesche, IS, Italy
| | - Francesco Carotenuto
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Monte Sant'Angelo, Via Cinthia, 21, 80126, Napoli, Italy
| | - Lorenzo Rook
- Dipartimento di Scienze della Terra, Via G. La Pira, 4, 50121, Firenze, Italy
| | - Pasquale Raia
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Monte Sant'Angelo, Via Cinthia, 21, 80126, Napoli, Italy
| |
Collapse
|
42
|
Wei C, Cusson M, Archambault P, Belley R, Brown T, Burd BJ, Edinger E, Kenchington E, Gilkinson K, Lawton P, Link H, Ramey‐Balci PA, Scrosati RA, Snelgrove PVR. Seafloor biodiversity of Canada's three oceans: Patterns, hotspots and potential drivers. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.13013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Chih‐Lin Wei
- Institute of Oceanography National Taiwan University Taipei Taiwan
| | - Mathieu Cusson
- Département des sciences fondamentales & Québec‐Océan Université du Québec à Chicoutimi Chicoutimi QC Canada
| | - Philippe Archambault
- Département de biologie & Québec‐Océan/Takuvik Université Laval Québec QC Canada
| | - Renald Belley
- Fisheries and Oceans Canada Maurice Lamontagne Institute Mont‐Joli QC Canada
| | - Tanya Brown
- Department of Geography Memorial University of Newfoundland St. John's NL Canada
| | - Brenda J. Burd
- Institute of Ocean Sciences Fisheries and Ocean Canada Sidney BC Canada
| | - Evan Edinger
- Department of Geography Memorial University of Newfoundland St. John's NL Canada
| | - Ellen Kenchington
- Bedford Institute of Oceanography Fisheries and Ocean Canada Dartmouth NS Canada
| | - Kent Gilkinson
- Northwest Atlantic Fisheries Centre Fisheries and Ocean Canada St. John's NL Canada
| | - Peter Lawton
- Biological Station Fisheries and Oceans Canada St. Andrews NB Canada
| | - Heike Link
- Department of Maritime Systems Faculty of Interdisciplinary Research University of Rostock Rostock Germany
| | | | | | - Paul V. R. Snelgrove
- Department of Ocean Sciences and Biology Memorial University of Newfoundland St. John's NL Canada
| |
Collapse
|
43
|
Huhn M, Madduppa HH, Khair M, Sabrian A, Irawati Y, Anggraini NP, Wilkinson SP, Simpson T, Iwasaki K, Setiamarga DHE, Dias PJ. Keeping up with introduced marine species at a remote biodiversity hotspot: awareness, training and collaboration across different sectors is key. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02126-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Ibáñez CM, Waldisperg M, Torres FI, Carrasco SA, Sellanes J, Pardo-Gandarillas MC, Sigwart JD. Environmental and ecological factors mediate taxonomic composition and body size of polyplacophoran assemblages along the Peruvian Province. Sci Rep 2019; 9:15934. [PMID: 31685909 PMCID: PMC6828727 DOI: 10.1038/s41598-019-52395-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/11/2019] [Indexed: 11/09/2022] Open
Abstract
Intertidal communities' composition and diversity usually exhibit strong changes in relation to environmental gradients at different biogeographical scales. This study represents the first comprehensive diversity and composition description of polyplacophoran assemblages along the Peruvian Province (SE Pacific, 12°S-39°S), as a model system for ecological latitudinal gradients. A total of 4,775 chitons from 21 species were collected on twelve localities along the Peruvian Province. This sampling allowed us to quantitatively estimate the relative abundance of the species in this assemblage, and to test whether chitons conform to elementary predictions of major biogeographic patterns such as a latitudinal diversity gradient. We found that the species composition supported the division of the province into three ecoregional faunal groups (i.e. Humboldtian, Central Chile, and Araucanian). Though chiton diversity did not follow a clear latitudinal gradient, changes in species composition were dominated by smaller scale variability in salinity and temperature. Body size significantly differed by ecoregions and species, indicating latitudinal size-structure assamblages. In some localities body size ratios differed from a random assemblage, evidencing competition at local scale. Changes in composition between ecoregions influence body size structure, and their overlapping produce vertical size segregation, suggesting that competition coupled with environmental conditions structure these assemblages.
Collapse
Affiliation(s)
- Christian M Ibáñez
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Melany Waldisperg
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe I Torres
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sergio A Carrasco
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile.,Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Coquimbo, Chile
| | - Javier Sellanes
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile.,Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Coquimbo, Chile
| | | | - Julia D Sigwart
- Marine Laboratory, Queen's University Belfast, Portaferry, N. Ireland
| |
Collapse
|
45
|
|
46
|
Spatio-temporal climate change contributes to latitudinal diversity gradients. Nat Ecol Evol 2019; 3:1419-1429. [DOI: 10.1038/s41559-019-0962-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/12/2019] [Indexed: 01/03/2023]
|
47
|
Liow LH, Taylor PD. Cope's Rule in a modular organism: Directional evolution without an overarching macroevolutionary trend. Evolution 2019; 73:1863-1872. [PMID: 31301184 PMCID: PMC6771556 DOI: 10.1111/evo.13800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 11/29/2022]
Abstract
Cope's Rule describes increasing body size in evolutionary lineages through geological time. This pattern has been documented in unitary organisms but does it also apply to module size in colonial organisms? We address this question using 1169 cheilostome bryozoans ranging through the entire 150 million years of their evolutionary history. The temporal pattern evident in cheilostomes as a whole shows no overall change in zooid (module) size. However, individual subclades show size increases: within a genus, younger species often have larger zooids than older species. Analyses of (paleo)latitudinal shifts show that this pattern cannot be explained by latitudinal effects (Bergmann's Rule) coupled with younger species occupying higher latitudes than older species (an "out of the tropics" hypothesis). While it is plausible that size increase was linked to the advantages of large zooids in feeding, competition for trophic resources and living space, other proposed mechanisms for Cope's Rule in unitary organisms are either inapplicable to cheilostome zooid size or cannot be evaluated. Patterns and mechanisms in colonial organisms cannot and should not be extrapolated from the better-studied unitary organisms. And even if macroevolution simply comprises repeated rounds of microevolution, evolutionary processes occurring within lineages are not always detectable from macroevolutionary patterns.
Collapse
Affiliation(s)
- Lee Hsiang Liow
- Natural History MuseumUniversity of OsloOsloNorway
- Department of Biosciences, Centre for Ecological and Evolutionary SynthesisUniversity of OsloOsloNorway
| | | |
Collapse
|
48
|
Edie SM, Huang S, Collins KS, Roy K, Jablonski D. Loss of Biodiversity Dimensions through Shifting Climates and Ancient Mass Extinctions. Integr Comp Biol 2019; 58:1179-1190. [PMID: 30204879 DOI: 10.1093/icb/icy111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many aspects of climate affect the deployment of biodiversity in time and space, and so changes in climate might be expected to drive regional and global extinction of both taxa and their ecological functions. Here we examine the association of past climate changes with extinction in marine bivalves, which are increasingly used as a model system for macroecological and macroevolutionary analysis. Focusing on the Cenozoic Era (66 Myr ago to the present), we analyze extinction patterns in shallow-water marine bivalve genera relative to temperature dynamics as estimated from isotopic data in microfossils. When the entire Cenozoic timeseries is considered, extinction intensity is not significantly associated with the mean temperature or the detrended variance in temperature within a given time interval (stratigraphic stage). However, extinction increases significantly with both the rate of temperature change within the stage of extinction and the absolute change in mean temperature from the preceding stage to the stage of extinction. Thus, several extinction events, particularly the extinction pulse near the Pliocene-Pleistocene boundary, do appear to have climatic drivers. Further, the latitudinal diversity gradient today and the Cenozoic history of polar faunas suggest that long-term, regional extinctions associated with cooling removed not just taxa but a variety of ecological functions from high-latitude seas. These dynamics of biodiversity loss contrast with the two mass extinctions bracketing the Mesozoic Era, which had negligible effects on the diversity of ecological functions despite removing nearly as many taxa as the latitudinal gradient does today. Thus, the fossil record raises a key issue: whether the biotic consequences of present-day stresses will more closely resemble the long-term effects of past climate changes or those that cascaded from the mass extinctions.
Collapse
Affiliation(s)
- Stewart M Edie
- Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| | - Shan Huang
- Senckenberg Biodiversity and Climate Research Center (BiK-F), Senckenberganlage 25, Frankfurt (Main) 60325, Germany
| | - Katie S Collins
- Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| | - Kaustuv Roy
- Section of Ecology, Behavior and Evolution, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | - David Jablonski
- Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| |
Collapse
|
49
|
Jones LA, Mannion PD, Farnsworth A, Valdes PJ, Kelland SJ, Allison PA. Coupling of palaeontological and neontological reef coral data improves forecasts of biodiversity responses under global climatic change. ROYAL SOCIETY OPEN SCIENCE 2019; 6:182111. [PMID: 31183138 PMCID: PMC6502368 DOI: 10.1098/rsos.182111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/01/2019] [Indexed: 05/19/2023]
Abstract
Reef corals are currently undergoing climatically driven poleward range expansions, with some evidence for equatorial range retractions. Predicting their response to future climate scenarios is critical to their conservation, but ecological models are based only on short-term observations. The fossil record provides the only empirical evidence for the long-term response of organisms under perturbed climate states. The palaeontological record from the Last Interglacial (LIG; 125 000 years ago), a time of global warming, suggests that reef corals experienced poleward range shifts and an equatorial decline relative to their modern distribution. However, this record is spatio-temporally biased, and existing methods cannot account for data absence. Here, we use ecological niche modelling to estimate reef corals' realized niche and LIG distribution, based on modern and fossil occurrences. We then make inferences about modelled habitability under two future climate change scenarios (RCP4.5 and RCP8.5). Reef coral ranges during the LIG were comparable to the present, with no prominent equatorial decrease in habitability. Reef corals are likely to experience poleward range expansion and large equatorial declines under RCP4.5 and RCP8.5. However, this range expansion is probably optimistic in the face of anthropogenic climate change. Incorporation of fossil data in niche models improves forecasts of biodiversity responses under global climatic change.
Collapse
Affiliation(s)
- Lewis A. Jones
- Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Philip D. Mannion
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Paul J. Valdes
- School of Geographical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | | | - Peter A. Allison
- Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
50
|
Fenberg PB, Rivadeneira MM. On the importance of habitat continuity for delimiting biogeographic regions and shaping richness gradients. Ecol Lett 2019; 22:664-673. [PMID: 30734458 DOI: 10.1111/ele.13228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/29/2018] [Indexed: 12/31/2022]
Abstract
The formation and maintenance of biogeographic regions and the latitudinal gradient of species richness are thought to be influenced, in part, by the spatial distribution of physical habitat (habitat continuity). But the importance of habitat continuity in relation to other variables for shaping richness gradients and delimiting biogeographic regions has not been well established. Here, we show that habitat continuity is a top predictor of biogeographic structure and the richness gradient of eastern Pacific rocky shore gastropods (spanning c. 23 000 km, from 43°S to 48°N). Rocky shore habitat continuity is generally low within tropical/subtropical regions (compared to extratropical regions), but particularly at biogeographic boundaries where steep richness gradients occur. Regions of high rocky shore habitat continuity are located towards the centres of biogeographic regions where species turnover tends to be relatively low. Our study highlights the importance of habitat continuity to help explain patterns and processes shaping the biogeographic organisation of species.
Collapse
Affiliation(s)
- Phillip B Fenberg
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, SO14 3ZH, UK.,Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - Marcelo M Rivadeneira
- Laboratorio de Paleobiología, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Av. Bernardo Ossandón 877, C.P. 1781681, Coquimbo, Chile.,Departamento de Biología Marina, Universidad Católica del Norte, Av. Larrondo 1281, Coquimbo, Chile.,Departamento de Biología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena, Chile
| |
Collapse
|