1
|
Kolawole E, Duggirala A, Gronow O, Wisniewska A, Hu J, Tan BK. Differential Expression of Maternal Plasma microRNAs and Their Respective Gene Targets Can Predict Early Fetal Growth Restriction. Life (Basel) 2025; 15:167. [PMID: 40003576 PMCID: PMC11856715 DOI: 10.3390/life15020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/03/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Fetal growth restriction (FGR) is a condition where the fetus does not reach its genetically predetermined size, affecting 1 in 10 pregnancies and contributing to up to 50% of all stillbirths before 34 weeks of gestation. Current diagnostic methods primarily involve ultrasound and Doppler assessments, yet there is growing interest in identifying biomarkers for early diagnosis and improved management. This systematic review examined the role of microRNAs (miRNAs) in the pathogenesis of FGR, focusing on their potential as non-invasive biomarkers. MicroRNAs are small, non-coding RNAs that regulate gene expression. This review systematically assessed studies investigating the differential expression of miRNAs in maternal blood, serum, and plasma samples from FGR-affected pregnancies. A total of nine studies met the inclusion criteria, which showed the differential expression of a total of 48 miRNAs. miR-16-5p was consistently upregulated in multiple studies and trimesters. miR-590-3p and miR-206 were consistently upregulated in multiple trimesters. The common gene targets of these miRNAs are VEGF, PIGF, and MMP9. The downregulation of these genes contributes to impaired angiogenesis, trophoblast invasion, placental function, and fetal growth.
Collapse
Affiliation(s)
- Emmanuel Kolawole
- College of Science and Engineering, Biomedical and Clinical Science Research Centre, University of Derby, Derby DE22 1GB, UK; (E.K.)
| | - Aparna Duggirala
- College of Science and Engineering, Biomedical and Clinical Science Research Centre, University of Derby, Derby DE22 1GB, UK; (E.K.)
| | - Oscar Gronow
- College of Science and Engineering, Biomedical and Clinical Science Research Centre, University of Derby, Derby DE22 1GB, UK; (E.K.)
| | - Agnieszka Wisniewska
- College of Science and Engineering, Biomedical and Clinical Science Research Centre, University of Derby, Derby DE22 1GB, UK; (E.K.)
| | - Jiamiao Hu
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Bee Kang Tan
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
2
|
Bartels HC, Hameed S, Young C, Nabhan M, Downey P, Curran KM, McCormack J, Fabre A, Kolch W, Zhernovkov V, Brennan DJ. Spatial proteomics and transcriptomics of the maternal-fetal interface in placenta accreta spectrum. Transl Res 2024; 274:67-80. [PMID: 39349165 DOI: 10.1016/j.trsl.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/21/2024] [Accepted: 09/21/2024] [Indexed: 10/02/2024]
Abstract
In severe Placenta Accreta Spectrum (PAS), trophoblasts gain deep access in the myometrium (placenta increta). This study investigated alterations at the fetal-maternal interface in PAS cases using a systems biology approach consisting of immunohistochemistry, spatial transcriptomics and proteomics. We identified spatial variation in the distribution of CD4+, CD3+ and CD8+ T-cells at the maternal-interface in placenta increta cases. Spatial transcriptomics identified transcription factors involved in promotion of trophoblast invasion such as AP-1 subunits ATF-3 and JUN, and NFKB were upregulated in regions with deep myometrial invasion. Pathway analysis of differentially expressed genes demonstrated that degradation of extracellular matrix (ECM) and class 1 MHC protein were increased in increta regions, suggesting local tissue injury and immune suppression. Spatial proteomics demonstrated that increta regions were characterised by excessive trophoblastic proliferation in an immunosuppressive environment. Expression of inhibitors of apoptosis such as BCL-2 and fibronectin were increased, while CTLA-4 was decreased and increased expression of PD-L1, PD-L2 and CD14 macrophages. Additionally, CD44, which is a ligand of fibronectin that promotes trophoblast invasion and cell adhesion was also increased in increta regions. We subsequently examined ligand receptor interactions enriched in increta regions, with interactions with ITGβ1, including with fibronectin and ADAMS, emerging as central in increta. These ITGβ1 ligand interactions are involved in activation of epithelial-mesenchymal transition and remodelling of ECM suggesting a more invasive trophoblast phenotype. In PAS, we suggest this is driven by fibronectin via AP-1 signalling, likely as a secondary response to myometrial scarring.
Collapse
Affiliation(s)
- Helena C Bartels
- Dept of UCD Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Holles Street, Dublin 2, Ireland
| | - Sodiq Hameed
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - Constance Young
- Department of Histopathology, National Maternity Hospital, Dublin, Ireland
| | - Myriam Nabhan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - Paul Downey
- Department of Histopathology, National Maternity Hospital, Dublin, Ireland
| | | | - Janet McCormack
- Research Pathology Core, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Aurelie Fabre
- School of Medicine, University College Dublin, Dublin, Ireland; Research Pathology Core, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; Histopathology, St Vincent's University Hospital, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Vadim Zhernovkov
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - Donal J Brennan
- Dept of UCD Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Holles Street, Dublin 2, Ireland; Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland; University College Dublin Gynaecological Oncology Group (UCD-GOG), Mater Misericordiae University Hospital and St Vincent's University Hospital, Dublin, Ireland.
| |
Collapse
|
3
|
Vornic I, Buciu V, Furau CG, Gaje PN, Ceausu RA, Dumitru CS, Barb AC, Novacescu D, Cumpanas AA, Latcu SC, Cut TG, Zara F. Oxidative Stress and Placental Pathogenesis: A Contemporary Overview of Potential Biomarkers and Emerging Therapeutics. Int J Mol Sci 2024; 25:12195. [PMID: 39596261 PMCID: PMC11594287 DOI: 10.3390/ijms252212195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress (OS) plays a crucial role in placental pathogenesis and pregnancy-related complications. This review explores OS's impact on placental development and function, focusing on novel biomarkers for the early detection of at-risk pregnancies and emerging therapeutic strategies. We analyzed recent research on OS in placental pathophysiology, examining its sources, mechanisms, and effects. While trophoblast invasion under low-oxygen conditions and hypoxia-induced OS regulate physiological placental development, excessive OS can lead to complications like miscarriage, preeclampsia, and intrauterine growth restriction. Promising OS biomarkers, including malondialdehyde, 8-isoprostane, and the sFlt-1/PlGF ratio, show potential for the early detection of pregnancy complications. Therapeutic strategies targeting OS, such as mitochondria-targeted antioxidants, Nrf2 activators, and gasotransmitter therapies, demonstrate encouraging preclinical results. However, clinical translation remains challenging. Future research should focus on validating these biomarkers in large-scale studies and developing personalized therapies to modulate placental OS. Emerging approaches like extracellular vesicle-based therapies and nanomedicine warrant further investigation for both diagnostic and therapeutic applications in pregnancy-related complications. Integrating OS biomarkers with other molecular and cellular markers offers improved potential for the early identification of at-risk pregnancies.
Collapse
Affiliation(s)
- Ioana Vornic
- Doctoral School, Department Medicine, “Vasile Goldiș” Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania;
- Discipline of Gynecology, Department Medicine, Vasile Goldiş Western University, Liviu Rebreanu Boulevard, No. 86, 310414 Arad, Romania;
| | - Victor Buciu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Cristian George Furau
- Discipline of Gynecology, Department Medicine, Vasile Goldiş Western University, Liviu Rebreanu Boulevard, No. 86, 310414 Arad, Romania;
| | - Pusa Nela Gaje
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (P.N.G.); (R.A.C.); (C.-S.D.); (A.C.B.); (D.N.); (F.Z.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Raluca Amalia Ceausu
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (P.N.G.); (R.A.C.); (C.-S.D.); (A.C.B.); (D.N.); (F.Z.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Cristina-Stefania Dumitru
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (P.N.G.); (R.A.C.); (C.-S.D.); (A.C.B.); (D.N.); (F.Z.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Alina Cristina Barb
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (P.N.G.); (R.A.C.); (C.-S.D.); (A.C.B.); (D.N.); (F.Z.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Dorin Novacescu
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (P.N.G.); (R.A.C.); (C.-S.D.); (A.C.B.); (D.N.); (F.Z.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Alin Adrian Cumpanas
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Silviu Constantin Latcu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Talida Georgiana Cut
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
- Center for Ethics in Human Genetic Identifications, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Flavia Zara
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (P.N.G.); (R.A.C.); (C.-S.D.); (A.C.B.); (D.N.); (F.Z.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|
4
|
Zhang K, Zhang H, Wang B, Gao S, Sun C, Jia C, Cui J. NR2F1 overexpression alleviates trophoblast cell dysfunction by inhibiting GDF15/MAPK axis in preeclampsia. Hum Cell 2024; 37:1405-1420. [PMID: 39007956 DOI: 10.1007/s13577-024-01095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/15/2024] [Indexed: 07/16/2024]
Abstract
Abnormal functions of trophoblast cells are associated with the pathogenesis of preeclampsia (PE). Nuclear receptor subfamily 2 group F member 1 (NR2F1) acts as a transcriptionally regulator in many diseases, but its role in PE remains unknown. Hypoxia/reoxygenation (H/R)-stimulated HTR-8/SVneo cells were used to mimic PE injury in vitro. NR2F1 overexpression alleviated trophoblast apoptosis, as evidenced by the decreased number of TUNEL-positive cells and the downregulation of caspase 3 and caspase 9 expression in cells. NR2F1 overexpression increased the invasion and migration ability of HTR-8/SVneo cells, accompanied by increased protein levels of matrix metalloproteinase (MMP)-2 and MMP-9. mRNA-seq was applied to explore the underlying mechanism of NR2F1, identifying growth differentiation factor 15 (GDF15) as the possible downstream effector. Dual-luciferase reporter, ChIP-qPCR, and DNA pull-down assays confirmed that NR2F1 bound to the promoter of GDF15 and transcriptionally inhibited its expression. GDF15 overexpression increased apoptosis and decreased the ability of invasion and migration in HTR-8/SVneo cells expressing NR2F1. MAPK pathway was involved in the regulation of PE. Administration of p38 inhibitor, ERK inhibitor, and JNK inhibitor reversed the effect of simultaneous overexpression NR2F1 and GDF15 on trophoblast apoptosis, invasion, and migration. Our findings demonstrated that NR2F1 overexpression inhibited trophoblast apoptosis and promoted trophoblast invasion and migration. NR2F1 might negatively regulate GDF15 expression by binding to its promoter region, which further inhibited MAPK signaling pathway in PE. Our study highlights that NR2F1 might sever as a potential target in PE.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Hailing Zhang
- Department of Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Bing Wang
- Department of Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Shanshan Gao
- Department of Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Caiping Sun
- Department of Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Cong Jia
- Department of Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jinquan Cui
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, No. 2, Jingba Road, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
5
|
Ma Y, Duan L, Reisch B, Kimmig R, Iannaccone A, Gellhaus A. Impact of the Immunomodulatory Factor Soluble B7-H4 in the Progress of Preeclampsia by Inhibiting Essential Functions of Extravillous Trophoblast Cells. Cells 2024; 13:1372. [PMID: 39195262 PMCID: PMC11352994 DOI: 10.3390/cells13161372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
A key aspect of preeclampsia pathophysiology is the reduced invasiveness of trophoblasts and the impairment of spiral artery remodelling. Understanding the causes of altered trophoblast function is critical to understand the development of preeclampsia. B7-H4, a checkpoint molecule, controls a wide range of processes, including T-cell activation, cytokine release, and tumour progression. Our previous findings indicated that B7-H4 levels are elevated in both maternal blood and placental villous tissue during the early stages of preeclampsia. Here, we investigated the function of B7-H4 in trophoblast physiology. Recombinant B7-H4 protein was used to treat human SGHPL-5 extravillous trophoblast cells. Biological functions were investigated using MTT, wound healing, and transwell assays. Signalling pathways were analysed by immunoblotting and immunofluorescence. The functionality of B7-H4 was further confirmed by immunoblotting and immunohistochemical analysis in placental tissues from control and preeclamptic patients following therapeutic plasma exchange (TPE) or standard of care treatment. This study showed that B7-H4 inhibited the proliferation, migration, and invasion capacities of SGHPL-5 extravillous cells while promoting apoptosis by downregulating the PI3K/Akt/STAT3 signalling pathway. These results were consistently confirmed in placental tissues from preterm controls compared to early-onset preeclamptic placental tissues from patients treated with standard of care or TPE treatment. B7-H4 may play a role in the development of preeclampsia by inhibiting essential functions of extravillous trophoblast cells during placental development. One possible mechanism by which TPE improves pregnancy outcomes in preeclampsia is through the elimination of B7-H4 amongst other factors.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, 45147 Essen, Germany; (Y.M.); (L.D.); (B.R.); (R.K.); (A.I.)
| |
Collapse
|
6
|
Kuna M, Soares MJ. Cited2 is a key regulator of placental development and plasticity. Bioessays 2024; 46:e2300118. [PMID: 38922923 PMCID: PMC11331489 DOI: 10.1002/bies.202300118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The biology of trophoblast cell lineage development and placentation is characterized by the involvement of several known transcription factors. Central to the action of a subset of these transcriptional regulators is CBP-p300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2). CITED2 acts as a coregulator modulating transcription factor activities and affecting placental development and adaptations to physiological stressors. These actions of CITED2 on the trophoblast cell lineage and placentation are conserved across the mouse, rat, and human. Thus, aspects of CITED2 biology in hemochorial placentation can be effectively modeled in the mouse and rat. In this review, we present information on the conserved role of CITED2 in the biology of placentation and discuss the use of CITED2 as a tool to discover new insights into regulatory mechanisms controlling placental development.
Collapse
Affiliation(s)
- Marija Kuna
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, MO
| |
Collapse
|
7
|
Sturla Irizarry SM, Cathey AL, Rosario Pabón ZY, Vélez Vega CM, Alshawabkeh AN, Cordero JF, Watkins DJ, Meeker JD. Urinary phenol and paraben concentrations in association with markers of inflammation during pregnancy in Puerto Rico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170889. [PMID: 38360311 DOI: 10.1016/j.scitotenv.2024.170889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Exposure to phenols and parabens may contribute to increased maternal inflammation and adverse birth outcomes, but these effects are not well-studied in humans. This study aimed to investigate relationships between concentrations of 8 phenols and 4 parabens with 6 inflammatory biomarkers (C-reactive protein (CRP); matrix metalloproteinases (MMP) 1, 2, and 9; intercellular adhesion molecule-1 (ICAM-1); and vascular cell adhesion molecule-1 (VCAM-1)) measured at two time points in pregnancy in the PROTECT birth cohort in Puerto Rico. Linear mixed models were used, adjusting for covariates of interest. Results are expressed as the percent change in outcome per interquartile range (IQR) increase in exposure. Particularly among phenols, numerous significant negative associations were found, for example, between benzophenone-3 and CRP (-11.21 %, 95 % CI: -17.82, -4.07) and triclocarban and MMP2 (-9.87 %, 95 % CI: -14.05, -5.5). However, significant positive associations were also detected, for instance, between bisphenol-A (BPA) and CRP (9.77 %, 95 % CI: 0.67, 19.68) and methyl-paraben and MMP1 (10.78 %, 95 % CI: 2.17, 20.11). Significant interactions with female fetal sex and the later study visit (at 24-28 weeks gestation) showed more positive associations compared to male fetal sex and the earlier study visit (16-20 weeks gestation). Our results suggest that phenols and parabens may disrupt inflammatory processes pertaining to uterine remodeling and endothelial function, with important implications for pregnancy outcomes. More research is needed to further understand maternal inflammatory status in an effort to improve reproductive and developmental outcomes.
Collapse
Affiliation(s)
| | - Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Zaira Y Rosario Pabón
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Carmen M Vélez Vega
- Department of Social Sciences, Doctoral Program in Social Determinants of Health, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA.
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA.
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA 30606, USA.
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Ozmen A, Nwabuobi C, Tang Z, Guo X, Larsen K, Guller S, Blas J, Moore M, Kayisli UA, Lockwood CJ, Guzeloglu-Kayisli O. Leptin-Mediated Induction of IL-6 Expression in Hofbauer Cells Contributes to Preeclampsia Pathogenesis. Int J Mol Sci 2023; 25:135. [PMID: 38203306 PMCID: PMC10778808 DOI: 10.3390/ijms25010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Leptin plays a crucial role in regulating energy homoeostasis, neuroendocrine function, metabolism, and immune and inflammatory responses. The adipose tissue is a main source of leptin, but during pregnancy, leptin is also secreted primarily by the placenta. Circulating leptin levels peak during the second trimester of human pregnancy and fall after labor. Several studies indicated a strong association between elevated placental leptin levels and preeclampsia (PE) pathogenesis and elevated serum interleukin-6 (IL-6) levels in PE patients. Therefore, we hypothesized that a local increase in placental leptin production induces IL-6 production in Hofbauer cells (HBCs) to contribute to PE-associated inflammation. We first investigated HBCs-specific IL-6 and leptin receptor (LEPR) expression and compared their immunoreactivity in PE vs. gestational age-matched control placentas. Subsequently, we examined the in vitro regulation of IL-6 as well as the phosphorylation levels of intracellular signaling proteins STAT3, STAT5, NF-κB, and ERK1/2 by increasing recombinant human leptin concentrations (10 to 1000 ng/mL) in primary cultured HBCs. Lastly, HBC cultures were incubated with leptin ± specific inhibitors of STAT3 or STAT5, or p65 NF-κB or ERK1/2 MAPK signaling cascades to determine relevant cascade(s) involved in leptin-mediated IL-6 regulation. Immunohistochemistry revealed ~three- and ~five-fold increases in IL-6 and LEPR expression, respectively, in HBCs from PE placentas. In vitro analysis indicated that leptin treatment in HBCs stimulate IL-6 in a concentration-dependent manner both at the transcriptional and secretory levels (p < 0.05). Moreover, leptin-treated HBC cultures displayed significantly increased phosphorylation levels of STAT5, p65 NF-κB, and ERK1/2 MAPK and pre-incubation of HBCs with a specific ERK1/2 MAPK inhibitor blocked leptin-induced IL-6 expression. Our in situ results show that HBCs contribute to the pathogenesis of PE by elevating IL-6 expression, and in vitro results indicate that induction of IL-6 expression in HBCs is primarily leptin-mediated. While HBCs display an anti-inflammatory phenotype in normal placentas, elevated levels of leptin may transform HBCs into a pro-inflammatory phenotype by activating ERK1/2 MAPK to augment IL-6 expression.
Collapse
Affiliation(s)
- Asli Ozmen
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.O.); (C.N.); (X.G.); (K.L.); (J.B.); (M.M.); (U.A.K.); (C.J.L.)
| | - Chinedu Nwabuobi
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.O.); (C.N.); (X.G.); (K.L.); (J.B.); (M.M.); (U.A.K.); (C.J.L.)
| | - Zhonghua Tang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA; (Z.T.); (S.G.)
| | - Xiaofang Guo
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.O.); (C.N.); (X.G.); (K.L.); (J.B.); (M.M.); (U.A.K.); (C.J.L.)
| | - Kellie Larsen
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.O.); (C.N.); (X.G.); (K.L.); (J.B.); (M.M.); (U.A.K.); (C.J.L.)
| | - Seth Guller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA; (Z.T.); (S.G.)
| | - Jacqueline Blas
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.O.); (C.N.); (X.G.); (K.L.); (J.B.); (M.M.); (U.A.K.); (C.J.L.)
| | - Monica Moore
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.O.); (C.N.); (X.G.); (K.L.); (J.B.); (M.M.); (U.A.K.); (C.J.L.)
| | - Umit A. Kayisli
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.O.); (C.N.); (X.G.); (K.L.); (J.B.); (M.M.); (U.A.K.); (C.J.L.)
| | - Charles J. Lockwood
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.O.); (C.N.); (X.G.); (K.L.); (J.B.); (M.M.); (U.A.K.); (C.J.L.)
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.O.); (C.N.); (X.G.); (K.L.); (J.B.); (M.M.); (U.A.K.); (C.J.L.)
| |
Collapse
|
9
|
Ciampa EJ, Flahardy P, Srinivasan H, Jacobs C, Tsai L, Karumanchi SA, Parikh SM. Hypoxia-inducible factor 1 signaling drives placental aging and can provoke preterm labor. eLife 2023; 12:RP85597. [PMID: 37610425 PMCID: PMC10446824 DOI: 10.7554/elife.85597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Most cases of preterm labor have unknown cause, and the burden of preterm birth is immense. Placental aging has been proposed to promote labor onset, but specific mechanisms remain elusive. We report findings stemming from unbiased transcriptomic analysis of mouse placenta, which revealed that hypoxia-inducible factor 1 (HIF-1) stabilization is a hallmark of advanced gestational timepoints, accompanied by mitochondrial dysregulation and cellular senescence; we detected similar effects in aging human placenta. In parallel in primary mouse trophoblasts and human choriocarcinoma cells, we modeled HIF-1 induction and demonstrated resultant mitochondrial dysfunction and cellular senescence. Transcriptomic analysis revealed that HIF-1 stabilization recapitulated gene signatures observed in aged placenta. Further, conditioned media from trophoblasts following HIF-1 induction promoted contractility in immortalized uterine myocytes, suggesting a mechanism by which the aging placenta may drive the transition from uterine quiescence to contractility at the onset of labor. Finally, pharmacological induction of HIF-1 via intraperitoneal administration of dimethyloxalyl glycine (DMOG) to pregnant mice caused preterm labor. These results provide clear evidence for placental aging in normal pregnancy, and demonstrate how HIF-1 signaling in late gestation may be a causal determinant of the mitochondrial dysfunction and senescence observed within the trophoblast as well as a trigger for uterine contraction.
Collapse
Affiliation(s)
- Erin J Ciampa
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Padraich Flahardy
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Harini Srinivasan
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Christopher Jacobs
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Linus Tsai
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | | | - Samir M Parikh
- Division of Nephrology, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical SchoolDallasUnited States
| |
Collapse
|
10
|
Gualdoni GS, Barril C, Jacobo PV, Pacheco Rodríguez LN, Cebral E. Involvement of metalloproteinase and nitric oxide synthase/nitric oxide mechanisms in early decidual angiogenesis-vascularization of normal and experimental pathological mouse placenta related to maternal alcohol exposure. Front Cell Dev Biol 2023; 11:1207671. [PMID: 37670932 PMCID: PMC10476144 DOI: 10.3389/fcell.2023.1207671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023] Open
Abstract
Successful pregnancy for optimal fetal growth requires adequate early angiogenesis and remodeling of decidual spiral arterioles during placentation. Prior to the initiation of invasion and endothelial replacement by trophoblasts, interactions between decidual stromal cells and maternal leukocytes, such as uterine natural killer cells and macrophages, play crucial roles in the processes of early maternal vascularization, such as proliferation, apoptosis, migration, differentiation, and matrix and vessel remodeling. These placental angiogenic events are highly dependent on the coordination of several mechanisms at the early maternal-fetal interface, and one of them is the expression and activity of matrix metalloproteinases (MMPs) and endothelial nitric oxide synthases (NOSs). Inadequate balances of MMPs and nitric oxide (NO) are involved in several placentopathies and pregnancy complications. Since alcohol consumption during gestation can affect fetal growth associated with abnormal placental development, recently, we showed, in a mouse model, that perigestational alcohol consumption up to organogenesis induces fetal malformations related to deficient growth and vascular morphogenesis of the placenta at term. In this review, we summarize the current knowledge of the early processes of maternal vascularization that lead to the formation of the definitive placenta and the roles of angiogenic MMP and NOS/NO mechanisms during normal and altered early gestation in mice. Then, we propose hypothetical defective decidual cellular and MMP and NOS/NO mechanisms involved in abnormal decidual vascularization induced by perigestational alcohol consumption in an experimental mouse model. This review highlights the important roles of decidual cells and their MMP and NOS balances in the physiological and pathophysiological early maternal angiogenesis-vascularization during placentation in mice.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Cebral
- Laboratorio de Reproducción y Fisiología Materno-Embrionaria, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Lawless L, Qin Y, Xie L, Zhang K. Trophoblast Differentiation: Mechanisms and Implications for Pregnancy Complications. Nutrients 2023; 15:3564. [PMID: 37630754 PMCID: PMC10459728 DOI: 10.3390/nu15163564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Placental development is a tightly controlled event, in which cell expansion from the trophectoderm occurs in a spatiotemporal manner. Proper trophoblast differentiation is crucial to the vitality of this gestational organ. Obstructions to its development can lead to pregnancy complications, such as preeclampsia, fetal growth restriction, and preterm birth, posing severe health risks to both the mother and offspring. Currently, the only known treatment strategy for these complications is delivery, making it an important area of research. The aim of this review was to summarize the known information on the development and mechanistic regulation of trophoblast differentiation and highlight the similarities in these processes between the human and mouse placenta. Additionally, the known biomarkers for each cell type were compiled to aid in the analysis of sequencing technologies.
Collapse
Affiliation(s)
- Lauren Lawless
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX 77030, USA;
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Yushu Qin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Ke Zhang
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX 77030, USA;
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Waker CA, Hwang AE, Bowman-Gibson S, Chandiramani CH, Linkous B, Stone ML, Keoni CI, Kaufman MR, Brown TL. Mouse models of preeclampsia with preexisting comorbidities. Front Physiol 2023; 14:1137058. [PMID: 37089425 PMCID: PMC10117893 DOI: 10.3389/fphys.2023.1137058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Preeclampsia is a pregnancy-specific condition and a leading cause of maternal and fetal morbidity and mortality. It is thought to occur due to abnormal placental development or dysfunction, because the only known cure is delivery of the placenta. Several clinical risk factors are associated with an increased incidence of preeclampsia including chronic hypertension, diabetes, autoimmune conditions, kidney disease, and obesity. How these comorbidities intersect with preeclamptic etiology, however, is not well understood. This may be due to the limited number of animal models as well as the paucity of studies investigating the impact of these comorbidities. This review examines the current mouse models of chronic hypertension, pregestational diabetes, and obesity that subsequently develop preeclampsia-like symptoms and discusses how closely these models recapitulate the human condition. Finally, we propose an avenue to expand the development of mouse models of preeclampsia superimposed on chronic comorbidities to provide a strong foundation needed for preclinical testing.
Collapse
Affiliation(s)
- Christopher A. Waker
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Amy E. Hwang
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Scout Bowman-Gibson
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Chandni H. Chandiramani
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Bryce Linkous
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Madison L. Stone
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Chanel I. Keoni
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Melissa R. Kaufman
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Thomas L. Brown
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- *Correspondence: Thomas L. Brown,
| |
Collapse
|
13
|
Vu HT, Kaur H, Kies KR, Starks RR, Tuteja G. Identifying novel regulators of placental development using time-series transcriptome data. Life Sci Alliance 2023; 6:6/2/e202201788. [PMID: 36622342 PMCID: PMC9748866 DOI: 10.26508/lsa.202201788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
The placenta serves as a connection between the mother and the fetus during pregnancy, providing the fetus with oxygen, nutrients, and growth hormones. However, the regulatory mechanisms and dynamic gene interaction networks underlying early placental development are understudied. Here, we generated RNA-sequencing data from mouse fetal placenta at embryonic days 7.5, 8.5, and 9.5 to identify genes with timepoint-specific expression, then inferred gene interaction networks to analyze highly connected network modules. We determined that timepoint-specific gene network modules were associated with distinct developmental processes, and with similar expression profiles to specific human placental cell populations. From each module, we identified hub genes and their direct neighboring genes, which were predicted to govern placental functions. We confirmed that four novel candidate regulators identified through our analyses regulate cell migration in the HTR-8/SVneo cell line. Overall, we predicted several novel regulators of placental development expressed in specific placental cell types using network analysis of bulk RNA-sequencing data. Our findings and analysis approaches will be valuable for future studies investigating the transcriptional landscape of early development.
Collapse
Affiliation(s)
- Ha Th Vu
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA.,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Haninder Kaur
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Kelby R Kies
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA.,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Rebekah R Starks
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA.,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Geetu Tuteja
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA .,Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
14
|
Abstract
Establishment of the hemochorial uterine-placental interface requires exodus of trophoblast cells from the placenta and their transformative actions on the uterus, which represent processes critical for a successful pregnancy, but are poorly understood. We examined the involvement of CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2) in rat and human trophoblast cell development. The rat and human exhibit deep hemochorial placentation. CITED2 was distinctively expressed in the junctional zone (JZ) and invasive trophoblast cells of the rat. Homozygous Cited2 gene deletion resulted in placental and fetal growth restriction. Small Cited2 null placentas were characterized by disruptions in the JZ, delays in intrauterine trophoblast cell invasion, and compromised plasticity. In the human placentation site, CITED2 was uniquely expressed in the extravillous trophoblast (EVT) cell column and importantly contributed to the development of the EVT cell lineage. We conclude that CITED2 is a conserved regulator of deep hemochorial placentation.
Collapse
|
15
|
Jing M, Chen X, Qiu H, He W, Zhou Y, Li D, Wang D, Jiao Y, Liu A. Insights into the immunomodulatory regulation of matrix metalloproteinase at the maternal-fetal interface during early pregnancy and pregnancy-related diseases. Front Immunol 2023; 13:1067661. [PMID: 36700222 PMCID: PMC9869165 DOI: 10.3389/fimmu.2022.1067661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Trophoblast immune cell interactions are central events in the immune microenvironment at the maternal-fetal interface. Their abnormalities are potential causes of various pregnancy complications, including pre-eclampsia and recurrent spontaneous abortion. Matrix metalloproteinase (MMP) is highly homologous, zinc(II)-containing metalloproteinase involved in altered uterine hemodynamics, closely associated with uterine vascular remodeling. However, the interactions between MMP and the immune microenvironment remain unclear. Here we discuss the key roles and potential interplay of MMP with the immune microenvironment in the embryo implantation process and pregnancy-related diseases, which may contribute to understanding the establishment and maintenance of normal pregnancy and providing new therapeutic strategies. Recent studies have shown that several tissue inhibitors of metalloproteinases (TIMPs) effectively prevent invasive vascular disease by modulating the activity of MMP. We summarize the main findings of these studies and suggest the possibility of TIMPs as emerging biomarkers and potential therapeutic targets for a range of complications induced by abnormalities in the immune microenvironment at the maternal-fetal interface. MMP and TIMPs are promising targets for developing new immunotherapies to treat pregnancy-related diseases caused by immune imbalance.
Collapse
Affiliation(s)
- Mengyu Jing
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Xi Chen
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Hongxia Qiu
- Department of Obstetrics, Hangzhou Fuyang Women And Children Hospital, Fuyang, China
| | - Weihua He
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Ying Zhou
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Dan Li
- Department of Reproduction, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Dimin Wang
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China,*Correspondence: Yonghui Jiao, ; Dimin Wang, ; Aixia Liu,
| | - Yonghui Jiao
- Department of Reproduction, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China,*Correspondence: Yonghui Jiao, ; Dimin Wang, ; Aixia Liu,
| | - Aixia Liu
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China,Department of Reproduction, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China,*Correspondence: Yonghui Jiao, ; Dimin Wang, ; Aixia Liu,
| |
Collapse
|
16
|
Fan M, Dong L, Meng Y, Wang Y, Zhen J, Qiu J. Leptin Promotes HTR-8/SVneo Cell Invasion via the Crosstalk between MTA1/WNT and PI3K/AKT Pathways. DISEASE MARKERS 2022; 2022:7052176. [PMID: 36457544 PMCID: PMC9708374 DOI: 10.1155/2022/7052176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/16/2022] [Accepted: 11/08/2022] [Indexed: 08/31/2023]
Abstract
The process of placental invasion is essential for a successful pregnancy. Leptin is involved in trophoblast invasiveness, and its dysregulation is connected with a series of diseases, including preeclampsia. However, the knowledge of the precise mechanisms in leptin-induced trophoblast invasiveness is still limited. According to the present research, transwell assay suggested that leptin is a dose- and time-dependent regulator in inducing HTR-8/SVneo cell invasion. Western blot analysis and immunofluorescence staining revealed that leptin-induced MMP9 expression is essential in the invasion process of HTR-8/SVneo cells. Mechanistically, we demonstrated that leptin activated β-catenin via the crosstalk between the MTA1/WNT and PI3K/AKT pathways. Besides, we showed that downregulating the key molecules in the signaling pathways by siRNA can inhibit leptin-induced MMP9 expression and further suppress invasion of HTR-8/SVneo cells. In conclusion, our study revealed a new regulatory mechanism of leptin-induced HTR-8/SVneo cell invasiveness and will provide novel insights into the causes and potential therapeutic targets for diseases related to dysregulation of trophoblast invasion in the future.
Collapse
Affiliation(s)
- Minghua Fan
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Lihua Dong
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanping Meng
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Yao Wang
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Junhui Zhen
- Department of Pathology, School of Medicine, Shandong University, Jinan, 250021 Shandong, China
| | - Jianqing Qiu
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| |
Collapse
|
17
|
The pathologic changes of human placental macrophages in women with hyperglycemia in pregnancy. Placenta 2022; 130:60-66. [DOI: 10.1016/j.placenta.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/24/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
|
18
|
Molka B, Gwladys B, Dorian B, Lucie M, Mustapha B, Rosalie C, Brigitte G, Hafida KC, Moncef B. Follicular Fluid Growth Factors and Interleukin Profiling as Potential Predictors of IVF Outcomes. Front Physiol 2022; 13:859790. [PMID: 35770187 PMCID: PMC9234297 DOI: 10.3389/fphys.2022.859790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Growth hormone (GH) has gained attention as an anti-aging compound enhancing oocyte quality. In fact, GH is known to activate intrafollicular metabolic events for oocyte maturation. Insulin growth factor I (IGF1) is another ovarian growth factor that mediates the FSH and GH actions. Cytokines could also increase IVF outcomes. Indeed, IL-6 is a pleiotropic cytokine with multiple cellular effects that can vary based on the physiological environment. IL-6 may also play an important role in follicular development (Yang et al., J Assist Reprod Genet, 2020, 37 (5), 1171–1176). Clinical studies have been performed to explore the potential role of IL-6 in human oocyte maturation and subsequent embryonic development. To date, the answers are not conclusive. During peri-implantation, many cytokines balances are regulated like pro-inflammatory and anti-inflammatory interleukins. The pro-inflammatory properties of IL-17 and its impact on the tumor microenvironment or autoimmune diseases are characterized, but new dimensions of IL-17 activity that promotes embryo implantation are not well explored. In the search for answers, our study compared concentrations of growth factors IGF1, GH, and interleukins IL-6 and IL-17 in the follicular fluid (FF) from 140 women divided into two groups depending on bad (G1) or good prognosis (G2) and investigated the relationships between these FF components’ levels and the main parameters of IVF. GH, IGF1, and IL-6 were significantly higher for G2. For GH, it was negatively correlated to patient age and positively correlated to maturity rate and IGF1. Moreover, GH and IGF1 were correlated to the top embryo rate and cumulative pregnancy rate. Regarding IL-6, it was correlated to IGF1 level, endometrium thickness, and implantation rate. As for IL-17, it was only correlated to IL-6. Consequently, all these FF components were predictive of oocyte quality except IL-17. GH seemed to be the best biomarker of this quality.
Collapse
Affiliation(s)
- Bouricha Molka
- Reproductive Medicine, Reproductive Biology and Genetics, University Hospital and School of Medicine, Picardie University Jules Verne, Amiens, France
- *Correspondence: Bouricha Molka,
| | - Bourdenet Gwladys
- Department of Immunology Laboratory, Amiens University Hospital, Amiens, France
- HEMATIM - EA4666, Jules Verne University of Picardie, Amiens, France
| | - Bosquet Dorian
- Reproductive Medicine, Reproductive Biology and Genetics, University Hospital and School of Medicine, Picardie University Jules Verne, Amiens, France
| | - Moussot Lucie
- Department of Immunology Laboratory, Amiens University Hospital, Amiens, France
| | - Benkhalifa Mustapha
- HB Laboratory, Tunis, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Bizerte, Tunisia
| | - Cabry Rosalie
- Reproductive Medicine, Reproductive Biology and Genetics, University Hospital and School of Medicine, Picardie University Jules Verne, Amiens, France
| | - Gubler Brigitte
- Department of Immunology Laboratory, Amiens University Hospital, Amiens, France
- HEMATIM - EA4666, Jules Verne University of Picardie, Amiens, France
- Department of Molecular Oncobiology, Amiens University Hospital, Amiens, France
| | - Khorsi-Cauet Hafida
- Reproductive Medicine, Reproductive Biology and Genetics, University Hospital and School of Medicine, Picardie University Jules Verne, Amiens, France
- PERITOX laboratory, CURS, Picardie University Jules Verne, Amiens, France
| | - Benkhalifa Moncef
- Reproductive Medicine, Reproductive Biology and Genetics, University Hospital and School of Medicine, Picardie University Jules Verne, Amiens, France
- PERITOX laboratory, CURS, Picardie University Jules Verne, Amiens, France
| |
Collapse
|
19
|
Sharma AM, Birkett R, Lin ET, Ernst LM, Grobman WA, Swaminathan S, Abdala-Valencia H, Misharin AV, Bartom ET, Mestan KK. Placental dysfunction influences fetal monocyte subpopulation gene expression in preterm birth. JCI Insight 2022; 7:155482. [PMID: 35471950 PMCID: PMC9220934 DOI: 10.1172/jci.insight.155482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/22/2022] [Indexed: 02/03/2023] Open
Abstract
The placenta is the primary organ for immune regulation, nutrient delivery, gas exchange, protection against environmental toxins, and physiologic perturbations during pregnancy. Placental inflammation and vascular dysfunction during pregnancy are associated with a growing list of prematurity-related complications. The goal of this study was to identify differences in gene expression profiles in fetal monocytes - cells that persist and differentiate postnatally - according to distinct placental histologic domains. Here, by using bulk RNA-Seq, we report that placental lesions are associated with gene expression changes in fetal monocyte subsets. Specifically, we found that fetal monocytes exposed to acute placental inflammation upregulate biological processes related to monocyte activation, monocyte chemotaxis, and platelet function, while monocytes exposed to maternal vascular malperfusion lesions downregulate these processes. Additionally, we show that intermediate monocytes might be a source of mitogens, such as HBEGF, NRG1, and VEGFA, implicated in different outcomes related to prematurity. This is the first study to our knowledge to show that placental lesions are associated with unique changes in fetal monocytes and monocyte subsets. As fetal monocytes persist and differentiate into various phagocytic cells following birth, our study may provide insight into morbidity related to prematurity and ultimately potential therapeutic targets.
Collapse
Affiliation(s)
- Abhineet M. Sharma
- Department of Pediatrics/Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert Birkett
- Department of Pediatrics/Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Erika T. Lin
- Department of Pediatrics/Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Pediatrics, UCSD, La Jolla, California, USA
| | - Linda M. Ernst
- Department of Pathology & Laboratory Medicine, NorthShore University HealthSystem, Chicago, Illinois, USA
| | - William A. Grobman
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine
| | | | | | | | - Elizabeth T. Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Karen K. Mestan
- Department of Pediatrics/Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Pediatrics, UCSD, La Jolla, California, USA
| |
Collapse
|
20
|
Isolation of Decidual Macrophages and Hofbauer Cells from Term Placenta-Comparison of the Expression of CD163 and CD80. Int J Mol Sci 2022; 23:ijms23116113. [PMID: 35682791 PMCID: PMC9181726 DOI: 10.3390/ijms23116113] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Placental immune cells are playing a very important role in a successful placentation and the prevention of pregnancy complications. Macrophages dominate in number and relevance in the maternal and the fetal part of the placenta. The evidence on the polarization state of fetal and maternal macrophages involved in both, healthy and pregnancy-associated diseases, is limited. There is no representative isolation method for the direct comparison of maternal and fetal macrophages so far. (2) Material and Methods: For the isolation of decidual macrophages and Hofbauer cells from term placenta, fresh tissue was mechanically dissected and digested with trypsin and collagenase A. Afterwards cell enrichment was increased by a Percoll gradient. CD68 is represented as pan-macrophage marker, the surface markers CD80 and CD163 were further investigated. (3) Results: The established method revealed a high cell yield and purity of the isolated macrophages and enabled the comparison between decidual macrophages and Hofbauer cells. No significant difference was observed in the percentage of single CD163+ cells in the distinct macrophage populations, by using FACS and immunofluorescence staining. A slight increase of CD80+ cells could be found in the decidual macrophages. Considering the percentage of CD80+CD163− and CD80−CD163+ cells we could not find differences. Interestingly we found an increased number of double positive cells (CD80+CD163+) in the decidual macrophage population in comparison to Hofbauer cells. (4) Conclusion: In this study we demonstrate that our established isolation method enables the investigation of decidual macrophages and Hofbauer cells in the placenta. It represents a promising method for direct cell comparison, enzyme independently, and unaffected by magnetic beads, to understand the functional subsets of placental macrophages and to identify therapeutic targets of pregnancy associated diseases.
Collapse
|
21
|
True H, Blanton M, Sureshchandra S, Messaoudi I. Monocytes and macrophages in pregnancy: The good, the bad, and the ugly. Immunol Rev 2022; 308:77-92. [PMID: 35451089 DOI: 10.1111/imr.13080] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022]
Abstract
A successful human pregnancy requires precisely timed adaptations by the maternal immune system to support fetal growth while simultaneously protecting mother and fetus against microbial challenges. The first trimester of pregnancy is characterized by a robust increase in innate immune activity that promotes successful implantation of the blastocyst and placental development. Moreover, early pregnancy is also a state of increased vulnerability to vertically transmitted pathogens notably, human immunodeficiency virus (HIV), Zika virus (ZIKV), SARS-CoV-2, and Listeria monocytogenes. As gestation progresses, the second trimester is marked by the establishment of an immunosuppressive environment that promotes fetal tolerance and growth while preventing preterm birth, spontaneous abortion, and other gestational complications. Finally, the period leading up to labor and parturition is characterized by the reinstatement of an inflammatory milieu triggering childbirth. These dynamic waves of carefully orchestrated changes have been dubbed the "immune clock of pregnancy." Monocytes in maternal circulation and tissue-resident macrophages at the maternal-fetal interface play a critical role in this delicate balance. This review will summarize the current data describing the longitudinal changes in the phenotype and function of monocyte and macrophage populations in healthy and complicated pregnancies.
Collapse
Affiliation(s)
- Heather True
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | - Madison Blanton
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | | | - Ilhem Messaoudi
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
22
|
Freyer L, Lallemand Y, Dardenne P, Sommer A, Biton A, Gomez Perdiguero E. Erythro-myeloid progenitor origin of Hofbauer cells in the early mouse placenta. Development 2022; 149:dev200104. [PMID: 35438172 PMCID: PMC9124577 DOI: 10.1242/dev.200104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/31/2022] [Indexed: 12/17/2022]
Abstract
Hofbauer cells (HBCs) are tissue macrophages of the placenta thought to be important for fetoplacental vascular development and innate immune protection. The developmental origins of HBCs remain unresolved and could implicate functional diversity of HBCs in placenta development and disease. In this study, we used flow cytometry and paternally inherited reporters to phenotype placenta macrophages and to identify fetal-derived HBCs and placenta-associated maternal macrophages in the mouse. In vivo pulse-labeling traced the ontogeny of HBCs from yolk sac-derived erythro-myeloid progenitors, with a minor contribution from fetal hematopoietic stem cells later on. Single-cell RNA-sequencing revealed transcriptional similarities between placenta macrophages and erythro-myeloid progenitor-derived fetal liver macrophages and microglia. As with other fetal tissue macrophages, HBCs were dependent on the transcription factor Pu.1, the loss-of-function of which in embryos disrupted fetoplacental labyrinth morphology, supporting a role for HBC in labyrinth angiogenesis and/or remodeling. HBC were also sensitive to Pu.1 (Spi1) haploinsufficiency, which caused an initial deficiency in the numbers of macrophages in the early mouse placenta. These results provide groundwork for future investigation into the relationship between HBC ontogeny and function in placenta pathophysiology.
Collapse
Affiliation(s)
- Laina Freyer
- Institut Pasteur, Unit for Macrophages and Endothelial Cells, Developmental and Stem Cell Biology Department, UMR3738 CNRS, 75015 Paris, France
| | - Yvan Lallemand
- Institut Pasteur, Unit for Macrophages and Endothelial Cells, Developmental and Stem Cell Biology Department, UMR3738 CNRS, 75015 Paris, France
| | - Pascal Dardenne
- Institut Pasteur, Unit for Macrophages and Endothelial Cells, Developmental and Stem Cell Biology Department, UMR3738 CNRS, 75015 Paris, France
| | - Alina Sommer
- Institut Pasteur, Unit for Macrophages and Endothelial Cells, Developmental and Stem Cell Biology Department, UMR3738 CNRS, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Anne Biton
- Bioinformatics and Biostatistics Hub, Institut Pasteur, 75015 Paris, France
| | - Elisa Gomez Perdiguero
- Institut Pasteur, Unit for Macrophages and Endothelial Cells, Developmental and Stem Cell Biology Department, UMR3738 CNRS, 75015 Paris, France
| |
Collapse
|
23
|
Gao X, Wang J, Shi J, Sun Q, Jia N, Li H. The Efficacy Mechanism of Epigallocatechin Gallate against Pre-Eclampsia based on Network Pharmacology and Molecular Docking. Reprod Sci 2022; 29:1859-1873. [PMID: 35211881 DOI: 10.1007/s43032-022-00894-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/16/2022] [Indexed: 12/19/2022]
Abstract
Pre-eclampsia (PE), a pregnancy complication, affects 3-5% of all pregnancies worldwide and is the main cause of maternal and perinatal morbidity. However, there is no drug which can clearly slow this disease progression. Epigallocatechin gallate (EGCG), a natural compound extracted from green tea, has been found to enhance the treatment efficacy of oral nifedipine against pregnancy-induced severe PE. This study aims to clarify the potential targets and pharmacological mechanisms of EGCG in treatment of PE. We used Traditional Chinese Medicine Systems Pharmacology database and Gene Cards database to obtain 179 putative target proteins of EGCG, 550 PE-related hub genes and 39 intersecting targets between EGCG and PE. By using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, we got the gene entries and enrichment pathways closely related to the intersecting targets. The top 10 enrichment pathways were pathway in cancer, proteoglycans in cancer, HIF-1 signaling pathway, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, bladder cancer, hepatitis B, IL-17 signaling pathway, toxoplasmosis, PI3K-Akt signaling pathway. Furthermore, compound-target-pathway (CTP) and protein-protein interaction (PPI) network analysis were employed to explore the interaction of the top twelve targets for EGCG in treating PE. Molecular docking analysis showed combinations between these targets and EGCG, and the interaction between EGCG and the targets IL-6 and EGFR was confirmed by using molecular dynamic simulation. In conclusion, these findings hint the underlying mechanism of EGCG in the treatment of PE and point out directions in further studies on PE.
Collapse
Affiliation(s)
- Xinru Gao
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.,Northwest Women's and Children's Hospital, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jiahao Wang
- Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jiamiao Shi
- Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Qinru Sun
- Institute of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ning Jia
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
24
|
Gualdoni GS, Jacobo PV, Barril C, Ventureira MR, Cebral E. Early Abnormal Placentation and Evidence of Vascular Endothelial Growth Factor System Dysregulation at the Feto-Maternal Interface After Periconceptional Alcohol Consumption. Front Physiol 2022; 12:815760. [PMID: 35185604 PMCID: PMC8847216 DOI: 10.3389/fphys.2021.815760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/28/2021] [Indexed: 01/16/2023] Open
Abstract
Adequate placentation, placental tissue remodeling and vascularization is essential for the success of gestation and optimal fetal growth. Recently, it was suggested that abnormal placenta induced by maternal alcohol consumption may participate in fetal growth restriction and relevant clinical manifestations of the Fetal Alcohol Spectrum Disorders (FASD). Particularly, periconceptional alcohol consumption up to early gestation can alter placentation and angiogenesis that persists in pregnancy beyond the exposure period. Experimental evidence suggests that abnormal placenta following maternal alcohol intake is associated with insufficient vascularization and defective trophoblast development, growth and function in early gestation. Accumulated data indicate that impaired vascular endothelial growth factor (VEGF) system, including their downstream effectors, the nitric oxide (NO) and metalloproteinases (MMPs), is a pivotal spatio-temporal altered mechanism underlying the early placental vascular alterations induced by maternal alcohol consumption. In this review we propose that the periconceptional alcohol intake up to early organogenesis (first trimester) alters the VEGF-NO-MMPs system in trophoblastic-decidual tissues, generating imbalances in the trophoblastic proliferation/apoptosis, insufficient trophoblastic development, differentiation and migration, deficient labyrinthine vascularization, and uncompleted remodelation and transformation of decidual spiral arterioles. Consequently, abnormal placenta with insufficiency blood perfusion, vasoconstriction and reduced labyrinthine blood exchange can be generated. Herein, we review emerging knowledge of abnormal placenta linked to pregnancy complications and FASD produced by gestational alcohol ingestion and provide evidence of the early abnormal placental angiogenesis-vascularization and growth associated to decidual-trophoblastic dysregulation of VEGF system after periconceptional alcohol consumption up to mid-gestation, in a mouse model.
Collapse
|
25
|
Gualdoni G, Gomez Castro G, Hernández R, Barbeito C, Cebral E. Comparative matrix metalloproteinase-2 and -9 expression and activity during endotheliochorial and hemochorial trophoblastic invasiveness. Tissue Cell 2021; 74:101698. [PMID: 34871824 DOI: 10.1016/j.tice.2021.101698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/14/2021] [Accepted: 11/23/2021] [Indexed: 01/02/2023]
Abstract
To establish a functional placenta, its development needs adequate trophoblastic invasiveness. The intricate and complex morphological and molecular aspects regulating trophoblastic invasion during endotheliochorial placentation of domestic carnivores and their similarities and differences with the hemochorial placenta are still poorly understood. During placentation processes, from the time of implantation, trophoblast cells invade the uterine endometrium where they achieve extensive degradation and remodeling of extracellular matrix components; in this process, matrix metalloproteinases (MMPs), particularly MMP-2 and 9, have an essential role in rebuilding, cell migration, and invasiveness. This review provides an overview of comparative trophoblast invasive events and the expression and activity of MMP-2 and 9 during endotheliochorial and hemochorial placentation, emphasizing dog and mouse placental models. Understanding of trophoblastic invasiveness in two models of placentation, the intermediately invasive domestic carnivore endotheliochorial placenta, and the more highly invasive mouse hemochorial placenta, contributes to deepen knowledge of the trophoblast invasive processes and their diverse and complex human placental alterations, such as preeclampsia.
Collapse
Affiliation(s)
- Gisela Gualdoni
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET), Buenos Aires, Argentina; Departamento de Biodiversidad y Biología Experimental (DBBE), Buenos Aires, Argentina
| | - Gimena Gomez Castro
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC). Cátedra de Histología y Embriología. Departamento de Ciencias Básicas, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (UNLP), La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Rocío Hernández
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC). Cátedra de Histología y Embriología. Departamento de Ciencias Básicas, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (UNLP), La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Claudio Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC). Cátedra de Histología y Embriología. Departamento de Ciencias Básicas, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (UNLP), La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Elisa Cebral
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET), Buenos Aires, Argentina; Departamento de Biodiversidad y Biología Experimental (DBBE), Buenos Aires, Argentina.
| |
Collapse
|
26
|
Torregrosa-Carrión R, Piñeiro-Sabarís R, Siguero-Álvarez M, Grego-Bessa J, Luna-Zurita L, Fernandes VS, MacGrogan D, Stainier DYR, de la Pompa JL. Adhesion G protein-coupled receptor Gpr126/Adgrg6 is essential for placental development. SCIENCE ADVANCES 2021; 7:eabj5445. [PMID: 34767447 PMCID: PMC8589310 DOI: 10.1126/sciadv.abj5445] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mutations in the G protein–coupled receptor GPR126/ADGRG6 cause human diseases, including defective peripheral nervous system (PNS) myelination. To study GPR126 function, we generated new genetic mice and zebrafish models. Murine Gpr126 is expressed in developing heart endocardium, and global Gpr126 inactivation is embryonically lethal, with mutants having thin-walled ventricles but unaffected heart patterning or maturation. Endocardial-specific Gpr126 deletion does not affect heart development or function, and transgenic endocardial GPR126 expression fails to rescue lethality in Gpr126-null mice. Zebrafish gpr126 mutants display unaffected heart development. Gpr126 is also expressed in placental trophoblast giant cells. Gpr126-null mice with a heterozygous placenta survive but exhibit GPR126-defective PNS phenotype. In contrast, Gpr126-null embryos with homozygous mutant placenta die but are rescued by placental GPR126 expression. Gpr126-deficient placentas display down-regulation of preeclampsia markers Mmp9, Cts7, and Cts8. We propose that the placenta-heart axis accounts for heart abnormalities secondary to placental defects in Gpr126 mutants.
Collapse
Affiliation(s)
- Rebeca Torregrosa-Carrión
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Rebeca Piñeiro-Sabarís
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Marcos Siguero-Álvarez
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Joaquím Grego-Bessa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Luis Luna-Zurita
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Vitor Samuel Fernandes
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Donal MacGrogan
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - José Luis de la Pompa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, 28029 Madrid, Spain
- Corresponding author.
| |
Collapse
|
27
|
Thomas JR, Naidu P, Appios A, McGovern N. The Ontogeny and Function of Placental Macrophages. Front Immunol 2021; 12:771054. [PMID: 34745147 PMCID: PMC8566952 DOI: 10.3389/fimmu.2021.771054] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/05/2021] [Indexed: 01/02/2023] Open
Abstract
The placenta is a fetal-derived organ whose function is crucial for both maternal and fetal health. The human placenta contains a population of fetal macrophages termed Hofbauer cells. These macrophages play diverse roles, aiding in placental development, function and defence. The outer layer of the human placenta is formed by syncytiotrophoblast cells, that fuse to form the syncytium. Adhered to the syncytium at sites of damage, on the maternal side of the placenta, is a population of macrophages termed placenta associated maternal macrophages (PAMM1a). Here we discuss recent developments that have led to renewed insight into our understanding of the ontogeny, phenotype and function of placental macrophages. Finally, we discuss how the application of new technologies within placental research are helping us to further understand these cells.
Collapse
Affiliation(s)
| | | | | | - Naomi McGovern
- Department of Pathology and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
28
|
A PDMS-Based Interdigitated Platform for Trophoblast Invasion Study Under Oxygen Stress Conditions. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Lu J, Liu G, Wang Z, Cao J, Chen Y, Dong Y. Restraint stress induces uterine microenvironment disorder in mice during early pregnancy through the β 2-AR/cAMP/PKA pathway. Stress 2021; 24:514-528. [PMID: 33280472 DOI: 10.1080/10253890.2020.1855419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During pregnancy, uterus undergoes the environment adaptation as part of a program of development. In the world, one in four people worldwide suffer from mental illness, especially pregnant women. β-Adrenergic receptor (β-AR) is an important regulator that converts environmental stimuli into intracellular signals in mice uterus. CD-1 (ICR) mice undergone restraint stress, which was a case in model to simulate the psychological stress. The plasma and implantation sites in uterus were obtained and examined. PCR analysis demonstrated that β2-AR expression levels in embryo day (E) 3, 5 and 7 were kept at a significantly higher level (p < 0.05) under restraint stress and higher than β1-AR and β3-AR in different gestation ages. The β2-AR protein levels were obviously increased (p < 0.05) due to the markedly elevated norepinephrine (NE) concentration (p < 0.05). In our previous study, restraint stress can induce the apoptosis and inflammation. Also, the matrix metalloprotein-9 (MMP-9) was decreased significantly (p < 0.05) under restraint stress. Meanwhile, Caspase3, p-NF-κB p65 and p-ERK1/2 were obviously increased (p < 0.05) in the work. In vitro studies showed that the p-ERK1/2 and Caspase-3 levels were raised (p < 0.05) after β2-AR was activated. However, they were decreased when PKA was blocked. The protein levels of Caspase-3 were reduced when ERK and NF-κB were blocked (p < 0.05). In conclusion, the β2-AR/cAMP/PKA pathway promoted apoptosis and affected the development of the uterus through the ERK and NF-κB signaling pathway. The findings of this study may provide evidence for female reproduction under psychological stress.
Collapse
Affiliation(s)
- Jiayin Lu
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Guanhui Liu
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Zixu Wang
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Jing Cao
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yaoxing Chen
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yulan Dong
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
30
|
Thomas JR, Appios A, Zhao X, Dutkiewicz R, Donde M, Lee CYC, Naidu P, Lee C, Cerveira J, Liu B, Ginhoux F, Burton G, Hamilton RS, Moffett A, Sharkey A, McGovern N. Phenotypic and functional characterization of first-trimester human placental macrophages, Hofbauer cells. J Exp Med 2021; 218:211477. [PMID: 33075123 PMCID: PMC7579740 DOI: 10.1084/jem.20200891] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/30/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022] Open
Abstract
Hofbauer cells (HBCs) are a population of macrophages found in high abundance within the stroma of the first-trimester human placenta. HBCs are the only fetal immune cell population within the stroma of healthy placenta. However, the functional properties of these cells are poorly described. Aligning with their predicted origin via primitive hematopoiesis, we find that HBCs are transcriptionally similar to yolk sac macrophages. Phenotypically, HBCs can be identified as HLA-DR-FOLR2+ macrophages. We identify a number of factors that HBCs secrete (including OPN and MMP-9) that could affect placental angiogenesis and remodeling. We determine that HBCs have the capacity to play a defensive role, where they are responsive to Toll-like receptor stimulation and are microbicidal. Finally, we also identify a population of placenta-associated maternal macrophages (PAMM1a) that adhere to the placental surface and express factors, such as fibronectin, that may aid in repair.
Collapse
Affiliation(s)
- Jake R Thomas
- Department of Pathology, University of Cambridge, Cambridge, UK.,Centre for Trophoblast Research, Departments of Physiology and Neuroscience, University of Cambridge, Cambridge, UK
| | - Anna Appios
- Department of Pathology, University of Cambridge, Cambridge, UK.,Centre for Trophoblast Research, Departments of Physiology and Neuroscience, University of Cambridge, Cambridge, UK
| | - Xiaohui Zhao
- Centre for Trophoblast Research, Departments of Physiology and Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Maria Donde
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Colin Y C Lee
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Praveena Naidu
- Department of Pathology, University of Cambridge, Cambridge, UK.,Centre for Trophoblast Research, Departments of Physiology and Neuroscience, University of Cambridge, Cambridge, UK
| | - Christopher Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Joana Cerveira
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Bing Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.,State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Graham Burton
- Centre for Trophoblast Research, Departments of Physiology and Neuroscience, University of Cambridge, Cambridge, UK
| | - Russell S Hamilton
- Centre for Trophoblast Research, Departments of Physiology and Neuroscience, University of Cambridge, Cambridge, UK.,Department of Genetics, University of Cambridge, Cambridge, UK
| | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK.,Centre for Trophoblast Research, Departments of Physiology and Neuroscience, University of Cambridge, Cambridge, UK
| | - Andrew Sharkey
- Department of Pathology, University of Cambridge, Cambridge, UK.,Centre for Trophoblast Research, Departments of Physiology and Neuroscience, University of Cambridge, Cambridge, UK
| | - Naomi McGovern
- Department of Pathology, University of Cambridge, Cambridge, UK.,Centre for Trophoblast Research, Departments of Physiology and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
De novo generation of macrophage from placenta-derived hemogenic endothelium. Dev Cell 2021; 56:2121-2133.e6. [PMID: 34197725 DOI: 10.1016/j.devcel.2021.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 01/31/2023]
Abstract
Macrophages play pivotal roles in immunity, hematopoiesis, and tissue homeostasis. In mammals, macrophages have been shown to originate from yolk-sac-derived erythro-myeloid progenitors and aorta-gonad-mesonephros (AGM)-derived hematopoietic stem cells. However, whether macrophages can arise from other embryonic sites remains unclear. Here, using single-cell RNA sequencing, we profile the transcriptional landscape of mouse fetal placental hematopoiesis. We uncover and experimentally validate that a CD44+ subpopulation of placental endothelial cells (ECs) exhibits hemogenic potential. Importantly, lineage tracing using the newly generated Hoxa13 reporter line shows that Hoxa13-labeled ECs can produce placental macrophages, named Hofbauer cell (HBC)-like cells. Furthermore, we identify two subtypes of HBC-like cells, and cell-cell interaction analysis identifies their potential roles in angiogenesis and antigen presentation, separately. Our study provides a comprehensive understanding of placental hematopoiesis and highlights the placenta as a source of macrophages, which has important implications for both basic and translational research.
Collapse
|
32
|
Pei J, Li Y, Min Z, Dong Q, Ruan J, Wu J, Hua X. MiR-590-3p and its targets VEGF, PIGF, and MMP9 in early, middle, and late pregnancy: their longitudinal changes and correlations with risk of fetal growth restriction. Ir J Med Sci 2021; 191:1251-1257. [PMID: 34159524 DOI: 10.1007/s11845-021-02664-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/26/2021] [Indexed: 11/25/2022]
Abstract
AIMS The term "fetal growth restriction (FGR)" is commonly used to describe fetuses with an estimated fetal weight that is less than 10th percentile for gestational age. This study aimed to investigate the longitudinal change of microRNA-590-3p (miR-590-3p), vascular endothelial growth factor (VEGF), placental growth factor (PIGF), and matrix metalloproteinase (MMP)9 expressions in early, middle, and late pregnancy, and their correlations with the fetal growth restriction (FGR) risk. METHODS Totally, 970 pregnant women in early pregnancy were enrolled, and their plasma samples were, respectively, acquired in early pregnancy (at 10th or 11th week of gestational age), middle pregnancy (at 20th or 21st week of gestational age), and late pregnancy (at 33th or 34th week of gestational age) for miR-590-3p, VEGF, PIGF, and MMP9 determinations. RESULTS MiR-590-3p underwent a growing trend, but VEGF, PIGF, and MMP9 experienced declined trend along with pregnancy (all P < 0.001). Furthermore, the negative association of miR-590-3p with VEGF, PIGF, and MMP9 became stronger along with the pregnancy. Besides, miR-590-3p expression in middle and late pregnancy was higher, but VEGF, PIGF, and MMP9 expressions in middle and late pregnancy were lower in women affected by FGR compared to normal pregnant women (all P < 0.001). In addition, miR-590-3p, VEGF, PIGF, and MMP9 expression in middle and late pregnancy were of good value in predicting FGR risk. CONCLUSIONS miR-590-3p exhibits a growing trend during pregnancy, and its expression in middle and late pregnancy is associated with increased FGR risk via interaction with VEGF, PIGF, and MMP9.
Collapse
Affiliation(s)
- Jindan Pei
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Yan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Zhihong Min
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Qi Dong
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Jiali Ruan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Juan Wu
- Department of Gynecology, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xiaolin Hua
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, 2699 West Gaoke Road, Shanghai, 201204, China.
| |
Collapse
|
33
|
Yang X, Chen D, He B, Cheng W. NRP1 and MMP9 are dual targets of RNA-binding protein QKI5 to alter VEGF-R/ NRP1 signalling in trophoblasts in preeclampsia. J Cell Mol Med 2021; 25:5655-5670. [PMID: 33942999 PMCID: PMC8184681 DOI: 10.1111/jcmm.16580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia (PE) is characterized by placental ischemia and hypoxia, resulting in abnormal casting of the uterine spiral artery, which is mainly caused by insufficient trophoblastic cell infiltration. A reduction in levels of growth factor-based signalling via Neuropilin-1 (NRP1) has been shown to contribute to dysfunctional trophoblast development. In this study, we showed that the RNA-binding protein, QKI5, regulated NRP1 expression and significantly improved trophoblast proliferation in vitro and in vivo. QKI5 and NRP1 expressions were significantly reduced in human PE placentas and in trophoblasts during hypoxia. Overexpression of these factors significantly improved cell proliferation and migration in vitro, in contrast to a decrease upon siRNA knockdown of QKI5 and NRP1 in HTR-8/SVneo cells. Using RIP and RNA pull-down assays, we further showed that QKI5 directly interacted with the 3'-UTR region of NRP1, to mediate cell proliferation and migration via matrix metalloprotease-9. Further, similar to NRP1, QKI5 also targets matrix metalloproteinase 9 (MMP9) involved in secretion of growth factors and its effects can be counteracted by NRP1 overexpression. In vivo studies using a PE mouse model revealed that QKI5 overexpression alleviated PE-related symptoms such as elevated blood pressure and proteinuria. Taken together, we found that QKI5 was a novel regulator, of VEGF-R/NRP1 signalling pathway functioning in trophoblast proliferation and migration, resulting in major contributors to the pathogenesis of PE. While careful evaluation of the broad implications of QKI5 expression is still necessary, this study identified QKI5 as a promising target for treatment strategies in acute PE patients.
Collapse
Affiliation(s)
- Xingyu Yang
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Dan Chen
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Municipal Key Clinical SpecialtyShanghaiChina
| | - Biwei He
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Weiwei Cheng
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
34
|
Perlman BE, Merriam AA, Lemenze A, Zhao Q, Begum S, Nair M, Wu T, Wapner RJ, Kitajewski JK, Shawber CJ, Douglas NC. Implications for preeclampsia: hypoxia-induced Notch promotes trophoblast migration. Reproduction 2021; 161:681-696. [PMID: 33784241 PMCID: PMC8403268 DOI: 10.1530/rep-20-0483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/30/2021] [Indexed: 01/15/2023]
Abstract
In the first trimester of human pregnancy, low oxygen tension or hypoxia is essential for proper placentation and placenta function. Low oxygen levels and activation of signaling pathways have been implicated as critical mediators in the promotion of trophoblast differentiation, migration, and invasion with inappropriate changes in oxygen tension and aberrant Notch signaling both individually reported as causative to abnormal placentation. Despite crosstalk between hypoxia and Notch signaling in multiple cell types, the relationship between hypoxia and Notch in first trimester trophoblast function is not understood. To determine how a low oxygen environment impacts Notch signaling and cellular motility, we utilized the human first trimester trophoblast cell line, HTR-8/SVneo. Gene set enrichment and ontology analyses identified pathways involved in angiogenesis, Notch and cellular migration as upregulated in HTR-8/SVneo cells exposed to hypoxic conditions. DAPT, a γ-secretase inhibitor that inhibits Notch activation, was used to interrogate the crosstalk between Notch and hypoxia pathways in HTR-8/SVneo cells. We found that hypoxia requires Notch activation to mediate HTR-8/SVneo cell migration, but not invasion. To determine if our in vitro findings were associated with preeclampsia, we analyzed the second trimester chorionic villous sampling (CVS) samples and third trimester placentas. We found a significant decrease in expression of migration and invasion genes in CVS from preeclamptic pregnancies and significantly lower levels of JAG1 in placentas from pregnancies with early-onset preeclampsia with severe features. Our data support a role for Notch in mediating hypoxia-induced trophoblast migration, which may contribute to preeclampsia development.
Collapse
Affiliation(s)
- Barry E Perlman
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Audrey A. Merriam
- Department of Obstetrics, Gynecology and Reproductive Sciences Yale University, New Haven, CT, USA
| | - Alexander Lemenze
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Qingshi Zhao
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Salma Begum
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Mohan Nair
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Tracy Wu
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Ronald J. Wapner
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Jan K. Kitajewski
- Department of Physiology & Biophysics, University of Illinois Chicago, Chicago, IL, USA
| | - Carrie J. Shawber
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Nataki C. Douglas
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| |
Collapse
|
35
|
Abstract
Background Preeclampsia (PE) is a serious complication that affects maternal and perinatal outcomes. However, the mechanisms have not been fully explained. This study was designed to analyze longitudinal gut microbiota alterations in pregnant women with and without PE in the second (T2) and third trimesters (T3). Methods In this nested case-control study, which was conducted at Nanjing Maternity and Child Health Care Hospital, fecal samples from 25 PE patients (25 fecal samples obtained in T2 and 15 fecal samples obtained in T3) and 25 matched healthy controls (25 fecal samples obtained in T2 and 22 fecal samples obtained in T3) were collected, and the microbiota were analyzed using 16S rRNA gene sequencing. The diversity and composition of the microbiota of PE cases and controls were compared. Results No significant differences in diversity were found between the PE and control groups (P > 0.05). In the control group, from T2 to T3, the relative abundances of Proteobacteria (median [Q1, Q3]: 2.25% [1.24%, 3.30%] vs. 0.64% [0.20%, 1.20%], Z = −3.880, P < 0.05), and Tenericutes (median [Q1, Q3]: 0.12% [0.03%, 3.10%] vs. 0.03% [0.02%, 0.17%], Z = −2.369, P < 0.05) decreased significantly. In the PE group, the relative abundance of Bacteroidetes in T2 was lower than in T3 (median [Q1, Q3]: 18.16% [12.99%, 30.46%] vs. 31.09% [19.89%, 46.06%], Z = −2.417, P < 0.05). In T2, the relative abundances of mircrobiota showed no significant differences between the PE group and the control group. However, in T3, the relative abundance of Firmicutes was significantly lower in the PE group than in the control group (mean ± standard deviation: 60.62% ± 15.17% vs. 75.57% ± 11.53%, t = −3.405, P < 0.05). The relative abundances of Bacteroidetes, Proteobacteria, and Enterobacteriaceae were significantly higher in the PE group than in the control group (median [Q1, Q3]: 31.09% [19.89%, 46.06%] vs. 18.24% [12.90%, 32.04%], Z = −2.537, P < 0.05; 1.52% [1.05%, 2.61%] vs. 0.64% [0.20%, 1.20%], Z = −3.310, P < 0.05; 0.75% [0.20%, 1.00%] vs. 0.01% [0.004%, 0.023%], Z = −4.152, P < 0.05). Linear discriminant analysis combined effect size measurements analysis showed that the relative abundances of the phylum Bacteroidetes, class Bacteroidia and order Bacteroidales were increased in the PE group, while those of the phylum Firmicutes, the class Clostridia, the order Clostridiales, and the genus unidentified Lachnospiraceae were decreased in the PE group; and these differences were identified as taxonomic biomarkers of PE in T3. Conclusion From T2 to T3, there was an obvious alteration in the gut microbiota. The gut microbiota of PE patients in T3 was significantly different from that of the control group.
Collapse
|
36
|
Varberg KM, Soares MJ. Paradigms for investigating invasive trophoblast cell development and contributions to uterine spiral artery remodeling. Placenta 2021; 113:48-56. [PMID: 33985793 DOI: 10.1016/j.placenta.2021.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022]
Abstract
Uterine spiral arteries are extensively remodeled during placentation to ensure sufficient delivery of maternal blood to the developing fetus. Uterine spiral arterial remodeling is complex, as cells originating from both mother and developing conceptus interact at the maternal interface to regulate the extracellular matrix remodeling and vasculature restructuring necessary for successful placentation. Despite this complexity, one mechanism critical to spiral artery remodeling is trophoblast cell invasion into the maternal compartment. Invasive trophoblast cells include both interstitial and endovascular populations that exhibit spatiotemporal differences in uterine invasion, including proximity to uterine spiral arteries. Interstitial trophoblast cells invade the uterine parenchyma where they are interspersed among stromal cells. Endovascular trophoblast cells infiltrate uterine spiral arteries, replace endothelial cells, adopt a pseudo-endothelial cell phenotype, and engineer vessel remodeling. Impaired trophoblast cell invasion and, consequently, insufficient uterine spiral arterial remodeling can lead to the development of pregnancy disorders, such as preeclampsia, intrauterine growth restriction, and premature birth. This review provides insights into invasive trophoblast cells and their function during normal placentation as well as in settings of disease.
Collapse
Affiliation(s)
- Kaela M Varberg
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | - Michael J Soares
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA; Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy Kansas City, Missouri 64108, USA.
| |
Collapse
|
37
|
Britt JL, Powell RR, McMahan C, Bruce TF, Duckett SK. The effect of ergot alkaloid exposure during gestation on the microscopic morphology and vasculature of the ovine placenta. J Histotechnol 2021; 44:173-181. [PMID: 33913402 PMCID: PMC8553796 DOI: 10.1080/01478885.2021.1902670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ergot alkaloids, a class of mycotoxins associated with ergotism, act as agonists on serotonin (5HT) receptors, specifically 5HT2a, which mediate smooth muscle contraction and vasoconstriction. The objective of this study was to examine the impact of ergot alkaloid exposure during mid and late gestation on microscopic placental structure and vascular development. Ewes were fed endophyte-infected tall fescue seed containing ergot alkaloids (E+/E+, 1.77 mg ewe-1 d-1) or endophyte-free tall fescue seed (E-/E-, 0 mg ergot alkaloids) during both mid (d 35 to d 85) and late gestation (d 86 to d 133). On d 133 of gestation, a terminal surgery was performed and two placentomes of the type B morphology were collected for microscopic analyses. Amorphous connective tissue regions were larger (p < 0.0001) and more numerous (p = 0.025) in the placentome of ergot alkaloid exposed ewes. Staining showed no difference (p = 0.83) in the number of vessels present, but luminal area of maternal vasculature was 117% greater (p < 0.0001) in ergot alkaloid exposed ewes. Results showed that exposure to ergot alkaloids during gestation slowed maturation of the fetal villi as indicated by greater amorphous connective tissue regions, and altered size and shape of blood vessels to counteract reductions in blood flow caused by vasoconstriction.
Collapse
Affiliation(s)
- J L Britt
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, USA
| | - R R Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, USA
| | - C McMahan
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - T F Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, USA
| | - S K Duckett
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
38
|
Carvajal L, Gutiérrez J, Morselli E, Leiva A. Autophagy Process in Trophoblast Cells Invasion and Differentiation: Similitude and Differences With Cancer Cells. Front Oncol 2021; 11:637594. [PMID: 33937039 PMCID: PMC8082112 DOI: 10.3389/fonc.2021.637594] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Early human placental development begins with blastocyst implantation, then the trophoblast differentiates and originates the cells required for a proper fetal nutrition and placental implantation. Among them, extravillous trophoblast corresponds to a non-proliferating trophoblast highly invasive that allows the vascular remodeling which is essential for appropriate placental perfusion and to maintain the adequate fetal growth. This process involves different placental cell types as well as molecules that allow cell growth, cellular adhesion, tissular remodeling, and immune tolerance. Remarkably, some of the cellular processes required for proper placentation are common between placental and cancer cells to finally support tumor growth. Indeed, as in placentation trophoblasts invade and migrate, cancer cells invade and migrate to promote tumor metastasis. However, while these processes respond to a controlled program in trophoblasts, in cancer cells this regulation is lost. Interestingly, it has been shown that autophagy, a process responsible for the degradation of damaged proteins and organelles to maintain cellular homeostasis, is required for invasion of trophoblast cells and for vascular remodeling during placentation. In cancer cells, autophagy has a dual role, as it has been shown both as tumor promoter and inhibitor, depending on the stage and tumor considered. In this review, we summarized the similarities and differences between trophoblast cell invasion and cancer cell metastasis specifically evaluating the role of autophagy in both processes.
Collapse
Affiliation(s)
- Lorena Carvajal
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Gutiérrez
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| | - Eugenia Morselli
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Autophagy Research Center, Santiago, Chile
| | - Andrea Leiva
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| |
Collapse
|
39
|
Jing W, Gu X, Yang J, Wei Y, Zhao Y. Maternal lipid levels in preeclampsia: singleton vs. twin pregnancies. J Matern Fetal Neonatal Med 2021; 35:6132-6139. [PMID: 33827373 DOI: 10.1080/14767058.2021.1907335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To compare the maternal lipid levels in preeclampsia (PE) patients between singleton and twin pregnancies. METHODS In this retrospective study, pregnant women with PE were divided into singleton group (n = 702) and twin group (n = 198). Serum lipids which include total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured and the TC/HDL-C ratio, TG/HDL-C ratio, and LDL-C/HDL-C ratio were calculated and compared between the two groups. Covariance analysis was used to correct the potential factors affecting serum lipid levels such as maternal age, pre-pregnancy body mass index, gestational weight gain, etc. RESULTS The levels of TC, TG, LDL-C, and TC/HDL-C ratio, TG/HDL-C ratio, LDL-C/HDL-C ratio in twin PE were significantly higher than those in singleton PE group, and there was no significant difference in the level of HDL-C between the two groups. In late-onset PE patients, the lipid levels of TC, TG, LDL-C, and TC/HDL-C ratio, TG/HDL-C ratio, LDL-C/HDL-C ratio in twin PE group were significantly higher than those in singleton PE group, with no significant difference in the level of HDL-C. However, in early-onset PE patients, there were no significant differences in the lipid levels between the two groups. CONCLUSIONS There were more obvious lipid disturbances such as higher levels of TC, TG, LDL-C, and TC/HDL-C ratio, TG/HDL-C ratio, LDL-C/HDL-C ratio in twin PE group than singleton PE group. The differences of lipid levels appeared mainly in late-onset PE group, while the lipid levels in twin PE group were similar to those in singleton PE group during pregnancy in early-onset PE group.
Collapse
Affiliation(s)
- Wang Jing
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, PR China.,Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, PR China
| | - Xunke Gu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, PR China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, PR China
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, PR China
| | - YangYu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, PR China
| |
Collapse
|
40
|
Yoles I, Sheiner E, Wainstock T. First pregnancy risk factors and future gestational diabetes mellitus. Arch Gynecol Obstet 2021; 304:929-934. [PMID: 33811260 DOI: 10.1007/s00404-021-06024-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/11/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE Gestational diabetes mellitus (GDM) affect about 17% of all pregnancies and is associated with significant short- and long-term health consequences for the mother and her offspring. Early diagnosis and prompt interventions may reduce these adverse outcomes. We aimed to identify first pregnancy characteristics as risk factors for GDM in subsequent pregnancy. MATERIALS AND METHODS A population-based nested case-control study was conducted in a large tertiary hospital. The study population included all women with two singleton consecutive pregnancies and deliveries, without GDM in the first pregnancy. Characteristics and complications of the first pregnancy were compared among cases and controls. A multivariable logistic regression model was used to study the association between pregnancy complications (in the first pregnancy) and GDM in the subsequent pregnancy, while adjusting for confounding variables. RESULTS A total of 38,750 women were included in the study, of them 1.9% (n = 728) had GDM in their second pregnancy. Mothers with GDM in their second pregnancy were more likely to have the following first pregnancy complications: hypertensive disorders, perinatal mortality, maternal obesity and fetal macrosomia. Results remained significant after adjustment for maternal age and inter-pregnancy interval. Having either one of the complications increased the risk for GDM by 2.33 (adjusted OR = 2.33; 95% CI 1.93-2.82) while a combination of two complications increased GDM risk by 5.38 (adjusted OR = 5.38; 95% CI 2.85-10.17). CONCLUSIONS First pregnancy without GDM complicated by hypertensive disorders, perinatal mortality, maternal obesity and fetal macrosomia was associated with an increased risk for GDM in the subsequent pregnancy. Women with these complications may benefit from early detection of GDM in their subsequent pregnancy.
Collapse
Affiliation(s)
- Israel Yoles
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Clalit Health Services, The Central District, 30 Hertzl St., Rishon Le Tzion, Israel.
| | - Eyal Sheiner
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tamar Wainstock
- Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
41
|
Wang M, Xu Y, Wang P, Xu Y, Jin P, Wu Z, Qian Y, Bai L, Dong M. Galectin-14 Promotes Trophoblast Migration and Invasion by Upregulating the Expression of MMP-9 and N-Cadherin. Front Cell Dev Biol 2021; 9:645658. [PMID: 33796532 PMCID: PMC8007908 DOI: 10.3389/fcell.2021.645658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 01/05/2023] Open
Abstract
Galectin-14 is specifically expressed in placental trophoblasts, and its expression is reduced in trophoblasts retrieved from the cervix of women destined to develop early pregnancy loss. However, the roles of galectin-14 in regulating trophoblasts and in the pathogenesis of pregnancy complication have never been investigated. In the current research, we aimed to investigate the roles of galectin-14 in the regulation of trophoblasts. Tissues of the placenta and villi were collected. Primary trophoblasts and human trophoblast cell line HTR-8/SVneo were used. Western blotting and RT-PCR were used to quantify gene expression. The siRNA-mediated galectin-14 knockdown and lentivirus-mediated overexpression were performed to manipulate the gene expression in trophoblasts. Transwell migration and invasion assays were used to evaluate cell migration and invasion capacity. Gelatin zymography was used to determine the gelatinase activity. Galectin-14 was significantly decreased in the villi of early pregnancy loss and the placenta of preeclampsia. Knockdown of galectin-14 in primary trophoblasts inhibited cell migration and invasion, downregulated the expression of matrix metalloproteinase (MMP)-9 and N-cadherin, the activity of MMP-9, and decreased the phosphorylation of Akt. Meanwhile, the overexpression of galectin-14 in HTR-8/SVneo promoted cell migration and invasion, upregulated the expression of MMP-9 and N-cadherin, the activity of MMP-9, and increased the phosphorylation of Akt. Increased Akt phosphorylation promoted cell migration and invasion and upregulated the expression and activity of MMP-9, while decreased Akt phosphorylation inhibited cell migration and invasion and downregulated the expression and activity of MMP-9. Thus, galectin-14 promotes trophoblast migration and invasion by enhancing the expression of MMP-9 and N-cadherin through Akt phosphorylation. The dysregulation of galectin-14 is involved in the pathogenesis of early pregnancy loss and preeclampsia.
Collapse
Affiliation(s)
- Miaomiao Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuqing Xu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanfei Xu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengzhen Jin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zaigui Wu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeqing Qian
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Long Bai
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Minyue Dong
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Molecular and immunological developments in placentas. Hum Immunol 2021; 82:317-324. [PMID: 33581928 DOI: 10.1016/j.humimm.2021.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/03/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Cytotrophoblasts differentiate in two directions during early placentation: syncytiotrophoblasts (STBs) and extravillous trophoblasts (EVTs). STBs face maternal immune cells in placentas, and EVTs, which invade the decidua and uterine myometrium, face the cells in the uterus. This situation, in which trophoblasts come into contact with maternal immune cells, is known as the maternal-fetal interface. Despite fetuses and fetus-derived trophoblast cells being of the semi-allogeneic conceptus, fetuses and placentas are not rejected by the maternal immune system because of maternal-fetal tolerance. The acquired tolerance develops during normal placentation, resulting in normal fetal development in humans. In this review, we introduce placental development from the viewpoint of molecular biology. In addition, we discuss how the disruption of placental development could lead to complications in pregnancy, such as hypertensive disorder of pregnancy, fetal growth restriction, or miscarriage.
Collapse
|
43
|
Parchem JG, Kanasaki K, Lee SB, Kanasaki M, Yang JL, Xu Y, Earl KM, Keuls RA, Gattone VH, Kalluri R. STOX1 deficiency is associated with renin-mediated gestational hypertension and placental defects. JCI Insight 2021; 6:141588. [PMID: 33301424 PMCID: PMC7934881 DOI: 10.1172/jci.insight.141588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of preeclampsia and other hypertensive disorders of pregnancy remains poorly defined despite the substantial burden of maternal and neonatal morbidity associated with these conditions. In particular, the role of genetic variants as determinants of disease susceptibility is understudied. Storkhead-box protein 1 (STOX1) was first identified as a preeclampsia risk gene through family-based genetic linkage studies in which loss-of-function variants were proposed to underlie increased preeclampsia susceptibility. We generated a genetic Stox1 loss-of-function mouse model (Stox1 KO) to evaluate whether STOX1 regulates blood pressure in pregnancy. Pregnant Stox1-KO mice developed gestational hypertension evidenced by a significant increase in blood pressure compared with WT by E17.5. While severe renal, placental, or fetal growth abnormalities were not observed, the Stox1-KO phenotype was associated with placental vascular and extracellular matrix abnormalities. Mechanistically, we found that gestational hypertension in Stox1-KO mice resulted from activation of the uteroplacental renin-angiotensin system. This mechanism was supported by showing that treatment of pregnant Stox1-KO mice with an angiotensin II receptor blocker rescued the phenotype. Our study demonstrates the utility of genetic mouse models for uncovering links between genetic variants and effector pathways implicated in the pathogenesis of hypertensive disorders of pregnancy.
Collapse
Affiliation(s)
- Jacqueline G Parchem
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas, USA
| | - Keizo Kanasaki
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Soo Bong Lee
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Megumi Kanasaki
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Joyce L Yang
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Yong Xu
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Kadeshia M Earl
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rachel A Keuls
- Development, Disease Models & Therapeutics Graduate Program, Center for Cell and Gene Therapy, and Stem Cells and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Vincent H Gattone
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Nissi R, Santala M, Talvensaari-Mattila A. The serum levels of circulating matrix metalloproteinase MMP-9, MMP-2/TIMP-2 complex and TIMP-1 do not change significantly during normal pregnancy: a pilot study. BMC Res Notes 2021; 14:31. [PMID: 33482846 PMCID: PMC7821532 DOI: 10.1186/s13104-021-05442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/06/2021] [Indexed: 11/15/2022] Open
Abstract
Objective Matrix metalloproteinases (MMPs) are important regulators of vascular and uterine remodeling. They exhibit proteolytic activity implicating the efficiency of trophoblast invasion to the uterine wall involving marked hemodynamic and uterine changes. In this pilot study sera of 13 women with normal pregnancy was analyzed to evaluate the usage of MMPs as diagnostic tool. The concentrations of circulating MMP-9, MMP-2/TIMP-2 complex and TIMP-1 in different time points during normal pregnancy has not been studied. The serum levels of MMP-9, TIMP-1, TIMP-2 and MMP-2/TIMP-2 complex were determined by enzyme-linked immunosorbent assay (ELISA). Using the same method, we have shown that serum MMPs are elevated in spontaneous early pregnancy failure as compared to normal pregnancy. Results The serum levels of MMP-9 and TIMP-1 were stable throughout pregnancy. The level of MMP-2/TIMP-2 complex was slightly increased after week 15 without statistical significance. For our best knowledge, this is a first study of the serum levels of MMP-9, MMP-2/TIMP-2 and TIMP-1 on different time points during normal pregnancy. Further measurements with the correlation to the outcome of the pregnancy are needed.
Collapse
Affiliation(s)
- Ritva Nissi
- Department of Obstetrics and Gynecology, Oulu University Hospital, PO Box 5000, 90014, Oulu, Finland.
| | - Markku Santala
- Department of Obstetrics and Gynecology, Oulu University Hospital, PO Box 5000, 90014, Oulu, Finland
| | - Anne Talvensaari-Mattila
- Department of Obstetrics and Gynecology, Oulu University Hospital, PO Box 5000, 90014, Oulu, Finland
| |
Collapse
|
45
|
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, Martinez-Avila N, Martinez-Fierro ML. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci 2020; 21:E9739. [PMID: 33419373 PMCID: PMC7767220 DOI: 10.3390/ijms21249739] [Citation(s) in RCA: 825] [Impact Index Per Article: 165.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent extracellular matrix (ECM) remodeling endopeptidases that have the capacity to degrade almost every component of the ECM. The degradation of the ECM is of great importance, since it is related to embryonic development and angiogenesis. It is also involved in cell repair and the remodeling of tissues. When the expression of MMPs is altered, it can generate the abnormal degradation of the ECM. This is the initial cause of the development of chronic degenerative diseases and vascular complications generated by diabetes. In addition, this process has an association with neurodegeneration and cancer progression. Within the ECM, the tissue inhibitors of MMPs (TIMPs) inhibit the proteolytic activity of MMPs. TIMPs are important regulators of ECM turnover, tissue remodeling, and cellular behavior. Therefore, TIMPs (similar to MMPs) modulate angiogenesis, cell proliferation, and apoptosis. An interruption in the balance between MMPs and TIMPs has been implicated in the pathophysiology and progression of several diseases. This review focuses on the participation of both MMPs (e.g., MMP-2 and MMP-9) and TIMPs (e.g., TIMP-1 and TIMP-3) in physiological processes and on how their abnormal regulation is associated with human diseases. The inclusion of current strategies and mechanisms of MMP inhibition in the development of new therapies targeting MMPs was also considered.
Collapse
Affiliation(s)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| | | | | | | | | | | | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| |
Collapse
|
46
|
Bakrania BA, Spradley FT, Drummond HA, LaMarca B, Ryan MJ, Granger JP. Preeclampsia: Linking Placental Ischemia with Maternal Endothelial and Vascular Dysfunction. Compr Physiol 2020; 11:1315-1349. [PMID: 33295016 PMCID: PMC7959189 DOI: 10.1002/cphy.c200008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE), a hypertensive disorder, occurs in 3% to 8% of pregnancies in the United States and affects over 200,000 women and newborns per year. The United States has seen a 25% increase in the incidence of PE, largely owing to increases in risk factors, including obesity and cardiovascular disease. Although the etiology of PE is not clear, it is believed that impaired spiral artery remodeling of the placenta reduces perfusion, leading to placental ischemia. Subsequently, the ischemic placenta releases antiangiogenic and pro-inflammatory factors, such as cytokines, reactive oxygen species, and the angiotensin II type 1 receptor autoantibody (AT1-AA), among others, into the maternal circulation. These factors cause widespread endothelial activation, upregulation of the endothelin system, and vasoconstriction. In turn, these changes affect the function of multiple organ systems including the kidneys, brain, liver, and heart. Despite extensive research into the pathophysiology of PE, the only treatment option remains early delivery of the baby and importantly, the placenta. While premature delivery is effective in ameliorating immediate risk to the mother, mounting evidence suggests that PE increases risk of cardiovascular disease later in life for both mother and baby. Notably, these women are at increased risk of hypertension, heart disease, and stroke, while offspring are at risk of obesity, hypertension, and neurological disease, among other complications, later in life. This article aims to discuss the current understanding of the diagnosis and pathophysiology of PE, as well as associated organ damage, maternal and fetal outcomes, and potential therapeutic avenues. © 2021 American Physiological Society. Compr Physiol 11:1315-1349, 2021.
Collapse
Affiliation(s)
- Bhavisha A. Bakrania
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Frank T. Spradley
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Heather A. Drummond
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Babbette LaMarca
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael J. Ryan
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Joey P. Granger
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
47
|
Tanaka SCSV, Orlando JÚnior IC, Hortolani ACC, Cintra MTR, Balarin MAS, Silva SRDA, Pissetti CW. FAS gene polymorphisms (rs3740286 and rs4064) were not associated with pre-eclampsia risk. AN ACAD BRAS CIENC 2020; 92:e20200355. [PMID: 33295579 DOI: 10.1590/0001-3765202020200355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/23/2020] [Indexed: 11/22/2022] Open
Abstract
Pre-eclampsia results in real risk and significant impact on indicators related to maternal and child health. The only known treatment is delivery of the fetus and placenta. Despite intensive research, the causes of PE remain to be elucidated. It is suggested that pre-eclampsia is caused by a global maternal inflammatory response to a damaged placenta. Besides inflammation, cytotoxic and apoptotic mechanisms are also implicated in the pathogenesis of pre-eclampsia. Considering the importance of apoptosis to pre-eclampsia genesis, the aim of this study was to determine the frequencies of the genotypes for FAS gene polymorphisms (rs3740286 and rs4064) and to associate these with pre-eclampsia development. Women with and without pre-eclampsia were investigated. Accordingly, peripheral blood was collected, and DNA extracted, followed by genotyping using Real-time PCR with hydrolysis probe. The results showed no association between genotypes and pre-eclampsia development for both polymorphisms studied (χ2=3.39; p=.177, for rs3740286 and χ2=0.119; p=.94 for rs4064). Women with familiar history of pre-eclampsia and primiparity showed more probability to develop the condition, by multiple logistic regression analysis (OR=8.61, CI=3.39-21.86, p<0.0001; OR=6.64. CI=2.94-14.99, p<0.0001, respectively). It seems that FAS gene polymorphisms (rs3740286 and rs4064) might not be important candidates for the development of pre-eclampsia.
Collapse
Affiliation(s)
- Sarah C S V Tanaka
- Programa de Pós-Graduação em Medicina Tropical e Infectologia, Disciplina de Hematologia e Hemoterapia, Universidade Federal do Triângulo Mineiro, Avenida Getúlio Guaritá, s/n, 38025-180 Uberaba, MG, Brazil
| | - Ivanir C Orlando JÚnior
- Residente em Psiquiatria IPSEMG, Cidade Administrativa Presidente Tancredo Neves, Rodovia Papa João Paulo II, 4001, 31630-901 Belo Horizonte, MG, Brazil
| | - Andrezza C C Hortolani
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Triângulo Mineiro, Praça Manoel Terra, 330, 38025-010 Uberaba, MG, Brazil
| | - MariÂngela T R Cintra
- Universidade Federal do Triângulo Mineiro, Departamento de Ciências Biológicas, Avenida Dr. Randolfo Borges Júnior, 1400, 38064-200 Uberaba, MG, Brazil
| | - Marly A S Balarin
- Universidade Federal do Triângulo Mineiro, Disciplina de Genética, Instituto de Ciências Biológicas e Naturais, Praça Manoel Terra, 330, 38025-010 Uberaba, MG, Brazil
| | - Sueli R DA Silva
- Programa de Pós-Graduação em Atenção à Saúde, Universidade Federal do Triângulo Mineiro, Avenida Getúlio Guaritá, 107, 38025-440 Uberaba, MG, Brazil
| | - Cristina W Pissetti
- Programa de Pós-Graduação em Atenção à Saúde, Universidade Federal do Triângulo Mineiro, Avenida Getúlio Guaritá, 107, 38025-440 Uberaba, MG, Brazil.,Universidade Federal da Paraíba, Departamento de Obstetrícia e Ginecologia, Centro de Ciências Médicas, Jardim Universitário, s/n, Castelo Branco, 58051-900 João Pessoa, PB, Brazil
| |
Collapse
|
48
|
Jacobsen DP, Lekva T, Moe K, Fjeldstad HES, Johnsen GM, Sugulle M, Staff AC. Pregnancy and postpartum levels of circulating maternal sHLA-G in preeclampsia. J Reprod Immunol 2020; 143:103249. [PMID: 33254097 DOI: 10.1016/j.jri.2020.103249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Abstract
Preeclampsia is a leading cause of maternal and offspring mortality and morbidity, and predicts increased future cardiovascular disease risk. Placental dysfunction and immune system dysregulation are likely key pathophysiological factors. Soluble human leukocyte antigen G (sHLA-G) may dampen the specific immune response towards placental trophoblasts. Previous studies have shown low sHLA-G levels in preeclampsia, but postpartum, levels are unknown. Furthermore, the relationship between sHLA-G and sFlt-1 and PlGF, placental function markers, is unknown. We hypothesized that low maternal sHLA-G during pregnancy would be associated with placental dysfunction, including preeclampsia, gestational hypertension, and dysregulated sFlt-1 and PlGF, and that sHLA-G would remain decreased following preeclampsia. We included 316 pregnant women: 58 with early-onset preeclampsia (<34 weeks' gestation), 81 with late-onset preeclampsia (≥34 weeks' gestation), 25 with gestational hypertension, and 152 normotensive controls. Postpartum (1 or 3 years), we included 321 women: 29 with early-onset preeclampsia, 98 with late-onset preeclampsia, 57 with gestational hypertension, and 137 who were normotensive during their index pregnancies. In pregnancy, plasma sHLA-G was significantly lower both in the early- and late-onset preeclampsia groups compared to controls. In women with preeclampsia or gestational hypertension, sHLA-G was inversely correlated with serum sFlt-1. Postpartum, plasma sHLA-G levels were significantly higher in women who had had early-onset preeclampsia compared to controls. Our results support that sHLA-G may be important for placental function. Unexpectedly, sHLA-G was elevated up to 3 years after early-onset preeclampsia, suggesting an excessively activated immune system following this severe preeclampsia form, potentially contributing to future cardiovascular disease risk.
Collapse
Affiliation(s)
- Daniel P Jacobsen
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway.
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Norway
| | - Kjartan Moe
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway; Department of Obstetrics and Gynaecology, Bærum Hospital, Vestre Viken HF, Norway
| | - Heidi E S Fjeldstad
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Guro Mørk Johnsen
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway
| | - Meryam Sugulle
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Anne Cathrine Staff
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
49
|
Lu H, Yang HL, Zhou WJ, Lai ZZ, Qiu XM, Fu Q, Zhao JY, Wang J, Li DJ, Li MQ. Rapamycin prevents spontaneous abortion by triggering decidual stromal cell autophagy-mediated NK cell residence. Autophagy 2020; 17:2511-2527. [PMID: 33030400 DOI: 10.1080/15548627.2020.1833515] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Deficiency in decidualization has been widely regarded as an important cause of spontaneous abortion. Generalized decidualization also includes massive infiltration and enrichment of NK cells. However, the underlying mechanism of decidual NK (dNK) cell residence remains largely unknown. Here, we observe that the increased macroautophagy/autophagy of decidual stromal cells (DSCs) during decidualization, facilitates the adhesion and retention of dNK cells during normal pregnancy. Mechanistically, this process is mediated through activation of the MITF-TNFRSF14/HVEM signaling, and further upregulation of multiple adhesion adhesions (e.g. Selectins and ICAMs) in a MMP9-dependent manner. Patients with unexplained spontaneous abortion display insufficient DSC autophagy and dNK cell residence. In addition, poor vascular remodeling of placenta, low implantation number and high ratio of embryo loss are observed in NK cell depletion mice. In therapeutic studies, low doses of rapamycin, a known autophagy inducer that significantly promotes endometrium autophagy and NK cell residence, and improves embryo absorption in spontaneous abortion mice models, which should be dependent on the activation of MITF-TNFRSF14/HVEM-MMP9-adhension molecules axis. This observation reveals novel molecular mechanisms underlying DSCs autophagy-driven dNK cell residence, and provides a potential therapeutic strategy to prevent spontaneous abortion.Abbreviations: ACTA2/αSMA: actin alpha 2, smooth muscle; ATG: autophagy-related; ATG5over ESC: ATG5-overexpressed ESCs; BTLA: B and T lymphocyte associated; CDH1: cadherin 1; CDH5: cadherin 5; CXCL12: C-X-C motif chemokine ligand 12; dNK: decidual NK; DIC: decidual immune cell; DSC: decidual stromal cell; EOMES: eomesodermin; ESC: endometrial stromal cell; FCGR3A/CD16: Fc fragment of IgG receptor IIIa; HUVEC: human umbilical vein endothelial cell; ICAM: intercellular cell adhesion molecule; ILC: innate lymphoid cell; ITGB1: integrin subunit beta 1; ITGA2: integrin subunit alpha 2; IPA: Ingenuity Pathway Analysis; KIR2DL1: killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 1; KLRD1/CD94: killer cell lectin like receptor D1; KLRK1/NKG2D: killer cell lectin like receptor K1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; 3-MA: 3-methyladenine; MITF: melanocyte inducing transcription factor; MiT-TFE: microphthalmia family of bHLH-LZ transcription factors; MMP9: matrix metalloproteinase 9; MTOR: mechanistic target of rapamycin kinase; NCAM1/CD56: neural cell adhesion molecule 1; NCR2/NKp44: natural cytotoxicity triggering receptor 2; NK: natural killer; KLRB1/NK1.1: killer cell lectin like receptor B1; NP: normal pregnancy; PBMC: peripheral blood mononuclear cell; PECAM1/CD31: platelet and endothelial cell adhesion molecule 1; pNK: peripheral blood NK; PRF1/Perforin: Perforin 1; PTPRC/CD45: protein tyrosine phosphatase receptor type C; Rapa: rapamycin; rh-TNFSF14/LIGHT: recombinant human TNFSF14/LIGHT; SA: spontaneous abortion; SELE: selectin E; SELP: selectin P; SELL: selectin L; siATG5 DSCs: ATG5-silenced DSCs; siTNFRSF14/HVEM DSCs: TNFRSF14/HVEM-silenced DSCs; TBX21/T-bet: T-box transcription factor 21; SQSTM1/p62: sequestosome 1; TNFRSF14/HVEM: TNF receptor superfamily member 14; TNFSF14/LIGHT: TNF superfamily member 14; uNK: uterine NK; UIC: uterine immune cell; USC: uterine stromal cell; VCAM1: vascular cell adhesion molecule 1; VIM: vimentin.
Collapse
Affiliation(s)
- Han Lu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China.,Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Wen-Jie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhen-Zhen Lai
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Xue-Min Qiu
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Qiang Fu
- Department of Immunology, Binzhou Medical College, Yantai, People's Republic of China
| | - Jian-Yuan Zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, People's Republic of China.,Institute of Metabolism and Integrative Biology (IMIB), School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jian Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Da-Jin Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China.,Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China.,Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
50
|
Wu L, Zhao KQ, Wang W, Cui LN, Hu LL, Jiang XX, Shuai J, Sun YP. Nuclear receptor coactivator 6 promotes HTR-8/SVneo cell invasion and migration by activating NF-κB-mediated MMP9 transcription. Cell Prolif 2020; 53:e12876. [PMID: 32790097 PMCID: PMC7507070 DOI: 10.1111/cpr.12876] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives NCOA6 is a transcription coactivator; its deletion in mice results in growth retardation and lethality between 8.5 and 12.5 dpc with defects in the placenta. However, the transcription factor(s) and the mechanism(s) involved in the function of NCOA6 in placentation have not been elucidated. Here, the roles of NCOA6 in human cytotrophoblast invasion and migration were studied. Materials and Methods Human placenta tissues were collected from normal pregnancies and pregnancies complicated by early‐onset severe preeclampsia (sPE). Immunofluorescence, RT‐qPCR and Western blotting were used to determine NCOA6 expression. Transwell invasion/migration assays were performed to explore whether NCOA6 knockdown affected human placenta‐derived HTR‐8/SVneo cell invasion/migration. Gelatin zymography was performed to examine the change in the gelatinolytic activities of secreted MMP2 and MMP9. Luciferase reporter assays were used to explore whether NCOA6 coactivated NF‐κB‐mediated MMP9 transcription. Results NCOA6 is mainly expressed in the human placental trophoblast column, as well as in the EVTs. HTR‐8/SVneo cell invasion and migration were significantly attenuated after NCOA6 knockdown, and the secretion of MMP9 was decreased due to transcriptional suppression. NCOA6 was further found to coactivate NF‐κB‐mediated MMP9 transcription. Moreover, expression of NCOA6 was impaired in placentas of patients complicated by early‐onset sPE. Conclusions Thus, we demonstrated that NCOA6 is important for cytotrophoblast invasion/migration, at least partially, by activating NF‐κB‐mediated MMP9 transcription; the downregulation of NCOA6 may contribute to the pathogenesis of early‐onset sPE.
Collapse
Affiliation(s)
- Liang Wu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kun-Qing Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-Na Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lin-Li Hu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang-Xiang Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Shuai
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying-Pu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|