1
|
Germain RM, Matthews B, Harmon L. Niche Theory as an Underutilized Resource for the Study of Adaptive Radiations. Cold Spring Harb Perspect Biol 2025; 17:a041449. [PMID: 38692834 PMCID: PMC11694739 DOI: 10.1101/cshperspect.a041449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Biologists are often stuck between two opposing questions: Why are there so many species and why are there not more? Although these questions apply to the maintenance of existing species, they equally apply to the formation of new ones. The more species specialize in terms of their niches, the more opportunities arise for new species to form and coexist in communities. What sets an upper limit to specialization, thus setting an upper limit to speciation? We propose that MacArthur's theories of species packing and resource minimization may hold answers. Specifically, resources and individuals are finite-as species become increasingly specialized, each individual has fewer resources it can access. Species can only be as specialized as is possible in a given resource environment while still meeting basic resource requirements. We propose that the upper limit to specialization lies below the threshold that causes populations to be so small that stochastic extinctions take over, and that this limit is likely rarely approached due to the sequential timing by which new lineages arrive.
Collapse
Affiliation(s)
- Rachel M Germain
- Department of Zoology and the Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag, Center for Ecology, Evolution and Biogeochemistry, Luzern 6005, Switzerland
| | - Luke Harmon
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844, USA
| |
Collapse
|
2
|
Ascensao JA, Denk J, Lok K, Yu Q, Wetmore KM, Hallatschek O. Rediversification following ecotype isolation reveals hidden adaptive potential. Curr Biol 2024; 34:855-867.e6. [PMID: 38325377 PMCID: PMC10911448 DOI: 10.1016/j.cub.2024.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/09/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Microbial communities play a critical role in ecological processes, and their diversity is key to their functioning. However, little is known about whether communities can regenerate ecological diversity following ecotype removal or extinction and how the rediversified communities would compare to the original ones. Here, we show that simple two-ecotype communities from the E. coli long-term evolution experiment (LTEE) consistently rediversified into two ecotypes following the isolation of one of the ecotypes, coexisting via negative frequency-dependent selection. Communities separated by more than 30,000 generations of evolutionary time rediversify in similar ways. The rediversified ecotype appears to share a number of growth traits with the ecotype it replaces. However, the rediversified community is also different from the original community in ways relevant to the mechanism of ecotype coexistence-for example, in stationary phase response and survival. We found substantial variation in the transcriptional states between the two original ecotypes, whereas the differences within the rediversified community were comparatively smaller, although the rediversified community showed unique patterns of differential expression. Our results suggest that evolution may leave room for alternative diversification processes even in a maximally reduced community of only two strains. We hypothesize that the presence of alternative evolutionary pathways may be even more pronounced in communities of many species where there are even more potential niches, highlighting an important role for perturbations, such as species removal, in evolving ecological communities.
Collapse
Affiliation(s)
- Joao A Ascensao
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Jonas Denk
- Department of Physics, University of California Berkeley Berkeley, CA, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Kristen Lok
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
- Present affiliation: Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - QinQin Yu
- Department of Physics, University of California Berkeley Berkeley, CA, USA
- Present affiliation: Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Kelly M Wetmore
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Oskar Hallatschek
- Department of Physics, University of California Berkeley Berkeley, CA, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Calland JK, Pascoe B, Bayliss SC, Mourkas E, Berthenet E, Thorpe HA, Hitchings MD, Feil EJ, Corander J, Blaser MJ, Falush D, Sheppard SK. Quantifying bacterial evolution in the wild: A birthday problem for Campylobacter lineages. PLoS Genet 2021; 17:e1009829. [PMID: 34582435 PMCID: PMC8500405 DOI: 10.1371/journal.pgen.1009829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/08/2021] [Accepted: 09/20/2021] [Indexed: 11/20/2022] Open
Abstract
Measuring molecular evolution in bacteria typically requires estimation of the rate at which nucleotide changes accumulate in strains sampled at different times that share a common ancestor. This approach has been useful for dating ecological and evolutionary events that coincide with the emergence of important lineages, such as outbreak strains and obligate human pathogens. However, in multi-host (niche) transmission scenarios, where the pathogen is essentially an opportunistic environmental organism, sampling is often sporadic and rarely reflects the overall population, particularly when concentrated on clinical isolates. This means that approaches that assume recent common ancestry are not applicable. Here we present a new approach to estimate the molecular clock rate in Campylobacter that draws on the popular probability conundrum known as the 'birthday problem'. Using large genomic datasets and comparative genomic approaches, we use isolate pairs that share recent common ancestry to estimate the rate of nucleotide change for the population. Identifying synonymous and non-synonymous nucleotide changes, both within and outside of recombined regions of the genome, we quantify clock-like diversification to estimate synonymous rates of nucleotide change for the common pathogenic bacteria Campylobacter coli (2.4 x 10-6 s/s/y) and Campylobacter jejuni (3.4 x 10-6 s/s/y). Finally, using estimated total rates of nucleotide change, we infer the number of effective lineages within the sample time frame-analogous to a shared birthday-and assess the rate of turnover of lineages in our sample set over short evolutionary timescales. This provides a generalizable approach to calibrating rates in populations of environmental bacteria and shows that multiple lineages are maintained, implying that large-scale clonal sweeps may take hundreds of years or more in these species.
Collapse
Affiliation(s)
- Jessica K. Calland
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Ben Pascoe
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Sion C. Bayliss
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Evangelos Mourkas
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Elvire Berthenet
- French National Reference Center for Campylobacters and Helicobacters, University of Bordeaux, Bordeaux, France
- Institute of Life Sciences, Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Harry A. Thorpe
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Matthew D. Hitchings
- Institute of Life Sciences, Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Edward J. Feil
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Daniel Falush
- Centre for Microbes, Development and Health, Institute Pasteur of Shanghai, Shanghai, China
- * E-mail: (DF); (SKS)
| | - Samuel K. Sheppard
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (DF); (SKS)
| |
Collapse
|
4
|
Chu XL, Zhang QG, Buckling A, Castledine M. Interspecific Niche Competition Increases Morphological Diversity in Multi-Species Microbial Communities. Front Microbiol 2021; 12:699190. [PMID: 34394041 PMCID: PMC8362326 DOI: 10.3389/fmicb.2021.699190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/02/2021] [Indexed: 12/03/2022] Open
Abstract
Intraspecific competition for limited niches has been recognized as a driving force for adaptive radiation, but results for the role of interspecific competition have been mixed. Here, we report the adaptive diversification of the model bacteria Pseudomonas fluorescens in the presence of different numbers and combinations of four competing bacterial species. Increasing the diversity of competitive community increased the morphological diversity of focal species, which is caused by impeding the domination of a single morphotype. Specifically, this pattern was driven by more diverse communities being more likely to contain key species that occupy the same niche as otherwise competitively superior morphotype, and thus preventing competitive exclusion within the focal species. Our results suggest that sympatric adaptive radiation is driven by the presence or absence of niche-specific competitors.
Collapse
Affiliation(s)
- Xiao-Lin Chu
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom.,State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, China
| | - Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, China
| | - Angus Buckling
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Meaghan Castledine
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom
| |
Collapse
|
5
|
Manriquez B, Muller D, Prigent-Combaret C. Experimental Evolution in Plant-Microbe Systems: A Tool for Deciphering the Functioning and Evolution of Plant-Associated Microbial Communities. Front Microbiol 2021; 12:619122. [PMID: 34025595 PMCID: PMC8137971 DOI: 10.3389/fmicb.2021.619122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
In natural environments, microbial communities must constantly adapt to stressful environmental conditions. The genetic and phenotypic mechanisms underlying the adaptive response of microbial communities to new (and often complex) environments can be tackled with a combination of experimental evolution and next generation sequencing. This combination allows to analyse the real-time evolution of microbial populations in response to imposed environmental factors or during the interaction with a host, by screening for phenotypic and genotypic changes over a multitude of identical experimental cycles. Experimental evolution (EE) coupled with comparative genomics has indeed facilitated the monitoring of bacterial genetic evolution and the understanding of adaptive evolution processes. Basically, EE studies had long been done on single strains, allowing to reveal the dynamics and genetic targets of natural selection and to uncover the correlation between genetic and phenotypic adaptive changes. However, species are always evolving in relation with other species and have to adapt not only to the environment itself but also to the biotic environment dynamically shaped by the other species. Nowadays, there is a growing interest to apply EE on microbial communities evolving under natural environments. In this paper, we provide a non-exhaustive review of microbial EE studies done with systems of increasing complexity (from single species, to synthetic communities and natural communities) and with a particular focus on studies between plants and plant-associated microorganisms. We highlight some of the mechanisms controlling the functioning of microbial species and their adaptive responses to environment changes and emphasize the importance of considering bacterial communities and complex environments in EE studies.
Collapse
Affiliation(s)
| | | | - Claire Prigent-Combaret
- UMR 5557 Ecologie Microbienne, VetAgro Sup, CNRS, INRAE, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
6
|
Rees H, Joynson R, Brown JKM, Hall A. Naturally occurring circadian rhythm variation associated with clock gene loci in Swedish Arabidopsis accessions. PLANT, CELL & ENVIRONMENT 2021; 44:807-820. [PMID: 33179278 PMCID: PMC7986795 DOI: 10.1111/pce.13941] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 05/25/2023]
Abstract
Circadian clocks have evolved to resonate with external day and night cycles. However, these entrainment signals are not consistent everywhere and vary with latitude, climate and seasonality. This leads to divergent selection for clocks which are locally adapted. To investigate the genetic basis for this circadian variation, we used a delayed fluorescence imaging assay to screen 191 naturally occurring Swedish Arabidopsis accessions for their circadian phenotypes. We demonstrate that the period length co-varies with both geography and population sub-structure. Several candidate loci linked to period, phase and relative amplitude error (RAE) were revealed by genome-wide association mapping and candidate genes were investigated using TDNA mutants. We show that natural variation in a single non-synonymous substitution within COR28 is associated with a long-period and late-flowering phenotype similar to that seen in TDNA knock-out mutants. COR28 is a known coordinator of flowering time, freezing tolerance and the circadian clock; all of which may form selective pressure gradients across Sweden. We demonstrate the effect of the COR28-58S SNP in increasing period length through a co-segregation analysis. Finally, we show that period phenotypic tails remain diverged under lower temperatures and follow a distinctive "arrow-shaped" trend indicative of selection for a cold-biased temperature compensation response.
Collapse
Affiliation(s)
- Hannah Rees
- Organisms and EcosystemsEarlham Institute, Norwich Research ParkNorwichUK
- Institute of Integrative Biology, University of LiverpoolLiverpoolUK
| | - Ryan Joynson
- Organisms and EcosystemsEarlham Institute, Norwich Research ParkNorwichUK
| | | | - Anthony Hall
- Organisms and EcosystemsEarlham Institute, Norwich Research ParkNorwichUK
| |
Collapse
|
7
|
Calatayud J, Neuman M, Rojas A, Eriksson A, Rosvall M. Regularities in species' niches reveal the world's climate regions. eLife 2021; 10:58397. [PMID: 33554863 PMCID: PMC7963475 DOI: 10.7554/elife.58397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 02/07/2021] [Indexed: 11/13/2022] Open
Abstract
Climate regions form the basis of many ecological, evolutionary, and conservation studies. However, our understanding of climate regions is limited to how they shape vegetation: they do not account for the distribution of animals. Here, we develop a network-based framework to identify important climates worldwide based on regularities in realized niches of about 26,000 tetrapods. We show that high-energy climates, including deserts, tropical savannas, and steppes, are consistent across animal- and plant-derived classifications, indicating similar underlying climatic determinants. Conversely, temperate climates differ across all groups, suggesting that these climates allow for idiosyncratic adaptations. Finally, we show how the integration of niche classifications with geographical information enables the detection of climatic transition zones and the signal of geographic and historical processes. Our results identify the climates shaping the distribution of tetrapods and call for caution when using general climate classifications to study the ecology, evolution, or conservation of specific taxa.
Collapse
Affiliation(s)
- Joaquín Calatayud
- Integrated Science Lab, Department of Physics, Umeå University, Umeå, Sweden.,Departamento de Biología, Geología, Física y Química inorgánica, Universidad Rey Juan Carlos, Madrid, Spain
| | - Magnus Neuman
- Integrated Science Lab, Department of Physics, Umeå University, Umeå, Sweden
| | - Alexis Rojas
- Integrated Science Lab, Department of Physics, Umeå University, Umeå, Sweden
| | - Anton Eriksson
- Integrated Science Lab, Department of Physics, Umeå University, Umeå, Sweden
| | - Martin Rosvall
- Integrated Science Lab, Department of Physics, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Chen YC, Kuo HC, Lo WS, Hung CM. Avian phenotypic convergence is subject to low genetic constraints based on genomic evidence. BMC Evol Biol 2020; 20:147. [PMID: 33160317 PMCID: PMC7648321 DOI: 10.1186/s12862-020-01711-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Phenotypic convergence between distinct species provides an opportunity to examine the predictability of genetic evolution. Unrelated species sharing genetic underpinnings for phenotypic convergence suggests strong genetic constraints, and thus high predictability of evolution. However, there is no clear big picture of the genomic constraints on convergent evolution. Genome-based phylogenies have confirmed many cases of phenotypic convergence in birds, making them a good system for examining genetic constraints in phenotypic convergence. In this study, we used hierarchical genomic approaches to estimate genetic constraints in three convergent avian traits: nocturnality, raptorial behavior and foot-propelled diving. RESULTS Phylogeny-based hypothesis tests and positive selection tests were applied to compare 16 avian genomes, representing 14 orders, and identify genes with strong convergence signals. We found 43 adaptively convergent genes (ACGs) associated with the three phenotypic convergence cases and assessed genetic constraints in all three cases, from (amino acid) site mutations to genetic pathways. We found that the avian orders shared few site mutations in the ACGs that contributed to the convergent phenotypes, and that these ACGs were not enriched in any genetic pathways. In addition, different pairs of orders with convergent foot-propelled diving or raptorial behaviors shared few ACGs. We also found that closely related orders that shared foot-propelled diving behavior did not share more ACGs than did distinct orders, suggesting that convergence among these orders could not be explained by their initial genomic backgrounds. CONCLUSIONS Our analyses of three avian convergence events suggest low constraints for phenotypic convergence across multiple genetic levels, implying that genetic evolution is unpredictable at the phylogenetic level of avian order. Ours is one of first studies to apply hierarchical genomic examination to multiple avian convergent cases to assess the genetic constraints in life history trait evolution.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hao-Chih Kuo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Sui Lo
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
9
|
Evolutionary Diversity in the Intracellular Microsporidian Parasite Nosema sp. Infecting Wild Silkworm Revealed by IGS Nucleotide Sequence Diversity. J Mol Evol 2020; 88:345-360. [PMID: 32166385 DOI: 10.1007/s00239-020-09936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
Intracellular microsporidian Nosema mylitta infects Indian wild silkworm Antheraea mylitta causing pebrine disease. Genetic structure and phylogeny of N. mylitta are analysed using nucleotide variability in 5S ribosomal DNA and intergenic spacer (IGS) sequence from 20 isolates collected from Southern, Northern and Central regions of Jharkhand State. Nucleotide diversity (π) and genetic differentiation Gst were highest in the Central isolates whereas lowest in the North. Among the isolates, absence of nucleotides, transitions and transversions were observed. Haplotyping showed nucleotide variability at 83 positions in IGS and 13 positions in 5S rDNA. Haplotype-based genetic differentiation was 0.96 to 0.97 whereas nucleotide sequence-based genetic differentiation was higher (Ks = 22.29) between Southern and Central isolates. Bottleneck analysis showed negative value for Tajima's D and other summary statistics revealing induction of loss of rare alleles and population explosion. From IGS, 17 ancestral sequences were inferred by Network algorithm. Core of nine closely related nodes having ancient nucleotides and peripheral nodes with highly divergent nucleotides were derived. Most diverged peripheral haplotype was Bero (H11) from the Central region whereas Deoghar (H3) of the Northern region diverged early. Phylogeny of N. mylitta grouped Southern and Northern isolates together revealed weak phylogenetic signal for these locations. Phylogeny of N. mylitta with Nosema sp. infecting other lepidopterans clustered N. mylitta isolates with N. antheraea and N. philosamiae of China indicating genetic similarity whereas other species were dissimilar showing diversity irrespective of country of origin.
Collapse
|
10
|
Bacterial adaptation is constrained in complex communities. Nat Commun 2020; 11:754. [PMID: 32029713 PMCID: PMC7005322 DOI: 10.1038/s41467-020-14570-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
A major unresolved question is how bacteria living in complex communities respond to environmental changes. In communities, biotic interactions may either facilitate or constrain evolution depending on whether the interactions expand or contract the range of ecological opportunities. A fundamental challenge is to understand how the surrounding biotic community modifies evolutionary trajectories as species adapt to novel environmental conditions. Here we show that community context can dramatically alter evolutionary dynamics using a novel approach that 'cages' individual focal strains within complex communities. We find that evolution of focal bacterial strains depends on properties both of the focal strain and of the surrounding community. In particular, there is a stronger evolutionary response in low-diversity communities, and when the focal species have a larger genome and are initially poorly adapted. We see how community context affects resource usage and detect genetic changes involved in carbon metabolism and inter-specific interaction. The findings demonstrate that adaptation to new environmental conditions should be investigated in the context of interspecific interactions.
Collapse
|
11
|
Van Bocxlaer B, Ortiz-Sepulveda CM, Gurdebeke PR, Vekemans X. Adaptive divergence in shell morphology in an ongoing gastropod radiation from Lake Malawi. BMC Evol Biol 2020; 20:5. [PMID: 31918659 PMCID: PMC6953155 DOI: 10.1186/s12862-019-1570-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 12/19/2019] [Indexed: 11/21/2022] Open
Abstract
Background Ecological speciation is a prominent mechanism of diversification but in many evolutionary radiations, particularly in invertebrates, it remains unclear whether supposedly critical ecological traits drove or facilitated diversification. As a result, we lack accurate knowledge on the drivers of diversification for most evolutionary radiations along the tree of life. Freshwater mollusks present an enigmatic example: Putatively adaptive radiations are being described in various families, typically from long-lived lakes, whereas other taxa represent celebrated model systems in the study of ecophenotypic plasticity. Here we examine determinants of shell-shape variation in three nominal species of an ongoing ampullariid radiation in the Malawi Basin (Lanistes nyassanus, L. solidus and Lanistes sp. (ovum-like)) with a common garden experiment and semi-landmark morphometrics. Results We found significant differences in survival and fecundity among these species in contrasting habitats. Morphological differences observed in the wild persisted in our experiments for L. nyassanus versus L. solidus and L. sp. (ovum-like), but differences between L. solidus and L. sp. (ovum-like) disappeared and re-emerged in the F1 and F2 generations, respectively. These results indicate that plasticity occurred, but that it is not solely responsible for the observed differences. Our experiments provide the first unambiguous evidence for genetic divergence in shell morphology in an ongoing freshwater gastropod radiation in association with marked fitness differences among species under controlled habitat conditions. Conclusions Our results indicate that differences in shell morphology among Lanistes species occupying different habitats have an adaptive value. These results also facilitate an accurate reinterpretation of morphological variation in fossil Lanistes radiations, and thus macroevolutionary dynamics. Finally, our work testifies that the shells of freshwater gastropods may retain signatures of adaptation at low taxonomic levels, beyond representing an evolutionary novelty responsible for much of the diversity and disparity in mollusks altogether.
Collapse
Affiliation(s)
- Bert Van Bocxlaer
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France. .,Limnology Unit, Department of Biology, Ghent University, 9000, Ghent, Belgium. .,Department of Geology, Ghent University, 9000, Ghent, Belgium.
| | | | | | - Xavier Vekemans
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France
| |
Collapse
|
12
|
Lalonde MML, Marcus JM. Entomological time travel: reconstructing the invasion history of the buckeye butterflies (genus Junonia) from Florida, USA. Biol Invasions 2019. [DOI: 10.1007/s10530-019-01948-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Matrix Polysaccharides and SiaD Diguanylate Cyclase Alter Community Structure and Competitiveness of Pseudomonas aeruginosa during Dual-Species Biofilm Development with Staphylococcus aureus. mBio 2018; 9:mBio.00585-18. [PMID: 30401769 PMCID: PMC6222129 DOI: 10.1128/mbio.00585-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacteria in natural and engineered environments form biofilms that include many different species. Microorganisms rely on a number of different strategies to manage social interactions with other species and to access resources, build biofilm consortia, and optimize growth. For example, Pseudomonas aeruginosa and Staphylococcus aureus are biofilm-forming bacteria that coinfect the lungs of cystic fibrosis patients and diabetic and chronic wounds. P. aeruginosa is known to antagonize S. aureus growth. However, many of the factors responsible for mixed-species interactions and outcomes such as infections are poorly understood. Biofilm bacteria are encased in a self-produced extracellular matrix that facilitates interspecies behavior and biofilm development. In this study, we examined the poorly understood roles of the major matrix biopolymers and their regulators in mixed-species biofilm interactions and development. Mixed-species biofilms display a number of emergent properties, including enhanced antimicrobial tolerance and communal metabolism. These properties may depend on interspecies relationships and the structure of the biofilm. However, the contribution of specific matrix components to emergent properties of mixed-species biofilms remains poorly understood. Using a dual-species biofilm community formed by the opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus, we found that whilst neither Pel nor Psl polysaccharides, produced by P. aeruginosa, affect relative species abundance in mature P. aeruginosa and S. aureus biofilms, Psl production is associated with increased P. aeruginosa abundance and reduced S. aureus aggregation in the early stages of biofilm formation. Our data suggest that the competitive effect of Psl is not associated with its structural role in cross-linking the matrix and adhering to P. aeruginosa cells but is instead mediated through the activation of the diguanylate cyclase SiaD. This regulatory control was also found to be independent of the siderophore pyoverdine and Pseudomonas quinolone signal, which have previously been proposed to reduce S. aureus viability by inducing lactic acid fermentation-based growth. In contrast to the effect mediated by Psl, Pel reduced the effective crosslinking of the biofilm matrix and facilitated superdiffusivity in microcolony regions. These changes in matrix cross-linking enhance biofilm surface spreading and expansion of microcolonies in the later stages of biofilm development, improving overall dual-species biofilm growth and increasing biovolume severalfold. Thus, the biofilm matrix and regulators associated with matrix production play essential roles in mixed-species biofilm interactions.
Collapse
|
14
|
|
15
|
Van den Bergh B, Swings T, Fauvart M, Michiels J. Experimental Design, Population Dynamics, and Diversity in Microbial Experimental Evolution. Microbiol Mol Biol Rev 2018; 82:e00008-18. [PMID: 30045954 PMCID: PMC6094045 DOI: 10.1128/mmbr.00008-18] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In experimental evolution, laboratory-controlled conditions select for the adaptation of species, which can be monitored in real time. Despite the current popularity of such experiments, nature's most pervasive biological force was long believed to be observable only on time scales that transcend a researcher's life-span, and studying evolution by natural selection was therefore carried out solely by comparative means. Eventually, microorganisms' propensity for fast evolutionary changes proved us wrong, displaying strong evolutionary adaptations over a limited time, nowadays massively exploited in laboratory evolution experiments. Here, we formulate a guide to experimental evolution with microorganisms, explaining experimental design and discussing evolutionary dynamics and outcomes and how it is used to assess ecoevolutionary theories, improve industrially important traits, and untangle complex phenotypes. Specifically, we give a comprehensive overview of the setups used in experimental evolution. Additionally, we address population dynamics and genetic or phenotypic diversity during evolution experiments and expand upon contributing factors, such as epistasis and the consequences of (a)sexual reproduction. Dynamics and outcomes of evolution are most profoundly affected by the spatiotemporal nature of the selective environment, where changing environments might lead to generalists and structured environments could foster diversity, aided by, for example, clonal interference and negative frequency-dependent selection. We conclude with future perspectives, with an emphasis on possibilities offered by fast-paced technological progress. This work is meant to serve as an introduction to those new to the field of experimental evolution, as a guide to the budding experimentalist, and as a reference work to the seasoned expert.
Collapse
Affiliation(s)
- Bram Van den Bergh
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- Douglas Lab, Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Toon Swings
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| | - Maarten Fauvart
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- imec, Leuven, Belgium
| | - Jan Michiels
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| |
Collapse
|
16
|
Tan J, Rattray JB, Yang X, Jiang L. Spatial storage effect promotes biodiversity during adaptive radiation. Proc Biol Sci 2018; 284:rspb.2017.0841. [PMID: 28701564 DOI: 10.1098/rspb.2017.0841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/02/2017] [Indexed: 11/12/2022] Open
Abstract
Many ecological communities are enormously diverse. Variation in environmental conditions over time and space provides opportunities for temporal and spatial storage effects to operate, potentially promoting species coexistence and biodiversity. While several studies have provided empirical evidence supporting the significance of the temporal storage effect for coexistence, empirical tests of the role of the spatial storage effect are rare. In particular, we know little about how the spatial storage effect contributes to biodiversity over evolutionary timescales. Here, we report the first experimental study on the role of the spatial storage effect in the maintenance of biodiversity in evolving metacommunities, using the bacterium Pseudomonas fluorescens SBW25 as a laboratory model of adaptive radiation. We found that intercommunity spatial heterogeneity promoted phenotypic diversity of P. fluorescens in the presence of dispersal among local communities, by allowing the spatial storage effect to operate. Mechanistically, greater niche differences among P. fluorescens phenotypes arose in metacommunities with intercommunity spatial heterogeneity, facilitating negative frequency-dependent selection, and thus, the coexistence among P. fluorescens phenotypes. These results highlight the importance of the spatial storage effect for biodiversity over evolutionary timescales.
Collapse
Affiliation(s)
- Jiaqi Tan
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA
| | - Jennifer B Rattray
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA
| | - Xian Yang
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA
| |
Collapse
|
17
|
Complete Genome Sequences of Three Novel Pseudomonas fluorescens SBW25 Bacteriophages, Noxifer, Phabio, and Skulduggery. GENOME ANNOUNCEMENTS 2017; 5:5/31/e00725-17. [PMID: 28774980 PMCID: PMC5543642 DOI: 10.1128/genomea.00725-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Three novel bacteriophages, two of which are jumbophages, were isolated from compost in Auckland, New Zealand. Noxifer, Phabio, and Skulduggery are double-stranded DNA (dsDNA) phages with genome sizes of 278,136 bp (Noxifer), 309,157 bp (Phabio), and 62,978 bp (Skulduggery).
Collapse
|
18
|
Ely CR, Wilson RE, Talbot SL. Genetic structure among greater white-fronted goose populations of the Pacific Flyway. Ecol Evol 2017; 7:2956-2968. [PMID: 28479995 PMCID: PMC5415542 DOI: 10.1002/ece3.2934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 02/23/2017] [Accepted: 03/03/2017] [Indexed: 01/13/2023] Open
Abstract
An understanding of the genetic structure of populations in the wild is essential for long-term conservation and stewardship in the face of environmental change. Knowledge of the present-day distribution of genetic lineages (phylogeography) of a species is especially important for organisms that are exploited or utilize habitats that may be jeopardized by human intervention, including climate change. Here, we describe mitochondrial (mtDNA) and nuclear genetic (microsatellite) diversity among three populations of a migratory bird, the greater white-fronted goose (Anser albifrons), which breeds discontinuously in western and southwestern Alaska and winters in the Pacific Flyway of North America. Significant genetic structure was evident at both marker types. All three populations were differentiated for mtDNA, whereas microsatellite analysis only differentiated geese from the Cook Inlet Basin. In sexual reproducing species, nonrandom mate selection, when occurring in concert with fine-scale resource partitioning, can lead to phenotypic and genetic divergence as we observed in our study. If mate selection does not occur at the time of reproduction, which is not uncommon in long-lived organisms, then mechanisms influencing the true availability of potential mates may be obscured, and the degree of genetic and phenotypic diversity may appear incongruous with presumed patterns of gene flow. Previous investigations revealed population-specific behavioral, temporal, and spatial mechanisms that likely influence the amount of gene flow measured among greater white-fronted goose populations. The degree of observed genetic structuring aligns well with our current understanding of population differences pertaining to seasonal movements, social structure, pairing behavior, and resource partitioning.
Collapse
Affiliation(s)
- Craig R. Ely
- U.S. Geological SurveyAlaska Science CenterAnchorageAKUSA
| | | | | |
Collapse
|
19
|
New Insights into the Effects of Several Environmental Parameters on the Relative Fitness of a Numerically Dominant Class of Evolved Niche Specialist. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2016; 2016:4846565. [PMID: 28101396 PMCID: PMC5214101 DOI: 10.1155/2016/4846565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/24/2016] [Indexed: 11/17/2022]
Abstract
Adaptive radiation in bacteria has been investigated using Wrinkly Spreaders (WS), a morphotype which colonises the air-liquid (A-L) interface of static microcosms by biofilm formation with a significant fitness advantage over competitors growing lower down in the O2-limited liquid column. Here, we investigate several environmental parameters which impact the ecological opportunity that the Wrinkly Spreaders exploit in this model system. Manipulation of surface area/volume ratios suggests that the size of the WS niche was not as important as the ability to dominate the A-L interface and restrict competitor growth. The value of this niche to the Wrinkly Spreaders, as determined by competitive fitness assays, was found to increase as O2 flux to the A-L interface was reduced, confirming that competition for O2 was the main driver of WS fitness. The effect of O2 on fitness was also found to be dependent on the availability of nutrients, reflecting the need to take up both for optimal growth. Finally, the meniscus trap, a high-O2 region formed by the interaction of the A-L interface with the vial walls, was also important for fitness during the early stages of biofilm formation. These findings reveal the complexity of this seemingly simple model system and illustrate how changes in environmental physicality alter ecological opportunity and the fitness of the adaptive morphotype.
Collapse
|
20
|
Čepl J, Blahůšková A, Neubauer Z, Markoš A. Variations and heredity in bacterial colonies. Commun Integr Biol 2016; 9:e1261228. [PMID: 28042382 PMCID: PMC5193049 DOI: 10.1080/19420889.2016.1261228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 01/24/2023] Open
Abstract
Spontaneous variation in appearance was studied in bacterial colonies of Serratia marcescens F morphotype1: (i) A defined array of non-heritable phenotype variations does appear repeatedly; (ii) The presence of colonies of different bacterial species will narrow the variability toward the typical F appearance, as if such an added environmental factor curtailed the capacity of colony morphospace; (iii) Similarly the morphospace becomes reduced by random mutations leading to new, heritable morphotypes—at the same time opening a new array of variations typical for the mutant but not accessible directly from the original F morphospace. Results are discussed in context with biphasic model of early morphogenesis applicable to all multicellular bodies.
Collapse
Affiliation(s)
- Jaroslav Čepl
- Czech University of Life Sciences, Faculty of Forestry and Wood Sciences , Prague, Czechia
| | - Anna Blahůšková
- Charles University in Prague, Faculty of Sciences , Prague, Czechia
| | - Zdeněk Neubauer
- Charles University in Prague, Faculty of Sciences , Prague, Czechia
| | - Anton Markoš
- Charles University in Prague, Faculty of Sciences , Prague, Czechia
| |
Collapse
|
21
|
Comparing mutation rates under the Luria–Delbrück protocol. Genetica 2016; 144:351-9. [DOI: 10.1007/s10709-016-9904-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/04/2016] [Indexed: 12/11/2022]
|
22
|
Zheng Q. A new practical guide to the Luria-Delbrück protocol. Mutat Res 2015; 781:7-13. [PMID: 26366669 DOI: 10.1016/j.mrfmmm.2015.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/25/2015] [Accepted: 08/23/2015] [Indexed: 06/05/2023]
Abstract
Since 2000 several review papers have been published about the analysis of experimental data obtained using the Luria-Delbrück protocol. These timely papers cleared much of the confusion surrounding various methods for estimating or comparing mutation rates. As a result, today the fluctuation test is more widely applied with much improved accuracy. The present paper provides guidelines on a few remaining problems that continue to baffle mutation researchers. Among the issues addressed are incomplete plating, relative fitness, and comparison of experiments where average final cell population sizes differ. It also offers a fresh view on the estimation methods that are based on the sample median.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Epidemiology and Biostatistics, Texas A&M School of Public Health, College Station, TX 77843, United States.
| |
Collapse
|
23
|
Chua SL, Sivakumar K, Rybtke M, Yuan M, Andersen JB, Nielsen TE, Givskov M, Tolker-Nielsen T, Cao B, Kjelleberg S, Yang L. C-di-GMP regulates Pseudomonas aeruginosa stress response to tellurite during both planktonic and biofilm modes of growth. Sci Rep 2015; 5:10052. [PMID: 25992876 PMCID: PMC4438720 DOI: 10.1038/srep10052] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/20/2015] [Indexed: 11/09/2022] Open
Abstract
Stress response plays an important role on microbial adaptation under hostile environmental conditions. It is generally unclear how the signaling transduction pathway mediates a stress response in planktonic and biofilm modes of microbial communities simultaneously. Here, we showed that metalloid tellurite (TeO3(2-)) exposure induced the intracellular content of the secondary messenger cyclic di-GMP (c-di-GMP) of Pseudomonas aeruginosa. Two diguanylate cyclases (DGCs), SadC and SiaD, were responsible for the increased intracellular content of c-di-GMP. Enhanced c-di-GMP levels by TeO3(2-) further increased P. aeruginosa biofilm formation and resistance to TeO3(2-). P. aeruginosa ΔsadCΔsiaD and PAO1/p(lac)-yhjH mutants with low intracellular c-di-GMP content were more sensitive to TeO3(2-) exposure and had low relative fitness compared to the wild-type PAO1 planktonic and biofilm cultures exposed to TeO3(2-). Our study provided evidence that c-di-GMP level can play an important role in mediating stress response in microbial communities during both planktonic and biofilm modes of growth.
Collapse
Affiliation(s)
- Song Lin Chua
- 1] Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551 [2] NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore 117543
| | - Krishnakumar Sivakumar
- 1] Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551 [2] Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637551
| | - Morten Rybtke
- Costerton Biofilm Center, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 København N, Denmark
| | - Mingjun Yuan
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551
| | - Jens Bo Andersen
- Costerton Biofilm Center, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 København N, Denmark
| | - Thomas E Nielsen
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551
| | - Michael Givskov
- 1] Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551 [2] Costerton Biofilm Center, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 København N, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 København N, Denmark
| | - Bin Cao
- 1] Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551 [2] School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798
| | - Staffan Kjelleberg
- 1] Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551 [2] Center for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia
| | - Liang Yang
- 1] Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551 [2] School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
24
|
Ravinet M, Takeuchi N, Kume M, Mori S, Kitano J. Comparative analysis of Japanese three-spined stickleback clades reveals the Pacific Ocean lineage has adapted to freshwater environments while the Japan Sea has not. PLoS One 2014; 9:e112404. [PMID: 25460163 PMCID: PMC4251985 DOI: 10.1371/journal.pone.0112404] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 10/06/2014] [Indexed: 12/02/2022] Open
Abstract
Divergent selection and adaptive divergence can increase phenotypic diversification amongst populations and lineages. Yet adaptive divergence between different environments, habitats or niches does not occur in all lineages. For example, the colonization of freshwater environments by ancestral marine species has triggered adaptive radiation and phenotypic diversification in some taxa but not in others. Studying closely related lineages differing in their ability to diversify is an excellent means of understanding the factors promoting and constraining adaptive evolution. A well-known example of the evolution of increased phenotypic diversification following freshwater colonization is the three-spined stickleback. Two closely related stickleback lineages, the Pacific Ocean and the Japan Sea occur in Japan. However, Japanese freshwater stickleback populations are derived from the Pacific Ocean lineage only, suggesting the Japan Sea lineage is unable to colonize freshwater. Using stable isotope data and trophic morphology, we first show higher rates of phenotypic and ecological diversification between marine and freshwater populations within the Pacific Ocean lineage, confirming adaptive divergence has occurred between the two lineages and within the Pacific Ocean lineage but not in the Japan Sea lineage. We further identified consistent divergence in diet and foraging behaviour between marine forms from each lineage, confirming Pacific Ocean marine sticklebacks, from which all Japanese freshwater populations are derived, are better adapted to freshwater environments than Japan Sea sticklebacks. We suggest adaptive divergence between ancestral marine populations may have played a role in constraining phenotypic diversification and adaptive evolution in Japanese sticklebacks.
Collapse
Affiliation(s)
- Mark Ravinet
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Naoko Takeuchi
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Manabu Kume
- Biological Laboratory, Gifu-keizai University, Ogaki, Japan
| | - Seiichi Mori
- Biological Laboratory, Gifu-keizai University, Ogaki, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
25
|
Blundell JR, Levy SF. Beyond genome sequencing: Lineage tracking with barcodes to study the dynamics of evolution, infection, and cancer. Genomics 2014; 104:417-30. [DOI: 10.1016/j.ygeno.2014.09.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/03/2014] [Accepted: 09/16/2014] [Indexed: 12/19/2022]
|