1
|
Wu B, Li J, Jin X. Every cell every gene all at once: Systems genetic approaches toward corticogenesis. Curr Opin Neurobiol 2025; 92:103034. [PMID: 40339387 DOI: 10.1016/j.conb.2025.103034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/24/2024] [Accepted: 04/09/2025] [Indexed: 05/10/2025]
Abstract
The development of the cerebral cortex is a stepwise process that involves numerous cell types and signaling pathways to achieve the functional assembly of neural circuits. Our understanding of this process is primarily rooted in findings from studying transgenic knockout models, which reveal coordinated molecular actions, particularly transcription factor cascades critical for cell type acquisition and maintenance in a context-dependent manner. Further resolving their cell type specificity necessitates the use of high-throughput, high-content methodologies. Over the past decade, the emerging single-cell genomics and in vivo CRISPR tools have provided new approaches to study neurodevelopment with elevated scale and resolution. In this review, we discussed efforts to study mouse cortical cell fate determination using single-cell genomics methods. Additionally, we explored recent studies combining programmable gene editing with single-cell phenotypic assays to investigate the function of transcription factors in perinatal cortical development, delineating cell-type specific, functional cytoarchitecture of the developing brain.
Collapse
Affiliation(s)
- Boli Wu
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiwen Li
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xin Jin
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Han L, Liu Z, Jing Z, Liu Y, Peng Y, Chang H, Lei J, Wang K, Xu Y, Liu W, Wu Z, Li Q, Shi X, Zheng M, Wang H, Deng J, Zhong Y, Pan H, Lin J, Zhang R, Chen Y, Wu J, Xu M, Ren B, Cheng M, Yu Q, Song X, Lu Y, Tang Y, Yuan N, Sun S, An Y, Ding W, Sun X, Wei Y, Zhang S, Dou Y, Zhao Y, Han L, Zhu Q, Xu J, Wang S, Wang D, Bai Y, Liang Y, Liu Y, Chen M, Xie C, Bo B, Li M, Zhang X, Ting W, Chen Z, Fang J, Li S, Jiang Y, Tan X, Zuo G, Xie Y, Li H, Tao Q, Li Y, Liu J, Liu Y, Hao M, Wang J, Wen H, Liu J, Yan Y, Zhang H, Sheng Y, Yu S, Liao X, Jiang X, Wang G, Liu H, Wang C, Feng N, Liu X, Ma K, Xu X, Han T, Cao H, Zheng H, Chen Y, Lu H, Yu Z, Zhang J, Wang B, Wang Z, Xie Q, Pan S, Liu C, Xu C, Cui L, Li Y, Liu S, Liao S, Chen A, Wu QF, et alHan L, Liu Z, Jing Z, Liu Y, Peng Y, Chang H, Lei J, Wang K, Xu Y, Liu W, Wu Z, Li Q, Shi X, Zheng M, Wang H, Deng J, Zhong Y, Pan H, Lin J, Zhang R, Chen Y, Wu J, Xu M, Ren B, Cheng M, Yu Q, Song X, Lu Y, Tang Y, Yuan N, Sun S, An Y, Ding W, Sun X, Wei Y, Zhang S, Dou Y, Zhao Y, Han L, Zhu Q, Xu J, Wang S, Wang D, Bai Y, Liang Y, Liu Y, Chen M, Xie C, Bo B, Li M, Zhang X, Ting W, Chen Z, Fang J, Li S, Jiang Y, Tan X, Zuo G, Xie Y, Li H, Tao Q, Li Y, Liu J, Liu Y, Hao M, Wang J, Wen H, Liu J, Yan Y, Zhang H, Sheng Y, Yu S, Liao X, Jiang X, Wang G, Liu H, Wang C, Feng N, Liu X, Ma K, Xu X, Han T, Cao H, Zheng H, Chen Y, Lu H, Yu Z, Zhang J, Wang B, Wang Z, Xie Q, Pan S, Liu C, Xu C, Cui L, Li Y, Liu S, Liao S, Chen A, Wu QF, Wang J, Liu Z, Sun Y, Mulder J, Yang H, Wang X, Li C, Yao J, Xu X, Liu L, Shen Z, Wei W, Sun YG. Single-cell spatial transcriptomic atlas of the whole mouse brain. Neuron 2025:S0896-6273(25)00133-3. [PMID: 40132589 DOI: 10.1016/j.neuron.2025.02.015] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/24/2024] [Accepted: 02/14/2025] [Indexed: 03/27/2025]
Abstract
A comprehensive atlas of genes, cell types, and their spatial distribution across a whole mammalian brain is fundamental for understanding the function of the brain. Here, using single-nucleus RNA sequencing (snRNA-seq) and Stereo-seq techniques, we generated a mouse brain atlas with spatial information for 308 cell clusters at single-cell resolution, involving over 4 million cells, as well as for 29,655 genes. We have identified cell clusters exhibiting preference for cortical subregions and explored their associations with brain-related diseases. Additionally, we pinpointed 155 genes with distinct regional expression patterns within the brainstem and unveiled 513 long non-coding RNAs showing region-enriched expression in the adult brain. Parcellation of brain regions based on spatial transcriptomic information revealed fine structure for several brain areas. Furthermore, we have uncovered 411 transcription factor regulons showing distinct spatiotemporal dynamics during neurodevelopment. Thus, we have constructed a single-cell-resolution spatial transcriptomic atlas of the mouse brain with genome-wide coverage.
Collapse
Affiliation(s)
- Lei Han
- BGI Research, Hangzhou 310030, China
| | - Zhen Liu
- Lingang Laboratory, Shanghai 200031, China; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zehua Jing
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxuan Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | - Junjie Lei
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kexin Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuanfang Xu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Liu
- Lingang Laboratory, Shanghai 200031, China
| | - Zihan Wu
- Tencent AI Lab, Shenzhen 518057, China
| | - Qian Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen 518083, China
| | - Xiaoxue Shi
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingyuan Zheng
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - He Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Juan Deng
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yanqing Zhong
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Junkai Lin
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruiyi Zhang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Chen
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinhua Wu
- Lingang Laboratory, Shanghai 200031, China
| | - Mingrui Xu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biyu Ren
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Qian Yu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinxiang Song
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanbing Lu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuanchun Tang
- BGI Research, Hangzhou 310030, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Nini Yuan
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Suhong Sun
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yingjie An
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenqun Ding
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xing Sun
- Lingang Laboratory, Shanghai 200031, China; Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanrong Wei
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuzhen Zhang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yannong Dou
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun Zhao
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Luyao Han
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Junfeng Xu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiwen Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dan Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yinqi Bai
- BGI Research, Hangzhou 310030, China
| | - Yikai Liang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan Liu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mengni Chen
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chun Xie
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Binshi Bo
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mei Li
- BGI Research, Shenzhen 518083, China
| | - Xinyan Zhang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wang Ting
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiao Fang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuting Li
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Xing Tan
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guolong Zuo
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue Xie
- BGI Research, Shenzhen 518083, China
| | - Huanhuan Li
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Quyuan Tao
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianfeng Liu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuyang Liu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingkun Hao
- Lingang Laboratory, Shanghai 200031, China; Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingjing Wang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huiying Wen
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiabing Liu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Hui Zhang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yifan Sheng
- Lingang Laboratory, Shanghai 200031, China; Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shui Yu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Xuyin Jiang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangling Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Congcong Wang
- Lingang Laboratory, Shanghai 200031, China; Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ning Feng
- BGI Research, Shenzhen 518083, China
| | - Xin Liu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Xiangjie Xu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Huateng Cao
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huiwen Zheng
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Haorong Lu
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Zixian Yu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Bo Wang
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | | | - Qing Xie
- BGI Research, Shenzhen 518083, China
| | | | - Chuanyu Liu
- BGI Research, Shenzhen 518083, China; Shenzhen Proof-of-Concept Center of Digital Cytopathology, BGI Research, Shenzhen 518083, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Chan Xu
- BGI Research, Qingdao 266555, China
| | - Luman Cui
- BGI Research, Shenzhen 518083, China
| | - Yuxiang Li
- BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China
| | - Shiping Liu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Sha Liao
- BGI Research, Shenzhen 518083, China; BGI Research, Chongqing 401329, China; JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing 401329, China
| | - Ao Chen
- BGI Research, Shenzhen 518083, China; BGI Research, Chongqing 401329, China; JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing 401329, China; Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Wang
- BGI Research, Shenzhen 518083, China; China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Yidi Sun
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jan Mulder
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 17121, Sweden; Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | | | - Xiaofei Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | | | - Xun Xu
- BGI Research, Shenzhen 518083, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518083, China.
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Zhiming Shen
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China.
| | - Wu Wei
- Lingang Laboratory, Shanghai 200031, China; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
3
|
Buchan MJ, Gothard G, Mahfooz K, van Rheede JJ, Avery SV, Vourvoukelis A, Demby A, Ellender TJ, Newey SE, Akerman CJ. Higher-order thalamocortical circuits are specified by embryonic cortical progenitor types in the mouse brain. Cell Rep 2024; 43:114157. [PMID: 38678557 DOI: 10.1016/j.celrep.2024.114157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/14/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
The sensory cortex receives synaptic inputs from both first-order and higher-order thalamic nuclei. First-order inputs relay simple stimulus properties from the periphery, whereas higher-order inputs relay more complex response properties, provide contextual feedback, and modulate plasticity. Here, we reveal that a cortical neuron's higher-order input is determined by the type of progenitor from which it is derived during embryonic development. Within layer 4 (L4) of the mouse primary somatosensory cortex, neurons derived from intermediate progenitors receive stronger higher-order thalamic input and exhibit greater higher-order sensory responses. These effects result from differences in dendritic morphology and levels of the transcription factor Lhx2, which are specified by the L4 neuron's progenitor type. When this mechanism is disrupted, cortical circuits exhibit altered higher-order responses and sensory-evoked plasticity. Therefore, by following distinct trajectories, progenitor types generate diversity in thalamocortical circuitry and may provide a general mechanism for differentially routing information through the cortex.
Collapse
Affiliation(s)
| | - Gemma Gothard
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK
| | - Kashif Mahfooz
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK
| | | | - Sophie V Avery
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK
| | | | - Alexander Demby
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK
| | - Tommas J Ellender
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK; Experimental Neurobiology Unit, Universiteitsplein, 2610 Antwerp, Belgium
| | - Sarah E Newey
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK
| | - Colin J Akerman
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK.
| |
Collapse
|
4
|
Suresh V, Bhattacharya B, Tshuva RY, Danan Gotthold M, Olender T, Bose M, Pradhan SJ, Zeev BB, Smith RS, Tole S, Galande S, Harwell CC, Baizabal JM, Reiner O. PRDM16 co-operates with LHX2 to shape the human brain. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae001. [PMID: 38595939 PMCID: PMC10914218 DOI: 10.1093/oons/kvae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 04/11/2024]
Abstract
PRDM16 is a dynamic transcriptional regulator of various stem cell niches, including adipocytic, hematopoietic, cardiac progenitors, and neural stem cells. PRDM16 has been suggested to contribute to 1p36 deletion syndrome, one of the most prevalent subtelomeric microdeletion syndromes. We report a patient with a de novo nonsense mutation in the PRDM16 coding sequence, accompanied by lissencephaly and microcephaly features. Human stem cells were genetically modified to mimic this mutation, generating cortical organoids that exhibited altered cell cycle dynamics. RNA sequencing of cortical organoids at day 32 unveiled changes in cell adhesion and WNT-signaling pathways. ChIP-seq of PRDM16 identified binding sites in postmortem human fetal cortex, indicating the conservation of PRDM16 binding to developmental genes in mice and humans, potentially at enhancer sites. A shared motif between PRDM16 and LHX2 was identified and further examined through comparison with LHX2 ChIP-seq data from mice. These results suggested a collaborative partnership between PRDM16 and LHX2 in regulating a common set of genes and pathways in cortical radial glia cells, possibly via their synergistic involvement in cortical development.
Collapse
Affiliation(s)
- Varun Suresh
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai 400005, India
| | - Bidisha Bhattacharya
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
| | - Rami Yair Tshuva
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
| | - Miri Danan Gotthold
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
| | - Mahima Bose
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai 400005, India
| | - Saurabh J Pradhan
- Chromatin Biology and Epigenetics Laboratory, Biology Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune 411008, India
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, 3 Dr. Bohr-Gasse, 1030 Vienna, Austria
| | - Bruria Ben Zeev
- Edmond and Lily Safra Pediatric Hospital, Sheba Medical Center and Tel Aviv School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Richard Scott Smith
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, IL 60611, USA
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai 400005, India
| | - Sanjeev Galande
- Chromatin Biology and Epigenetics Laboratory, Biology Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune 411008, India
- Department of Life Sciences, Center of Excellence in Epigenetics, Shiv Nadar University, Shiv Nadar IoE, Gautam Buddha Nagar, Uttar Pradesh - 201314, India
| | - Corey C Harwell
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
- Weill Institute for Neuroscience, 1651 4th St, San Francisco, CA94158, USA
- Department of Neurology, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA
| | - José-Manuel Baizabal
- Department of Biology, Indiana University, 1001 E 3rd St., Bloomington, IN 47405, USA
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
| |
Collapse
|
5
|
Zhang X, Leavey P, Appel H, Makrides N, Blackshaw S. Molecular mechanisms controlling vertebrate retinal patterning, neurogenesis, and cell fate specification. Trends Genet 2023; 39:736-757. [PMID: 37423870 PMCID: PMC10529299 DOI: 10.1016/j.tig.2023.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
This review covers recent advances in understanding the molecular mechanisms controlling neurogenesis and specification of the developing retina, with a focus on insights obtained from comparative single cell multiomic analysis. We discuss recent advances in understanding the mechanisms by which extrinsic factors trigger transcriptional changes that spatially pattern the optic cup (OC) and control the initiation and progression of retinal neurogenesis. We also discuss progress in unraveling the core evolutionarily conserved gene regulatory networks (GRNs) that specify early- and late-state retinal progenitor cells (RPCs) and neurogenic progenitors and that control the final steps in determining cell identity. Finally, we discuss findings that provide insight into regulation of species-specific aspects of retinal patterning and neurogenesis, including consideration of key outstanding questions in the field.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Ophthalmology, Columbia University School of Medicine, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University School of Medicine, New York, NY, USA.
| | - Patrick Leavey
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haley Appel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neoklis Makrides
- Department of Ophthalmology, Columbia University School of Medicine, New York, NY, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Suresh V, Bhattacharya B, Tshuva RY, Danan Gotthold M, Olender T, Bose M, Pradhan SJ, Ben Zeev B, Smith RS, Tole S, Galande S, Harwell C, Baizabal JM, Reiner O. PRDM16 co-operates with LHX2 to shape the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.12.553065. [PMID: 37609127 PMCID: PMC10441425 DOI: 10.1101/2023.08.12.553065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
PRDM16 is a dynamic transcriptional regulator of various stem cell niches, including adipocytic, hematopoietic, cardiac progenitors, and neural stem cells. PRDM16 has been suggested to contribute to 1p36 deletion syndrome, one of the most prevalent subtelomeric microdeletion syndromes. We report a patient with a de novo nonsense mutation in the PRDM16 coding sequence, accompanied by lissencephaly and microcephaly features. Human stem cells were genetically modified to mimic this mutation, generating cortical organoids that exhibited altered cell cycle dynamics. RNA sequencing of cortical organoids at day 32 unveiled changes in cell adhesion and WNT-signaling pathways. ChIP-seq of PRDM16 identified binding sites in postmortem human fetal cortex, indicating the conservation of PRDM16 binding to developmental genes in mice and humans, potentially at enhancer sites. A shared motif between PRDM16 and LHX2 was identified and further examined through comparison with LHX2 ChIP-seq data from mice. These results suggested a collaborative partnership between PRDM16 and LHX2 in regulating a common set of genes and pathways in cortical radial glia cells, possibly via their synergistic involvement in cortical development.
Collapse
|
7
|
Wang CF, Yang JW, Zhuang ZH, Hsing HW, Luhmann HJ, Chou SJ. Activity-dependent feedback regulation of thalamocortical axon development by Lhx2 in cortical layer 4 neurons. Cereb Cortex 2023; 33:1693-1707. [PMID: 35512682 DOI: 10.1093/cercor/bhac166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Establishing neuronal circuits requires interactions between pre- and postsynaptic neurons. While presynaptic neurons were shown to play instructive roles for the postsynaptic neurons, how postsynaptic neurons provide feedback to regulate the presynaptic neuronal development remains elusive. To elucidate the mechanisms for circuit formation, we study the development of barrel cortex (the primary sensory cortex, S1), whose development is instructed by presynaptic thalamocortical axons (TCAs). In the first postnatal weeks, TCA terminals arborize in layer (L) 4 to fill in the barrel center, but it is unclear how TCA development is regulated. Here, we reported that the deletion of Lhx2 specifically in the cortical neurons in the conditional knockout (cKO) leads to TCA arborization defects, which is accompanied with deficits in sensory-evoked and spontaneous cortical activities and impaired lesion-induced plasticity following early whisker follicle ablation. Reintroducing Lhx2 back in L4 neurons in cKO ameliorated TCA arborization and plasticity defects. By manipulating L4 neuronal activity, we further demonstrated that Lhx2 induces TCA arborization via an activity-dependent mechanism. Additionally, we identified the extracellular signaling protein Sema7a as an activity-dependent downstream target of Lhx2 in regulating TCA branching. Thus, we discovered a bottom-up feedback mechanism for the L4 neurons to regulate TCA development.
Collapse
Affiliation(s)
- Chia-Fang Wang
- Neuroscience Program of Academia Sinica (NPAS), Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Zi-Hui Zhuang
- Neuroscience Program of Academia Sinica (NPAS), Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Wei Hsing
- Neuroscience Program of Academia Sinica (NPAS), Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Shen-Ju Chou
- Neuroscience Program of Academia Sinica (NPAS), Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
Nguyen H, Sokpor G, Parichha A, Pham L, Saikhedkar N, Xie Y, Ulmke PA, Rosenbusch J, Pirouz M, Behr R, Stoykova A, Brand-Saberi B, Nguyen HP, Staiger JF, Tole S, Tuoc T. BAF (mSWI/SNF) complex regulates mediolateral cortical patterning in the developing forebrain. Front Cell Dev Biol 2022; 10:1011109. [PMID: 36263009 PMCID: PMC9573979 DOI: 10.3389/fcell.2022.1011109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Early forebrain patterning entails the correct regional designation of the neuroepithelium, and appropriate specification, generation, and distribution of neural cells during brain development. Specific signaling and transcription factors are known to tightly regulate patterning of the dorsal telencephalon to afford proper structural/functional cortical arealization and morphogenesis. Nevertheless, whether and how changes of the chromatin structure link to the transcriptional program(s) that control cortical patterning remains elusive. Here, we report that the BAF chromatin remodeling complex regulates the spatiotemporal patterning of the mouse dorsal telencephalon. To determine whether and how the BAF complex regulates cortical patterning, we conditionally deleted the BAF complex scaffolding subunits BAF155 and BAF170 in the mouse dorsal telencephalic neuroepithelium. Morphological and cellular changes in the BAF mutant forebrain were examined using immunohistochemistry and in situ hybridization. RNA sequencing, Co-immunoprecipitation, and mass spectrometry were used to investigate the molecular basis of BAF complex involvement in forebrain patterning. We found that conditional ablation of BAF complex in the dorsal telencephalon neuroepithelium caused expansion of the cortical hem and medial cortex beyond their developmental boundaries. Consequently, the hippocampal primordium is not specified, the mediolateral cortical patterning is compromised, and the cortical identity is disturbed in the absence of BAF complex. The BAF complex was found to interact with the cortical hem suppressor LHX2. The BAF complex suppresses cortical hem fate to permit proper forebrain patterning. We provide evidence that BAF complex modulates mediolateral cortical patterning possibly by interacting with the transcription factor LHX2 to drive the LHX2-dependent transcriptional program essential for dorsal telencephalon patterning. Our data suggest a putative mechanistic synergy between BAF chromatin remodeling complex and LHX2 in regulating forebrain patterning and ontogeny.
Collapse
Affiliation(s)
- Huong Nguyen
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam
| | - Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | | | - Linh Pham
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | | | - Yuanbin Xie
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Pauline Antonie Ulmke
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Mehdi Pirouz
- Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, United States
| | - Rüdiger Behr
- German Primate Center-Leibniz Institute for Primate Research, Goettingen, Germany
| | | | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Jochen F. Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Shubha Tole
- Tata Institute of Fundamental Research, Mumbai, India
- *Correspondence: Shubha Tole, ; Tran Tuoc,
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Shubha Tole, ; Tran Tuoc,
| |
Collapse
|
9
|
Cai L, Yang JW, Wang CF, Chou SJ, Luhmann HJ, Karayannis T. Identification of a Developmental Switch in Information Transfer between Whisker S1 and S2 Cortex in Mice. J Neurosci 2022; 42:4435-4448. [PMID: 35501157 PMCID: PMC9172289 DOI: 10.1523/jneurosci.2246-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
The whiskers of rodents are a key sensory organ that provides critical tactile information for animal navigation and object exploration throughout life. Previous work has explored the developmental sensory-driven activation of the primary sensory cortex processing whisker information (wS1), also called barrel cortex. This body of work has shown that the barrel cortex is already activated by sensory stimuli during the first postnatal week. However, it is currently unknown when over the course of development these stimuli begin being processed by higher-order cortical areas, such as secondary whisker somatosensory area (wS2). Here we investigate the developmental engagement of wS2 by whisker stimuli and the emergence of corticocortical communication from wS1 to wS2. Using in vivo wide-field imaging and multielectrode recordings in control and conditional KO mice of either sex with thalamocortical innervation defects, we find that wS1 and wS2 are able to process bottom-up information coming from the thalamus from birth. We also identify that it is only at the end of the first postnatal week that wS1 begins to provide functional excitation into wS2, switching to more inhibitory actions after the second postnatal week. Therefore, we have uncovered a developmental window when information transfer between wS1 and wS2 reaches mature function.SIGNIFICANCE STATEMENT At the end of the first postnatal week, the primary whisker somatosensory area starts providing excitatory input to the secondary whisker somatosensory area 2. This excitatory drive weakens during the second postnatal week and switches to inhibition in the adult.
Collapse
Affiliation(s)
- Linbi Cai
- Laboratory of Neural Circuit Assembly, Brain Research Institute, University of Zürich, CH-8057, Zürich, Switzerland
| | - Jenq-Wei Yang
- Laboratory of Neural Circuit Assembly, Brain Research Institute, University of Zürich, CH-8057, Zürich, Switzerland
- Institute of Physiology, University Medical Center, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Chia-Fang Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Theofanis Karayannis
- Laboratory of Neural Circuit Assembly, Brain Research Institute, University of Zürich, CH-8057, Zürich, Switzerland
| |
Collapse
|
10
|
Singh N, Singh D, Bhide A, Sharma R, Sahoo S, Jolly MK, Modi D. Lhx2 in germ cells suppresses endothelial cell migration in the developing ovary. Exp Cell Res 2022; 415:113108. [PMID: 35337816 DOI: 10.1016/j.yexcr.2022.113108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 12/11/2022]
Abstract
LIM-homeobox genes play multiple roles in developmental processes, but their roles in gonad development are not completely understood. Herein, we report that Lhx2, Ils2, Lmx1a, and Lmx1b are expressed in a sexually dimorphic manner in mouse, rat, and human gonads during sex determination. Amongst these, Lhx2 has female biased expression in the developing gonads of species with environmental and genetic modes of sex determination. Single-cell RNAseq analysis revealed that Lhx2 is exclusively expressed in the germ cells of the developing mouse ovaries. To elucidate the roles of Lhx2 in the germ cells, we analyzed the phenotypes of Lhx2 knockout XX gonads. While the gonads developed appropriately in Lhx2 knockout mice and the somatic cells were correctly specified in the developing ovaries, transcriptome analysis revealed enrichment of genes in the angiogenesis pathway. There was an elevated expression of several pro-angiogenic factors in the Lhx2 knockout ovaries. The elevated expression of pro-angiogenic factors was associated with an increase in numbers of endothelial cells in the Lhx2-/- ovaries at E13.5. Gonad recombination assays revealed that the increased numbers of endothelial cells in the XX gonads in absence of Lhx2 was due to ectopic migration of endothelial cells in a cell non-autonomous manner. We also found that, there was increased expression of several endothelial cell-enriched male-biased genes in Lhx2 knockout ovaries. Also, in absence of Lhx2, the migrated endothelial cells formed an angiogenic network similar to that of the wild type testis, although the coelomic blood vessel did not form. Together, our results suggest that Lhx2 in the germ cells is required to suppress vascularization in the developing ovary. These results suggest a need to explore the roles of germ cells in the control of vascularization in developing gonads. Preprint version of the article is available on BioRxiv at https://doi.org/10.1101/2022.03.07.483280.
Collapse
Affiliation(s)
- Neha Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Domdatt Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Anshul Bhide
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Richa Sharma
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Sarthak Sahoo
- Center for BioSystems Science and Engineering, Indian Institute of Science, CV Raman Rd, Bangalore, 560012, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, CV Raman Rd, Bangalore, 560012, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
11
|
Kikkawa T, Osumi N. Multiple Functions of the Dmrt Genes in the Development of the Central Nervous System. Front Neurosci 2021; 15:789583. [PMID: 34955736 PMCID: PMC8695973 DOI: 10.3389/fnins.2021.789583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
The Dmrt genes encode the transcription factor containing the DM (doublesex and mab-3) domain, an intertwined zinc finger-like DNA binding module. While Dmrt genes are mainly involved in the sexual development of various species, recent studies have revealed that Dmrt genes, which belong to the DmrtA subfamily, are differentially expressed in the embryonic brain and spinal cord and are essential for the development of the central nervous system. Herein, we summarize recent studies that reveal the multiple functions of the Dmrt genes in various aspects of vertebrate neural development, including brain patterning, neurogenesis, and the specification of neurons.
Collapse
Affiliation(s)
- Takako Kikkawa
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
12
|
Ypsilanti AR, Pattabiraman K, Catta-Preta R, Golonzhka O, Lindtner S, Tang K, Jones IR, Abnousi A, Juric I, Hu M, Shen Y, Dickel DE, Visel A, Pennachio LA, Hawrylycz M, Thompson CL, Zeng H, Barozzi I, Nord AS, Rubenstein JL. Transcriptional network orchestrating regional patterning of cortical progenitors. Proc Natl Acad Sci U S A 2021; 118:e2024795118. [PMID: 34921112 PMCID: PMC8713794 DOI: 10.1073/pnas.2024795118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/23/2022] Open
Abstract
We uncovered a transcription factor (TF) network that regulates cortical regional patterning in radial glial stem cells. Screening the expression of hundreds of TFs in the developing mouse cortex identified 38 TFs that are expressed in gradients in the ventricular zone (VZ). We tested whether their cortical expression was altered in mutant mice with known patterning defects (Emx2, Nr2f1, and Pax6), which enabled us to define a cortical regionalization TF network (CRTFN). To identify genomic programming underlying this network, we performed TF ChIP-seq and chromatin-looping conformation to identify enhancer-gene interactions. To map enhancers involved in regional patterning of cortical progenitors, we performed assays for epigenomic marks and DNA accessibility in VZ cells purified from wild-type and patterning mutant mice. This integrated approach has identified a CRTFN and VZ enhancers involved in cortical regional patterning in the mouse.
Collapse
Affiliation(s)
- Athéna R Ypsilanti
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158;
| | - Kartik Pattabiraman
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
| | - Rinaldo Catta-Preta
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95618
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA 95618
| | - Olga Golonzhka
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
| | - Susan Lindtner
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Ian R Jones
- Institute for Human Genetics, University of California, San Francisco, CA 94143
- Department of Neurology, University of California, San Francisco, CA 94143
| | - Armen Abnousi
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Ivan Juric
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Yin Shen
- Institute for Human Genetics, University of California, San Francisco, CA 94143
- Department of Neurology, University of California, San Francisco, CA 94143
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- School of Natural Sciences, University of California, Merced, CA 95343
- US Department of Energy Joint Genome Institute, Berkeley, CA 94720
| | - Len A Pennachio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- US Department of Energy Joint Genome Institute, Berkeley, CA 94720
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720
| | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Iros Barozzi
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College, London SW7 2AZ, United Kingdom
| | - Alex S Nord
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95618
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA 95618
| | - John L Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158;
| |
Collapse
|
13
|
Matho KS, Huilgol D, Galbavy W, He M, Kim G, An X, Lu J, Wu P, Di Bella DJ, Shetty AS, Palaniswamy R, Hatfield J, Raudales R, Narasimhan A, Gamache E, Levine JM, Tucciarone J, Szelenyi E, Harris JA, Mitra PP, Osten P, Arlotta P, Huang ZJ. Genetic dissection of the glutamatergic neuron system in cerebral cortex. Nature 2021; 598:182-187. [PMID: 34616069 PMCID: PMC8494647 DOI: 10.1038/s41586-021-03955-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/25/2021] [Indexed: 11/09/2022]
Abstract
Diverse types of glutamatergic pyramidal neurons mediate the myriad processing streams and output channels of the cerebral cortex1,2, yet all derive from neural progenitors of the embryonic dorsal telencephalon3,4. Here we establish genetic strategies and tools for dissecting and fate-mapping subpopulations of pyramidal neurons on the basis of their developmental and molecular programs. We leverage key transcription factors and effector genes to systematically target temporal patterning programs in progenitors and differentiation programs in postmitotic neurons. We generated over a dozen temporally inducible mouse Cre and Flp knock-in driver lines to enable the combinatorial targeting of major progenitor types and projection classes. Combinatorial strategies confer viral access to subsets of pyramidal neurons defined by developmental origin, marker expression, anatomical location and projection targets. These strategies establish an experimental framework for understanding the hierarchical organization and developmental trajectory of subpopulations of pyramidal neurons that assemble cortical processing networks and output channels.
Collapse
Affiliation(s)
- Katherine S Matho
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Dhananjay Huilgol
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - William Galbavy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Miao He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Gukhan Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Xu An
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Jiangteng Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Shanghai Jiaotong University Medical School, Shanghai, China
| | - Priscilla Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Daniela J Di Bella
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Ashwin S Shetty
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | | - Joshua Hatfield
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Ricardo Raudales
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Arun Narasimhan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Eric Gamache
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Jesse M Levine
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, New York, NY, USA
| | - Jason Tucciarone
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, New York, NY, USA
- Department of Psychiatry, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Eric Szelenyi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Julie A Harris
- Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, New York, NY, USA
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Partha P Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
14
|
Borba C, Kourakis MJ, Schwennicke S, Brasnic L, Smith WC. Fold Change Detection in Visual Processing. Front Neural Circuits 2021; 15:705161. [PMID: 34497492 PMCID: PMC8419522 DOI: 10.3389/fncir.2021.705161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Visual processing transforms the complexities of the visual world into useful information. Ciona, an invertebrate chordate and close relative of the vertebrates, has one of the simplest nervous systems known, yet has a range of visuomotor behaviors. This simplicity has facilitated studies linking behavior and neural circuitry. Ciona larvae have two distinct visuomotor behaviors - a looming shadow response and negative phototaxis. These are mediated by separate neural circuits that initiate from different clusters of photoreceptors, with both projecting to a CNS structure called the posterior brain vesicle (pBV). We report here that inputs from both circuits are processed to generate fold change detection (FCD) outputs. In FCD, the behavioral response scales with the relative fold change in input, but is invariant to the overall magnitude of the stimulus. Moreover, the two visuomotor behaviors have fundamentally different stimulus/response relationships - indicative of differing circuit strategies, with the looming shadow response showing a power relationship to fold change, while the navigation behavior responds linearly. Pharmacological modulation of the FCD response points to the FCD circuits lying outside of the visual organ (the ocellus), with the pBV being the most likely location. Consistent with these observations, the connectivity and properties of pBV interneurons conform to known FCD circuit motifs, but with different circuit architectures for the two circuits. The negative phototaxis circuit forms a putative incoherent feedforward loop that involves interconnecting cholinergic and GABAergic interneurons. The looming shadow circuit uses the same cholinergic and GABAergic interneurons, but with different synaptic inputs to create a putative non-linear integral feedback loop. These differing circuit architectures are consistent with the behavioral outputs of the two circuits. Finally, while some reports have highlighted parallels between the pBV and the vertebrate midbrain, suggesting a common origin for the two, others reports have disputed this, suggesting that invertebrate chordates lack a midbrain homolog. The convergence of visual inputs at the pBV, and its putative role in visual processing reported here and in previous publications, lends further support to the proposed common origin of the pBV and the vertebrate midbrain.
Collapse
Affiliation(s)
- Cezar Borba
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Matthew J Kourakis
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Shea Schwennicke
- College of Creative Studies, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Lorena Brasnic
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - William C Smith
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States.,College of Creative Studies, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
15
|
Pal S, Dwivedi D, Pramanik T, Godbole G, Iwasato T, Jabaudon D, Bhalla US, Tole S. An Early Cortical Progenitor-Specific Mechanism Regulates Thalamocortical Innervation. J Neurosci 2021; 41:6822-6835. [PMID: 34193558 PMCID: PMC8360687 DOI: 10.1523/jneurosci.0226-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022] Open
Abstract
The cortical subplate is critical in regulating the entry of thalamocortical sensory afferents into the cortex. These afferents reach the subplate at embryonic day (E)15.5 in the mouse, but "wait" for several days, entering the cortical plate postnatally. We report that when transcription factor LHX2 is lost in E11.5 cortical progenitors, which give rise to subplate neurons, thalamocortical afferents display premature, exuberant ingrowth into the E15.5 cortex. Embryonic mutant subplate neurons are correctly positioned below the cortical plate, but they display an altered transcriptome and immature electrophysiological properties during the waiting period. The sensory thalamus in these cortex-specific Lhx2 mutants displays atrophy and by postnatal day (P) 7, sensory innervation to the cortex is nearly eliminated leading to a loss of the somatosensory barrels. Strikingly, these phenotypes do not manifest if LHX2 is lost in postmitotic subplate neurons, and the transcriptomic dysregulation in the subplate resulting from postmitotic loss of LHX2 is vastly distinct from that seen when LHX2 is lost in progenitors. These results demonstrate a mechanism operating in subplate progenitors that has profound consequences on the growth of thalamocortical axons into the cortex.SIGNIFICANCE STATEMENT Thalamocortical nerves carry sensory information from the periphery to the cortex. When they first grow into the embryonic cortex, they "wait" at the subplate, a structure critical for the guidance and eventual connectivity of thalamic axons with their cortical targets. How the properties of subplate neurons are regulated is unclear. We report that transcription factor LHX2 is required in the progenitor "mother" cells of the cortical primordium when they are producing their "daughter" subplate neurons, in order for the thalamocortical pathway to wait at the subplate. Without LHX2 function in subplate progenitors, thalamocortical axons grow past the subplate, entering the cortical plate prematurely. This is followed by their eventual attrition and, consequently, a profound loss of sensory innervation of the mature cortex.
Collapse
Affiliation(s)
- Suranjana Pal
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560001, India
| | - Tuli Pramanik
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Geeta Godbole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, 411-8540, Japan
- Department of Genetics, SOKENDAI (Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, 1211 Geneva, Switzerland; Department of Neurology, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560001, India
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| |
Collapse
|
16
|
Mercurio S, Alberti C, Serra L, Meneghini S, Berico P, Bertolini J, Becchetti A, Nicolis SK. An early Sox2-dependent gene expression programme required for hippocampal dentate gyrus development. Open Biol 2021; 11:200339. [PMID: 33622105 PMCID: PMC8061699 DOI: 10.1098/rsob.200339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The hippocampus is a brain area central for cognition. Mutations in the human SOX2 transcription factor cause neurodevelopmental defects, leading to intellectual disability and seizures, together with hippocampal dysplasia. We generated an allelic series of Sox2 conditional mutations in mouse, deleting Sox2 at different developmental stages. Late Sox2 deletion (from E11.5, via Nestin-Cre) affects only postnatal hippocampal development; earlier deletion (from E10.5, Emx1-Cre) significantly reduces the dentate gyrus (DG), and the earliest deletion (from E9.5, FoxG1-Cre) causes drastic abnormalities, with almost complete absence of the DG. We identify a set of functionally interconnected genes (Gli3, Wnt3a, Cxcr4, p73 and Tbr2), known to play essential roles in hippocampal embryogenesis, which are downregulated in early Sox2 mutants, and (Gli3 and Cxcr4) directly controlled by SOX2; their downregulation provides plausible molecular mechanisms contributing to the defect. Electrophysiological studies of the Emx1-Cre mouse model reveal altered excitatory transmission in CA1 and CA3 regions.
Collapse
Affiliation(s)
- Sara Mercurio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Chiara Alberti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Linda Serra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Simone Meneghini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Pietro Berico
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Jessica Bertolini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Silvia K Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
17
|
Erzurumlu RS, Gaspar P. How the Barrel Cortex Became a Working Model for Developmental Plasticity: A Historical Perspective. J Neurosci 2020; 40:6460-6473. [PMID: 32817388 PMCID: PMC7486654 DOI: 10.1523/jneurosci.0582-20.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023] Open
Abstract
For half a century now, the barrel cortex of common laboratory rodents has been an exceptionally useful model for studying the formation of topographically organized maps, neural patterning, and plasticity, both in development and in maturity. We present a historical perspective on how barrels were discovered, and how thereafter, they became a workhorse for developmental neuroscientists and for studies on brain plasticity and activity-dependent modeling of brain circuits. What is particularly remarkable about this sensory system is a cellular patterning that is induced by signals derived from the sensory receptors surrounding the snout whiskers and transmitted centrally to the brainstem (barrelettes), the thalamus (barreloids), and the neocortex (barrels). Injury to the sensory receptors shortly after birth leads to predictable pattern alterations at all levels of the system. Mouse genetics have increased our understanding of how barrels are constructed and revealed the interplay of the molecular programs that direct axon growth and cell specification, with activity-dependent mechanisms. There is an ever-rising interest in this sensory system as a neurobiological model to study development of somatotopy, patterning, and plasticity at both the morphologic and physiological levels. This article is part of a group of articles commemorating the 50th anniversary of the Society for Neuroscience.
Collapse
Affiliation(s)
- Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Patricia Gaspar
- Institut National de la Santé et de la Recherche Médicale, Paris Brain Institute, Sorbonne Universités, Paris, France 75013
| |
Collapse
|
18
|
Vitalis T, Dauphinot L, Gressens P, Potier MC, Mariani J, Gaspar P. RORα Coordinates Thalamic and Cortical Maturation to Instruct Barrel Cortex Development. Cereb Cortex 2019; 28:3994-4007. [PMID: 29040410 DOI: 10.1093/cercor/bhx262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The retinoic acid-related orphan receptor alpha (RORα) is well-known for its role in cerebellar development and maturation as revealed in staggerer mice. However, its potential involvement in the development of other brain regions has hardly been assessed. Here, we describe a new role of RORα in the development of primary somatosensory maps. Staggerer mice showed a complete disruption of barrels in the somatosensory cortex and of barreloids in the thalamus. This phenotype results from a severe reduction of thalamocortical axon (TCA) branching and a defective maturation of layer IV cortical neurons during postnatal development. Conditional deletion of RORα was conducted in the thalamus or the cortex to determine the specific contribution of RORα in each of these structures to these phenotypes. This showed that RORα is cell-autonomously required in the thalamus for the organization of TCAs into periphery-related clusters and in the somatosensory cortex for the dendritic maturation of layer IV neurons. Microarray analyses revealed that Sema7a, Neph, and Adcy8 are RORα regulated genes that could be implicated in TCA and cortical maturation. Overall, our study outlines a new role of RORα for the coordinated maturation of the somatosensory thalamus and cortex during the assembly of columnar barrel structures.
Collapse
Affiliation(s)
- Tania Vitalis
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie, Sorbonne Université, Paris, France
| | - Luce Dauphinot
- Université Pierre et Marie Curie, Sorbonne Université, Paris, France
- CNRS UMR 7225, INSERM U1127, Institut du Cerveau et de la Moelle, Paris, France
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Marie-Claude Potier
- Université Pierre et Marie Curie, Sorbonne Université, Paris, France
- CNRS UMR 7225, INSERM U1127, Institut du Cerveau et de la Moelle, Paris, France
| | - Jean Mariani
- Université Pierre et Marie Curie, Sorbonne Université, Paris, France
- CNRS, UMR 8256, Institut de Biologie de Paris Seine (IBPS), Biological adaptation and ageing (B2A), Team Brain Development, Repair and Ageing, Paris, France
- APHP, DHU FAST, Institut de la Longévité, Ivry-Sur-Seine, France
| | - Patricia Gaspar
- Université Pierre et Marie Curie, Sorbonne Université, Paris, France
- INSERM, UMR-S839, Institut du Fer à Moulin, Paris, France
| |
Collapse
|
19
|
Cadwell CR, Bhaduri A, Mostajo-Radji MA, Keefe MG, Nowakowski TJ. Development and Arealization of the Cerebral Cortex. Neuron 2019; 103:980-1004. [PMID: 31557462 PMCID: PMC9245854 DOI: 10.1016/j.neuron.2019.07.009] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/15/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]
Abstract
Adult cortical areas consist of specialized cell types and circuits that support unique higher-order cognitive functions. How this regional diversity develops from an initially uniform neuroepithelium has been the subject of decades of seminal research, and emerging technologies, including single-cell transcriptomics, provide a new perspective on area-specific molecular diversity. Here, we review the early developmental processes that underlie cortical arealization, including both cortex intrinsic and extrinsic mechanisms as embodied by the protomap and protocortex hypotheses, respectively. We propose an integrated model of serial homology whereby intrinsic genetic programs and local factors establish early transcriptomic differences between excitatory neurons destined to give rise to broad "proto-regions," and activity-dependent mechanisms lead to progressive refinement and formation of sharp boundaries between functional areas. Finally, we explore the potential of these basic developmental processes to inform our understanding of the emergence of functional neural networks and circuit abnormalities in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cathryn R Cadwell
- Department of Anatomic Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aparna Bhaduri
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94122, USA; The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mohammed A Mostajo-Radji
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94122, USA; The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew G Keefe
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J Nowakowski
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
20
|
De Clercq S, Keruzore M, Desmaris E, Pollart C, Assimacopoulos S, Preillon J, Ascenzo S, Matson CK, Lee M, Nan X, Li M, Nakagawa Y, Hochepied T, Zarkower D, Grove EA, Bellefroid EJ. DMRT5 Together with DMRT3 Directly Controls Hippocampus Development and Neocortical Area Map Formation. Cereb Cortex 2019; 28:493-509. [PMID: 28031177 DOI: 10.1093/cercor/bhw384] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/16/2016] [Indexed: 11/14/2022] Open
Abstract
Mice that are constitutively null for the zinc finger doublesex and mab-3 related (Dmrt) gene, Dmrt5/Dmrta2, show a variety of patterning abnormalities in the cerebral cortex, including the loss of the cortical hem, a powerful cortical signaling center. In conditional Dmrt5 gain of function and loss of function mouse models, we generated bidirectional changes in the neocortical area map without affecting the hem. Analysis indicated that DMRT5, independent of the hem, directs the rostral-to-caudal pattern of the neocortical area map. Thus, DMRT5 joins a small number of transcription factors shown to control directly area size and position in the neocortex. Dmrt5 deletion after hem formation also reduced hippocampal size and shifted the position of the neocortical/paleocortical boundary. Dmrt3, like Dmrt5, is expressed in a gradient across the cortical primordium. Mice lacking Dmrt3 show cortical patterning defects akin to but milder than those in Dmrt5 mutants, perhaps in part because Dmrt5 expression increases in the absence of Dmrt3. DMRT5 upregulates Dmrt3 expression and negatively regulates its own expression, which may stabilize the level of DMRT5. Together, our findings indicate that finely tuned levels of DMRT5, together with DMRT3, regulate patterning of the cerebral cortex.
Collapse
Affiliation(s)
- Sarah De Clercq
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Marc Keruzore
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Elodie Desmaris
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Charlotte Pollart
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | | | - Julie Preillon
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Sabrina Ascenzo
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Clinton K Matson
- Department of Genetics, Cell Biology and Development , Minneapolis, MN 55455, USA
| | - Melody Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xinsheng Nan
- School of Medicine and School of Bioscience , Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3XQ, UK
| | - Meng Li
- School of Medicine and School of Bioscience , Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3XQ, UK
| | - Yasushi Nakagawa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tino Hochepied
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.,Inflammation Research Center, VIB, B-9052 Ghent, Belgium
| | - David Zarkower
- Department of Genetics, Cell Biology and Development , Minneapolis, MN 55455, USA
| | - Elizabeth A Grove
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Eric J Bellefroid
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| |
Collapse
|
21
|
LDB1 Is Required for the Early Development of the Dorsal Telencephalon and the Thalamus. eNeuro 2019; 6:eN-NWR-0356-18. [PMID: 30873428 PMCID: PMC6416242 DOI: 10.1523/eneuro.0356-18.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/12/2022] Open
Abstract
LIM domain binding protein 1 (LDB1) is a protein cofactor that participates in several multiprotein complexes with transcription factors that regulate mouse forebrain development. Since Ldb1 null mutants display early embryonic lethality, we used a conditional knockout strategy to examine the role of LDB1 in early forebrain development using multiple Cre lines. Loss of Ldb1 from E8.75 using Foxg1Cre caused a disruption of midline boundary structures in the dorsal telencephalon. While this Cre line gave the expected pattern of recombination of the floxed Ldb1 locus, unexpectedly, standard Cre lines that act from embryonic day (E)10.5 (Emx1Cre) and E11.5 (NesCre) did not show efficient or complete recombination in the dorsal telencephalon by E12.5. Intriguingly, this effect was specific to the Ldb1 floxed allele, since three other lines including floxed Ai9 and mTmG reporters, and a floxed Lhx2 line, each displayed the expected spatial patterns of recombination. Furthermore, the incomplete recombination of the floxed Ldb1 locus using NesCre was limited to the dorsal telencephalon, while the ventral telencephalon and the diencephalon displayed the expected loss of Ldb1. This permitted us to examine the requirement for LDB1 in the development of the thalamus in a context wherein the cortex continued to express Ldb1. We report that the somatosensory VB nucleus is profoundly shrunken upon loss of LDB1. Our findings highlight the unusual nature of the Ldb1 locus in terms of recombination efficiency, and also report a novel role for LDB1 during the development of the thalamus.
Collapse
|
22
|
Gaspar P, Renier N. Constraints on somatosensory map development: mutants lead the way. Curr Opin Neurobiol 2018; 53:43-49. [PMID: 29753205 DOI: 10.1016/j.conb.2018.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022]
Abstract
In the rodent somatosensory system, the disproportionally large whisker representation and their specialization into barrel-shaped units in the different sensory relays has offered experimentalists with an ideal tool to identify mechanisms involved in brain map formation. These combine three intertwined constraints: Firstly, fasciculation of the incoming axons; secondly, early neural activity; finally, molecular patterning. Sophisticated genetic manipulations in mice have now allowed dissecting these mechanisms with greater accuracy. Here we discuss some recent papers that provided novel insights into how these different mapping rules and constraints interact to shape the barrel map.
Collapse
Affiliation(s)
- Patricia Gaspar
- Inserm, U839, Institut du Fer à Moulin, Paris, France; Sorbonne Universités, Paris, France.
| | - Nicolas Renier
- Sorbonne Universités, Paris, France; Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Inserm, CNRS, Paris, France
| |
Collapse
|
23
|
Abstract
A hundred years after Lhx2 ortholog apterous was identified as a critical regulator of wing development in Drosophila, LIM-HD gene family members have proved to be versatile and powerful components of the molecular machinery that executes the blueprint of embryogenesis across vertebrate and invertebrate species. Here, we focus on the spatio-temporally varied functions of LIM-homeodomain transcription factor LHX2 in the developing mouse forebrain. Right from its earliest known role in telencephalic and eye field patterning, to the control of the neuron-glia cell fate switch, and the regulation of axon pathfinding and dendritic arborization in late embryonic stages, LHX2 has been identified as a fundamental, temporally dynamic, always necessary, and often sufficient factor in a range of critical developmental phenomena. While Lhx2 mutant phenotypes have been characterized in detail in multiple brain structures, only recently have we advanced in our understanding of the molecular mechanisms by which this factor acts. Common themes emerge from how this multifunctional molecule controls a range of developmental steps in distinct forebrain structures. Examining these shared features, and noting unique aspects of LHX2 function is likely to inform our understanding of how a single factor can bring about a diversity of effects and play central and critical roles across systems and stages. The parallels in LHX2 and APTEROUS functions, and the protein complexes they participate in, offer insights into evolutionary strategies that conserve tool kits and deploy them to play new, yet familiar roles in species separated by hundreds of millions of years.
Collapse
Affiliation(s)
- Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| |
Collapse
|
24
|
Kinare V, Shetty AS, Suresh A, Tole S. PAX6 can substitute for LHX2 and override NFIA-induced astrogliogenesis in developing hippocampus in vivo. J Biosci 2018; 43:75-83. [PMID: 29485116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the developing central nervous system, transcription factors play a crucial role in the regulation of cell fate. Previously we demonstrated that LHX2 is a critical regulator of the neuron-glia cell fate switch in the developing mouse hippocampus. Here, we test LHX2 target gene Pax6 for a role in this process. We report that Pax6 overexpression is able to suppress the enhanced astrogliogenesis arising due to loss of functional LHX2. Furthermore, we show that like Lhx2, Pax6 is also able to suppress induced astrogliogenesis caused by overexpression of progliogenic factor Nfia. This demonstrates that overexpression of Pax6 can substitute for Lhx2 in the regulation of the neuronal versus glial cell fate in the developing hippocampus, and therefore, supports a role for PAX6 as a mediator of LHX2 function in this process.
Collapse
Affiliation(s)
- Veena Kinare
- Department of Life Sciences, Sophia College for Women, Mumbai, India
| | | | | | | |
Collapse
|
25
|
Kinare V, Shetty AS, Suresh A, Tole S. PAX6 can substitute for LHX2 and override NFIA-induced astrogliogenesis in developing hippocampus in vivo. J Biosci 2018. [DOI: 10.1007/s12038-018-9731-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Wang CF, Hsing HW, Zhuang ZH, Wen MH, Chang WJ, Briz CG, Nieto M, Shyu BC, Chou SJ. Lhx2 Expression in Postmitotic Cortical Neurons Initiates Assembly of the Thalamocortical Somatosensory Circuit. Cell Rep 2017; 18:849-856. [PMID: 28122236 DOI: 10.1016/j.celrep.2017.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/03/2016] [Accepted: 12/29/2016] [Indexed: 11/15/2022] Open
Abstract
Cortical neurons must be specified and make the correct connections during development. Here, we examine a mechanism initiating neuronal circuit formation in the barrel cortex, a circuit comprising thalamocortical axons (TCAs) and layer 4 (L4) neurons. When Lhx2 is selectively deleted in postmitotic cortical neurons using conditional knockout (cKO) mice, L4 neurons in the barrel cortex are initially specified but fail to form cellular barrels or develop polarized dendrites. In Lhx2 cKO mice, TCAs from the thalamic ventral posterior nucleus reach the barrel cortex but fail to further arborize to form barrels. Several activity-regulated genes and genes involved in regulating barrel formation are downregulated in the Lhx2 cKO somatosensory cortex. Among them, Btbd3, an activity-regulated gene controlling dendritic development, is a direct downstream target of Lhx2. We find that Lhx2 confers neuronal competency for activity-dependent dendritic development in L4 neurons by inducing the expression of Btbd3.
Collapse
Affiliation(s)
- Chia-Fang Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsiang-Wei Hsing
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Zi-Hui Zhuang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Meng-Hsuan Wen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Carlos G Briz
- Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Campus de Cantoblanco, Madrid 28049, Spain
| | - Marta Nieto
- Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Campus de Cantoblanco, Madrid 28049, Spain
| | - Bai Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
27
|
Dmrt5, a Novel Neurogenic Factor, Reciprocally Regulates Lhx2 to Control the Neuron-Glia Cell-Fate Switch in the Developing Hippocampus. J Neurosci 2017; 37:11245-11254. [PMID: 29025924 PMCID: PMC5688529 DOI: 10.1523/jneurosci.1535-17.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/18/2017] [Accepted: 09/23/2017] [Indexed: 11/21/2022] Open
Abstract
Regulation of the neuron-glia cell-fate switch is a critical step in the development of the CNS. Previously, we demonstrated that Lhx2 is a necessary and sufficient regulator of this process in the mouse hippocampal primordium, such that Lhx2 overexpression promotes neurogenesis and suppresses gliogenesis, whereas loss of Lhx2 has the opposite effect. We tested a series of transcription factors for their ability to mimic Lhx2 overexpression and suppress baseline gliogenesis, and also to compensate for loss of Lhx2 and suppress the resulting enhanced level of gliogenesis in the hippocampus. Here, we demonstrate a novel function of Dmrt5/Dmrta2 as a neurogenic factor in the developing hippocampus. We show that Dmrt5, as well as known neurogenic factors Neurog2 and Pax6, can each not only mimic Lhx2 overexpression, but also can compensate for loss of Lhx2 to different extents. We further uncover a reciprocal regulatory relationship between Dmrt5 and Lhx2, such that each can compensate for loss of the other. Dmrt5 and Lhx2 also have opposing regulatory control on Pax6 and Neurog2, indicating a complex bidirectionally regulated network that controls the neuron-glia cell-fate switch.SIGNIFICANCE STATEMENT We identify Dmrt5 as a novel regulator of the neuron-glia cell-fate switch in the developing hippocampus. We demonstrate Dmrt5 to be neurogenic, and reciprocally regulated by Lhx2: loss of either factor promotes gliogenesis; overexpression of either factor suppresses gliogenesis and promotes neurogenesis; each can substitute for loss of the other. Furthermore, each factor has opposing effects on established neurogenic genes Neurog2 and Pax6 Dmrt5 is known to suppress their expression, and we show that Lhx2 is required to maintain it. Our study reveals a complex regulatory network with bidirectional control of a fundamental feature of CNS development, the control of the production of neurons versus astroglia in the developing hippocampus.Finally, we confirm that Lhx2 binds a highly conserved putative enhancer of Dmrt5, suggesting an evolutionarily conserved regulatory relationship between these factors. Our findings uncover a complex network that involves Lhx2, Dmrt5, Neurog2, and Pax6, and that ensures the appropriate amount and timing of neurogenesis and gliogenesis in the developing hippocampus.
Collapse
|
28
|
LHX2 Interacts with the NuRD Complex and Regulates Cortical Neuron Subtype Determinants Fezf2 and Sox11. J Neurosci 2017; 37:194-203. [PMID: 28053041 PMCID: PMC5214630 DOI: 10.1523/jneurosci.2836-16.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
In the developing cerebral cortex, sequential transcriptional programs take neuroepithelial cells from proliferating progenitors to differentiated neurons with unique molecular identities. The regulatory changes that occur in the chromatin of the progenitors are not well understood. During deep layer neurogenesis, we show that transcription factor LHX2 binds to distal regulatory elements of Fezf2 and Sox11, critical determinants of neuron subtype identity in the mouse neocortex. We demonstrate that LHX2 binds to the nucleosome remodeling and histone deacetylase histone remodeling complex subunits LSD1, HDAC2, and RBBP4, which are proximal regulators of the epigenetic state of chromatin. When LHX2 is absent, active histone marks at the Fezf2 and Sox11 loci are increased. Loss of LHX2 produces an increase, and overexpression of LHX2 causes a decrease, in layer 5 Fezf2 and CTIP2-expressing neurons. Our results provide mechanistic insight into how LHX2 acts as a necessary and sufficient regulator of genes that control cortical neuronal subtype identity. SIGNIFICANCE STATEMENT The functional complexity of the cerebral cortex arises from an array of distinct neuronal subtypes with unique connectivity patterns that are produced from common progenitors. This study reveals that transcription factor LHX2 regulates the numbers of specific cortical output neuron subtypes by controlling the genes that are required to produce them. Loss or increase in LHX2 during neurogenesis is sufficient to increase or decrease, respectively, a particular subcerebrally projecting population. Mechanistically, LHX2 interacts with chromatin modifying protein complexes to edit the chromatin landscape of its targets Fezf2 and Sox11, which regulates their expression and consequently the identities of the neurons produced. Thus, LHX2 is a key component of the control network for producing neurons that will participate in cortical circuitry.
Collapse
|
29
|
Jabaudon D. Fate and freedom in developing neocortical circuits. Nat Commun 2017; 8:16042. [PMID: 28671189 PMCID: PMC5500875 DOI: 10.1038/ncomms16042] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/23/2017] [Indexed: 12/22/2022] Open
Abstract
The activity of neuronal circuits of the neocortex underlies our ability to perceive the world and interact with our environment. During development, these circuits emerge from dynamic interactions between cell-intrinsic, genetically determined programs and input/activity-dependent signals, which together shape these circuits into adulthood. Building on a large body of experimental work, several recent technological developments now allow us to interrogate these nature–nurture interactions with single gene/single input/single-cell resolution. Focusing on excitatory glutamatergic neurons, this review discusses the genetic and input-dependent mechanisms controlling how individual cortical neurons differentiate into specialized cells to assemble into stereotypical local circuits within global, large-scale networks.
Proper functioning of the neocortex – the center of higher-order brain functions – depends on the correct assembly of neocortical neural circuits during development. Here the author discusses how cell-intrinsic developmental programs and activity-dependent signals together shape the formation of neocortical circuits.
Collapse
Affiliation(s)
- Denis Jabaudon
- Department of Basic Neurosciences, Geneva University, 1 rue Michel Servet, 1211 Geneva, Switzerland.,Clinic of Neurology, Geneva University Hospital, 1 rue Michel Servet, 1211 Geneva, Switzerland.,Geneva Neurocenter, Geneva University, 1 rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|
30
|
Intragenic CpG islands play important roles in bivalent chromatin assembly of developmental genes. Proc Natl Acad Sci U S A 2017; 114:E1885-E1894. [PMID: 28223506 DOI: 10.1073/pnas.1613300114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
CpG, 5'-C-phosphate-G-3', islands (CGIs) have long been known for their association with enhancers, silencers, and promoters, and for their epigenetic signatures. They are maintained in embryonic stem cells (ESCs) in a poised but inactive state via the formation of bivalent chromatin containing both active and repressive marks. CGIs also occur within coding sequences, where their functional role has remained obscure. Intragenic CGIs (iCGIs) are largely absent from housekeeping genes, but they are found in all genes associated with organ development and cell lineage control. In this paper, we investigated the epigenetic status of iCGIs and found that they too reside in bivalent chromatin in ESCs. Cell type-specific DNA methylation of iCGIs in differentiated cells was linked to the loss of both the H3K4me3 and H3K27me3 marks, and disruption of physical interaction with promoter regions, resulting in transcriptional activation of key regulators of differentiation such as PAXs, HOXs, and WNTs. The differential epigenetic modification of iCGIs appears to be mediated by cell type-specific transcription factors distinct from those bound by promoter, and these transcription factors may be involved in the hypermethylation of iCGIs upon cell differentiation. iCGIs thus play a key role in the cell type-specific regulation of transcription.
Collapse
|
31
|
Lhx2 Determines Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons. eNeuro 2016; 3:eN-NWR-0230-16. [PMID: 27822500 PMCID: PMC5086798 DOI: 10.1523/eneuro.0230-16.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 02/08/2023] Open
Abstract
A developmental program of epigenetic repression prepares each mammalian olfactory sensory neuron (OSN) to strongly express one allele from just one of hundreds of odorant receptor (OR) genes, but what completes this process of OR gene choice by driving the expression of this allele is incompletely understood. Conditional deletion experiments in mice demonstrate that Lhx2 is necessary for normal expression frequencies of nearly all ORs and all trace amine-associated receptors, irrespective of whether the deletion of Lhx2 is initiated in immature or mature OSNs. Given previous evidence that Lhx2 binds OR gene control elements, these findings indicate that Lhx2 is directly involved in driving OR expression. The data also support the conclusion that OR expression is necessary to allow immature OSNs to complete differentiation and become mature. In contrast to the robust effects of conditional deletion of Lhx2, the loss of Emx2 has much smaller effects and more often causes increased expression frequencies. Lhx2:Emx2 double mutants show opposing effects on Olfr15 expression that reveal independent effects of these two transcription factors. While Lhx2 is necessary for OR expression that supports OR gene choice, Emx2 can act differently; perhaps by helping to control the availability of OR genes for expression.
Collapse
|
32
|
Abstract
Müller glia (MG) are the only glial cell type produced by the neuroepithelial progenitor cells that generate the vertebrate retina. MG are required to maintain retinal homeostasis and support the survival of retinal neurons. Furthermore, in certain vertebrate classes, MG function as adult stem cells, mediating retinal regeneration in response to injury. However, the mechanisms that regulate MG development are poorly understood because there is considerable overlap in gene expression between retinal progenitor cells and differentiated MG. We show that the LIM homeodomain transcription factor Lhx2 is required for the development of MG in the mouse retina. Temporally controlled knock-out studies reveal a requirement for Lhx2 during all stages of MG development, ranging from the proliferation of gliocompetent retinal progenitors, activation of Müller-specific gene expression, and terminal differentiation of MG morphological features. We show that Lhx2 regulates gliogenesis in part by regulating directly the expression of Notch pathway genes including Notch1, Dll1, and Dll3 and gliogenic transcription factors such as Hes1, Hes5, Sox8, and Rax. Conditional knock-out of Lhx2 resulted in a rapid downregulation of Notch pathway genes and loss of Notch signaling. We further demonstrate that Müller gliogenesis induced by misexpression of the potently gliogenic Notch pathway transcriptional effector Hes5 requires Lhx2 expression. These results indicate that Lhx2 not only directly regulates expression of Notch signaling pathway components, but also acts together with the gliogenic Notch pathway to drive MG specification and differentiation.
Collapse
|
33
|
Insights into the Biology and Therapeutic Applications of Neural Stem Cells. Stem Cells Int 2016; 2016:9745315. [PMID: 27069486 PMCID: PMC4812498 DOI: 10.1155/2016/9745315] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/08/2016] [Indexed: 12/27/2022] Open
Abstract
The cerebral cortex is essential for our higher cognitive functions and emotional reasoning. Arguably, this brain structure is the distinguishing feature of our species, and yet our remarkable cognitive capacity has seemingly come at a cost to the regenerative capacity of the human brain. Indeed, the capacity for regeneration and neurogenesis of the brains of vertebrates has declined over the course of evolution, from fish to rodents to primates. Nevertheless, recent evidence supporting the existence of neural stem cells (NSCs) in the adult human brain raises new questions about the biological significance of adult neurogenesis in relation to ageing and the possibility that such endogenous sources of NSCs might provide therapeutic options for the treatment of brain injury and disease. Here, we highlight recent insights and perspectives on NSCs within both the developing and adult cerebral cortex. Our review of NSCs during development focuses upon the diversity and therapeutic potential of these cells for use in cellular transplantation and in the modeling of neurodevelopmental disorders. Finally, we describe the cellular and molecular characteristics of NSCs within the adult brain and strategies to harness the therapeutic potential of these cell populations in the treatment of brain injury and disease.
Collapse
|
34
|
Tomann P, Paus R, Millar SE, Scheidereit C, Schmidt-Ullrich R. Lhx2 is a direct NF-κB target gene that promotes primary hair follicle placode down-growth. Development 2016; 143:1512-22. [PMID: 26952977 DOI: 10.1242/dev.130898] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/19/2016] [Indexed: 12/13/2022]
Abstract
In the epidermis of mice lacking transcription factor nuclear factor-kappa B (NF-κB) activity, primary hair follicle (HF) pre-placode formation is initiated without progression to proper placodes. NF-κB modulates WNT and SHH signaling at early stages of HF development, but this does not fully account for the phenotypes observed upon NF-κB inhibition. To identify additional NF-κB target genes, we developed a novel method to isolate and transcriptionally profile primary HF placodes with active NF-κB signaling. In parallel, we compared gene expression at the same developmental stage in NF-κB-deficient embryos and controls. This uncovered novel NF-κB target genes with potential roles in priming HF placodes for down-growth. Importantly, we identify Lhx2 (encoding a LIM/homeobox transcription factor) as a direct NF-κB target gene, loss of which replicates a subset of phenotypes seen in NF-κB-deficient embryos. Lhx2 and Tgfb2 knockout embryos exhibit very similar abnormalities in HF development, including failure of the E-cadherin suppression required for follicle down-growth. We show that TGFβ2 signaling is impaired in NF-κB-deficient and Lhx2 knockout embryos and that exogenous TGFβ2 rescues the HF phenotypes in Lhx2 knockout skin explants, indicating that it operates downstream of LHX2. These findings identify a novel NF-κB/LHX2/TGFβ2 signaling axis that is crucial for primary HF morphogenesis, which may also function more broadly in development and disease.
Collapse
Affiliation(s)
- Philip Tomann
- Department of Signal Transduction in Tumor Cells, Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin 13092, Germany
| | - Ralf Paus
- Department of Dermatology, University of Münster, Münster 48149, Germany Dermatological Science Research Group, Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester M13 9PL, UK
| | - Sarah E Millar
- Departments of Dermatology and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claus Scheidereit
- Department of Signal Transduction in Tumor Cells, Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin 13092, Germany
| | - Ruth Schmidt-Ullrich
- Department of Signal Transduction in Tumor Cells, Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin 13092, Germany
| |
Collapse
|
35
|
Harb K, Magrinelli E, Nicolas CS, Lukianets N, Frangeul L, Pietri M, Sun T, Sandoz G, Grammont F, Jabaudon D, Studer M, Alfano C. Area-specific development of distinct projection neuron subclasses is regulated by postnatal epigenetic modifications. eLife 2016; 5:e09531. [PMID: 26814051 PMCID: PMC4744182 DOI: 10.7554/elife.09531] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/13/2015] [Indexed: 12/25/2022] Open
Abstract
During cortical development, the identity of major classes of long-distance projection neurons is established by the expression of molecular determinants, which become gradually restricted and mutually exclusive. However, the mechanisms by which projection neurons acquire their final properties during postnatal stages are still poorly understood. In this study, we show that the number of neurons co-expressing Ctip2 and Satb2, respectively involved in the early specification of subcerebral and callosal projection neurons, progressively increases after birth in the somatosensory cortex. Ctip2/Satb2 postnatal co-localization defines two distinct neuronal subclasses projecting either to the contralateral cortex or to the brainstem suggesting that Ctip2/Satb2 co-expression may refine their properties rather than determine their identity. Gain- and loss-of-function approaches reveal that the transcriptional adaptor Lmo4 drives this maturation program through modulation of epigenetic mechanisms in a time- and area-specific manner, thereby indicating that a previously unknown genetic program postnatally promotes the acquisition of final subtype-specific features.
Collapse
Affiliation(s)
- Kawssar Harb
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Elia Magrinelli
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Céline S Nicolas
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Nikita Lukianets
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Laura Frangeul
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Mariel Pietri
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Tao Sun
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, United States
| | - Guillaume Sandoz
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Franck Grammont
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Laboratoire J.A. Dieudonné, Nice, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Michele Studer
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| | - Christian Alfano
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, Nice, France.,Institut de Biologie Valrose, Institut national de la santé et de la recherche médicale, Nice, France.,Centre national de la recherche scientifique, Institut de Biologie Valrose, Nice, France
| |
Collapse
|
36
|
Lhx2 regulates the timing of β-catenin-dependent cortical neurogenesis. Proc Natl Acad Sci U S A 2015; 112:12199-204. [PMID: 26371318 DOI: 10.1073/pnas.1507145112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The timing of cortical neurogenesis has a major effect on the size and organization of the mature cortex. The deletion of the LIM-homeodomain transcription factor Lhx2 in cortical progenitors by Nestin-cre leads to a dramatically smaller cortex. Here we report that Lhx2 regulates the cortex size by maintaining the cortical progenitor proliferation and delaying the initiation of neurogenesis. The loss of Lhx2 in cortical progenitors results in precocious radial glia differentiation and a temporal shift of cortical neurogenesis. We further investigated the underlying mechanisms at play and demonstrated that in the absence of Lhx2, the Wnt/β-catenin pathway failed to maintain progenitor proliferation. We developed and applied a mathematical model that reveals how precocious neurogenesis affected cortical surface and thickness. Thus, we concluded that Lhx2 is required for β-catenin function in maintaining cortical progenitor proliferation and controls the timing of cortical neurogenesis.
Collapse
|
37
|
Postmitotic regulation of sensory area patterning in the mammalian neocortex by Lhx2. Proc Natl Acad Sci U S A 2015; 112:6736-41. [PMID: 25971728 DOI: 10.1073/pnas.1424440112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Current knowledge suggests that cortical sensory area identity is controlled by transcription factors (TFs) that specify area features in progenitor cells and subsequently their progeny in a one-step process. However, how neurons acquire and maintain these features is unclear. We have used conditional inactivation restricted to postmitotic cortical neurons in mice to investigate the role of the TF LIM homeobox 2 (Lhx2) in this process and report that in conditional mutant cortices area patterning is normal in progenitors but strongly affected in cortical plate (CP) neurons. We show that Lhx2 controls neocortical area patterning by regulating downstream genetic and epigenetic regulators that drive the acquisition of molecular properties in CP neurons. Our results question a strict hierarchy in which progenitors dominate area identity, suggesting a novel and more comprehensive two-step model of area patterning: In progenitors, patterning TFs prespecify sensory area blueprints. Sequentially, sustained function of alignment TFs, including Lhx2, is essential to maintain and to translate the blueprints into functional sensory area properties in cortical neurons postmitotically. Our results reemphasize critical roles for Lhx2 that acts as one of the terminal selector genes in controlling principal properties of neurons.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Neocortical and thalamic interactions are necessary for the execution of complex sensory-motor tasks and associated cognitive processes. Investigation of thalamocortical circuit development is therefore critical to understand developmental disorders involving abnormal cortical function. Here, we review recent advances in our understanding of thalamus-dependent cortical patterning and cortical neuron differentiation. RECENT FINDINGS Although the principles of cortical map patterning are increasingly understood, the extent to which thalamocortical inputs contribute to cortical neuron differentiation is still unclear. The recent development of genetic models allowing cell-type-specific dissection of cortical input pathways has shed light on some of the input-dependent and activity-dependent processes occurring during cortical development, which are discussed here. SUMMARY These recent studies have revealed interwoven links between thalamic and cortical neurons, in which cell intrinsic differentiation programs are tightly regulated by synaptic input during a prolonged period of development. Challenges in the years to come will be to identify the mechanisms underlying the reciprocal interactions between intrinsic and extrinsic differentiation programs, and their contribution to neurodevelopmental disorders and neuropsychiatric disorders at large.
Collapse
|
39
|
Geng R, Wang L, Wang X, Chen Y. Cyclic expression of Lhx2 is involved in secondary hair follicle development in cashmere goat. Gene Expr Patterns 2014; 16:31-5. [PMID: 25128627 DOI: 10.1016/j.gep.2014.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 11/25/2022]
Abstract
Lhx2, a member of LIM homeobox transcription factors, plays a key role in normal tissue development. However, the molecular mechanism of Lhx2 gene in the regulation of the secondary hair follicle cycling in cashmere goat remains largely unknown. In the present study, the Lhx2 gene was cloned and characterized in cashmere goat. The cloned cDNA of Lhx2 was 1233 bp in length, encoding for proteins of 406 amino acids which contained all functionally important domains conserved among vertebrate Lhx2 gene. Tissue distribution analysis showed that Lhx2 mRNA was highly expressed in the skin and low expressed in all other tissues. Immunohistochemical localization revealed that Lhx2 was expressed in secondary hair follicles. Analysis of expression profiles of Lhx2 mRNA during different development stages in secondary hair follicles showed that the highest expression was observed at the anagen stage, while the lowest expression was detected at the telogen stage. The expression tendency during the development stages was that it increased from telogen to anagen, decreased from anagen to catagen, and decreased from catagen to telogen. The expression pattern of Lhx2 protein and mRNA was similar. The mRNA and protein expression of Lhx2 were consistent throughout the development cycle in secondary hair follicles. These findings provided a better understanding of the function of Lhx2 and suggested that the cyclic expression of Lhx2 might play important roles during secondary hair follicle development in cashmere goat.
Collapse
Affiliation(s)
- Rongqing Geng
- College of Life Science and Technology, Yancheng Teachers University, Yancheng 224051, China
| | - Lanping Wang
- College of Life Science and Technology, Yancheng Teachers University, Yancheng 224051, China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
40
|
Stettler O, Moya KL. Distinct roles of homeoproteins in brain topographic mapping and in neural circuit formation. Semin Cell Dev Biol 2014; 35:165-72. [PMID: 25042849 DOI: 10.1016/j.semcdb.2014.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 01/02/2023]
Abstract
The construction of the brain is a highly regulated process, requiring coordination of various cellular and molecular mechanisms that together ensure the stability of the cerebrum architecture and functions. The mature brain is an organ that performs complex computational operations using specific sensory information from the outside world and this requires precise organization within sensory networks and a separation of sensory modalities during development. We review here the role of homeoproteins in the arealization of the brain according to sensorimotor functions, the micropartition of its cytoarchitecture, and the maturation of its sensory circuitry. One of the most interesting observation about homeoproteins in recent years concerns their ability to act both in a cell-autonomous and non-cell-autonomous manner. The highlights in the present review collectively show how these two modes of action of homeoproteins confer various functions in shaping cortical maps.
Collapse
Affiliation(s)
- Olivier Stettler
- Laboratoire CRRET EAC 7149, Université Paris-Est Créteil, 61, Av. du Général de Gaulle, 94010 Créteil Cedex, France.
| | - Kenneth L Moya
- Collège de France, Center for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM U1050, 11 place Marcelin Berthelot, 75005 Paris, France; Labex Memolife, PSL Research University, France
| |
Collapse
|
41
|
Lokmane L, Garel S. Map transfer from the thalamus to the neocortex: inputs from the barrel field. Semin Cell Dev Biol 2014; 35:147-55. [PMID: 25020201 DOI: 10.1016/j.semcdb.2014.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 01/05/2023]
Abstract
Sensory perception relies on the formation of stereotyped maps inside the brain. This feature is particularly well illustrated in the mammalian neocortex, which is subdivided into distinct cortical sensory areas that comprise topological maps, such as the somatosensory homunculus in humans or the barrel field of the large whiskers in rodents. How somatosensory maps are formed and relayed into the neocortex remain essential questions in developmental neuroscience. Here, we will present our current knowledge on whisker map transfer in the mouse model, with the goal of linking embryonic and postnatal studies into a comprehensive framework.
Collapse
Affiliation(s)
- Ludmilla Lokmane
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, 46 rue d'Ulm, Paris F-75005, France; Inserm, U1024, Paris F-75005, France; CNRS, UMR 8197, Paris F-75005, France.
| | - Sonia Garel
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, 46 rue d'Ulm, Paris F-75005, France; Inserm, U1024, Paris F-75005, France; CNRS, UMR 8197, Paris F-75005, France.
| |
Collapse
|
42
|
Caronia-Brown G, Yoshida M, Gulden F, Assimacopoulos S, Grove EA. The cortical hem regulates the size and patterning of neocortex. Development 2014; 141:2855-65. [PMID: 24948604 DOI: 10.1242/dev.106914] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cortical hem, a source of Wingless-related (WNT) and bone morphogenetic protein (BMP) signaling in the dorsomedial telencephalon, is the embryonic organizer for the hippocampus. Whether the hem is a major regulator of cortical patterning outside the hippocampus has not been investigated. We examined regional organization across the entire cerebral cortex in mice genetically engineered to lack the hem. Indicating that the hem regulates dorsoventral patterning in the cortical hemisphere, the neocortex, particularly dorsomedial neocortex, was reduced in size in late-stage hem-ablated embryos, whereas cortex ventrolateral to the neocortex expanded dorsally. Unexpectedly, hem ablation also perturbed regional patterning along the rostrocaudal axis of neocortex. Rostral neocortical domains identified by characteristic gene expression were expanded, and caudal domains diminished. A similar shift occurs when fibroblast growth factor (FGF) 8 is increased at the rostral telencephalic organizer, yet the FGF8 source was unchanged in hem-ablated brains. Rather we found that hem WNT or BMP signals, or both, have opposite effects to those of FGF8 in regulating transcription factors that control the size and position of neocortical areas. When the hem is ablated a necessary balance is perturbed, and cerebral cortex is rostralized. Our findings reveal a much broader role for the hem in cortical development than previously recognized, and emphasize that two major signaling centers interact antagonistically to pattern cerebral cortex.
Collapse
Affiliation(s)
| | - Michio Yoshida
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA RIKEN Center for Developmental Biology, Kobe, Japan
| | - Forrest Gulden
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | | | - Elizabeth A Grove
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|