1
|
Palmai Z. Sucrose and Gibberellic Acid Binding Stabilize the Inward-Open Conformation of AtSWEET13: A Molecular Dynamics Study. Proteins 2025; 93:1141-1156. [PMID: 39815685 DOI: 10.1002/prot.26799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
In plants, sugar will eventually be exported transporters (SWEETs) facilitate the translocation of mono- and disaccharides across membranes and play a critical role in modulating responses to gibberellin (GA3), a key growth hormone. However, the dynamic mechanisms underlying sucrose and GA3 binding and transport remain elusive. Here, we employed microsecond-scale molecular dynamics (MD) simulations to investigate the influence of sucrose and GA3 binding on SWEET13 transporter motions. While sucrose exhibits high flexibility within the binding pocket, GA3 remains firmly anchored in the central cavity. Binding of both ligands increases the average channel radius along the transporter's principal axis. In contrast to the apo form, which retains its initial conformation throughout the simulation, ligand-bound complexes undergo a significant conformational transition characterized by further opening of the intracellular gate relative to the inward-open crystal structure (5XPD). This opening is driven by ligand-induced bending of helix V, stabilizing the inward-open state. Sucrose binding notably enhances the flexibility of the intracellular gate and amplifies anticorrelated motions between the N- and C-terminal domains at the intracellular side, suggesting an opening-closing motion of these domains. Principal component analysis revealed that this gating motion is most pronounced in the sucrose complex and minimal in the apo form, highlighting sucrose's ability to induce high-amplitude gating. Our binding free energy calculations indicate that SWEET13 has lower binding affinity for sucrose compared to GA3, consistent with its role in sugar transport. These results provide insight into key residues involved in sucrose and GA3 binding and transport, advancing our understanding of SWEET13 dynamics.
Collapse
Affiliation(s)
- Zoltan Palmai
- Institute of Transformative bio-Molecules, Nagoya University, Nagoya, Japan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
2
|
Selvam B, Paul A, Yu YC, Chen LQ, Shukla D. SWEET Family Transporters Act as Water-Conducting Carrier Proteins in Plants. J Chem Inf Model 2025; 65:3697-3705. [PMID: 40156514 DOI: 10.1021/acs.jcim.5c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Dedicated water channels are involved in the facilitated diffusion of water molecules across cell membranes in plants. Transporter proteins are also known to transport water molecules along with substrates; however, the molecular mechanism of water permeation is not well understood in plant transporters. Here, we show that plant sugar transporters from the SWEET (sugar will eventually be exported transporter) family act as water-conducting carrier proteins via a variety of passive and active mechanisms that allow the diffusion of water molecules from one side of the membrane to the other. This study provides a molecular perspective on how plant membrane transporters act as water carrier proteins, a topic that has not been extensively explored in the literature. Water permeation in membrane transporters could occur via four distinct mechanisms, which form our hypothesis for water transport in SWEETs. These hypotheses are tested using molecular dynamics simulations of the outward-facing, occluded, and inward-facing states of AtSWEET1 to identify the water permeation pathways and the flux associated with them. The hydrophobic gates at the center of the transport tunnel act as barriers that restrict water permeation. We have performed in silico single and double mutations of the hydrophobic gate residues to examine the changes in water conductivity. Surprisingly, the double mutant allows water permeation to the intracellular half of the membrane and forms a continuous water channel. These computational results are validated by experimentally examining the transport of hydrogen peroxide molecules by the AtSWEET family of transporters. We have also shown that the transport of hydrogen peroxide follows a mechanism similar to that of water transport in AtSWEET1. Finally, we conclude that similar water-conduction states are also present in other SWEETs due to the high degree of sequence and structural conservation exhibited by this transporter family.
Collapse
Affiliation(s)
- Balaji Selvam
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Arnav Paul
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Ya-Chi Yu
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Yue J, Yuan S, Liu L, Niu Z, Ma L, Pu Y, Wu J, Fang Y, Sun W. Genome-Wide Identification of the SWEET Gene Family and Functional Analysis of BraSWEET10 in Winter B. rapa ( Brassica rapa L.) Under Low-Temperature Stress. Int J Mol Sci 2025; 26:2398. [PMID: 40141038 PMCID: PMC11942336 DOI: 10.3390/ijms26062398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Sugars will eventually be exported transporter (SWEET), a class of glucose transport proteins, is crucial in plants for glucose transport by redistribution of sugars and regulates growth, development, and stress tolerance. Although the SWEET family has been studied in many plants, little is known about its function in winter B. rapa (Brassica rapa L.). Bioinformatics approaches were adopted to identify the SWEET gene (BraSWEETs) family in B. rapa to investigate its role during overwintering. From the whole-genome data, 31 BraSWEET genes were identified. Gene expansion was realized by tandem and fragment duplication, and the 31 genes were classified into four branches by phylogenetic analysis. As indicated by exon-intron structure, cis-acting elements, MEME (Multiple EM for Motif Elicitation) motifs, and protein structure, BraSWEETs were evolutionarily conserved. According to the heat map, 23 BraSWEET genes were differentially expressed during overwintering, revealing their potential functions in response to low-temperature stress and involvement in the overwintering memory-formation mechanism. BraSWEET10 is mainly associated with plant reproductive growth and may be crucial in the formation of overwintering memory in B. rapa. The BraSWEET10 gene was cloned into B. rapa (Longyou-7, L7). The BraSWEET10 protein contained seven transmembrane structural domains. Real-time fluorescence quantitative PCR (qRT-PCR) showed that the BraSWEET10 gene responded to low-temperature stress. BraSWEET10 was localized to the cell membrane. The root length of overexpressing transgenic A. thaliana was significantly higher than that of wild-type (WT) A. thaliana under low temperatures. Our findings suggest that this gene may be important for the adaptation of winter B. rapa to low-temperature stress. Overall, the findings are expected to contribute to understanding the evolutionary links of the BraSWEET family and lay the foundation for future studies on the functional characteristics of BraSWEET genes.
Collapse
Affiliation(s)
- Jinli Yue
- State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China (L.L.); (Y.P.)
- Gansu Vocational College of Agriculture, Lanzhou 730020, China
| | - Shunjie Yuan
- Lanzhou Institute for Food and Drug Control, Lanzhou 730070, China
| | - Lijun Liu
- State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China (L.L.); (Y.P.)
| | - Zaoxia Niu
- Institute of Crop, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Li Ma
- State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China (L.L.); (Y.P.)
| | - Yuanyuan Pu
- State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China (L.L.); (Y.P.)
| | - Junyan Wu
- State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China (L.L.); (Y.P.)
| | - Yan Fang
- State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China (L.L.); (Y.P.)
| | - Wancang Sun
- State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China (L.L.); (Y.P.)
| |
Collapse
|
4
|
Heng S, He J, Zhu X, Cai J, Fu M, Zhang S, Zeng W, Xing F, Mao G. Genome wide identification of BjSWEET gene family and drought response analysis of BjSWEET12 and BjSWEET17 genes in Brassica juncea. BMC PLANT BIOLOGY 2024; 24:1094. [PMID: 39558253 PMCID: PMC11575039 DOI: 10.1186/s12870-024-05815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Sugars Will Eventually be Exported Transporter (SWEET) gene family is a unique type of sugar transporter that plays a vital role in metabolic regulation, growth, development, and stress response in multiple species. This study aimed to systematically identify the SWEET gene family members and detect the regulation of gene expression and their potential roles of the SWEET gene family in Brassica juncea. RESULTS A total of 66 BjSWEET (Brassica juncea Sugar Will Eventually be Exported Transporter) genes distributed across 17 chromosomes were identified. The gene structure and motifs were relatively conserved, with all members containing the MtN3/saliva domain. Phylogenetic analysis revealed that the SWEET gene family can be classified into four subfamilies (Clades I, II, III, and IV). Collinearity analysis revealed that there were 118 pairs of segment duplicates, indicating that some BjSWEET genes were obtained via segmental duplication. The promoter regions of the BjSWEET genes contained many plant hormone-related response elements, stress-related response elements, growth and development elements, and light-responsive regulatory elements. Furthermore, analysis of the expression profiles revealed that the expression levels of the BjSWEET genes differed among the eight different tissues. qRT‒PCR analysis of six selected BjSWEET genes revealed that the expression levels of BjSWEET17.2, BjSWEET17.4, BjSWEET12.2, and BjSWEET12.3 were significantly upregulated under drought treatment, suggesting that these genes may respond to drought stress in B. juncea. CONCLUSION This study systematically identified and analyzed the SWEET gene family members in B. juncea for the first time, laying the foundation for further research on the molecular mechanisms of drought resistance in B. juncea and providing theoretical guidance for the application of these genes in other species.
Collapse
Affiliation(s)
- Shuangping Heng
- College of Life Science, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, P. R. China.
| | - Jingjuan He
- College of Life Science, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Xinyu Zhu
- College of Life Science, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Jiayu Cai
- College of Life Science, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Mengke Fu
- College of Life Science, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Shaoheng Zhang
- College of Life Science, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Wei Zeng
- College of Life Science, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Feng Xing
- College of Life Science, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Guangzhi Mao
- College of Life Science, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, P. R. China
| |
Collapse
|
5
|
Kong L, Sun J, Zhang W, Zhan Z, Piao Z. Functional analysis of the key BrSWEET genes for sugar transport involved in the Brassica rapa-Plasmodiophora brassicae interaction. Gene 2024; 927:148708. [PMID: 38885818 DOI: 10.1016/j.gene.2024.148708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Plasmodiophora brassicae, the causative agent of clubroot disease, establishes a long-lasting parasitic relationship with its host by inducing the expression of sugar transporters. Previous studies have indicated that most BrSWEET genes in Chinese cabbage are up-regulated upon infection with P. brassicae. However, the key BrSWEET genes responsive to P. brassicae have not been definitively identified. In this study, we selected five BrSWEET genes and conducted a functional analysis of them. These five BrSWEET genes showed a notable up-regulation in roots after P. brassicae inoculation. Furthermore, these BrSWEET proteins were localized to the plasma membrane. Yeast functional complementation assays confirmed transport activity for glucose, fructose, or sucrose in four BrSWEETs, with the exception of BrSWEET2a. Mutants and silenced plants of BrSWEET1a, -11a, and -12a showed lower clubroot disease severity compared to wild-type plants, while gain-of-function Arabidopsis thaliana plants overexpressing these three BrSWEET genes exhibited significantly higher disease incidence and severity. Our findings suggested that BrSWEET1a, BrSWEET11a, and BrSWEET12a play pivotal roles in P. brassicae-induced gall formation, shedding light on the role of sugar transporters in host-pathogen interactions.
Collapse
Affiliation(s)
- Liyan Kong
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Jiadi Sun
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Wenjun Zhang
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
6
|
Liu Y, Zhang H, Zhao K, Wei X, Li L, Tang Y, Xiong Y, Xu J. Expression Profiling Analysis of the SWEET Gene Family in In Vitro Pitaya Under Low-Temperature Stress and Study of Its Cold Resistance Mechanism. PLANTS (BASEL, SWITZERLAND) 2024; 13:3092. [PMID: 39520008 PMCID: PMC11548471 DOI: 10.3390/plants13213092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Pitaya (Hylocereus undatus) fruit is an attractive, nutrient-rich tropical fruit with commercial value. However, low-temperature stress severely affects the yield and quality of pitaya. The relevant mechanisms involved in the response of pitaya to low-temperature stress remain unclear. To study whether the SWEET gene family mediates the response of H. undatus to low-temperature stress and the related mechanisms, we performed genome-wide identification of the SWEET gene family in pitaya, and we used 'Baiyulong' tissue-cultured plantlets as material in the present study. We identified 28 members of the SWEET gene family from the H. undatus genome and divided these family members into four groups. Members of this gene family presented some differences in the sequences of introns and exons, but the gene structure, especially the motifs, presented relatively conserved characteristics. The promoter regions of most HuSWEETs have multiple stress- or hormone-related cis-elements. Three duplicated gene pairs were identified, including one tandem duplication gene and two fragment duplication gene pairs. The results revealed that the SWEET genes may regulate the transport and distribution of soluble sugars in plants; indirectly regulate the enzyme activities of CAT, POD, and T-SOD through its expression products; and are involved in the response of pitaya to low-temperature stress and play vital roles in this process. After ABA and MeJA treatment, the expression of HuSWEETs changed significantly, and the cold stress was also alleviated. This study elucidated the molecular mechanism and physiological changes in the SWEET gene in sugar metabolism and distribution of pitaya when it experiences low-temperature stress and provided a theoretical basis for cold-resistant pitaya variety breeding.
Collapse
Affiliation(s)
- Youjie Liu
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| | - Hanyao Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China; (H.Z.); (K.Z.)
| | - Ke Zhao
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China; (H.Z.); (K.Z.)
| | - Xiuqing Wei
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| | - Liang Li
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| | - Yajun Tang
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| | - Yueming Xiong
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| | - Jiahui Xu
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| |
Collapse
|
7
|
Pan Y, Niu K, Miao P, Zhao G, Zhang Y, Ju Z, Chai J, Yang J, Cui X, Zhang R. Genome-wide analysis of the SWEET gene family and its response to powdery mildew and leaf spot infection in the common oat (Avena sativa L.). BMC Genomics 2024; 25:995. [PMID: 39448896 PMCID: PMC11515518 DOI: 10.1186/s12864-024-10933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
The nutritional quality and yield of oats (Avena sativa) are often compromised by plant diseases such as red leaf, powdery mildew, and leaf spot. Sugars Will Eventually be Exported Transporters (SWEETs) are newly identified sugar transporters involved in regulating plant growth and stress responses. However, the roles of SWEET genes in biotic stress responses remain uncharacterized in oats. In this study, 13 AsSWEET genes were identified across nine chromosomes of the oat genome, all of which were predicted to contain seven transmembrane regions. Phylogenetic analysis revealed four clades of AsSWEET proteins, with high homology to SWEET proteins in the Poaceae family. Collinearity analysis demonstrated strong relationships between oat and Zea mays SWEETs. Using subcellular localization prediction tools, AsSWEET proteins were predicted to localize to the plasma membrane. Promoter analysis revealed cis-acting elements associated with light response, growth, and stress regulation. Six AsSWEET proteins were predicted to interact in a network centered on AsSWEET1a and AsSWEET11. Gene expression analysis of two oat varieties, 'ForagePlus' and 'Molasses', indicated significant expression differences in several AsSWEET genes following infection with powdery mildew or leaf spot, including AsSWEET1a, AsSWEET1b, AsSWEET2b, AsSWEET3a, AsSWEET11, and AsSWEET16. These SWEET genes are potential candidates for disease resistance in oats. This study provides a foundation for understanding the regulatory mechanisms of AsSWEET genes, particularly in response to powdery mildew and leaf spot, and offers insights for enhancing oat molecular breeding.
Collapse
Affiliation(s)
- Yuanbo Pan
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| | - Peiqin Miao
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Guiqin Zhao
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Yuehua Zhang
- National Center of Pratacultural Technology Innovation (under preparation), Hohhot, 810016, Inner Mongolia, China
| | - Zeliang Ju
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Jikuan Chai
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Juanjuan Yang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Xiaoning Cui
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Ran Zhang
- Institute of Ecological Protection and Restoration, Grassland Research Center, Chinese Academy of Forestry, National Forestry and Grassland Administration, Beijing, 100091, China
| |
Collapse
|
8
|
Chen Y, Miller AJ, Qiu B, Huang Y, Zhang K, Fan G, Liu X. The role of sugar transporters in the battle for carbon between plants and pathogens. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2844-2858. [PMID: 38879813 PMCID: PMC11536462 DOI: 10.1111/pbi.14408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 11/05/2024]
Abstract
In photosynthetic cells, plants convert carbon dioxide to sugars that can be moved between cellular compartments by transporters before being subsequently metabolized to support plant growth and development. Most pathogens cannot synthesize sugars directly but have evolved mechanisms to obtain plant-derived sugars as C resource for successful infection and colonization. The availability of sugars to pathogens can determine resistance or susceptibility. Here, we summarize current progress on the roles of sugar transporters in plant-pathogen interactions. We highlight how transporters are manipulated antagonistically by both host and pathogens in competing for sugars. We examine the potential application of this target in resistance breeding and discuss opportunities and challenges for the future.
Collapse
Affiliation(s)
- Yi Chen
- Biochemistry & Metabolism DepartmentJohn Innes CentreNorwichUK
| | | | - Bowen Qiu
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization Lushan Botanical GardenChinese Academy of ScienceJiujiangJiangxiChina
| | - Yao Huang
- School of Life ScienceNanChang UniversityNanchangJiangxiChina
| | - Kai Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of OceanographyMinistry of Natural ResourcesXiamenChina
| | - Gaili Fan
- Xiamen Greening Administration CentreXiamenChina
| | - Xiaokun Liu
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization Lushan Botanical GardenChinese Academy of ScienceJiujiangJiangxiChina
| |
Collapse
|
9
|
Chen L, Cai M, Liu J, Jiang X, Liu J, Zhenxing W, Wang Y, Li Y. Genome-wide identification and expression analyses of SWEET gene family reveal potential roles in plant development, fruit ripening and abiotic stress responses in cranberry ( Vaccinium macrocarpon Ait). PeerJ 2024; 12:e17974. [PMID: 39308825 PMCID: PMC11416763 DOI: 10.7717/peerj.17974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
The sugars will eventually be exported transporter (SWEET) family is a novel class of sugar transporters that play a crucial role in plant growth, development, and responses to stress. Cranberry (Vaccinium macrocarpon Ait.) is a nutritious berry with economic importance, but little is known about SWEET gene family functions in this small fruit. In this research, 13 VmSWEET genes belonging to four clades were identified in the cranberry genome for the first time. In the conserved domains, we observed seven phosphorylation sites and four amino acid residues that might be crucial for the binding function. The majority of VmSWEET genes in each clade shared similar gene structures and conserved motifs, showing that the VmSWEET genes were highly conserved during evolution. Chromosomal localization and duplication analyses showed that VmSWEET genes were unevenly distributed in eight chromosomes and two pairs of them displayed synteny. A total of 79 cis-acting elements were predicted in the promoter regions of VmSWEETs including elements responsive to plant hormones, light, growth and development and stress responses. qRT-PCR analysis showed that VmSWEET10.1 was highly expressed in flowers, VmSWEET16 was highly expressed in upright and runner stems, and VmSWEET3 was highly expressed in the leaves of both types of stems. In fruit, the expression of VmSWEET14 and VmSWEET16 was highest of all members during the young fruit stage and were downregulated as fruit matured. The expression of VmSWEET4 was higher during later developmental stages than earlier developmental stages. Furthermore, qRT-PCR results revealed a significant up-regulation of VmSWEET10.2, under osmotic, saline, salt-alkali, and aluminum stress conditions, suggesting it has a crucial role in mediating plant responses to various environmental stresses. Overall, these results provide new insights into the characteristics and evolution of VmSWEET genes. Moreover, the candidate VmSWEET genes involved in the growth, development and abiotic stress responses can be used for molecular breeding to improve cranberry fruit quality and abiotic stress resistance.
Collapse
Affiliation(s)
- Li Chen
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Mingyu Cai
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Jiaxin Liu
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Xuxin Jiang
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Jiayi Liu
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Wang Zhenxing
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Yunpeng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yadong Li
- Jilin Agricultural University, College of Horticulture, Changchun, China
| |
Collapse
|
10
|
Cao L, Wang J, Wang L, Liu H, Wu W, Hou F, Liu Y, Gao Y, Cheng X, Li S, Xing G. Genome-wide analysis of the SWEET gene family in Hemerocallis citrina and functional characterization of HcSWEET4a in response to salt stress. BMC PLANT BIOLOGY 2024; 24:661. [PMID: 38987684 PMCID: PMC11238388 DOI: 10.1186/s12870-024-05376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Sugars will be eventually effluxed transporters (SWEETs) have been confirmed to play diverse physiological roles in plant growth, development and stress response. However, the characteristics and functions of the SWEET genes in Hemerocallis citrina remain unclear and poorly elucidated. In this study, the whole genome of Hemerocallis citrina was utilized to conduct bioinformatics analysis and a total of 19 HcSWEET genes were successfully identified. Analysis of the physicochemical properties indicated dominant differences among these HcSWEETs. A phylogenetic analysis revealed that HcSWEET proteins can be divided into 4 clades ranging from Clade I to IV, where proteins within the same clade exhibited shared conserved motifs and gene structures. Five to six exons were contained in the majority of HcSWEET genes, which were unevenly distributed across 11 chromosomes. The gene duplication analysis showed the presence of 4 gene pairs. Comparative syntenic maps revealed that the HcSWEET gene family might present more closed homology in monocotyledons than dicotyledons. Cis-acting element analysis of HcSWEET genes indicated key responsiveness to various hormones, light, and stresses. Additionally, transcriptome sequencing analysis suggested that most HcSWEET genes had a relatively higher expression in roots, and HcSWEET4a was significantly up-regulated under salt stress. Overexpression further verified the possibility that HcSWEET4a was involved in response to salt stress, which provides novel insights and facilitates in-depth studies of the functional analysis of HcSWEETs in resistance to abiotic stress.
Collapse
Affiliation(s)
- Lihong Cao
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Jinyao Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Lixuan Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Huili Liu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Wenjing Wu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Feifan Hou
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Yuting Liu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Yang Gao
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Xiaojing Cheng
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Sen Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China.
- Datong Daylily Industrial Development Research Institute, Datong, 037000, China.
| | - Guoming Xing
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China.
- Datong Daylily Industrial Development Research Institute, Datong, 037000, China.
| |
Collapse
|
11
|
Narayanan KK, Weigle AT, Xu L, Mi X, Zhang C, Chen LQ, Procko E, Shukla D. Deep mutational scanning reveals sequence to function constraints for SWEET family transporters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601307. [PMID: 39005363 PMCID: PMC11244857 DOI: 10.1101/2024.06.28.601307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Protein science is entering a transformative phase enabled by deep mutational scans that provide an unbiased view of the residue level interactions that mediate function. However, it has yet to be extensively used to characterize the mutational and evolutionary landscapes of plant proteins. Here, we apply the method to explore sequence-function relationships within the sugar transporter AtSWEET13. DMS results describe how mutational interrogation throughout different regions of the protein affects AtSWEET13 abundance and transport function. Our results identify novel transport-enhancing mutations that are validated using the FRET sensor assays. Extending DMS results to phylogenetic analyses reveal the role of transmembrane helix 4 (TM4) which makes the SWEET family transporters distinct from prokaryotic SemiSWEETs. We show that transmembrane helix 4 is intolerant to motif swapping with other clade-specific SWEET TM4 compositions, despite accommodating single point-mutations towards aromatic and charged polar amino acids. We further show that the transfer learning approaches based on physics and ML based In silico variant prediction tools have limited utility for engineering plant proteins as they were unable to reproduce our experimental results. We conclude that DMS can produce datasets which, when combined with the right predictive computational frameworks, can direct plant engineering efforts through derivative phenotype selection and evolutionary insights.
Collapse
Affiliation(s)
- Krishna K. Narayanan
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Austin T. Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lingyun Xu
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xuenan Mi
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chen Zhang
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Erik Procko
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Cyrus Biotechnology, Inc., Seattle, Washington 98121, United States
| | - Diwakar Shukla
- Department of Chemical & Biomolecular Engineering; Department of Plant Biology; Department of Bioengineering; Department of Chemistry, Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Wu X, Lin T, Zhou X, Zhang W, Liu S, Qiu H, Birch PRJ, Tian Z. Potato E3 ubiquitin ligase StRFP1 positively regulates late blight resistance by degrading sugar transporters StSWEET10c and StSWEET11. THE NEW PHYTOLOGIST 2024; 243:688-704. [PMID: 38769723 DOI: 10.1111/nph.19848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Potato (Solanum tuberosum) is the fourth largest food crop in the world. Late blight, caused by oomycete Phytophthora infestans, is the most devastating disease threatening potato production. Previous research has shown that StRFP1, a potato Arabidopsis Tóxicos en Levadura (ATL) family protein, positively regulates late blight resistance via its E3 ligase activity. However, the underlying mechanism is unknown. Here, we reveal that StRFP1 is associated with the plasma membrane (PM) and undergoes constitutive endocytic trafficking. Its PM localization is essential for inhibiting P. infestans colonization. Through in vivo and in vitro assays, we investigated that StRFP1 interacts with two sugar transporters StSWEET10c and StSWEET11 at the PM. Overexpression (OE) of StSWEET10c or StSWEET11 enhances P. infestans colonization. Both StSWEET10c and StSWEET11 exhibit sucrose transport ability in yeast, and OE of StSWEET10c leads to an increased sucrose content in the apoplastic fluid of potato leaves. StRFP1 ubiquitinates StSWEET10c and StSWEET11 to promote their degradation. We illustrate a novel mechanism by which a potato ATL protein enhances disease resistance by degrading susceptibility (S) factors, such as Sugars Will Eventually be Exported Transporters (SWEETs). This offers a potential strategy for improving disease resistance by utilizing host positive immune regulators to neutralize S factors.
Collapse
Affiliation(s)
- Xintong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Tianyu Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Xiaoshuang Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Wenjun Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Shengxuan Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Huishan Qiu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Paul R J Birch
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| |
Collapse
|
13
|
Selvam B, Paul A, Yu YC, Chen LQ, Shukla D. SWEET family transporters act as water conducting carrier proteins in plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.23.600272. [PMID: 38979333 PMCID: PMC11230166 DOI: 10.1101/2024.06.23.600272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Dedicated water channels are involved in the facilitated diffusion of water molecules across the cell membrane in plants. Transporter proteins are also known to transport water molecules along with substrates, however the molecular mechanism of water permeation is not well understood in plant transporters. Here, we show plant sugar transporters from the SWEET (Sugar Will Eventually be Exported Transporter) family act as water-conducting carrier proteins via a variety of passive and active mechanisms that allow diffusion of water molecules from one side of the membrane to the other. This study provides a molecular perspective on how plant membrane transporters act as water carrier proteins, a topic that has not been extensively explored in literature. Water permeation in membrane transporters could occur via four distinct mechanisms which form our hypothesis for water transport in SWEETs. These hypothesis are tested using molecular dynamics simulations of the outward-facing, occluded, and inward-facing state of AtSWEET1 to identify the water permeation pathways and the flux associated with them. The hydrophobic gates at the center of the transport tunnel act as a barrier that restricts water permeation. We have performed in silico single and double mutations of the hydrophobic gate residues to examine the changes in the water conductivity. Surprisingly, the double mutant allows the water permeation to the intracellular half of the membrane and forms a continuous water channel. These computational results are validated by experimentally examining the transport of hydrogen peroxide molecules by the AtSWEET family of transporters. We have also shown that the transport of hydrogen peroxide follows the similar mechanism as water transport in AtSWEET1. Finally, we conclude that similar water-conduction states are also present in other SWEET transporters due to the high sequence and structure conservation exhibited by this transporter family.
Collapse
Affiliation(s)
- Balaji Selvam
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Arnav Paul
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Ya-Chi Yu
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
14
|
Weigle AT, Shukla D. Interplay between phosphorylation and oligomerization tunes the conformational ensemble of SWEET transporters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598708. [PMID: 38915650 PMCID: PMC11195267 DOI: 10.1101/2024.06.12.598708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
SWEET sugar transporters are desirable biotechnological targets for improving plant growth. One engineering strategy includes modulating how SWEET transporters are regulated. Phosphorylation and oligomerization have been shown to positively regulate SWEET function, leading to increased sugar transport activity. However, constitutive phosphorylation may not be beneficial to plant health under basal conditions. Structural and mechanistic understanding of the interplay between phosphorylation and oligomerization in functional regulation of SWEETs remains limited. Using extensive molecular dynamics simulations coupled with Markov state models, we demonstrate the thermodynamic and kinetic effects of SWEET phosphorylation and oligomerization using OsSWEET2b as a model. We report that the beneficial effects of these SWEET regulatory mechanisms bias outward-facing states and improved extracellular gating, which complement published experimental findings. Our results offer molecular insights to SWEET regulation and may guide engineering strategies throughout the SWEET transport family.
Collapse
Affiliation(s)
- Austin T. Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Diwakar Shukla
- Department of Chemical & Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
15
|
Sun J, Wang M, Zhang X, Liu X, Jiang J. SlZIP11 mediates zinc accumulation and sugar storage in tomato fruits. PeerJ 2024; 12:e17473. [PMID: 38827312 PMCID: PMC11143971 DOI: 10.7717/peerj.17473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Background Zinc (Zn) is a vital micronutrient essential for plant growth and development. Transporter proteins of the ZRT/IRT-like protein (ZIP) family play crucial roles in maintaining Zn homeostasis. Although the acquisition, translocation, and intracellular transport of Zn are well understood in plant roots and leaves, the genes that regulate these pathways in fruits remain largely unexplored. In this study, we aimed to investigate the function of SlZIP11 in regulating tomato fruit development. Methods We used Solanum lycopersicum L. 'Micro-Tom' SlZIP11 (Solanum lycopersicum) is highly expressed in tomato fruit, particularly in mature green (MG) stages. For obtaining results, we employed reverse transcription-quantitative polymerase chain reaction (RT-qPCR), yeast two-hybrid assay, bimolecular fluorescent complementation, subcellular localization assay, virus-induced gene silencing (VIGS), SlZIP11 overexpression, determination of Zn content, sugar extraction and content determination, and statistical analysis. Results RT-qPCR analysis showed elevated SlZIP11 expression in MG tomato fruits. SlZIP11 expression was inhibited and induced by Zn deficiency and toxicity treatments, respectively. Silencing SlZIP11 via the VIGS technology resulted in a significant increase in the Zn content of tomato fruits. In contrast, overexpression of SlZIP11 led to reduced Zn content in MG fruits. Moreover, both silencing and overexpression of SlZIP11 caused alterations in the fructose and glucose contents of tomato fruits. Additionally, SlSWEEET7a interacted with SlZIP11. The heterodimerization between SlSWEET7a and SlZIP11 affected subcellular targeting, thereby increasing the amount of intracellularly localized oligomeric complexes. Overall, this study elucidates the role of SlZIP11 in mediating Zn accumulation and sugar transport during tomato fruit ripening. These findings underscore the significance of SlZIP11 in regulating Zn levels and sugar content, providing insights into its potential implications for plant physiology and agricultural practices.
Collapse
Affiliation(s)
- Jiaqi Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Manning Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xinsheng Zhang
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China
| | - Xin Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang, Liaoning, China
| | - Jing Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang, Liaoning, China
| |
Collapse
|
16
|
Zhu Y, Tian Y, Han S, Wang J, Liu Y, Yin J. Structure, evolution, and roles of SWEET proteins in growth and stress responses in plants. Int J Biol Macromol 2024; 263:130441. [PMID: 38417760 DOI: 10.1016/j.ijbiomac.2024.130441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Carbohydrates are exported by the SWEET family of transporters, which is a novel class of carriers that can transport sugars across cell membranes and facilitate sugar's long-distance transport from source to sink organs in plants. SWEETs play crucial roles in a wide range of physiologically important processes by regulating apoplastic and symplastic sugar concentrations. These processes include host-pathogen interactions, abiotic stress responses, and plant growth and development. In the present review, we (i) describe the structure and organization of SWEETs in the cell membrane, (ii) discuss the roles of SWEETs in sugar loading and unloading processes, (iii) identify the distinct functions of SWEETs in regulating plant growth and development including flower, fruit, and seed development, (iv) shed light on the importance of SWEETs in modulating abiotic stress resistance, and (v) describe the role of SWEET genes during plant-pathogen interaction. Finally, several perspectives regarding future investigations for improving the understanding of sugar-mediated plant defenses are proposed.
Collapse
Affiliation(s)
- Yongxing Zhu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou 434000, Hubei, China; Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434000, Hubei, China.
| | - Ye Tian
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434000, Hubei, China
| | - Shuo Han
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou 434000, Hubei, China.
| | - Jie Wang
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434000, Hubei, China.
| | - Yiqing Liu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434000, Hubei, China
| | - Junliang Yin
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou 434000, Hubei, China.
| |
Collapse
|
17
|
Zheng L, Zhao S, Zhou Y, Yang G, Chen A, Li X, Wang J, Tian J, Liao H, Wang X. The soybean sugar transporter GmSWEET6 participates in sucrose transport towards fungi during arbuscular mycorrhizal symbiosis. PLANT, CELL & ENVIRONMENT 2024; 47:1041-1052. [PMID: 37997205 DOI: 10.1111/pce.14772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/17/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023]
Abstract
In arbuscular mycorrhizal (AM) symbiosis, sugars in root cortical cells could be exported as glucose or sucrose into peri-arbuscular space for use by AM fungi. However, no sugar transporter has been identified to be involved in sucrose export. An AM-inducible SWEET transporter, GmSWEET6, was functionally characterised in soybean, and its role in AM symbiosis was investigated via transgenic plants. The expression of GmSWEET6 was enhanced by inoculation with the cooperative fungal strain in both leaves and roots. Heterologous expression in a yeast mutant showed that GmSWEET6 mainly transported sucrose. Transgenic plants overexpressing GmSWEET6 increased sucrose concentration in root exudates. Overexpression or knockdown of GmSWEET6 decreased plant dry weight, P content, and sugar concentrations in non-mycorrhizal plants, which were partly recovered in mycorrhizal plants. Intriguingly, overexpression of GmSWEET6 increased root P content and decreased the percentage of degraded arbuscules, while knockdown of GmSWEET6 increased root sugar concentrations in RNAi2 plants and the percentage of degraded arbuscules in RNAi1 plants compared with wild-type plants when inoculated with AM fungi. These results in combination with subcellular localisation of GmSWEET6 to peri-arbuscular membranes strongly suggest that GmSWEET6 is required for AM symbiosis by mediating sucrose efflux towards fungi.
Collapse
Affiliation(s)
- Linsheng Zheng
- Root Biology Center, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Shaopeng Zhao
- Root Biology Center, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yifan Zhou
- Root Biology Center, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Guoling Yang
- Root Biology Center, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - A Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Xinxin Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinxiang Wang
- Root Biology Center, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiurong Wang
- Root Biology Center, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Li Y, Fu M, Li J, Wu J, Shua Z, Chen T, Yao W, Huai D. Genome-wide identification of SWEET genes reveals their roles during seed development in peanuts. BMC Genomics 2024; 25:259. [PMID: 38454335 PMCID: PMC10921654 DOI: 10.1186/s12864-024-10173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
Sugar Will Eventually be Exported Transporter (SWEET) proteins are highly conserved in various organisms and play crucial roles in sugar transport processes. However, SWEET proteins in peanuts, an essential leguminous crop worldwide, remain lacking in systematic characterization. Here, we identified 94 SWEET genes encoding the conservative MtN3/saliva domains in three peanut species, including 47 in Arachis hypogea, 23 in Arachis duranensis, and 24 in Arachis ipaensis. We observed significant variations in the exon-intron structure of these genes, while the motifs and domain structures remained highly conserved. Phylogenetic analysis enabled us to categorize the predicted 286 SWEET proteins from eleven species into seven distinct groups. Whole genome duplication/segment duplication and tandem duplication were the primary mechanisms contributing to the expansion of the total number of SWEET genes. In addition, an investigation of cis-elements in the potential promoter regions and expression profiles across 22 samples uncovered the diverse expression patterns of AhSWEET genes in peanuts. AhSWEET24, with the highest expression level in seeds from A. hypogaea Tifrunner, was observed to be localized on both the plasma membrane and endoplasmic reticulum membrane. Moreover, qRT-PCR results suggested that twelve seed-expressed AhSWEET genes were important in the regulation of seed development across four different peanut varieties. Together, our results provide a foundational basis for future investigations into the functions of SWEET genes in peanuts, especially in the process of seed development.
Collapse
Affiliation(s)
- Yang Li
- College of Life Sciences, Henan Agricultural University, 450046, Zhengzhou, China.
| | - Mengjia Fu
- College of Life Sciences, Henan Agricultural University, 450046, Zhengzhou, China
| | - Jiaming Li
- College of Life Sciences, Henan Agricultural University, 450046, Zhengzhou, China
| | - Jie Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhenyang Shua
- College of Life Sciences, Henan Agricultural University, 450046, Zhengzhou, China
| | - Tiantian Chen
- College of Life Sciences, Henan Agricultural University, 450046, Zhengzhou, China
| | - Wen Yao
- College of Life Sciences, Henan Agricultural University, 450046, Zhengzhou, China
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
19
|
Kreisz P, Hellens AM, Fröschel C, Krischke M, Maag D, Feil R, Wildenhain T, Draken J, Braune G, Erdelitsch L, Cecchino L, Wagner TC, Ache P, Mueller MJ, Becker D, Lunn JE, Hanson J, Beveridge CA, Fichtner F, Barbier FF, Weiste C. S 1 basic leucine zipper transcription factors shape plant architecture by controlling C/N partitioning to apical and lateral organs. Proc Natl Acad Sci U S A 2024; 121:e2313343121. [PMID: 38315839 PMCID: PMC10873608 DOI: 10.1073/pnas.2313343121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
Plants tightly control growth of their lateral organs, which led to the concept of apical dominance. However, outgrowth of the dormant lateral primordia is sensitive to the plant's nutritional status, resulting in an immense plasticity in plant architecture. While the impact of hormonal regulation on apical dominance is well characterized, the prime importance of sugar signaling to unleash lateral organ formation has just recently emerged. Here, we aimed to identify transcriptional regulators, which control the trade-off between growth of apical versus lateral organs. Making use of locally inducible gain-of-function as well as single and higher-order loss-of-function approaches of the sugar-responsive S1-basic-leucine-zipper (S1-bZIP) transcription factors, we disclosed their largely redundant function in establishing apical growth dominance. Consistently, comprehensive phenotypical and analytical studies of S1-bZIP mutants show a clear shift of sugar and organic nitrogen (N) allocation from apical to lateral organs, coinciding with strong lateral organ outgrowth. Tissue-specific transcriptomics reveal specific clade III SWEET sugar transporters, crucial for long-distance sugar transport to apical sinks and the glutaminase GLUTAMINE AMIDO-TRANSFERASE 1_2.1, involved in N homeostasis, as direct S1-bZIP targets, linking the architectural and metabolic mutant phenotypes to downstream gene regulation. Based on these results, we propose that S1-bZIPs control carbohydrate (C) partitioning from source leaves to apical organs and tune systemic N supply to restrict lateral organ formation by C/N depletion. Knowledge of the underlying mechanisms controlling plant C/N partitioning is of pivotal importance for breeding strategies to generate plants with desired architectural and nutritional characteristics.
Collapse
Affiliation(s)
- Philipp Kreisz
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Alicia M. Hellens
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Christian Fröschel
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Markus Krischke
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Daniel Maag
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Regina Feil
- Group System Regulation, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm14476, Germany
| | - Theresa Wildenhain
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Jan Draken
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Gabriel Braune
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Leon Erdelitsch
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Laura Cecchino
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Tobias C. Wagner
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Peter Ache
- Department of Molecular Plant Physiology and Biophysics, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Martin J. Mueller
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - John E. Lunn
- Group System Regulation, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm14476, Germany
| | - Johannes Hanson
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, UmeåSE-901 87, Sweden
| | - Christine A. Beveridge
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Franziska Fichtner
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- Department of Plant Biochemistry, Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Francois F. Barbier
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- Institute for Plant Sciences of Montpellier, University of Montpellier, CNRS, INRAe, Institut Agro, Montpellier34060, France
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| |
Collapse
|
20
|
Li Z, Guo Y, Jin S, Wu H. Genome-Wide Identification and Expression Profile Analysis of Sugars Will Eventually Be Exported Transporter ( SWEET) Genes in Zantedeschia elliottiana and Their Responsiveness to Pectobacterium carotovora subspecies Carotovora ( Pcc) Infection. Int J Mol Sci 2024; 25:2004. [PMID: 38396683 PMCID: PMC10888187 DOI: 10.3390/ijms25042004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
SWEET, sugars will eventually be exported transporter, is a novel class of sugar transporter proteins that can transport sugars across membranes down a concentration gradient. It plays a key role in plant photosynthetic assimilates, phloem loading, nectar secretion from nectar glands, seed grouting, pollen development, pathogen interactions, and adversity regulation, and has received widespread attention in recent years. To date, systematic analysis of the SWEET family in Zantedeschia has not been documented, although the genome has been reported in Zantedeschia elliottiana. In this study, 19 ZeSWEET genes were genome-wide identified in Z. elliottiana, and unevenly located in 10 chromosomes. They were further clustered into four clades by a phylogenetic tree, and almost every clade has its own unique motifs. Synthetic analysis confirmed two pairs of segmental duplication events of ZeSWEET genes. Heatmaps of tissue-specific and Pectobacterium carotovora subsp. Carotovora (Pcc) infection showed that ZeSWEET genes had different expression patterns, so SWEETs may play widely varying roles in development and stress tolerance in Zantedeschia. Moreover, quantitative reverse transcription-PCR (qRT-PCR) analysis revealed that some of the ZeSWEETs responded to Pcc infection, among which eight genes were significantly upregulated and six genes were significantly downregulated, revealing their potential functions in response to Pcc infection. The promoter sequences of ZeSWEETs contained 51 different types of the 1380 cis-regulatory elements, and each ZeSWEET gene contained at least two phytohormone responsive elements and one stress response element. In addition, a subcellular localization study indicated that ZeSWEET07 and ZeSWEET18 were found to be localized to the plasma membrane. These findings provide insights into the characteristics of SWEET genes and contribute to future studies on the functional characteristics of ZeSWEET genes, and then improve Pcc infection tolerance in Zantedeschia through molecular breeding.
Collapse
Affiliation(s)
- Ziwei Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China;
| | - Yanbing Guo
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China;
| | - Shoulin Jin
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming 650201, China;
| | - Hongzhi Wu
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
21
|
Zhang Y, Gan Y, Zhao W, Zhang X, Zhao Y, Xie H, Yang J. Membrane Protein Structures in Native Cellular Membranes Revealed by Solid-State NMR Spectroscopy. JACS AU 2023; 3:3412-3423. [PMID: 38155644 PMCID: PMC10751765 DOI: 10.1021/jacsau.3c00564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/30/2023]
Abstract
The structural characterization of membrane proteins within the cellular membrane environment is critical for understanding the molecular mechanism in their native functional context. However, conducting residue site-specific structural analysis of membrane proteins in native membranes by solid-state NMR faces challenges due to poor spectral sensitivity and serious interference from background protein signals. In this study, we present a new protocol that combines various strategies for cellular membrane sample preparations, enabling us to reveal the secondary structure of the mechanosensitive channel of large conductance from Methanosarcina acetivorans (MaMscL) in Escherichia coli inner membranes. Our findings demonstrate the feasibility of achieving complete resonance assignments and the potential for determining the 3D structures of membrane proteins within cellular membranes. We find that the use of the BL21(DE3) strain in this protocol is crucial for effectively suppressing background protein labeling without compromising the sensitivity of the target protein. Furthermore, our data reveal that the structures of different proteins exhibit varying degrees of sensitivity to the membrane environment. These results underscore the significance of studying membrane proteins within their native cellular membranes when performing structural characterizations. Overall, this study opens up a new avenue for achieving the atomic-resolution structural characterization of membrane proteins within their native cellular membranes, providing valuable insights into the nativeness of membrane proteins.
Collapse
Affiliation(s)
- Yan Zhang
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics
and Mathematics, Wuhan National Laboratory for Optoelectronics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuefang Gan
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics
and Mathematics, Wuhan National Laboratory for Optoelectronics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weijing Zhao
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics
and Mathematics, Wuhan National Laboratory for Optoelectronics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Xuning Zhang
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics
and Mathematics, Wuhan National Laboratory for Optoelectronics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yongxiang Zhao
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics
and Mathematics, Wuhan National Laboratory for Optoelectronics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Huayong Xie
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics
and Mathematics, Wuhan National Laboratory for Optoelectronics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jun Yang
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics
and Mathematics, Wuhan National Laboratory for Optoelectronics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Interdisciplinary
Institute of NMR and Molecular Sciences, School of Chemistry and Chemical
Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
22
|
Sun N, Liu Y, Xu T, Zhou X, Xu H, Zhang H, Zhan R, Wang L. Genome-wide analysis of sugar transporter genes in maize ( Zea mays L.): identification, characterization and their expression profiles during kernel development. PeerJ 2023; 11:e16423. [PMID: 38025667 PMCID: PMC10658905 DOI: 10.7717/peerj.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Sugar transporters (STs) play a crucial role in the development of maize kernels. However, very limited information about STs in maize is known. In this study, sixty-eight ZmST genes were identified from the maize genome and classified into eight major groups based on phylogenetic relationship. Gene structure analysis revealed that members within the same group shared similar exon numbers. Synteny analysis indicated that ZmSTs underwent 15 segmental duplication events under purifying selection. Three-dimensional structure of ZmSTs demonstrated the formation of a compact helix bundle composed of 8-13 trans-membrane domains. Various development-related cis-acting elements, enriched in promoter regions, were correlated with the transcriptional response of ZmSTs during kernel development. Transcriptional expression profiles exhibited expression diversity of various ZmST genes in roots, stems, leaves, tassels, cobs, embryos, endosperms and seeds tissues. During kernel development, the expression of 24 ZmST genes was significantly upregulated in the early stage of grain filling. This upregulation coincided with the sharply increased grain-filling rate observed in the early stage. Overall, our findings shed light on the characteristics of ZmST genes in maize and provide a foundation for further functional studies.
Collapse
Affiliation(s)
- Nan Sun
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd., Zhaoyuan, Shandong, China
| | - Yanfeng Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd., Zhaoyuan, Shandong, China
| | - Tao Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Xiaoyan Zhou
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Heyang Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd., Zhaoyuan, Shandong, China
| | - Renhui Zhan
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd., Zhaoyuan, Shandong, China
| |
Collapse
|
23
|
Xie H, Zhao Y, Zhao W, Chen Y, Liu M, Yang J. Solid-state NMR structure determination of a membrane protein in E. coli cellular inner membrane. SCIENCE ADVANCES 2023; 9:eadh4168. [PMID: 37910616 PMCID: PMC10619923 DOI: 10.1126/sciadv.adh4168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
Structure determination of membrane proteins in native cellular membranes is critical to precisely reveal their structures in physiological conditions. However, it remains challenging for solid-state nuclear magnetic resonance (ssNMR) due to the low sensitivity and high complexity of ssNMR spectra of cellular membranes. Here, we present the structure determination of aquaporin Z (AqpZ) by ssNMR in Escherichia coli inner membranes. To enhance the signal sensitivity of AqpZ, we optimized protein overexpression and removed outer membrane components. To suppress the interference of background proteins, we used a "dual-media" expression approach and antibiotic treatment. Using 1017 distance restraints obtained from two-dimensional 13C-13C spectra based on the complete chemical shift assignments, the 1.7-Å ssNMR structure of AqpZ is determined in E. coli inner membranes. This cellular ssNMR structure determination paves the way for analyzing the atomic structural details for membrane proteins in native cellular membranes.
Collapse
Affiliation(s)
- Huayong Xie
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yongxiang Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Weijing Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yanke Chen
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Maili Liu
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| |
Collapse
|
24
|
Fakher B, Ashraf MA, Wang L, Wang X, Zheng P, Aslam M, Qin Y. Pineapple SWEET10 is a glucose transporter. HORTICULTURE RESEARCH 2023; 10:uhad175. [PMID: 38025977 PMCID: PMC10660354 DOI: 10.1093/hr/uhad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 09/01/2023] [Accepted: 08/25/2023] [Indexed: 12/01/2023]
Abstract
SWEET transporters are a unique class of sugar transporters that play vital roles in various developmental and physiological processes in plants. While the functions of SWEETs have been well established in model plants such as Arabidopsis, their functions in economically important fruit crops like pineapple have not been well studied. Here we aimed to investigate the substrate specificity of pineapple SWEETs by comparing the protein sequences of known glucose and sucrose transporters in Arabidopsis with those in pineapple. Our genome-wide approach and 3D structure comparison showed that the Arabidopsis SWEET8 homolog in pineapple, AcSWEET10, shares similar sequences and protein properties responsible for glucose transport. To determine the functional conservation of AcSWEET10, we tested its ability to complement glucose transport mutants in yeast and analyzed its expression in stamens and impact on the microspore phenotype and seed set in transgenic Arabidopsis. The results showed that AcSWEET10 is functionally equivalent to AtSWEET8 and plays a critical role in regulating microspore formation through the regulation of the Callose synthase5 (CalS5), which highlights the importance of SWEET transporters in pineapple. This information could have important implications for improving fruit crop yield and quality by manipulating SWEET transporter activity.
Collapse
Affiliation(s)
- Beenish Fakher
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
- College of Life Sciences, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - M Arif Ashraf
- Department of Biology, Howard University, Washington DC 20059, USA
| | - Lulu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
- College of Life Sciences, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning 530004, China
| | - Ping Zheng
- College of Life Sciences, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Mohammad Aslam
- College of Life Sciences, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| | - Yuan Qin
- College of Life Sciences, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
25
|
Kardile HB, Karkute SG, Challam C, Sharma NK, Shelake RM, Kawar PG, Patil VU, Deshmukh R, Bhardwaj V, Chourasia KN, Valluri SD. Hemibiotrophic Phytophthora infestans Modulates the Expression of SWEET Genes in Potato ( Solanum tuberosum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3433. [PMID: 37836173 PMCID: PMC10575152 DOI: 10.3390/plants12193433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023]
Abstract
Sugar Efflux transporters (SWEET) are involved in diverse biological processes of plants. Pathogens have exploited them for nutritional gain and subsequently promote disease progression. Recent studies have implied the involvement of potato SWEET genes in the most devastating late blight disease caused by Phytophthora infestans. Here, we identified and designated 37 putative SWEET genes as StSWEET in potato. We performed detailed in silico analysis, including gene structure, conserved domains, and phylogenetic relationship. Publicly available RNA-seq data was harnessed to retrieve the expression profiles of SWEET genes. The late blight-responsive SWEET genes were identified from the RNA-seq data and then validated using quantitative real-time PCR. The SWEET gene expression was studied along with the biotrophic (SNE1) and necrotrophic (PiNPP1) marker genes of P. infestans. Furthermore, we explored the co-localization of P. infestans resistance loci and SWEET genes. The results indicated that nine transporter genes were responsive to the P. infestans in potato. Among these, six transporters, namely StSWEET10, 12, 18, 27, 29, and 31, showed increased expression after P. infestans inoculation. Interestingly, the observed expression levels aligned with the life cycle of P. infestans, wherein expression of these genes remained upregulated during the biotrophic phase and decreased later on. In contrast, StSWEET13, 14, and 32 didn't show upregulation in inoculated samples suggesting non-targeting by pathogens. This study underscores these transporters as prime P. infestans targets in potato late blight, pivotal in disease progression, and potential candidates for engineering blight-resistant potato genotypes.
Collapse
Affiliation(s)
- Hemant B. Kardile
- ICAR-Central Potato Research Institute, Shimla 171001, India; (N.K.S.); (V.U.P.); (V.B.)
- Department of Crop and Soil Science, 109 Crop Science Building, Oregon State University, Corvallis, OR 97331, USA
| | | | - Clarissa Challam
- ICAR-Central Potato Research Institute, Regional Station, Shillong 793009, India;
| | - Nirmal Kant Sharma
- ICAR-Central Potato Research Institute, Shimla 171001, India; (N.K.S.); (V.U.P.); (V.B.)
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Prashant Govindrao Kawar
- ICAR-Directorate of Floricultural Research, Zed Corner, Mundhwa Manjri Road, Mundhwa, Pune 411036, India;
| | - Virupaksh U. Patil
- ICAR-Central Potato Research Institute, Shimla 171001, India; (N.K.S.); (V.U.P.); (V.B.)
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendergarh 123031, India;
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla 171001, India; (N.K.S.); (V.U.P.); (V.B.)
| | | | - Srikar Duttasai Valluri
- Department of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
26
|
Ren Y, Liao S, Xu Y. An update on sugar allocation and accumulation in fruits. PLANT PHYSIOLOGY 2023; 193:888-899. [PMID: 37224524 DOI: 10.1093/plphys/kiad294] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Fruit sweetness is determined by the amount and composition of sugars in the edible flesh. The accumulation of sugar is a highly orchestrated process that requires coordination of numerous metabolic enzymes and sugar transporters. This coordination enables partitioning and long-distance translocation of photoassimilates from source tissues to sink organs. In fruit crops, sugars ultimately accumulate in the sink fruit. Whereas tremendous progress has been achieved in understanding the function of individual genes associated with sugar metabolism and sugar transport in non-fruit crops, there is less known about the sugar transporters and metabolic enzymes responsible for sugar accumulation in fruit crop species. This review identifies knowledge gaps and can serve as a foundation for future studies, with comprehensive updates focusing on (1) the physiological roles of the metabolic enzymes and sugar transporters responsible for sugar allocation and partitioning and that contribute to sugar accumulation in fruit crops; and (2) the molecular mechanisms underlying the transcriptional and posttranslational regulation of sugar transport and metabolism. We also provide insights into the challenges and future directions of studies on sugar transporters and metabolic enzymes and name several promising genes that should be targeted with gene editing in the pursuit of optimized sugar allocation and partitioning to enhance sugar accumulation in fruits.
Collapse
Affiliation(s)
- Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Shengjin Liao
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| |
Collapse
|
27
|
Jiang C, Zeng S, Yang J, Wang X. Genome-Wide Identification and Expression Profiling Analysis of SWEET Family Genes Involved in Fruit Development in Plum ( Prunus salicina Lindl). Genes (Basel) 2023; 14:1679. [PMID: 37761819 PMCID: PMC10531292 DOI: 10.3390/genes14091679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
SWEETs (sugars will eventually be exported transporters) play a vital role in longer-distance sugar transportation, and thus control carbon flow and energy metabolism in plants. SWEET genes have been identified in various plant species, but their functions in fruit development remain uncharacterized. Here, we isolated 15 putative PsSWEETs from the Prunus salicina genome. For further analysis, comprehensive bioinformatics methods were applied to determine the gene structure, chromosome distribution, phylogeny, cis-acting regulatory elements, and expression profiles of PsSWEETs. qRT-PCR analysis suggested that these SWEETs might have diverse functions in the development of plum fruit. The relative expression levels of PsSWEET1 and PsSWEET9 were obviously higher in ripened fruit than the ones in other developmental stages, suggesting their possible roles in the transport and accumulation of sugars in plum fruit. Positive correlations were found between the expression level of PsSWEET3/10/13 and the content of sucrose, and the expression level of PsSWEET2 and the content of fructose, respectively, during the development of 'Furongli' fruit, suggesting their possible roles in the accumulation of sucrose and fructose. The current study investigated the initial genomic characterization and expression patterns of the SWEET gene family in plum, which could provide a foundation for the further understanding of the functional analysis of the SWEET gene family.
Collapse
Affiliation(s)
- Cuicui Jiang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (S.Z.); (X.W.)
| | - Shaomin Zeng
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (S.Z.); (X.W.)
| | - Jun Yang
- College of Food and Bioengineering, Bengbu University, Bengbu 233030, China;
| | - Xiaoan Wang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (S.Z.); (X.W.)
| |
Collapse
|
28
|
Jiang R, Wu L, Zeng J, Shah K, Zhang R, Hu G, Qin Y, Zhang Z. Identification of HuSWEET Family in Pitaya ( Hylocereus undatus) and Key Roles of HuSWEET12a and HuSWEET13d in Sugar Accumulation. Int J Mol Sci 2023; 24:12882. [PMID: 37629062 PMCID: PMC10454816 DOI: 10.3390/ijms241612882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The sugar composition and content of fruit have a significant impact on their flavor and taste. In pitaya, or dragon fruit, sweetness is a crucial determinant of fruit taste and consumer preference. The sugars will eventually be exported transporters (SWEETs), a novel group of sugar transporters that have various physiological functions, including phloem loading, seed filling, nectar secretion, and fruit development. However, the role of SWEETs in sugar accumulation in pitaya fruit is not yet clear. Here, we identified 19 potential members (HuSWEET genes) of the SWEET family in pitaya and analyzed their conserved motifs, physiochemical characteristics, chromosomal distribution, gene structure, and phylogenetic relationship. Seven highly conserved α-helical transmembrane domains (7-TMs) were found, and the HuSWEET proteins can be divided into three clades based on the phylogenetic analysis. Interestingly, we found two HuSWEET genes, HuSWEET12a and HuSWEET13d, that showed strong preferential expressions in fruits and an upward trend during fruit maturation, suggesting they have key roles in sugar accumulation in pitaya. This can be further roughly demonstrated by the fact that transgenic tomato plants overexpressing HuSWEET12a/13d accumulated high levels of sugar in the mature fruit. Together, our result provides new insights into the regulation of sugar accumulation by SWEET family genes in pitaya fruit, which also set a crucial basis for the further functional study of the HuSWEETs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (R.J.); (L.W.); (J.Z.); (K.S.); (R.Z.); (G.H.)
| | - Zhike Zhang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (R.J.); (L.W.); (J.Z.); (K.S.); (R.Z.); (G.H.)
| |
Collapse
|
29
|
Chen J, Sun M, Xiao G, Shi R, Zhao C, Zhang Q, Yang S, Xuan Y. Starving the enemy: how plant and microbe compete for sugar on the border. FRONTIERS IN PLANT SCIENCE 2023; 14:1230254. [PMID: 37600180 PMCID: PMC10433384 DOI: 10.3389/fpls.2023.1230254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
As the primary energy source for a plant host and microbe to sustain life, sugar is generally exported by Sugars Will Eventually be Exported Transporters (SWEETs) to the host extracellular spaces or the apoplast. There, the host and microbes compete for hexose, sucrose, and other important nutrients. The host and microbial monosaccharide transporters (MSTs) and sucrose transporters (SUTs) play a key role in the "evolutionary arms race". The result of this competition hinges on the proportion of sugar distribution between the host and microbes. In some plants (such as Arabidopsis, corn, and rice) and their interacting pathogens, the key transporters responsible for sugar competition have been identified. However, the regulatory mechanisms of sugar transporters, especially in the microbes require further investigation. Here, the key transporters that are responsible for the sugar competition in the host and pathogen have been identified and the regulatory mechanisms of the sugar transport have been briefly analyzed. These data are of great significance to the increase of the sugar distribution in plants for improvement in the yield.
Collapse
Affiliation(s)
- Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Miao Sun
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Rujie Shi
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Chanjuan Zhao
- Chongqing Three Gorges Vocational College, Wanzhou, China
| | - Qianqian Zhang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Shuo Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
30
|
Ye Z, Du B, Zhou J, Cao Y, Zhang L. Camellia oleifera CoSWEET10 Is Crucial for Seed Development and Drought Resistance by Mediating Sugar Transport in Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2818. [PMID: 37570971 PMCID: PMC10420866 DOI: 10.3390/plants12152818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
Sugar transport from the source leaf to the sink organ is critical for seed development and crop yield, as well as for responding to abiotic stress. SWEETs (sugar will eventually be exported transporters) mediate sugar efflux into the reproductive sink and are therefore considered key candidate proteins for sugar unloading during seed development. However, the specific mechanism underlying the sugar unloading to seeds in Camellia oleifera remains elusive. Here, we identified a SWEET gene named CoSWEET10, which belongs to Clade III and has high expression levels in the seeds of C. oleifera. CoSWEET10 is a plasma membrane-localized protein. The complementation assay of CoSWEET10 in SUSY7/ura3 and EBY.VW4000 yeast strains showed that CoSWEET10 has the ability to transport sucrose, glucose, and fructose. Through the C. oleifera seeds in vitro culture, we found that the expression of CoSWEET10 can be induced by hexose and sucrose, and especially glucose. By generating the restoration lines of CoSWEET10 in Arabidopsis atsweet10, we found that CoSWEET10 restored the seed defect phenotype of the mutant by regulating soluble sugar accumulation and increased plant drought tolerance. Collectively, our study demonstrates that CoSWEET10 plays a dual role in promoting seed development and enhancing plant drought resistance as a sucrose and hexose transporter.
Collapse
Affiliation(s)
| | | | | | | | - Lingyun Zhang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing 100083, China; (Z.Y.); (B.D.); (J.Z.); (Y.C.)
| |
Collapse
|
31
|
Hao L, Shi X, Qin S, Dong J, Shi H, Wang Y, Zhang Y. Genome-wide identification, characterization and transcriptional profile of the SWEET gene family in Dendrobium officinale. BMC Genomics 2023; 24:378. [PMID: 37415124 DOI: 10.1186/s12864-023-09419-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Dendrobium officinale Kimura et Migo (D. officinale) is a well-known traditional Chinese medicine with high content polysaccharides in stems. The SWEET (Sugars Will Eventually be Exported Transporters) family is a novel class of sugar transporters mediating sugar translocation among adjacent cells of plants. The expression patterns of SWEETs and whether they are associated with stress response in D. officinale remains uncovered. RESULTS Here, 25 SWEET genes were screened out from D. officinale genome, most of which typically contained seven transmembrane domains (TMs) and harbored two conserved MtN3/saliva domains. Using multi-omics data and bioinformatic approaches, the evolutionary relationship, conserved motifs, chromosomal location, expression patterns, correlationship and interaction network were further analyzed. DoSWEETs were intensively located in nine chromosomes. Phylogenetic analysis revealed that DoSWEETs were divided into four clades, and conserved motif 3 specifically existed in DoSWEETs from clade II. Different tissue-specific expression patterns of DoSWEETs suggested the division of their roles in sugar transport. In particular, DoSWEET5b, 5c, and 7d displayed relatively high expression levels in stems. DoSWEET2b and 16 were significantly regulated under cold, drought, and MeJA treatment, which were further verified using RT-qPCR. Correlation analysis and interaction network prediction discovered the internal relationship of DoSWEET family. CONCLUSIONS Taken together, the identification and analysis of the 25 DoSWEETs in this study provide basic information for further functional verification in D. officinale.
Collapse
Affiliation(s)
- Li Hao
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China
| | - Xin Shi
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China
| | - Shunwang Qin
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China
| | - Jiahong Dong
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China
| | - Huan Shi
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China
| | - Yuehua Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China.
| | - Yi Zhang
- China-Croatia 'Belt and Road' Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| |
Collapse
|
32
|
Lata C, Manjul AS, Prasad P, Gangwar OP, Adhikari S, Sonu, Kumar S, Bhardwaj SC, Singh G, Samota MK, Choudhary M, Bohra A, Varshney RK. Unraveling the diversity and functions of sugar transporters for sustainable management of wheat rust. Funct Integr Genomics 2023; 23:213. [PMID: 37378707 DOI: 10.1007/s10142-023-01150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/03/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Plant diseases threaten global food security by reducing the production and quality of produce. Identification of disease resistance sources and their utilization in crop improvement is of paramount significance. However, constant evolution and occurrence of new, more aggressive and highly virulent pathotypes disintegrates the resistance of cultivars and hence demanding the steady stream of disease resistance cultivars as the most sustainable way of disease management. In this context, molecular tools and technologies facilitate an efficient and rational engineering of crops to develop cultivars having resistance to multiple pathogens and pathotypes. Puccinia spp. is biotrophic fungi that interrupt crucial junctions for causing infection, thus risking nutrient access of wheat plants and their subsequent growth. Sugar is a major carbon source taken from host cells by pathogens. Sugar transporters (STPs) are key players during wheat-rust interactions that regulate the transport, exchange, and allocation of sugar at plant-pathogen interfaces. Intense competition for accessing sugars decides fate of incompatibility or compatibility between host and the pathogen. The mechanism of transport, allocation, and signaling of sugar molecules and role of STPs and their regulatory switches in determining resistance/susceptibility to rusts in wheat is poorly understood. This review discusses the molecular mechanisms involving STPs in distribution of sugar molecules for determination of rust resistance/susceptibility in wheat. We also present perspective on how detailed insights on the STP's role in wheat-rust interaction will be helpful in devising efficient strategies for wheat rust management.
Collapse
Affiliation(s)
- Charu Lata
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India.
| | | | - Pramod Prasad
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - O P Gangwar
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - Sneha Adhikari
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - Sonu
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - Subodh Kumar
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - S C Bhardwaj
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | | | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, Ludhiana, Punjab, 141004, India
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| | - Abhishek Bohra
- Centre for Crop and Food Innovation, Food Futures Institute, WA State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, Food Futures Institute, WA State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| |
Collapse
|
33
|
Chen L, Ganguly DR, Shafik SH, Danila F, Grof CPL, Sharwood RE, Furbank RT. The role of SWEET4 proteins in the post-phloem sugar transport pathway of Setaria viridis sink tissues. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2968-2986. [PMID: 36883216 PMCID: PMC10560085 DOI: 10.1093/jxb/erad076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/06/2023] [Indexed: 05/21/2023]
Abstract
In the developing seeds of all higher plants, filial cells are symplastically isolated from the maternal tissue supplying photosynthate to the reproductive structure. Photoassimilates must be transported apoplastically, crossing several membrane barriers, a process facilitated by sugar transporters. Sugars Will Eventually be Exported Transporters (SWEETs) have been proposed to play a crucial role in apoplastic sugar transport during phloem unloading and the post-phloem pathway in sink tissues. Evidence for this is presented here for developing seeds of the C4 model grass Setaria viridis. Using immunolocalization, SvSWEET4 was detected in various maternal and filial tissues within the seed along the sugar transport pathway, in the vascular parenchyma of the pedicel, and in the xylem parenchyma of the stem. Expression of SvSWEET4a in Xenopus laevis oocytes indicated that it functions as a high-capacity glucose and sucrose transporter. Carbohydrate and transcriptional profiling of Setaria seed heads showed that there were some developmental shifts in hexose and sucrose content and consistent expression of SvSWEET4 homologues. Collectively, these results provide evidence for the involvement of SWEETs in the apoplastic transport pathway of sink tissues and allow a pathway for post-phloem sugar transport into the seed to be proposed.
Collapse
Affiliation(s)
- Lily Chen
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, New South Wales 2753, Australia
| | - Diep R Ganguly
- Research School of Biology, ARC Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, Australian Capital Territory 2601, Australia
| | - Sarah H Shafik
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Florence Danila
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Christopher P L Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Robert E Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, New South Wales 2753, Australia
| | - Robert T Furbank
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
34
|
Liu N, Wei Z, Min X, Yang L, Zhang Y, Li J, Yang Y. Genome-Wide Identification and Expression Analysis of the SWEET Gene Family in Annual Alfalfa ( Medicago polymorpha). PLANTS (BASEL, SWITZERLAND) 2023; 12:1948. [PMID: 37653865 PMCID: PMC10222687 DOI: 10.3390/plants12101948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 09/02/2023]
Abstract
SWEET (Sugars will eventually be exported transporter) proteins are a group of sugar transporters that are involved in sugar efflux, phloem loading, reproductive development, plant senescence, and stress responses. In this study, 23 SWEET transporter members were identified in the Medicago polymorpha genome, heterogeneously distributed on seven chromosomes. These MpSWEET genes were divided into four subfamilies, which showed similar gene structure and motif composition within the same subfamily. Seventeen MpSWEET genes encode seven transmembrane helices (TMHs), and all MpSWEET proteins possess conserved membrane domains and putative serine phosphorylation sites. Four and three pairs of MpSWEET genes were predicted to be segmentally and tandemly duplicated, respectively, which may have contributed to their evolution of M. polymorpha. The results of microarray and RNA-Seq data showed that some MpSWEET genes were specifically expressed in disparate developmental stages (including seedling stage, early flowering stage, and late flowering stage) or tissues such as flower and large pod. Based on protein network interaction and expression patterns of MpSWEET genes, six MpSWEET genes were selected for further quantitative real-time PCR validation in different stress treatments. qRT-PCR results showed that MpSWEET05, MpSWEET07, MpSWEET12, MpSWEET15, and MpSWEET21 were significantly upregulated for at least two of the three abiotic stress treatments. These findings provide new insights into the complex transcriptional regulation of MpSWEET genes, which facilitates future research to elucidate the function of MpSWEET genes in M. polymorpha and other legume crops.
Collapse
Affiliation(s)
- Nana Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhenwu Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institute of Grassland Science, Yangzhou University, Yangzhou 225009, China
| | - Xueyang Min
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Linghua Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Youxin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiaqing Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuwei Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
35
|
Lin YC, Tsay YF. Study of vacuole glycerate transporter NPF8.4 reveals a new role of photorespiration in C/N balance. NATURE PLANTS 2023; 9:803-816. [PMID: 37055555 DOI: 10.1038/s41477-023-01392-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/09/2023] [Indexed: 05/23/2023]
Abstract
The photorespiratory intermediate glycerate is known to be shuttled between the peroxisome and chloroplast. Here, localization of NPF8.4 in the tonoplast, together with the reduced vacuolar glycerate content displayed by an npf8.4 mutant and the glycerate efflux activity detected in an oocyte expression system, identifies NPF8.4 as a tonoplast glycerate influx transporter. Our study shows that expression of NPF8.4 and most photorespiration-associated genes, as well as the photorespiration rate, is upregulated in response to short-term nitrogen (N) depletion. We report growth retardation and early senescence phenotypes for npf8.4 mutants specifically upon N depletion, suggesting that the NPF8.4-mediated regulatory pathway for sequestering the photorespiratory carbon intermediate glycerate in vacuoles is important to alleviate the impact of an increased C/N ratio under N deficiency. Thus, our study of NPF8.4 reveals a novel role for photorespiration in N flux to cope with short-term N depletion.
Collapse
Affiliation(s)
- Yi-Chen Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Fang Tsay
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
36
|
Song X, Kou Y, Duan M, Feng B, Yu X, Jia R, Zhao X, Ge H, Yang S. Genome-Wide Identification of the Rose SWEET Gene Family and Their Different Expression Profiles in Cold Response between Two Rose Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:1474. [PMID: 37050100 PMCID: PMC10096651 DOI: 10.3390/plants12071474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Sugars Will Eventually be Exported Transporter (SWEET) gene family plays indispensable roles in plant physiological activities, development processes, and responses to biotic and abiotic stresses, but no information is known for roses. In this study, a total of 25 RcSWEET genes were identified in Rosa chinensis 'Old Blush' by genome-wide analysis and clustered into four subgroups based on their phylogenetic relationships. The genomic features, including gene structures, conserved motifs, and gene duplication among the chromosomes of RcSWEET genes, were characterized. Seventeen types of cis-acting elements among the RcSWEET genes were predicted to exhibit their potential regulatory roles during biotic and abiotic stress and hormone responses. Tissue-specific and cold-response expression profiles based on transcriptome data showed that SWEETs play widely varying roles in development and stress tolerance in two rose species. Moreover, the different expression patterns of cold-response SWEET genes were verified by qRT-PCR between the moderately cold-resistant species R. chinensis 'Old Blush' and the extremely cold-resistant species R. beggeriana. Especially, SWEET2a and SWEET10c exhibited species differences after cold treatment and were sharply upregulated in the leaves of R. beggeriana but not R. chinensis 'Old Blush', indicating that these two genes may be the crucial candidates that participate in cold tolerance in R. beggeriana. Our results provide the foundation for function analysis of the SWEET gene family in roses, and will contribute to the breeding of cold-tolerant varieties of roses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong Ge
- Correspondence: (H.G.); (S.Y.); Tel.: +86-10-8210-9542 (S.Y.)
| | - Shuhua Yang
- Correspondence: (H.G.); (S.Y.); Tel.: +86-10-8210-9542 (S.Y.)
| |
Collapse
|
37
|
Carbó R, Rodríguez E. Relevance of Sugar Transport across the Cell Membrane. Int J Mol Sci 2023; 24:ijms24076085. [PMID: 37047055 PMCID: PMC10094530 DOI: 10.3390/ijms24076085] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Sugar transport through the plasma membrane is one of the most critical events in the cellular transport of nutrients; for example, glucose has a central role in cellular metabolism and homeostasis. The way sugars enter the cell involves complex systems. Diverse protein systems participate in the membrane traffic of the sugars from the extracellular side to the cytoplasmic side. This diversity makes the phenomenon highly regulated and modulated to satisfy the different needs of each cell line. The beautiful thing about this process is how evolutionary processes have diversified a single function: to move glucose into the cell. The deregulation of these entrance systems causes some diseases. Hence, it is necessary to study them and search for a way to correct the alterations and utilize these mechanisms to promote health. This review will highlight the various mechanisms for importing the valuable sugars needed to create cellular homeostasis and survival in all kinds of cells.
Collapse
Affiliation(s)
- Roxana Carbó
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
- Correspondence: ; Tel.: +52-55557-32911 (ext. 25704)
| | - Emma Rodríguez
- Cardiology Laboratory at Translational Research Unit UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| |
Collapse
|
38
|
Fatima U, Balasubramaniam D, Khan WA, Kandpal M, Vadassery J, Arockiasamy A, Senthil‐Kumar M. AtSWEET11 and AtSWEET12 transporters function in tandem to modulate sugar flux in plants. PLANT DIRECT 2023; 7:e481. [PMID: 36911252 PMCID: PMC9995347 DOI: 10.1002/pld3.481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/25/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
The sugar will eventually be exported transporter (SWEET) members in Arabidopsis, AtSWEET11 and AtSWEET12 are the important sucrose efflux transporters that act synergistically to perform distinct physiological roles. These two transporters are involved in apoplasmic phloem loading, seed filling, and sugar level alteration at the site of pathogen infection. Here, we performed the structural analysis of the sucrose binding pocket of AtSWEET11 and AtSWEET12 using molecular docking followed by rigorous molecular dynamics (MD) simulations. We observed that the sucrose molecule binds inside the central cavity and in the middle of the transmembrane (TM) region of AtSWEET11 and AtSWEET12, that allows the alternate access to the sucrose molecule from either side of the membrane during transport. Both AtSWEET11 and AtSWEET12, shares the similar amino acid residues that interact with sucrose molecule. Further, to achieve more insights on the role of these two transporters in other plant species, we did the phylogenetic and the in-silico analyses of AtSWEET11 and AtSWEET12 orthologs from 39 economically important plants. We reported the extensive information on the gene structure, protein domain and cis-acting regulatory elements of AtSWEET11 and AtSWEET12 orthologs from different plants. The cis-elements analysis indicates the involvement of AtSWEET11 and AtSWEET12 orthologs in plant development and also during abiotic and biotic stresses. Both in silico and in planta expression analysis indicated AtSWEET11 and AtSWEET12 are well-expressed in the Arabidopsis leaf tissues. However, the orthologs of AtSWEET11 and AtSWEET12 showed the differential expression pattern with high or no transcript expression in the leaf tissues of different plants. Overall, these results offer the new insights into the functions and regulation of AtSWEET11 and AtSWEET12 orthologs from different plant species. This might be helpful in conducting the future studies to understand the role of these two crucial transporters in Arabidopsis and other crop plants.
Collapse
Affiliation(s)
- Urooj Fatima
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | - Wajahat Ali Khan
- Membrane Protein Biology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Manu Kandpal
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | - Arulandu Arockiasamy
- Membrane Protein Biology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | | |
Collapse
|
39
|
Vinodh Kumar PN, Mallikarjuna MG, Jha SK, Mahato A, Lal SK, K R Y, Lohithaswa HC, Chinnusamy V. Unravelling structural, functional, evolutionary and genetic basis of SWEET transporters regulating abiotic stress tolerance in maize. Int J Biol Macromol 2023; 229:539-560. [PMID: 36603713 DOI: 10.1016/j.ijbiomac.2022.12.326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/11/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Sugars Will Eventually be Exported Transporters (SWEETs) are the novel sugar transporters widely distributed among living systems. SWEETs play a crucial role in various bio-physiological processes, viz., plant developmental, nectar secretion, pollen development, and regulation of biotic and abiotic stresses, in addition to their prime sugar-transporting activity. Thus, in-depth structural, evolutionary, and functional characterization of maize SWEET transporters was performed for their utility in maize improvement. The mining of SWEET genes in the latest maize genome release (v.5) showed an uneven distribution of 20 ZmSWEETs. The comprehensive structural analyses and docking of ZmSWEETs with four sugars, viz., fructose, galactose, glucose, and sucrose, revealed frequent amino acid residues forming hydrogen (asparagine, valine, serine) and hydrophobic (tryptophan, glycine, and phenylalanine) interactions. Evolutionary analyses of SWEETs showed a mixed lineage with 50-100 % commonality of ortho-groups and -sequences evolved under strong purifying selection (Ka/Ks < 0.5). The duplication analysis showed non-functionalization (ZmSWEET18 in B73) and neo- and sub-functionalization (ZmSWEET3, ZmSWEET6, ZmSWEET9, ZmSWEET19, and ZmSWEET20) events in maize. Functional analyses of ZmSWEET genes through co-expression, in silico expression and qRT-PCR assays showed the relevance of ZmSWEETs expression in regulating drought, heat, and waterlogging stress tolerances in maize. The first ever ZmSWEET-regulatory network revealed 286 direct (ZmSWEET-TF: 140 ZmSWEET-miRNA: 146) and 1226 indirect (TF-TF: 597; TF-miRNA: 629) edges. The present investigation has given new insights into the complex transcriptional and post-transcriptional regulation and the regulatory and functional relevance of ZmSWEETs in assigning stress tolerance in maize.
Collapse
Affiliation(s)
- P N Vinodh Kumar
- Division of Genetics, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India; ICAR - Indian Agricultural Research Institute, Jharkhand, India
| | | | - Shailendra Kumar Jha
- Division of Genetics, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Anima Mahato
- ICAR - Indian Agricultural Research Institute, Jharkhand, India
| | - Shambhu Krishan Lal
- School of Genetic Engineering, ICAR - Indian Institute of Agricultural Biotechnology, Ranchi 834003, India
| | - Yathish K R
- Winter Nursery Centre, ICAR-Indian Institute of Maize Research, Hyderabad, India
| | | | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
40
|
Xu M, Zhang Y, Yang X, Xing J, Qi J, Zhang S, Zhang Y, Ye D, Tang C. Genome-wide analysis of the SWEET genes in Taraxacum kok-saghyz Rodin: An insight into two latex-abundant isoforms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:440-448. [PMID: 36493591 DOI: 10.1016/j.plaphy.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Taraxacum kok-saghyz Rodin (Tk) is a promising alternative rubber-producing grass. However, low biomass and rubber-producing capability limit its commercial application. As a carbon source transporter in plants, sugar will eventually be exported transporters (SWEETs) have been reported to play pivotal roles in diverse physiological events in the context of carbon assimilate transport and utilization. Theoretically, SWEETs would participate in Tk growth, development and response to environmental cues with relation to the accumulation of rubber and biomass, both of which rely on the input of carbon assimilates. Here, we identified 22 TkSWEETs through homology searching of the Tk genomes and bioinformatics analyses. RNA-seq and qRT-PCR analysis revealed these TkSWEETs to have overlapping yet distinct tissue expression patterns. Two TkSWEET isofroms, TkSWEET1 and TkSWEET12 expressed substantially in the latex, the cytoplasm of rubber-producing laticifers as well as the rubber source. As revealed by the transient expression analysis using Tk mesophyll protoplasts, both TkSWEET1 and TkSWEET12 were located in the plasma membrane. Heterologous expressions of the two TkSWEETs in a yeast mutant revealed that only TkSWEET1 exhibited apparent sugar transport activities, with a preference for monosaccharides. Interestingly, TkSWEET12, the latex-predominant TkSWEET isoform, seemed to have evolved from a tandem duplication event that results in a cluster of six TkSWEET genes with the TkSWEET12 therein, suggesting its specialized roles in the laticifers.
Collapse
Affiliation(s)
- Menghao Xu
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - Yi Zhang
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Xue Yang
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - Jianfeng Xing
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - Jiyan Qi
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - Shengmin Zhang
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - Yuhao Zhang
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - De Ye
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China
| | - Chaorong Tang
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PR China, Hainan University, Haikou, 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| |
Collapse
|
41
|
Singh J, Das S, Jagadis Gupta K, Ranjan A, Foyer CH, Thakur JK. Physiological implications of SWEETs in plants and their potential applications in improving source-sink relationships for enhanced yield. PLANT BIOTECHNOLOGY JOURNAL 2022. [PMID: 36529911 PMCID: PMC10363763 DOI: 10.1111/pbi.13982] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The sugars will eventually be exported transporters (SWEET) family of transporters in plants is identified as a novel class of sugar carriers capable of transporting sugars, sugar alcohols and hormones. Functioning in intercellular sugar transport, SWEETs influence a wide range of physiologically important processes. SWEETs regulate the development of sink organs by providing nutritional support from source leaves, responses to abiotic stresses by maintaining intracellular sugar concentrations, and host-pathogen interactions through the modulation of apoplastic sugar levels. Many bacterial and fungal pathogens activate the expression of SWEET genes in species such as rice and Arabidopsis to gain access to the nutrients that support virulence. The genetic manipulation of SWEETs has led to the generation of bacterial blight (BB)-resistant rice varieties. Similarly, while the overexpression of the SWEETs involved in sucrose export from leaves and pathogenesis led to growth retardation and yield penalties, plants overexpressing SWEETs show improved disease resistance. Such findings demonstrate the complex functions of SWEETs in growth and stress tolerance. Here, we review the importance of SWEETs in plant-pathogen and source-sink interactions and abiotic stress resistance. We highlight the possible applications of SWEETs in crop improvement programmes aimed at improving sink and source strengths important for enhancing the sustainability of yield. We discuss how the adverse effects of the overexpression of SWEETs on plant growth may be overcome.
Collapse
Affiliation(s)
- Jitender Singh
- National Institute of Plant Genome Research, New Delhi, India
| | - Shubhashis Das
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Aashish Ranjan
- National Institute of Plant Genome Research, New Delhi, India
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | - Jitendra Kumar Thakur
- National Institute of Plant Genome Research, New Delhi, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
42
|
Zhang B, Li YN, Wu BH, Yuan YY, Zhao ZY. Plasma Membrane-Localized Transporter MdSWEET12 Is Involved in Sucrose Unloading in Apple Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15517-15530. [PMID: 36468541 DOI: 10.1021/acs.jafc.2c05102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sugar content is an important factor determining the flavor in apple fruit. Sugar unloading is a prerequisite step for sugar accumulation. However, little is known about sugar unloading mechanisms in apple. Transcriptomic sequencing of two apple varieties, "Envy" and "Pacific Rose," with significantly different sugar content was performed. MdSWEET12a from the SWEET transporter family was differentially expressed. Further study of the MdSWEET12a showed that this plasma membrane-localized transporter protein-encoding gene was mainly expressed in sieve element-companion cells (SE-CC) in the fruit, which was positively correlated with the sucrose accumulation during the development of "Envy" apple. Consistently manipulating the gene expression through either transient overexpression or silencing significantly increased or decreased the sugar content in apple fruit, respectively. Complementary growth experiments in mutant yeast cells indicated that MdSWEET12a transported sucrose. Heterologous expression of MdSWEET12a in tomato increased the expression of genes related to sugar metabolism and transport, leading to increased sugar content. These findings underpin the involvement of MdSWEET12a in sugar unloading in apple fruit.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling 712100, Shaanxi, China
| | - Ya-Nan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling 712100, Shaanxi, China
| | - Bing-Hua Wu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Horticulture, Fujian A&F University, Fuzhou 350002, China
| | - Yang-Yang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zheng-Yang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling 712100, Shaanxi, China
| |
Collapse
|
43
|
Dai Z, Yan P, He S, Jia L, Wang Y, Liu Q, Zhai H, Zhao N, Gao S, Zhang H. Genome-Wide Identification and Expression Analysis of SWEET Family Genes in Sweet Potato and Its Two Diploid Relatives. Int J Mol Sci 2022; 23:ijms232415848. [PMID: 36555491 PMCID: PMC9785306 DOI: 10.3390/ijms232415848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Sugar Will Eventually be Exported Transporter (SWEET) proteins are key transporters in sugar transportation. They are involved in the regulation of plant growth and development, hormone crosstalk, and biotic and abiotic stress responses. However, SWEET family genes have not been explored in the sweet potato. In this study, we identified 27, 27, and 25 SWEETs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90) and its two diploid relatives, Ipomoea trifida (2n = 2x = 30) and Ipomoea triloba (2n = 2x = 30), respectively. These SWEETs were divided into four subgroups according to their phylogenetic relationships with Arabidopsis. The protein physiological properties, chromosome localization, phylogenetic relationships, gene structures, promoter cis-elements, protein interaction networks, and expression patterns of these 79 SWEETs were systematically investigated. The results suggested that homologous SWEETs are differentiated in sweet potato and its two diploid relatives and play various vital roles in plant growth, tuberous root development, carotenoid accumulation, hormone crosstalk, and abiotic stress response. This work provides a comprehensive comparison and furthers our understanding of the SWEET genes in the sweet potato and its two diploid relatives, thereby supplying a theoretical foundation for their functional study and further facilitating the molecular breeding of sweet potato.
Collapse
Affiliation(s)
- Zhuoru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Pengyu Yan
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Licong Jia
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Yannan Wang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572025, China
- Correspondence: ; Tel./Fax: +86-010-6273-2559
| |
Collapse
|
44
|
Fatima U, Anjali A, Senthil-Kumar M. AtSWEET11 and AtSWEET12: the twin traders of sucrose. TRENDS IN PLANT SCIENCE 2022; 27:958-960. [PMID: 35821086 DOI: 10.1016/j.tplants.2022.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
AtSWEET11 and AtSWEET12 are central players in phloem loading and long-distance sucrose translocation. During drought stress, these transporters enhance sucrose transport from shoot to root, increasing root proliferation. Chen et al. have now unravelled novel aspects of sucrose transport regulation, occurring via AtSWEET11 and AtSWEET12 phosphorylation and oligomerisation.
Collapse
Affiliation(s)
- Urooj Fatima
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Anjali Anjali
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | |
Collapse
|
45
|
Zhang Y, Zhao Y, Zhang X, Chen Y, Tong Q, Yang J. Solid-state NMR 13C and 15 N resonance assignments of Vibrio sp. SemiSWEET transporter in lipid bilayers. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:325-332. [PMID: 35771337 DOI: 10.1007/s12104-022-10098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The Sugar Will Eventually be Exported Transporter (SWEET) family is a new class of transporters that plays crucial roles in the cellular sugar transport process. Their bacterial homologs, known as SemiSWEETs, are among the smallest transporters and can be used as a prototype for studying the biological properties of sugar transporters. Here, a set of dipolar-based multidimensional solid-state NMR spectra were employed to investigate the structure of Vibrio sp. SemiSWEET (Vs-SemiSWEET) reconstituted in the native-like lipid bilayers. A nearly complete (88% of the amino acid residues) backbone and side-chain 13C and 15 N chemical shift assignments of Vs-SemiSWEET were obtained. The overall secondary structure of Vs-SemiSWEET predicted from the obtained 13C and 15 N chemical shifts is similar to that from X-ray crystallography, with some differences, reflecting the influence of the membrane environments to the structure of membrane proteins.
Collapse
Affiliation(s)
- Yan Zhang
- Chinese Academy of Sciences, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Wuhan, 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yongxiang Zhao
- Chinese Academy of Sciences, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Wuhan, 430071, People's Republic of China
| | - Xuning Zhang
- Chinese Academy of Sciences, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Wuhan, 430071, People's Republic of China
| | - Yanke Chen
- Chinese Academy of Sciences, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Wuhan, 430071, People's Republic of China
| | - Qiong Tong
- Chinese Academy of Sciences, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Wuhan, 430071, People's Republic of China.
| | - Jun Yang
- Chinese Academy of Sciences, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Wuhan, 430071, People's Republic of China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
46
|
Zhu J, Zhou L, Li T, Ruan Y, Zhang A, Dong X, Zhu Y, Li C, Fan J. Genome-Wide Investigation and Characterization of SWEET Gene Family with Focus on Their Evolution and Expression during Hormone and Abiotic Stress Response in Maize. Genes (Basel) 2022; 13:genes13101682. [PMID: 36292567 PMCID: PMC9601529 DOI: 10.3390/genes13101682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/28/2022] Open
Abstract
The sugar will eventually be exported transporters (SWEET) family is an important group of transport carriers for carbon partitioning in plants and has important functions in growth, development, and abiotic stress tolerance. Although the SWEET family is an important sugar transporter, little is known of the functions of the SWEET family in maize (Zea mays), especially in response to abiotic stresses. To further explore the response pattern of maize SWEET to abiotic stress, a bioinformatics-based approach was used to predict and identify the maize SWEET gene (ZmSWEET) family. Twenty-four ZmSWEET genes were identified using the MaizeGDB database. Phylogenetic analysis resolved these twenty-four genes into four clades. One tandem and five segmental duplication events were identified, which played a major role in ZmSWEET family expansion. Synteny analysis provided insight into the evolutionary characteristics of the ZmSWEET genes with those of three graminaceous crop species. A heatmap showed that most ZmSWEET genes responded to at least one type of abiotic stress. By an abscisic acid signaling pathway, among which five genes were significantly induced under NaCl treatment, eight were obviously up-regulated under PEG treatment and five were up-regulated under Cd stress, revealing their potential functions in response to abiotic stress. These findings will help to explain the evolutionary links of the ZmSWEET family and contribute to future studies on the functional characteristics of ZmSWEET genes, and then improve abiotic stress tolerance in maize through molecular breeding.
Collapse
Affiliation(s)
- Jialun Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Lu Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Tianfeng Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanshu Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence: (C.L.); (J.F.)
| | - Jinjuan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence: (C.L.); (J.F.)
| |
Collapse
|
47
|
Fleet J, Ansari M, Pittman JK. Phylogenetic analysis and structural prediction reveal the potential functional diversity between green algae SWEET transporters. FRONTIERS IN PLANT SCIENCE 2022; 13:960133. [PMID: 36186040 PMCID: PMC9520054 DOI: 10.3389/fpls.2022.960133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Sugar-Will-Eventually-be-Exported-Transporters (SWEETs) are an important family of sugar transporters that appear to be ubiquitous in all organisms. Recent research has determined the structure of SWEETs in higher plants, identified specific residues required for monosaccharide or disaccharide transport, and begun to understand the specific functions of individual plant SWEET proteins. However, in green algae (Chlorophyta) these transporters are poorly characterised. This study identified SWEET proteins from across representative Chlorophyta with the aim to characterise their phylogenetic relationships and perform protein structure modelling in order to inform functional prediction. The algal genomes analysed encoded between one and six SWEET proteins, which is much less than a typical higher plant. Phylogenetic analysis identified distinct clusters of over 70 SWEET protein sequences, taken from almost 30 algal genomes. These clusters remain separate from representative higher or non-vascular plant SWEETs, but are close to fungi SWEETs. Subcellular localisation predictions and analysis of conserved amino acid residues revealed variation between SWEET proteins of different clusters, suggesting different functionality. These findings also showed conservation of key residues at the substrate-binding site, indicating a similar mechanism of substrate selectivity and transport to previously characterised higher plant monosaccharide-transporting SWEET proteins. Future work is now required to confirm the predicted sugar transport specificity and determine the functional role of these algal SWEET proteins.
Collapse
Affiliation(s)
- Jack Fleet
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
| | - Mujtaba Ansari
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jon K. Pittman
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
48
|
Hooker JC, Nissan N, Luckert D, Zapata G, Hou A, Mohr RM, Glenn AJ, Barlow B, Daba KA, Warkentin TD, Lefebvre F, Golshani A, Cober ER, Samanfar B. GmSWEET29 and Paralog GmSWEET34 Are Differentially Expressed between Soybeans Grown in Eastern and Western Canada. PLANTS 2022; 11:plants11182337. [PMID: 36145738 PMCID: PMC9502396 DOI: 10.3390/plants11182337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
Over the past two decades soybeans grown in western Canada have persistently had lower seed protein than those grown in eastern Canada. To understand the discrepancy in seed protein content between eastern- and western-grown soybeans, RNA-seq and differential expression analysis have been investigated. Ten soybean genotypes, ranging from low to high in seed protein content, were grown in four locations across eastern (Ottawa) and western (Morden, Brandon, and Saskatoon) Canada. Differential expression analysis revealed 34 differentially expressed genes encoding Glycine max Sugars Will Eventually be Exported Transporters (GmSWEETs), including paralogs GmSWEET29 and GmSWEET34 (AtSWEET2 homologs) that were consistently upregulated across all ten genotypes in each of the western locations over three years. GmSWEET29 and GmSWEET34 are likely candidates underlying the lower seed protein content of western soybeans. GmSWEET20 (AtSWEET12 homolog) was downregulated in the western locations and may also play a role in lower seed protein content. These findings are valuable for improving soybean agriculture in western growing regions, establishing more strategic and efficient agricultural practices.
Collapse
Affiliation(s)
- Julia C. Hooker
- Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Nour Nissan
- Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Doris Luckert
- Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Gerardo Zapata
- Canadian Centre for Computational Genomics, Montréal, QC H3A 0G1, Canada
| | - Anfu Hou
- Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
| | - Ramona M. Mohr
- Agriculture and Agri-Food Canada, Brandon, MB R7A 5Y3, Canada
| | - Aaron J. Glenn
- Agriculture and Agri-Food Canada, Brandon, MB R7A 5Y3, Canada
| | - Brent Barlow
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Ketema A. Daba
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Thomas D. Warkentin
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - François Lefebvre
- Canadian Centre for Computational Genomics, Montréal, QC H3A 0G1, Canada
| | - Ashkan Golshani
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Elroy R. Cober
- Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Correspondence:
| |
Collapse
|
49
|
Lu C, Ye J, Chang Y, Mi Z, Liu S, Wang D, Wang Z, Niu J. Genome-Wide Identification and Expression Patterns of the SWEET Gene Family in Bletilla striata and its Responses to Low Temperature and Oxidative Stress. Int J Mol Sci 2022; 23:ijms231710057. [PMID: 36077463 PMCID: PMC9456286 DOI: 10.3390/ijms231710057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
SWEETs (sugars will eventually be exported transporters), a well-known class of sugar transporters, are involved in plant growth and development, sugar transport, biotic and abiotic stresses, etc. However, to date, there have been few investigations of SWEETs in Orchidaceae. In this study, 23 SWEET genes were identified in Bletilla striata for the first time, with an MtN3/saliva conserved domain, and were divided into four subgroups by phylogenetic tree. The same subfamily members had similar gene structures and motifs. Multiple cis-elements related to sugar and environmental stresses were found in the promoter region. Further, 21 genes were localized on 11 chromosomes and 2 paralogous pairs were found via intraspecific collinearity analysis. Expression profiling results showed that BsSWEETs were tissue-specific. It also revealed that BsSWEET10 and BsSWEET18 were responsive to low temperature and oxidative stresses. In addition, subcellular localization study indicated that BsSWEET15 and BsSWEET16 were localized in the cell membrane. This study provided important clues for the in-depth elucidation of the sugar transport mechanism of BsSWEET genes and their functional roles in response to abiotic stresses.
Collapse
|
50
|
Li J, Liu C, Yu Q, Cao Z, Yang Y, Jia B, Su Y, Li G, Qin G. Identification of sugar transporter (SWEET) genes involved in pomegranate seed coat sugar accumulation. 3 Biotech 2022; 12:181. [PMID: 35875178 PMCID: PMC9296756 DOI: 10.1007/s13205-022-03248-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/02/2022] [Indexed: 11/30/2022] Open
Abstract
Sugar content of the outer seed coat and hardness of the inner seed coat are important traits of the pomegranate fruit. The translocation of sugars across biological membranes, mediated by SWEET transporters, is critical to seed development. In this study, we identified 16 PgrSWEET genes distributed on six chromosomes in the pomegranate genome. According to the phylogenetic analysis, PgrSWEET proteins were divided into four groups. Tandem and segmental duplications contributed to the expansion of the PgrSWEET family, while functional redundancy and diversification may have occurred among SWEET members according to analyses of evolution and gene expression. RNA-seq and qRT-PCR analyses revealed that PgrSWEET1a and PgrSWEET9 were highly expressed in the inner seed coat, and the expression levels gradually increased during seed development. Moreover, the relative expression levels of PgrSWEET1a and PgrSWEET9 in a hard-seeded cultivar were higher than those in a soft-seeded cultivar, indicating that PgrSWEET1a and PgrSWEET9 might function in the inner seed coat development by accumulating sugar metabolites. We also found that PgrSWEET2 was highly expressed in the outer seed coat during seed development, and the protein was localized to the tonoplast, indicating that PgrSWEET2 is likely a candidate regulating sugar accumulation or reutilization in the vacuoles of the outer seed coat. Genes encoding transcription factors probably regulating the candidate PgrSWEET genes were chosen by co-expression analysis. These results not only helped to characterize PgrSWEET genes but also provided an insight into their functions in relation to seed coat development. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03248-6.
Collapse
Affiliation(s)
- Jiyu Li
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Chunyan Liu
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Qing Yu
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Zhen Cao
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Yuan Yang
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Botao Jia
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Ying Su
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Guixiang Li
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Gaihua Qin
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| |
Collapse
|