1
|
Meza-Torres J, Tinevez JY, Crouzols A, Mary H, Kim M, Hunault L, Chamorro-Rodriguez S, Lejal E, Altamirano-Silva P, Groussard D, Gobaa S, Peltier J, Chassaing B, Dupuy B. Clostridioides difficile binary toxin CDT induces biofilm-like persisting microcolonies. Gut Microbes 2025; 17:2444411. [PMID: 39719371 DOI: 10.1080/19490976.2024.2444411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 12/26/2024] Open
Abstract
Clinical symptoms of Clostridioides difficile infection (CDI) range from diarrhea to pseudomembranous colitis. A major challenge in managing CDI is the high rate of relapse. Several studies correlate the production of CDT binary toxin by clinical strains of C. difficile with higher relapse rates. Although the mechanism of action of CDT on host cells is known, its exact contribution to CDI is still unclear. To understand the physiological role of CDT during CDI, we established two hypoxic relevant intestinal models, Transwell and Microfluidic Intestine-on-Chip systems. Both were challenged with the epidemic strain UK1 CDT+ and its isogenic CDT- mutant. We report that CDT induces mucin-associated microcolonies that increase C. difficile colonization and display biofilm-like properties by enhancing C. difficile resistance to vancomycin. Importantly, biofilm-like microcolonies were also observed in the cecum and colon of infected mice. Hence, our study shows that CDT induces biofilm-like microcolonies, increasing C. difficile persistence and risk of relapse.
Collapse
Affiliation(s)
- Jazmin Meza-Torres
- Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Jean-Yves Tinevez
- Image Analysis Hub, Department of Cell Biology and Infection, Institut Pasteur, Université Paris Cité, Paris, France
| | - Aline Crouzols
- Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Héloïse Mary
- Biomaterials and Microfluidics Core Facility, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Minhee Kim
- Biomaterials and Microfluidics Core Facility, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Lise Hunault
- Antibodies in Therapy and Pathology, Department of Immunology, Institut Pasteur, Paris, France
| | - Susan Chamorro-Rodriguez
- Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Emilie Lejal
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Pamela Altamirano-Silva
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | | | - Samy Gobaa
- Biomaterials and Microfluidics Core Facility, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Johann Peltier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Benoit Chassaing
- Microbiome-Host Interactions, Department of Microbiology, Institut Pasteur, Université Paris Cité, INSERM U1306, Paris, France
- Mucosal Microbiota in Chronic Inflammatory Diseases, INSERM U1016, CNRS UMR 8104, Université Paris Cité, Paris, France
| | - Bruno Dupuy
- Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| |
Collapse
|
2
|
Frankowska N, Szarek K, Iwanicki A, Wultańska D, Pituch H, Kabała M, Negri A, Obuchowski M, Hinc K. The phi027 bacteriophage influences physiology and virulence of the lysogenic strain of Clostridioides difficile. Sci Rep 2025; 15:18856. [PMID: 40442286 PMCID: PMC12122855 DOI: 10.1038/s41598-025-04106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 05/26/2025] [Indexed: 06/02/2025] Open
Abstract
Clostridioides difficile, the causative agent of C. difficile infections (CDI), can be naturally infected by bacterial viruses known as bacteriophages. All characterized bacteriophages of this bacterium are temperate, meaning that upon infection their genetic material integrates and replicates with host's genome. Such lysogenic strains can exhibit altered physiology and virulence, which in turn can be an important factor for epidemiology of CDI. In this study we characterized the phiCDKH02 bacteriophage infecting clinical isolates of C. difficile belonging to hypervirulent ribotypes 027 and 176. The bacteriophage was found to be identical to phi027. To get some insight into the role of this bacteriophage in physiology of its host and interaction with human colon cells, we made use of CRISPR-Cpf1 technology to cure the lysogenic C. difficile of the prophage. The prophage-free strain exhibited altered sporulation efficiency, lowered adhesion and decreased cytopathic effects towards human colon cells associated with decreased production of TcdB. These results emphasize importance of prophages in shaping virulence of C. difficile.
Collapse
Affiliation(s)
- Natalia Frankowska
- Division of Molecular Bacteriology, Medical University of Gdańsk, Gdańsk, Poland
- Intercollegiate Faculty of Biotechnology, University of Gdańsk, Gdańsk, Poland
| | - Klaudia Szarek
- Department of Medical Microbiology, Faculty of Medical Science in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adam Iwanicki
- Division of Molecular Bacteriology, Medical University of Gdańsk, Gdańsk, Poland
| | - Dorota Wultańska
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Hanna Pituch
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Monika Kabała
- Department of Medical Microbiology, Faculty of Medical Science in Katowice, Medical University of Silesia, Katowice, Poland
| | - Alessandro Negri
- Division of Molecular Bacteriology, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Obuchowski
- Division of Molecular Bacteriology, Medical University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Hinc
- Division of Molecular Bacteriology, Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
3
|
Li J, Yang J, Ouyang Z, Ren M, Zhao J. Molecular typing and clinical characteristics of Clostridioides difficile infection in patients with inflammatory bowel disease: a retrospective study. J Glob Antimicrob Resist 2025:S2213-7165(25)00083-9. [PMID: 40287014 DOI: 10.1016/j.jgar.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND AND AIM The increasing incidence of Clostridioides difficile infection (CDI) has been associated with poorer prognosis of patients with inflammatory bowel disease (IBD). However, relevant data are limited in China. The aim of this study was to clarify the molecular types and clinical characteristics of C. difficile in IBD patients in China. METHODS Stool samples were collected, cultured anaerobically, and tested for glutamate dehydrogenase and C. difficile toxins A and B. Toxigenic C. difficile isolates were subjected to multilocus sequence typing and antimicrobial susceptibility testing. Clinical data were collected to compare IBD and non-IBD patients with CDI, and to determine the risk factors associated with CDI in IBD patients. RESULTS The incidence of CDI was significantly higher in IBD patients than non-IBD patients (27.2% vs. 9.0%, respectively). Among IBD patients, the dominant sequence types (STs) were ST54 (20.2%), ST2 (14.9%), ST3 (14.9%), and ST42 (13.2%). The STs with the highest multidrug resistance rates were ST37 (100%), ST35 (100%), and ST42 (73.3%). In IBD patients, hospitalization within 6 months and use of 5-aminosalicylic acid were independent risk factors for CDI. Other risk factors included the use of proton pump inhibitors, immunosuppressants, and corticosteroids. CONCLUSION The incidence of CDI was significantly higher in IBD patients than non-IBD patients. Surveillance of CDI in hospitalized patients should be strengthened to reduce the incidence of CDI in IBD patients.
Collapse
Affiliation(s)
- Jiayiren Li
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Yang
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zirou Ouyang
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Minghui Ren
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianhong Zhao
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
4
|
Qu J, Li J, Wang H, Lan J, Huo Z, Li X. Decoding the role of microtubules: a trafficking road for vesicle. Theranostics 2025; 15:5138-5152. [PMID: 40303338 PMCID: PMC12036878 DOI: 10.7150/thno.110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/27/2025] [Indexed: 05/02/2025] Open
Abstract
Background: In eukaryotic cells, intracellular and extracellular vesicle transport systems are ubiquitous and tightly linked. This process involves well-defined initiation and termination points, as well as mechanisms for vesicle recycling. During transport, cytoskeletal components serve as "roads" to prevent disordered vesicular movement and to ensure efficient transport, particularly through microtubules. Microtubules primarily facilitate the long-distance transport of vesicles. The dynamic nature of microtubule structure makes its stability sensitive to proteins, drugs, and post-translational modifications such as acetylation, which in turn regulate microtubule-dependent vesicular transport. Furthermore, motor proteins interact with microtubules and bind to cargoes via their tail domains, driving vesicle transport along microtubules and determining the directionality of movement. Aim of review: To elucidate the detailed processes and mechanisms of microtubules-regulated long-distance vesicle transport, providing a comprehensive overview of current research in this area. Key scientific concepts of review: This review provides an in-depth analysis of microtubule-mediated vesicle transport, emphasizing the molecular mechanisms involved. It examines vesicle transport between organelles, the impact of microtubule characteristics on this process, and the role of motor proteins in vesicle dynamics. Additionally, it summarizes diseases associated with abnormal microtubule-mediated vesicle transport, aiming to offer insights for the treatment of related conditions.
Collapse
Affiliation(s)
- Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Jianan Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Hong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Jianhang Lan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Zixuan Huo
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| |
Collapse
|
5
|
Berry P, Khanna S. The evolving landscape of live biotherapeutics in the treatment of Clostridioides difficile infection. Indian J Gastroenterol 2025; 44:129-141. [PMID: 39821715 DOI: 10.1007/s12664-024-01717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/18/2024] [Indexed: 01/19/2025]
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is common after antibiotic exposure and presents significant morbidity, mortality and healthcare costs worldwide. The rising incidence of recurrent CDI, driven by hypervirulent strains, widespread antibiotic use and increased community transmission, has led to an urgent need for novel therapeutic strategies. Conventional antibiotic treatments, although effective, face limitations due to rising antibiotic resistance and high recurrence rates, which can reach up to 60% after multiple infections. This has prompted exploration of alternative therapies such as fecal microbiota-based therapies, including fecal microbiota transplantation (FMT) and live biotherapeutics (LBPs), which demonstrate superior efficacy in preventing recurrence. They are aimed at restoring the gut microbiota. Fecal microbiota, live-jslm and fecal microbiota spores, live-brpk have been approved by the U.S. Food and Drug Administration in individuals aged 18 years or older for recurrent CDI after standard antimicrobial treatment. They have demonstrated high efficacy and a favorable safety profile in clinical trials. Another LBP under study includes VE-303, which is not derived from human donor stool. This review provides a comprehensive overview of the current therapeutic landscape for CDI, including its epidemiology, pathophysiology, risk factors, diagnostic modalities and treatment strategies. The review delves into the emerging role of live biotherapeutics, with a particular focus on fecal microbiota-based therapies. We explore their development, mechanisms of action, clinical applications and potential to revolutionize CDI management.
Collapse
Affiliation(s)
- Parul Berry
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
6
|
Castro-Cordova P, Lopez-Garcia OK, Orozco J, Montes-Bravo N, Gil F, Pizarro-Guajardo M, Paredes-Sabja D. Clostridioides difficile major toxins remodel the intestinal epithelia, affecting spore adherence/internalization into intestinal tissue and their association with gut vitronectin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635439. [PMID: 39974910 PMCID: PMC11838273 DOI: 10.1101/2025.01.29.635439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The most common cause of healthcare-associated diarrhea and colitis in the U.S., is Clostridioides difficile, a spore-forming pathogen. Two toxins, TcdA and TcdB, are major virulence factors essential for disease manifestations, while C. difficile spores are essential for disease transmission and recurrence. Both toxins cause major damage to the epithelial barrier, trigger massive inflammation, and reshape the microbiome and metabolic composition, facilitating C. difficile colonization. C. difficile spores, essential for transmission and recurrence of the disease, persist adhered and internalized in the intestinal epithelia. Studies have suggested that toxin-neutralization in combination with antibiotic during CDI treatment in humans significantly reduces disease recurrence, suggesting a link between toxin-mediated damage and spore persistence. Here, we show that TcdA/TcdB-intoxication of intestinal epithelial Caco-2 cells leads to remodeling of accessible levels of fibronectin (Fn) and vitronectin (Vn) and their cognate alpha-integrin subunits. While TcdB-intoxication of intestinal tissue had no impact in accessible levels of Fn and Vn, but significantly increased levels of intracellular Vn. We observed that Fn and Vn released to the supernatant readily bind to C. difficile spores in vitro, while TcdB-intoxication of intestinal tissue led to increased association of C. difficile spores with gut Vn. Toxin-intoxication of the intestinal tissue also contributes to increased adherence and internalization of C. difficile spores. However, TcdB-intoxicated ligated loops infected of mice treated with Bezlotoxumanb (monoclonal anti-TcdB antibodies) did not prevent TcdB-mediated increased spore adherence and internalization into intestinal tissue. This study highlights the importance of studying the impact of C. difficile toxins of host tissues has in C. difficile interaction with host surfaces that may contribute to increased persistence and disease recurrence.
Collapse
Affiliation(s)
- Pablo Castro-Cordova
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Faculty of Medicine, Universidad de los Andes, Chile
| | - Osiris K. Lopez-Garcia
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX USA
- Department of Biology, Texas A&M University, College Station, TX USA
| | - Josué Orozco
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | | | - Fernando Gil
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
- Microbiota-Host Interactions & Clostridia Research Group, Universidad Andres Bello, Santiago, Chile
| | - Marjorie Pizarro-Guajardo
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX USA
| | - Daniel Paredes-Sabja
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX USA
- Department of Biology, Texas A&M University, College Station, TX USA
| |
Collapse
|
7
|
Yomogida D, Hasegawa S, Mizuta S, Horikawa S, Koshida Y, Matsuda K, Nakamura M, Kaya H, Uchiyama A, Senoh M. Fulminant Clostridioides (Costridium) difficile infection caused by a rare strain of PCR-ribotype 153 in Japan: A case report. Anaerobe 2024:102936. [PMID: 39716657 DOI: 10.1016/j.anaerobe.2024.102936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Clostridioides (Clostridium) difficile (C. difficile) infection (CDI), often severe when producing toxin A, toxin B, and CDT, can cause life-threatening fulminant infections, especially in vulnerable patients. This case report discusses a 39-year-old woman with no medical history who developed severe CDI after antibiotic treatment, leading to fatal hypovolemic shock. A rare C. difficile PCR-ribotype 153 strain which is positive for toxin A, toxin B, and CDT was identified. This case emphasizes the need for early CDI diagnosis, cautious antibiotic use, and prompt treatment to prevent severe outcomes like shock and multiorgan failure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Akio Uchiyama
- Department of Pathology, Toyama Prefectural Central Hospital, Nishinagae2-2-78, Toyama city, Toyama, 930-8550, Japan
| | - Mitsutoshi Senoh
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| |
Collapse
|
8
|
Kunishima H, Ichiki K, Ohge H, Sakamoto F, Sato Y, Suzuki H, Nakamura A, Fujimura S, Matsumoto K, Mikamo H, Mizutani T, Morinaga Y, Mori M, Yamagishi Y, Yoshizawa S. Japanese Society for infection prevention and control guide to Clostridioides difficile infection prevention and control. J Infect Chemother 2024; 30:673-715. [PMID: 38714273 DOI: 10.1016/j.jiac.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 05/09/2024]
Affiliation(s)
- Hiroyuki Kunishima
- Department of Infectious Diseases. St. Marianna University School of Medicine, Japan.
| | - Kaoru Ichiki
- Department of Infection Control and Prevention, Hyogo Medical University Hospital, Japan
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital, Japan
| | - Fumie Sakamoto
- Quality Improvement and Safety Center, Itabashi Chuo Medical Center, Japan
| | - Yuka Sato
- Department of Infection Control and Nursing, Graduate School of Nursing, Aichi Medical University, Japan
| | - Hiromichi Suzuki
- Department of Infectious Diseases, University of Tsukuba School of Medicine and Health Sciences, Japan
| | - Atsushi Nakamura
- Department of Infection Prevention and Control, Graduate School of Medical Sciences, Nagoya City University, Japan
| | - Shigeru Fujimura
- Division of Clinical Infectious Diseases and Chemotherapy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan
| | | | - Yoshitomo Morinaga
- Department of Microbiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Minako Mori
- Department of Infection Control, Hiroshima University Hospital, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Kochi Medical School, Kochi University, Japan
| | - Sadako Yoshizawa
- Department of Laboratory Medicine/Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University, Japan
| |
Collapse
|
9
|
Papatheodorou P, Minton NP, Aktories K, Barth H. An Updated View on the Cellular Uptake and Mode-of-Action of Clostridioides difficile Toxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:219-247. [PMID: 38175478 DOI: 10.1007/978-3-031-42108-2_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Research on the human gut pathogen Clostridioides (C.) difficile and its toxins continues to attract much attention as a consequence of the threat to human health posed by hypervirulent strains. Toxin A (TcdA) and Toxin B (TcdB) are the two major virulence determinants of C. difficile. Both are single-chain proteins with a similar multidomain architecture. Certain hypervirulent C. difficile strains also produce a third toxin, namely binary toxin CDT (C. difficile transferase). C. difficile toxins are the causative agents of C. difficile-associated diseases (CDADs), such as antibiotics-associated diarrhea and pseudomembranous colitis. For that reason, considerable efforts have been expended to unravel their molecular mode-of-action and the cellular mechanisms responsible for their uptake. Many of these studies have been conducted in European laboratories. Here, we provide an update on our previous review (Papatheodorou et al. Adv Exp Med Biol, 2018) on important advances in C. difficile toxins research.
Collapse
Affiliation(s)
- Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany.
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, University of Nottingham, Nottingham, UK
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
10
|
Campidelli C, Bruxelle JF, Collignon A, Péchiné S. Immunization Strategies Against Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:117-150. [PMID: 38175474 DOI: 10.1007/978-3-031-42108-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is an important healthcare but also a community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients, and to prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to elicit immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile, and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product, and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins, and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens and either toxins or colonization factors.
Collapse
Affiliation(s)
- Camille Campidelli
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Jean-François Bruxelle
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, ENS Lyon, Lyon, France
| | - Anne Collignon
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Severine Péchiné
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
11
|
Bratkovič T, Zahirović A, Bizjak M, Rupnik M, Štrukelj B, Berlec A. New treatment approaches for Clostridioides difficile infections: alternatives to antibiotics and fecal microbiota transplantation. Gut Microbes 2024; 16:2337312. [PMID: 38591915 PMCID: PMC11005816 DOI: 10.1080/19490976.2024.2337312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Clostridioides difficile causes a range of debilitating intestinal symptoms that may be fatal. It is particularly problematic as a hospital-acquired infection, causing significant costs to the health care system. Antibiotics, such as vancomycin and fidaxomicin, are still the drugs of choice for C. difficile infections, but their effectiveness is limited, and microbial interventions are emerging as a new treatment option. This paper focuses on alternative treatment approaches, which are currently in various stages of development and can be divided into four therapeutic strategies. Direct killing of C. difficile (i) includes beside established antibiotics, less studied bacteriophages, and their derivatives, such as endolysins and tailocins. Restoration of microbiota composition and function (ii) is achieved with fecal microbiota transplantation, which has recently been approved, with standardized defined microbial mixtures, and with probiotics, which have been administered with moderate success. Prevention of deleterious effects of antibiotics on microbiota is achieved with agents for the neutralization of antibiotics that act in the gut and are nearing regulatory approval. Neutralization of C. difficile toxins (iii) which are crucial virulence factors is achieved with antibodies/antibody fragments or alternative binding proteins. Of these, the monoclonal antibody bezlotoxumab is already in clinical use. Immunomodulation (iv) can help eliminate or prevent C. difficile infection by interfering with cytokine signaling. Small-molecule agents without bacteriolytic activity are usually selected by drug repurposing and can act via a variety of mechanisms. The multiple treatment options described in this article provide optimism for the future treatment of C. difficile infection.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Abida Zahirović
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maruša Bizjak
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Prvomajska 1, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Borut Štrukelj
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Berlec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
12
|
Buddle JE, Fagan RP. Pathogenicity and virulence of Clostridioides difficile. Virulence 2023; 14:2150452. [PMID: 36419222 DOI: 10.1080/21505594.2022.2150452] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial antibiotic-associated diarrhea, and is responsible for a spectrum of diseases characterized by high levels of recurrence, morbidity, and mortality. Treatment is complex, since antibiotics constitute both the main treatment and the major risk factor for infection. Worryingly, resistance to multiple antibiotics is becoming increasingly widespread, leading to the classification of this pathogen as an urgent threat to global health. As a consummate opportunist, C. difficile is well equipped for promoting disease, owing to its arsenal of virulence factors: transmission of this anaerobe is highly efficient due to the formation of robust endospores, and an array of adhesins promote gut colonization. C. difficile produces multiple toxins acting upon gut epithelia, resulting in manifestations typical of diarrheal disease, and severe inflammation in a subset of patients. This review focuses on such virulence factors, as well as the importance of antimicrobial resistance and genome plasticity in enabling pathogenesis and persistence of this important pathogen.
Collapse
Affiliation(s)
- Jessica E Buddle
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Robert P Fagan
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
13
|
Abdrabou AMM, Sy I, Bischoff M, Arroyo MJ, Becker SL, Mellmann A, von Müller L, Gärtner B, Berger FK. Discrimination between hypervirulent and non-hypervirulent ribotypes of Clostridioides difficile by MALDI-TOF mass spectrometry and machine learning. Eur J Clin Microbiol Infect Dis 2023; 42:1373-1381. [PMID: 37721704 PMCID: PMC10587247 DOI: 10.1007/s10096-023-04665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/03/2023] [Indexed: 09/19/2023]
Abstract
Hypervirulent ribotypes (HVRTs) of Clostridioides difficile such as ribotype (RT) 027 are epidemiologically important. This study evaluated whether MALDI-TOF can distinguish between strains of HVRTs and non-HVRTs commonly found in Europe. Obtained spectra of clinical C. difficile isolates (training set, 157 isolates) covering epidemiologically relevant HVRTs and non-HVRTs found in Europe were used as an input for different machine learning (ML) models. Another 83 isolates were used as a validation set. Direct comparison of MALDI-TOF spectra obtained from HVRTs and non-HVRTs did not allow to discriminate between these two groups, while using these spectra with certain ML models could differentiate HVRTs from non-HVRTs with an accuracy >95% and allowed for a sub-clustering of three HVRT subgroups (RT027/RT176, RT023, RT045/078/126/127). MALDI-TOF combined with ML represents a reliable tool for rapid identification of major European HVRTs.
Collapse
Affiliation(s)
- Ahmed Mohamed Mostafa Abdrabou
- Institute of Medical Microbiology and Hygiene, Saarland University, Kirrberger Straße 100, Building 43, D-66421, Homburg, Saar, Germany.
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, El Gomhouria Street, Mansoura, 35516, Egypt.
- National Reference Center for Clostridioides (Clostridium) difficile, Homburg-Münster-Coesfeld, Germany.
| | - Issa Sy
- Institute of Medical Microbiology and Hygiene, Saarland University, Kirrberger Straße 100, Building 43, D-66421, Homburg, Saar, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Kirrberger Straße 100, Building 43, D-66421, Homburg, Saar, Germany
- National Reference Center for Clostridioides (Clostridium) difficile, Homburg-Münster-Coesfeld, Germany
| | - Manuel J Arroyo
- Clover Bioanalytical Software, Av. del Conocimiento, 41, 18016, Granada, Spain
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Kirrberger Straße 100, Building 43, D-66421, Homburg, Saar, Germany
| | - Alexander Mellmann
- National Reference Center for Clostridioides (Clostridium) difficile, Homburg-Münster-Coesfeld, Germany
- Institute of Hygiene, University of Münster, Robert-Koch-Straße 41, 48149, Münster, Germany
| | - Lutz von Müller
- National Reference Center for Clostridioides (Clostridium) difficile, Homburg-Münster-Coesfeld, Germany
- Christophorus Kliniken Coesfeld, Coesfeld, Germany
| | - Barbara Gärtner
- Institute of Medical Microbiology and Hygiene, Saarland University, Kirrberger Straße 100, Building 43, D-66421, Homburg, Saar, Germany
- National Reference Center for Clostridioides (Clostridium) difficile, Homburg-Münster-Coesfeld, Germany
| | - Fabian K Berger
- Institute of Medical Microbiology and Hygiene, Saarland University, Kirrberger Straße 100, Building 43, D-66421, Homburg, Saar, Germany
- National Reference Center for Clostridioides (Clostridium) difficile, Homburg-Münster-Coesfeld, Germany
| |
Collapse
|
14
|
Cheng JKJ, Unnikrishnan M. Clostridioides difficile infection: traversing host-pathogen interactions in the gut. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36848200 DOI: 10.1099/mic.0.001306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
C. difficile is the primary cause for nosocomial infective diarrhoea. For a successful infection, C. difficile must navigate between resident gut bacteria and the harsh host environment. The perturbation of the intestinal microbiota by broad-spectrum antibiotics alters the composition and the geography of the gut microbiota, deterring colonization resistance, and enabling C. difficile to colonize. This review will discuss how C. difficile interacts with and exploits the microbiota and the host epithelium to infect and persist. We provide an overview of C. difficile virulence factors and their interactions with the gut to aid adhesion, cause epithelial damage and mediate persistence. Finally, we document the host responses to C. difficile, describing the immune cells and host pathways that are associated and triggered during C. difficile infection.
Collapse
Affiliation(s)
- Jeffrey K J Cheng
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
15
|
Aktories K. From signal transduction to protein toxins-a narrative review about milestones on the research route of C. difficile toxins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:173-190. [PMID: 36203094 PMCID: PMC9831965 DOI: 10.1007/s00210-022-02300-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/22/2022] [Indexed: 01/29/2023]
Abstract
Selected findings about Clostridioides difficile (formerly Clostridium difficile) toxins are presented in a narrative review. Starting with a personal view on research about G proteins, adenylyl cyclase, and ADP-ribosylating toxins in the laboratory of Günter Schultz in Heidelberg, milestones of C. difficile toxin research are presented with the focus on toxin B (TcdB), covering toxin structure, receptor binding, toxin up-take and refolding, the intracellular actions of TcdB, and the treatment of C. difficile infection.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| |
Collapse
|
16
|
Redistribution of the Novel Clostridioides difficile Spore Adherence Receptor E-Cadherin by TcdA and TcdB Increases Spore Binding to Adherens Junctions. Infect Immun 2023; 91:e0047622. [PMID: 36448839 PMCID: PMC9872679 DOI: 10.1128/iai.00476-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Clostridioides difficile causes antibiotic-associated diseases in humans, ranging from mild diarrhea to severe pseudomembranous colitis and death. A major clinical challenge is the prevention of disease recurrence, which affects nearly ~20 to 30% of the patients with a primary C. difficile infection (CDI). During CDI, C. difficile forms metabolically dormant spores that are essential for recurrence of CDI (R-CDI). In prior studies, we have shown that C. difficile spores interact with intestinal epithelial cells (IECs), which contribute to R-CDI. However, this interaction remains poorly understood. Here, we provide evidence that C. difficile spores interact with E-cadherin, contributing to spore adherence and internalization into IECs. C. difficile toxins TcdA and TcdB lead to adherens junctions opening and increase spore adherence to IECs. Confocal micrographs demonstrate that C. difficile spores associate with accessible E-cadherin; spore-E-cadherin association increases upon TcdA and TcdB intoxication. The presence of anti-E-cadherin antibodies decreased spore adherence and entry into IECs. By enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and immunogold labeling, we observed that E-cadherin binds to C. difficile spores, specifically to the hairlike projections of the spore, reducing spore adherence to IECs. Overall, these results expand our knowledge of how C. difficile spores bind to IECs by providing evidence that E-cadherin acts as a spore adherence receptor to IECs and by revealing how toxin-mediated damage affects spore interactions with IECs.
Collapse
|
17
|
Schwan C, Lang AE, Schlosser A, Fujita-Becker S, AlHaj A, Schröder RR, Faix J, Aktories K, Mannherz HG. Inhibition of Arp2/3 Complex after ADP-Ribosylation of Arp2 by Binary Clostridioides Toxins. Cells 2022; 11:cells11223661. [PMID: 36429089 PMCID: PMC9688287 DOI: 10.3390/cells11223661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Clostridioides bacteria are responsible for life threatening infections. Here, we show that in addition to actin, the binary toxins CDT, C2I, and Iota from Clostridioides difficile, botulinum, and perfrigens, respectively, ADP-ribosylate the actin-related protein Arp2 of Arp2/3 complex and its additional components ArpC1, ArpC2, and ArpC4/5. The Arp2/3 complex is composed of seven subunits and stimulates the formation of branched actin filament networks. This activity is inhibited after ADP-ribosylation of Arp2. Translocation of the ADP-ribosyltransferase component of CDT toxin into human colon carcinoma Caco2 cells led to ADP-ribosylation of cellular Arp2 and actin followed by a collapse of the lamellipodial extensions and F-actin network. Exposure of isolated mouse colon pieces to CDT toxin induced the dissolution of the enterocytes leading to luminal aggregation of cellular debris and the collapse of the mucosal organization. Thus, we identify the Arp2/3 complex as hitherto unknown target of clostridial ADP-ribosyltransferases.
Collapse
Affiliation(s)
- Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwig-University, 79104 Freiburg, Germany
| | - Alexander E. Lang
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwig-University, 79104 Freiburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center of Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | | | - Abdulatif AlHaj
- Department of Anatomy and Molecular Embryology, Ruhr-University, 44780 Bochum, Germany
- Department of Cellular Physiology, Ruhr-University, 44780 Bochum, Germany
| | - Rasmus R. Schröder
- Cryo-Electron Microscopy, BioQuant, University Hospital, 69120 Heidelberg, Germany
| | - Jan Faix
- Institute of Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwig-University, 79104 Freiburg, Germany
| | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology, Ruhr-University, 44780 Bochum, Germany
- Department of Cellular Physiology, Ruhr-University, 44780 Bochum, Germany
- Department of Anatomy and Molecular Embryology and of Cellular Physiology, Ruhr-University, Universitätsstr. 150, 44780 Bochum, Germany
- Correspondence: ; Tel.: +49-234-3223164; Fax: +49-234-321447
| |
Collapse
|
18
|
Tian S, Xiong X, Zeng J, Wang S, Tremblay BJM, Chen P, Chen B, Liu M, Chen P, Sheng K, Zeve D, Qi W, Breault DT, Rodríguez C, Gerhard R, Jin R, Doxey AC, Dong M. Identification of TFPI as a receptor reveals recombination-driven receptor switching in Clostridioides difficile toxin B variants. Nat Commun 2022; 13:6786. [PMID: 36351897 PMCID: PMC9646764 DOI: 10.1038/s41467-022-33964-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Toxin B (TcdB) is a major exotoxin responsible for diseases associated with Clostridioides difficile infection. Its sequence variations among clinical isolates may contribute to the difficulty in developing effective therapeutics. Here, we investigate receptor-binding specificity of major TcdB subtypes (TcdB1 to TcdB12). We find that representative members of subtypes 2, 4, 7, 10, 11, and 12 do not recognize the established host receptor, frizzled proteins (FZDs). Using a genome-wide CRISPR-Cas9-mediated screen, we identify tissue factor pathway inhibitor (TFPI) as a host receptor for TcdB4. TFPI is recognized by a region in TcdB4 that is homologous to the FZD-binding site in TcdB1. Analysis of 206 TcdB variant sequences reveals a set of six residues within this receptor-binding site that defines a TFPI binding-associated haplotype (designated B4/B7) that is present in all TcdB4 members, a subset of TcdB7, and one member of TcdB2. Intragenic micro-recombination (IR) events have occurred around this receptor-binding region in TcdB7 and TcdB2 members, resulting in either TFPI- or FZD-binding capabilities. Introduction of B4/B7-haplotype residues into TcdB1 enables dual recognition of TFPI and FZDs. Finally, TcdB10 also recognizes TFPI, although it does not belong to the B4/B7 haplotype, and shows species selectivity: it recognizes TFPI of chicken and to a lesser degree mouse, but not human, dog, or cattle versions. These findings identify TFPI as a TcdB receptor and reveal IR-driven changes on receptor-specificity among TcdB variants.
Collapse
Affiliation(s)
- Songhai Tian
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| | - Xiaozhe Xiong
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Ji Zeng
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Siyu Wang
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Benjamin Jean-Marie Tremblay
- Department of Biology, Cheriton School of Computer Science, and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Peng Chen
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Baohua Chen
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Min Liu
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Pengsheng Chen
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Kuanwei Sheng
- Wyss Institute for Bioinspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Daniel Zeve
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Wanshu Qi
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - César Rodríguez
- Faculty of Microbiology & CIET, University of Costa Rica, San José, Costa Rica
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, 30625, Hannover, Germany
| | - Rongsheng Jin
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Andrew C Doxey
- Department of Biology, Cheriton School of Computer Science, and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
19
|
Cryo-EM structures of the translocational binary toxin complex CDTa-bound CDTb-pore from Clostridioides difficile. Nat Commun 2022; 13:6119. [PMID: 36253419 PMCID: PMC9576733 DOI: 10.1038/s41467-022-33888-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Some bacteria express a binary toxin translocation system, consisting of an enzymatic subunit and translocation pore, that delivers enzymes into host cells through endocytosis. The most clinically important bacterium with such a system is Clostridioides difficile (formerly Clostridium). The CDTa and CDTb proteins from its system represent important therapeutic targets. CDTb has been proposed to be a di-heptamer, but its physiological heptameric structure has not yet been reported. Here, we report the cryo-EM structure of CDTa bound to the CDTb-pore, which reveals that CDTa binding induces partial unfolding and tilting of the first CDTa α-helix. In the CDTb-pore, an NSS-loop exists in 'in' and 'out' conformations, suggesting its involvement in substrate translocation. Finally, 3D variability analysis revealed CDTa movements from a folded to an unfolded state. These dynamic structural information provide insights into drug design against hypervirulent C. difficile strains.
Collapse
|
20
|
Kunishima H, Ohge H, Suzuki H, Nakamura A, Matsumoto K, Mikamo H, Mori N, Morinaga Y, Yanagihara K, Yamagishi Y, Yoshizawa S. Japanese Clinical Practice Guidelines for Management of Clostridioides (Clostridium) difficile infection. J Infect Chemother 2022; 28:1045-1083. [PMID: 35618618 DOI: 10.1016/j.jiac.2021.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Hiroyuki Kunishima
- Department of Infectious Diseases, St. Marianna University School of Medicine, Japan.
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital, Japan
| | - Hiromichi Suzuki
- Division of Infectious Diseases, Department of Medicine, Tsukuba Medical Center Hospital, Japan
| | - Atsushi Nakamura
- Division of Infection Control and Prevention, Nagoya City University Hospital, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Japan
| | - Hiroshige Mikamo
- Clinical Infectious Diseases, Graduate School of Medicine, Aichi Medical University, Japan
| | - Nobuaki Mori
- Division of General Internal Medicine and Infectious Diseases, National Hospital Organization Tokyo Medical Center, Japan
| | - Yoshitomo Morinaga
- Department of Microbiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Yuka Yamagishi
- Clinical Infectious Diseases, Graduate School of Medicine, Aichi Medical University, Japan
| | - Sadako Yoshizawa
- Department of Clinical Laboratory/Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Japan
| |
Collapse
|
21
|
Ying Y, Liu C, He R, Wang R, Qu L. Detection and Identification of Novel Intracellular Bacteria Hosted in Strains CBS 648.67 and CFCC 80795 of Biocontrol Fungi Metarhizium. Microbes Environ 2022; 37. [PMID: 35613876 PMCID: PMC9530730 DOI: 10.1264/jsme2.me21059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
"Endosymbiosis" is a cohesive form of a symbiotic association. Endobacteria exist in many fungi and play important roles in fungal host biology. Metarhizium spp. are important entomopathogenic fungi for insect pest control. In the present study, we performed comprehensive ana-lyses of strains of Metarhizium bibionidarum and M. anisopliae using PCR, phylogenetics, and fluorescent electron microscopy to identify endobacteria within hyphae and conidia. The results of the phylogenetic ana-lysis based on 16S rRNA gene sequences indicated that these endobacteria were the most closely related to Pelomonas puraquae and affiliated with Betaproteobacteria. Ultrastructural observations indicated that endobacteria were coccoid and less than 500 nm in diameter. The basic characteristics of endobacteria in M. bibionidarum and M. anisopliae were elucidated, and biological questions were raised regarding their biological functions in the Metarhizium hosts.
Collapse
Affiliation(s)
- Yue Ying
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry
| | - Chenglin Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry
| | - Ran He
- Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden
| | - Ruizhen Wang
- Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden
| | - Liangjian Qu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry
| |
Collapse
|
22
|
Kordus SL, Thomas AK, Lacy DB. Clostridioides difficile toxins: mechanisms of action and antitoxin therapeutics. Nat Rev Microbiol 2022; 20:285-298. [PMID: 34837014 PMCID: PMC9018519 DOI: 10.1038/s41579-021-00660-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
Clostridioides difficile is a Gram-positive anaerobe that can cause a spectrum of disorders that range in severity from mild diarrhoea to fulminant colitis and/or death. The bacterium produces up to three toxins, which are considered the major virulence factors in C. difficile infection. These toxins promote inflammation, tissue damage and diarrhoea. In this Review, we highlight recent biochemical and structural advances in our understanding of the mechanisms that govern host-toxin interactions. Understanding how C. difficile toxins affect the host forms a foundation for developing novel strategies for treatment and prevention of C. difficile infection.
Collapse
Affiliation(s)
- Shannon L. Kordus
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - Audrey K. Thomas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,The Veterans Affairs, Tennessee Valley Healthcare, System, Nashville, TN, USA,
| |
Collapse
|
23
|
Martínez-Meléndez A, Cruz-López F, Morfin-Otero R, Maldonado-Garza HJ, Garza-González E. An Update on Clostridioides difficile Binary Toxin. Toxins (Basel) 2022; 14:toxins14050305. [PMID: 35622552 PMCID: PMC9146464 DOI: 10.3390/toxins14050305] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/01/2023] Open
Abstract
Infection with Clostridioides difficile (CDI), a common healthcare-associated infection, includes symptoms ranging from mild diarrhea to severe cases of pseudomembranous colitis. Toxin A (TcdA) and toxin B (TcdB) cause cytotoxicity and cellular detachment from intestinal epithelium and are responsible for CDI symptomatology. Approximately 20% of C. difficile strains produce a binary toxin (CDT) encoded by the tcdA and tcdB genes, which is thought to enhance TcdA and TcdB toxicity; however, the role of CDT in CDI remains controversial. Here, we focused on describing the main features of CDT and its impact on the host, clinical relevance, epidemiology, and potential therapeutic approaches.
Collapse
Affiliation(s)
- Adrián Martínez-Meléndez
- Subdirección Académica de Químico Farmacéutico Biólogo, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Pedro de Alba S/N, Cd Universitaria, San Nicolás de los Garza 66450, Nuevo Leon, Mexico; (A.M.-M.); (F.C.-L.)
| | - Flora Cruz-López
- Subdirección Académica de Químico Farmacéutico Biólogo, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Pedro de Alba S/N, Cd Universitaria, San Nicolás de los Garza 66450, Nuevo Leon, Mexico; (A.M.-M.); (F.C.-L.)
| | - Rayo Morfin-Otero
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Calle Hospital 308, Colonia el Retiro, Guadalajara 44280, Jalisco, Mexico;
| | - Héctor J. Maldonado-Garza
- Servicio de Gastroenterología, Facultad de Medicina/Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero Pte. S/N y Av. José E. González, Col. Mitras Centro, Monterrey 64460, Nuevo Leon, Mexico;
| | - Elvira Garza-González
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina y Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero Pte. S/N y Av. José E. González, Col. Mitras Centro, Monterrey 64460, Nuevo Leon, Mexico
- Correspondence:
| |
Collapse
|
24
|
Marquardt I, Jakob J, Scheibel J, Hofmann JD, Klawonn F, Neumann-Schaal M, Gerhard R, Bruder D, Jänsch L. Clostridioides difficile Toxin CDT Induces Cytotoxic Responses in Human Mucosal-Associated Invariant T (MAIT) Cells. Front Microbiol 2022; 12:752549. [PMID: 34992584 PMCID: PMC8727052 DOI: 10.3389/fmicb.2021.752549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022] Open
Abstract
Clostridioides difficile is the major cause of antibiotic-associated colitis (CDAC) with increasing prevalence in morbidity and mortality. Severity of CDAC has been attributed to hypervirulent C. difficile strains, which in addition to toxin A and B (TcdA, TcdB) produce the binary toxin C. difficile transferase (CDT). However, the link between these toxins and host immune responses as potential drivers of immunopathology are still incompletely understood. Here, we provide first experimental evidence that C. difficile toxins efficiently activate human mucosal-associated invariant T (MAIT) cells. Among the tested toxins, CDT and more specifically, the substrate binding and pore-forming subunit CDTb provoked significant MAIT cell activation resulting in selective MAIT cell degranulation of the lytic granule components perforin and granzyme B. CDT-induced MAIT cell responses required accessory immune cells, and we suggest monocytes as a potential CDT target cell population. Within the peripheral blood mononuclear cell fraction, we found increased IL-18 levels following CDT stimulation and MAIT cell response was indeed partly dependent on this cytokine. Surprisingly, CDT-induced MAIT cell activation was found to be partially MR1-dependent, although bacterial-derived metabolite antigens were absent. However, the role of antigen presentation in this process was not analyzed here and needs to be validated in future studies. Thus, MR1-dependent induction of MAIT cell cytotoxicity might be instrumental for hypervirulent C. difficile to overcome cellular barriers and may contribute to pathophysiology of CDAC.
Collapse
Affiliation(s)
- Isabel Marquardt
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Josefine Jakob
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jessica Scheibel
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Julia Danielle Hofmann
- Braunschweig Integrated Centre of Systems Biology (BRICS), Department of Bioinformatics and Biochemistry, Technical University Braunschweig, Braunschweig, Germany
| | - Frank Klawonn
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Braunschweig Integrated Centre of Systems Biology (BRICS), Department of Bioinformatics and Biochemistry, Technical University Braunschweig, Braunschweig, Germany.,Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Dunja Bruder
- Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
25
|
VirB4- and VirD4-Like ATPases, Components of a Putative Type 4C Secretion System in Clostridioides difficile. J Bacteriol 2021; 203:e0035921. [PMID: 34424036 DOI: 10.1128/jb.00359-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The type 4 secretion system (T4SS) represents a bacterial nanomachine capable of trans-cell wall transportation of proteins and DNA and has attracted intense interest due to its roles in the pathogenesis of infectious diseases. In the current investigation, we uncovered three distinct gene clusters in Clostridioides difficile strain 630 encoding proteins structurally related to components of the VirB4/D4 type 4C secretion system from Streptococcus suis strain 05ZYH33 and located within sequences of conjugative transposons (CTn). Phylogenic analysis revealed that VirB4- and VirD4-like proteins of the CTn4 locus, on the one hand, and those of the CTn2 and CTn5 loci, on the other hand, fit into separate clades, suggesting specific roles of identified secretion system variants in the physiology of C. difficile. Our further study on VirB4- and VirD4-like products encoded by CTn4 revealed that both proteins possess Mg2+-dependent ATPase activity, form oligomers (most likely hexamers) in aqueous solutions, and rely on potassium but not sodium ions for the highest catalytic rate. VirD4 binds nonspecifically to DNA and RNA. The DNA-binding activity of VirD4 strongly decreased with the W241A variant. Mutations in the nucleotide sequences encoding presumable Walker A and Walker B motifs decreased the stability of the oligomers and significantly but not completely attenuated the enzymatic activity of VirB4. In VirD4, substitutions of amino acid residues in the peptides reminiscent of Walker structural motifs neither attenuated the enzymatic activity of the protein nor influenced the oligomerization state of the ATPase. IMPORTANCE C. difficile is a Gram-positive, anaerobic, spore-forming bacterium that causes life-threatening colitis in humans. Major virulence factors of the microorganism include the toxins TcdA, TcdB, and CDT. However, other bacterial products, including a type 4C secretion system, have been hypothesized to contribute to the pathogenesis of the infection and are considered possible virulence factors of C. difficile. In the current paper, we describe the structural organization of putative T4SS machinery in C. difficile and characterize its VirB4- and VirD4-like components. Our studies, in addition to its significance for basic science, can potentially aid the development of antivirulence drugs suitable for the treatment of C. difficile infection.
Collapse
|
26
|
MacTaggart B, Kashina A. Posttranslational modifications of the cytoskeleton. Cytoskeleton (Hoboken) 2021; 78:142-173. [PMID: 34152688 DOI: 10.1002/cm.21679] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
The cytoskeleton plays important roles in many essential processes at the cellular and organismal levels, including cell migration and motility, cell division, and the establishment and maintenance of cell and tissue architecture. In order to facilitate these varied functions, the main cytoskeletal components-microtubules, actin filaments, and intermediate filaments-must form highly diverse intracellular arrays in different subcellular areas and cell types. The question of how this diversity is conferred has been the focus of research for decades. One key mechanism is the addition of posttranslational modifications (PTMs) to the major cytoskeletal proteins. This posttranslational addition of various chemical groups dramatically increases the complexity of the cytoskeletal proteome and helps facilitate major global and local cytoskeletal functions. Cytoskeletal proteins undergo many PTMs, most of which are not well understood. Recent technological advances in proteomics and cell biology have allowed for the in-depth study of individual PTMs and their functions in the cytoskeleton. Here, we provide an overview of the major PTMs that occur on the main structural components of the three cytoskeletal systems-tubulin, actin, and intermediate filament proteins-and highlight the cellular function of these modifications.
Collapse
Affiliation(s)
- Brittany MacTaggart
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna Kashina
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Okanda T, Mitsutake H, Aso R, Sekizawa R, Takemura H, Matsumoto T, Nakamura S. Rapid detection assay of toxigenic Clostridioides difficile through PathOC RightGene, a novel high-speed polymerase chain reaction device. Diagn Microbiol Infect Dis 2020; 99:115247. [PMID: 33188946 DOI: 10.1016/j.diagmicrobio.2020.115247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 01/04/2023]
Abstract
Nucleic acid amplification tests for diagnosing Clostridioides difficile infections (CDI) are improving to become faster and more accurate. This study aimed to evaluate the accuracy of rapid detection of toxigenic C. difficile using the novel high-speed polymerase chain reaction (PCR) device, PathOC RightGene. These results were compared and evaluated with real-time PCR (qPCR) and enzyme immunoassays (EIA) kit. For this study, 102 C. difficile and 3 Clostridium species isolated from CDI patients were used. These C. difficile isolates were 85 toxigenic and 17 non-toxigenic strains. The results of qPCR served as a standard, and sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the PathOC Right Gene were 99.2%, 99.4%, 100%, 98.8%, and 99.3%, respectively. Turnaround time of qPCR and EIA was 85 and 30 minutes, whereas PathOC RightGene was only 25 minutes including DNA extraction. This novel high-speed PCR device detected toxigenic C. difficile rapidly and accurately.
Collapse
Affiliation(s)
- Takashi Okanda
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki, Japan; Department of Microbiology, Tokyo Medical University, Tokyo, Japan.
| | | | - Ryoko Aso
- Metaboscreen Co., Ltd., Yokohama, Japan
| | | | - Hiromu Takemura
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, International University of Health and Welfare, Narita, Japan
| | - Shigeki Nakamura
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
28
|
Tian Q, An L, Tian Q, Lin J, Yang S. Ellagic acid-Fe@BSA nanoparticles for endogenous H 2S accelerated Fe(III)/Fe(II) conversion and photothermal synergistically enhanced chemodynamic therapy. Theranostics 2020; 10:4101-4115. [PMID: 32226542 PMCID: PMC7086347 DOI: 10.7150/thno.41882] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
Abstract
Rationale: Chemodynamic therapy (CDT) based on the Fe(II)-mediated Fenton reaction is an emerging tumor treatment strategy. However, the catalytic efficiency in tumors is crucially limited by Fe(II). Herein, an endogenous hydrogen sulfide (H2S) accelerated Fe(III)/Fe(II) transformation and photothermal synergistically enhanced CDT strategy based on ellagic acid-Fe-bovine serum albumin (EA-Fe@BSA) nanoparticles (NPs) was developed for colon tumor inhibition. On the one hand, the Fe(III) with low catalytic activity in the EA-Fe@BSA NPs could be rapidly reduced to the highly active Fe(II) by the abundant H2S in colon cancer tissues. Thus, a rapid Fe(III)/Fe(II) conversion system was established, wherein highly active Fe(II) ions were continuously regenerated to improve the CDT efficiency. On the other hand, the photothermal effect of EA-Fe@BSA NPs also accelerated the production of hydroxyl radicals (•OH), thereby synergistically enhancing the CDT performance and improving the therapeutic efficacy. Methods: The endogenous H2S accelerated Fe(III)/Fe(II) conversion and PTT enhanced CDT were investigated by characterization of the Fe valence state and detection of •OH. T1-weighted magnetic resonance imaging (MRI) was tested both in vitro and in vivo. The biocompatibility of NPs were examined via MTT assay, hemolysis analysis and routine blood measurements. The enhanced CDT was investigated in HCT116 colon cancer cells by Calcein-AM/PI staining and MTT assay, and tumor inhibition was demonstrated in HCT116 tumor bearing mice. Results: In this work, EA-Fe@BSA NPs were constructed as a CDT theranostic reagent. The H2S accelerated Fe(III)/Fe(II) conversion was confirmed, more degradation of MB and generation of •OH demonstrated the enhanced CDT in vitro. EA-Fe@BSA NPs exhibited good T1-weighted MRI performance. More importantly, it displayed strong near-infrared (NIR) absorption and excellent photothermal efficiency, further promotes the production of •OH. Hence, the efficacy of CDT was enhanced, and the tumor growth was inhibited efficiently. Conclusion: All results demonstrate that this strategy based on endogenous H2S promoted Fe(III)/Fe(II) transformation together with PTT acceleration permits efficient Fenton-reaction- mediated CDT both in vitro and in vivo, which holds great potential for effective colon cancer theranostics.
Collapse
Affiliation(s)
- Qingqing Tian
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234 (China)
| | - Lu An
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234 (China)
| | - Qiwei Tian
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234 (China)
| | - Jiaomin Lin
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234 (China)
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234 (China)
| |
Collapse
|
29
|
Structural elucidation of the Clostridioides difficile transferase toxin reveals a single-site binding mode for the enzyme. Proc Natl Acad Sci U S A 2020; 117:6139-6144. [PMID: 32123082 DOI: 10.1073/pnas.1920555117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile is a Gram-positive, pathogenic bacterium and a prominent cause of hospital-acquired diarrhea in the United States. The symptoms of C. difficile infection are caused by the activity of three large toxins known as toxin A (TcdA), toxin B (TcdB), and the C. difficile transferase toxin (CDT). Reported here is a 3.8-Å cryo-electron microscopy (cryo-EM) structure of CDT, a bipartite toxin comprised of the proteins CDTa and CDTb. We observe a single molecule of CDTa bound to a CDTb heptamer. The formation of the CDT complex relies on the interaction of an N-terminal adaptor and pseudoenzyme domain of CDTa with six subunits of the CDTb heptamer. CDTb is observed in a preinsertion state, a conformation observed in the transition of prepore to β-barrel pore, although we also observe a single bound CDTa in the prepore and β-barrel conformations of CDTb. The binding interaction appears to prime CDTa for translocation as the adaptor subdomain enters the lumen of the preinsertion state channel. These structural observations advance the understanding of how a single protein, CDTb, can mediate the delivery of a large enzyme, CDTa, into the cytosol of mammalian cells.
Collapse
|
30
|
Schwartz R, Guichard A, Franc NC, Roy S, Bier E. A Drosophila Model for Clostridium difficile Toxin CDT Reveals Interactions with Multiple Effector Pathways. iScience 2020; 23:100865. [PMID: 32058973 PMCID: PMC7011083 DOI: 10.1016/j.isci.2020.100865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/05/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile infections (CDIs) cause severe and occasionally life-threatening diarrhea. Hyper-virulent strains produce CDT, a toxin that ADP-ribosylates actin monomers and inhibits actin polymerization. We created transgenic Drosophila lines expressing the catalytic subunit CDTa to investigate its interaction with host signaling pathways in vivo. When expressed in the midgut, CDTa reduces body weight and fecal output and compromises survival, suggesting severe impairment of digestive functions. At the cellular level, CDTa induces F-actin network collapse, elimination of the intestinal brush border, and disruption of intercellular junctions. We confirm toxin-dependent re-distribution of Rab11 to enterocytes' apical surface and observe suppression of CDTa phenotypes by a Dominant-Negative form of Rab11 or RNAi of the dedicated Rab11GEF Crag (DENND4). We also report that Calmodulin (Cam) is required to mediate CDTa activity. In parallel, chemical inhibition of the Cam/Calcineurin pathway by Cyclosporin A or FK506 also reduces CDTa phenotypes, potentially opening new avenues for treating CDIs.
Collapse
Affiliation(s)
- Ruth Schwartz
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0335, USA
| | - Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0335, USA; Tata Institute for Genetics and Society-UCSD, La Jolla, CA 92093-0335, USA
| | - Nathalie C Franc
- Franc Consulting, San Diego, CA 92117-3314, USA; The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sitara Roy
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0335, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0335, USA; Tata Institute for Genetics and Society-UCSD, La Jolla, CA 92093-0335, USA.
| |
Collapse
|
31
|
Galkina SI, Fedorova NV, Golenkina EA, Stadnichuk VI, Sud’ina GF. Cytonemes Versus Neutrophil Extracellular Traps in the Fight of Neutrophils with Microbes. Int J Mol Sci 2020; 21:ijms21020586. [PMID: 31963289 PMCID: PMC7014225 DOI: 10.3390/ijms21020586] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Neutrophils can phagocytose microorganisms and destroy them intracellularly using special bactericides located in intracellular granules. Recent evidence suggests that neutrophils can catch and kill pathogens extracellularly using the same bactericidal agents. For this, live neutrophils create a cytoneme network, and dead neutrophils provide chromatin and proteins to form neutrophil extracellular traps (NETs). Cytonemes are filamentous tubulovesicular secretory protrusions of living neutrophils with intact nuclei. Granular bactericides are localized in membrane vesicles and tubules of which cytonemes are composed. NETs are strands of decondensed DNA associated with histones released by died neutrophils. In NETs, bactericidal neutrophilic agents are adsorbed onto DNA strands and are not covered with a membrane. Cytonemes and NETs occupy different places in protecting the body against infections. Cytonemes can develop within a few minutes at the site of infection through the action of nitric oxide or actin-depolymerizing alkaloids of invading microbes. The formation of NET in vitro occurs due to chromatin decondensation resulting from prolonged activation of neutrophils with PMA (phorbol 12-myristate 13-acetate) or other stimuli, or in vivo due to citrullination of histones with peptidylarginine deiminase 4. In addition to antibacterial activity, cytonemes are involved in cell adhesion and communications. NETs play a role in autoimmunity and thrombosis.
Collapse
Affiliation(s)
- Svetlana I. Galkina
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
- Correspondence: (S.I.G.); (G.F.S.); Tel.: +7-495-939-5408 (S.I.G.)
| | - Natalia V. Fedorova
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
| | - Ekaterina A. Golenkina
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
| | | | - Galina F. Sud’ina
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
- Correspondence: (S.I.G.); (G.F.S.); Tel.: +7-495-939-5408 (S.I.G.)
| |
Collapse
|
32
|
Anderson DM, Sheedlo MJ, Jensen JL, Lacy DB. Structural insights into the transition of Clostridioides difficile binary toxin from prepore to pore. Nat Microbiol 2020; 5:102-107. [PMID: 31712627 PMCID: PMC6925320 DOI: 10.1038/s41564-019-0601-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/03/2019] [Indexed: 11/28/2022]
Abstract
Clostridioides (formerly Clostridium) difficile is a Gram-positive, spore-forming anaerobe and a leading cause of hospital-acquired infection and gastroenteritis-associated death in US hospitals1. The disease state is usually preceded by disruption of the host microbiome in response to antibiotic treatment and is characterized by mild to severe diarrhoea. C. difficile infection is dependent on the secretion of one or more AB-type toxins: toxin A (TcdA), toxin B (TcdB) and the C. difficile transferase toxin (CDT)2. Whereas TcdA and TcdB are considered the primary virulence factors, recent studies suggest that CDT increases the severity of C. difficile infection in some of the most problematic clinical strains3. To better understand how CDT functions, we used cryo-electron microscopy to define the structure of CDTb, the cell-binding component of CDT. We obtained structures of several oligomeric forms that highlight the conformational changes that enable conversion from a prepore to a β-barrel pore. The structural analysis also reveals a glycan-binding domain and residues involved in binding the host-cell receptor, lipolysis-stimulated lipoprotein receptor. Together, these results provide a framework to understand how CDT functions at the host cell interface.
Collapse
Affiliation(s)
- David M Anderson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Michael J Sheedlo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Jaime L Jensen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - D Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
33
|
Cytolethal distending toxin induces the formation of transient messenger-rich ribonucleoprotein nuclear invaginations in surviving cells. PLoS Pathog 2019; 15:e1007921. [PMID: 31568537 PMCID: PMC6824578 DOI: 10.1371/journal.ppat.1007921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 11/01/2019] [Accepted: 06/18/2019] [Indexed: 01/26/2023] Open
Abstract
Humans are frequently exposed to bacterial genotoxins involved in digestive cancers, colibactin and Cytolethal Distending Toxin (CDT), the latter being secreted by many pathogenic bacteria. Our aim was to evaluate the effects induced by these genotoxins on nuclear remodeling in the context of cell survival. Helicobacter infected mice, coculture experiments with CDT- and colibactin-secreting bacteria and hepatic, intestinal and gastric cells, and xenograft mouse-derived models were used to assess the nuclear remodeling in vitro and in vivo. Our results showed that CDT and colibactin induced-nuclear remodeling can be associated with the formation of deep cytoplasmic invaginations in the nucleus of giant cells. These structures, observed both in vivo and in vitro, correspond to nucleoplasmic reticulum (NR). The core of the NR was found to concentrate ribosomes, proteins involved in mRNA translation, polyadenylated RNA and the main components of the complex mCRD involved in mRNA turnover. These structures are active sites of mRNA translation, correlated with a high degree of ploidy, and involve MAPK and calcium signaling. Additional data showed that insulation and concentration of these adaptive ribonucleoprotein particles within the nucleus are dynamic, transient and protect the cell until the genotoxic stress is relieved. Bacterial genotoxins-induced NR would be a privileged gateway for selected mRNA to be preferably transported therein for local translation. These findings offer new insights into the context of NR formation, a common feature of many cancers, which not only appears in response to therapies-induced DNA damage but also earlier in response to genotoxic bacteria. Humans are frequently exposed to bacterial genotoxins linked to cancers, colibactin and Cytolethal Distending Toxin (CDT). These genotoxins induce DNA damage and can promote formation of nucleoplasmic reticulum (NR), deeply invaginated in the nucleoplasm of giant nuclei both in vivo and in vitro. Our cellular models showed that these structures can be observed together with profound nuclear reorganization corresponding to remodeling of nuclear material. The core of the genotoxin-induced NRs concentrates protein production machinery of the cell as well as controlling elements of protein turnover. These genotoxin-induced dynamic structures may also be signaling hubs controlling mRNA turnover and translation of selected mRNAs and thus correspond to a privileged gateway for the synthesis of selected mRNA which are preferentially transported from the nucleus through pores and translated therein. These transient and reversible hubs allow the cell to pause and repair the DNA damage caused by bacterial genotoxins in order to maintain cell survival. As NR formation is a common feature of many cancers, similar mechanism could occur and contribute to the resistance of cancer cells to radiotherapies and some chemotherapies aimed at inducing DNA damage.
Collapse
|
34
|
Stiles BG. Clostridial Binary Toxins: Basic Understandings that Include Cell Surface Binding and an Internal "Coup de Grâce". Curr Top Microbiol Immunol 2019; 406:135-162. [PMID: 27380267 DOI: 10.1007/82_2016_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clostridium species can make a remarkable number of different protein toxins, causing many diverse diseases in humans and animals. The binary toxins of Clostridium botulinum, C. difficile, C. perfringens, and C. spiroforme are one group of enteric-acting toxins that attack the actin cytoskeleton of various cell types. These enterotoxins consist of A (enzymatic) and B (cell binding/membrane translocation) components that assemble on the targeted cell surface or in solution, forming a multimeric complex. Once translocated into the cytosol via endosomal trafficking and acidification, the A component dismantles the filamentous actin-based cytoskeleton via mono-ADP-ribosylation of globular actin. Knowledge of cell surface receptors and how these usurped, host-derived molecules facilitate intoxication can lead to novel ways of defending against these clostridial binary toxins. A molecular-based understanding of the various steps involved in toxin internalization can also unveil therapeutic intervention points that stop the intoxication process. Furthermore, using these bacterial proteins as medicinal shuttle systems into cells provides intriguing possibilities in the future. The pertinent past and state-of-the-art present, regarding clostridial binary toxins, will be evident in this chapter.
Collapse
Affiliation(s)
- Bradley G Stiles
- Biology Department, Wilson College, Chambersburg, PA, 17201, USA.
| |
Collapse
|
35
|
Abstract
ADP-ribosylation (ADPr) is an ancient reversible modification of cellular macromolecules controlling major biological processes as diverse as DNA damage repair, transcriptional regulation, intracellular transport, immune and stress responses, cell survival and proliferation. Furthermore, enzymatic reactions of ADPr are central in the pathogenesis of many human diseases, including infectious conditions. By providing a review of ADPr signalling in bacterial systems, we highlight the relevance of this chemical modification in the pathogenesis of human diseases depending on host-pathogen interactions. The post-antibiotic era has raised the need to find alternative approaches to antibiotic administration, as major pathogens becoming resistant to antibiotics. An in-depth understanding of ADPr reactions provides the rationale for designing novel antimicrobial strategies for treatment of infectious diseases. In addition, the understanding of mechanisms of ADPr by bacterial virulence factors offers important hints to improve our knowledge on cellular processes regulated by eukaryotic homologous enzymes, which are often involved in the pathogenesis of human diseases.
Collapse
|
36
|
Loss of Neogenin1 in human colorectal carcinoma cells causes a partial EMT and wound-healing response. Sci Rep 2019; 9:4110. [PMID: 30858446 PMCID: PMC6411945 DOI: 10.1038/s41598-019-40886-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/15/2019] [Indexed: 02/07/2023] Open
Abstract
Neogenin1 (NEO1) is a receptor of the Deleted in Colorectal Carcinoma (DCC)/Frazzled/UNC-40 family, which regulates axon guidance but can also stabilize epithelial adherens junctions. NEO1 and DCC are also tumor suppressors that can inhibit metastasis by acting as dependence receptors. Given the role of NEO1 in maintaining adherens junctions we tested whether loss of NEO1 also promoted metastasis via an epithelial mesenchymal transition (EMT). Loss of NEO1 disrupted zonula adherens but tight junctions were unaffected. Neo1-depleted epithelial cells exhibited a more migratory morphology, had reduced F-actin rich stress-fibres and more basal lamellipodia. Microtubule density was decreased while microtubule outgrowth was faster. Live imaging showed that Neo1-depleted epithelial islands had increased lateral movement. Western blots and immunostaining revealed increased expression of mesenchymal markers such as Fibronectin and MMP1. Furthermore, RNA-seq analysis showed a striking decrease in expression of genes associated with oxidative phosphorylation, and increased expression of genes associated with EMT, locomotion, and wound-healing. In summary, loss of NEO1 in intestinal epithelial cells produces a partial EMT response, based on gene expression, cellular morphology and behaviour and cytoskeletal distribution. These results suggest that loss of NEO1 in carcinomas may contribute to metastasis by promoting a partial EMT and increased motility.
Collapse
|
37
|
Fortier LC. Bacteriophages Contribute to Shaping Clostridioides (Clostridium) difficile Species. Front Microbiol 2018; 9:2033. [PMID: 30233520 PMCID: PMC6127314 DOI: 10.3389/fmicb.2018.02033] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Bacteriophages (phages) are bacterial viruses that parasitize bacteria. They are highly prevalent in nature, with an estimated 1031 viral particles in the whole biosphere, and they outnumber bacteria by at least 10-fold. Hence, phages represent important drivers of bacterial evolution, although our knowledge of the role played by phages in the mammalian gut is still embryonic. Several pathogens owe their virulence to the integrated phages (prophages) they harbor, which encode diverse virulence factors such as toxins. Clostridioides (Clostridium) difficile is an important opportunistic pathogen and several phages infecting this species have been described over the last decade. However, their exact contribution to the biology and virulence of this pathogen remains elusive. Current data have shown that C. difficile phages can alter virulence-associated phenotypes, in particular toxin production, by interfering with bacterial regulatory circuits through crosstalk with phage proteins for example. One phage has also been found to encode a complete binary toxin locus. Multiple regulatory genes have also been identified in phage genomes, suggesting that their impact on the host can be complex and often subtle. In this minireview, the current state of knowledge, major findings, and pending questions regarding C. difficile phages will be presented. In addition, with the apparent role played by phages in the success of fecal microbiota transplantation and the perspective of phage therapy for treatment of recurrent C. difficile infection, it has become even more crucial to understand what C. difficile phages do in the gut, how they impact their host, and how they influence the epidemiology and evolution of this clinically important pathogen.
Collapse
Affiliation(s)
- Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
38
|
Coffing H, Priyamvada S, Anbazhagan AN, Salibay C, Engevik M, Versalovic J, Yacyshyn MB, Yacyshyn B, Tyagi S, Saksena S, Gill RK, Alrefai WA, Dudeja PK. Clostridium difficile toxins A and B decrease intestinal SLC26A3 protein expression. Am J Physiol Gastrointest Liver Physiol 2018; 315:G43-G52. [PMID: 29597352 PMCID: PMC6109705 DOI: 10.1152/ajpgi.00307.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/06/2018] [Accepted: 03/12/2018] [Indexed: 01/31/2023]
Abstract
Clostridium difficile infection (CDI) is the primary cause of nosocomial diarrhea in the United States. Although C. difficile toxins A and B are the primary mediators of CDI, the overall pathophysiology underlying C. difficile-associated diarrhea remains poorly understood. Studies have shown that a decrease in both NHE3 (Na+/H+ exchanger) and DRA (downregulated in adenoma, Cl-/[Formula: see text] exchanger), resulting in decreased electrolyte absorption, is implicated in infectious and inflammatory diarrhea. Furthermore, studies have shown that NHE3 is depleted at the apical surface of intestinal epithelial cells and downregulated in patients with CDI, but the role of DRA in CDI remains unknown. In the current studies, we examined the effects of C. difficile toxins TcdA and TcdB on DRA protein and mRNA levels in intestinal epithelial cells (IECs). Our data demonstrated that DRA protein levels were significantly reduced in response to TcdA and TcdB in IECs in culture. This effect was also specific to DRA, as NHE3 and PAT-1 (putative anion transporter 1) protein levels were unaffected by TcdA and TcdB. Additionally, purified TcdA and TcdA + TcdB, but not TcdB, resulted in a decrease in colonic DRA protein levels in a toxigenic mouse model of CDI. Finally, patients with recurrent CDI also exhibited significantly reduced expression of colonic DRA protein. Together, these findings indicate that C. difficile toxins markedly downregulate intestinal expression of DRA which may contribute to the diarrheal phenotype of CDI. NEW & NOTEWORTHY Our studies demonstrate, for the first time, that C. difficile toxins reduce DRA protein, but not mRNA, levels in intestinal epithelial cells. These findings suggest that a downregulation of DRA may be a critical factor in C. difficile infection-associated diarrhea.
Collapse
Affiliation(s)
- Hayley Coffing
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Shubha Priyamvada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Arivarasu N Anbazhagan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Christine Salibay
- Department of Pathology, University of Illinois at Chicago , Chicago, Illinois
| | - Melinda Engevik
- Department of Pathology and Immunology, Baylor College of Medicine and Department of Pathology, Texas Children's Hospital , Houston, Texas
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine and Department of Pathology, Texas Children's Hospital , Houston, Texas
| | - Mary Beth Yacyshyn
- Division of Digestive Diseases, Department. of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Bruce Yacyshyn
- Division of Digestive Diseases, Department. of Medicine, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Sangeeta Tyagi
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Waddah A Alrefai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| |
Collapse
|
39
|
Clostridium difficile Toxoid Vaccine Candidate Confers Broad Protection against a Range of Prevalent Circulating Strains in a Nonclinical Setting. Infect Immun 2018; 86:IAI.00742-17. [PMID: 29632249 PMCID: PMC5964523 DOI: 10.1128/iai.00742-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/11/2018] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile infection (CDI) is a leading cause of nosocomial and antibiotic-associated diarrhea. A vaccine, based on formalin-inactivated toxins A and B purified from anaerobic cultures of C. difficile strain VPI 10463 (toxinotype 0), has been in development for the prevention of symptomatic CDI. We evaluated the breadth of protection conferred by this C. difficile toxoid vaccine in cross-neutralization assessments using sera from vaccinated hamsters against a collection of 165 clinical isolates. Hamster antisera raised against the C. difficile toxoid vaccine neutralized the cytotoxic activity of culture supernatants from several toxinotype 0 strains and heterologous strains from 10 different toxinotypes. Further assessments performed with purified toxins confirmed that vaccine-elicited antibodies can neutralize both A and B toxins from a variety of toxinotypes. In the hamster challenge model, the vaccine conferred significant cross-protection against disease symptoms and death caused by heterologous C. difficile strains from the most common phylogenetic clades, including the most prevalent toxinotypes.
Collapse
|
40
|
Aktories K, Papatheodorou P, Schwan C. Binary Clostridium difficile toxin (CDT) - A virulence factor disturbing the cytoskeleton. Anaerobe 2018. [PMID: 29524654 DOI: 10.1016/j.anaerobe.2018.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clostridium difficile infection causes antibiotics-associated diarrhea and pseudomembranous colitis. Major virulence factors of C. difficile are the Rho-glucosylating toxins TcdA and TcdB. In addition, many, so-called hypervirulent C. difficile strains produce the binary actin-ADP-ribosylating toxin CDT. CDT causes depolymerization of F-actin and rearrangement of the actin cytoskeleton. Thereby, many cellular functions, which depend on actin, are altered. CDT disturbs the dynamic balance between actin and microtubules in target cells. The toxin increases microtubule polymerization and induces the formation of microtubule-based protrusions at the plasma membrane of target cells. Moreover, CDT causes a redistribution of vesicles from the basolateral side to the apical side, where extracellular matrix proteins are released. These processes may increase the adherence of clostridia to target cells. Here, we review the effects of the action of CDT on the actin cytoskeleton and on the microtubule system.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, 79104 Freiburg, Germany.
| | - Panagiotis Papatheodorou
- Faculty of Natural Sciences, University of Ulm, 89081 Ulm, Germany; Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| |
Collapse
|
41
|
Gil F, Calderón IL, Fuentes JA, Paredes-Sabja D. Clostridioides (Clostridium) difficile infection: current and alternative therapeutic strategies. Future Microbiol 2018; 13:469-482. [PMID: 29464969 DOI: 10.2217/fmb-2017-0203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Clostridioides difficile (C. difficile) has become a pathogen of worldwide importance considering that epidemic strains are disseminated in hospitals of several countries, where community-acquired infections act as a constant source of new C. difficile strains into hospitals. Despite the advances in the treatment of infections, more effective therapies against C. difficile are needed but, at the same time, these therapies should be less harmful to the resident gastrointestinal microbiota. The purpose of this review is to present a description of issues associated to C. difficile infection, a summary of current therapies and those in developmental stage, and a discussion of potential combinations that may lead to an increased efficacy of C. difficile infection treatment.
Collapse
Affiliation(s)
- Fernando Gil
- Microbiota-Host Interactions & Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, 8370035, Chile
| | - Iván L Calderón
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, 8370035, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, 8370035, Chile
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions & Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, 8370035, Chile
| |
Collapse
|
42
|
Immunization Strategies Against Clostridium difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:197-225. [PMID: 29383671 DOI: 10.1007/978-3-319-72799-8_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
C. difficile infection (CDI) is an important healthcare- but also community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients and prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to restore immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens, either toxins or colonization factors.
Collapse
|
43
|
Cellular Uptake and Mode-of-Action of Clostridium difficile Toxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:77-96. [DOI: 10.1007/978-3-319-72799-8_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Chandrasekaran R, Lacy DB. The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev 2017; 41:723-750. [PMID: 29048477 PMCID: PMC5812492 DOI: 10.1093/femsre/fux048] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease.
Collapse
Affiliation(s)
- Ramyavardhanee Chandrasekaran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| |
Collapse
|
45
|
Aktories K, Schwan C, Lang AE. ADP-Ribosylation and Cross-Linking of Actin by Bacterial Protein Toxins. Handb Exp Pharmacol 2017; 235:179-206. [PMID: 27316913 DOI: 10.1007/164_2016_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Actin and the actin cytoskeleton play fundamental roles in host-pathogen interactions. Proper function of the actin cytoskeleton is crucial for innate and acquired immune defense. Bacterial toxins attack the actin cytoskeleton by targeting regulators of actin. Moreover, actin is directly modified by various bacterial protein toxins and effectors, which cause ADP-ribosylation or cross-linking of actin. Modification of actin can result in inhibition or stimulation of actin polymerization. Toxins, acting directly on actin, are reviewed.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany. .,Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany.
| | - Carsten Schwan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| | - Alexander E Lang
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
46
|
Septin remodeling is essential for the formation of cell membrane protrusions (microtentacles) in detached tumor cells. Oncotarget 2017; 8:76686-76698. [PMID: 29100341 PMCID: PMC5652735 DOI: 10.18632/oncotarget.20805] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
Microtentacles are mostly microtubule-based cell protrusions that are formed by detached tumor cells. Here, we report that the formation of tumor cell microtentacles depends on the presence and dynamics of guanine nucleotide-binding proteins of the septin family, which are part of the cytoskeleton. In matrix-attached breast, lung, prostate and pancreas cancer cells, septins are associated with the cytosolic actin cytoskeleton. Detachment of cells causes redistribution of septins to the membrane, where microtentacle formation occurs. Forchlorfenuron, which inhibits septin functions, blocks microtentacle formation. The small GTPase Cdc42 and its effector proteins Borgs regulate septins and are essential for microtentacle formation. Dominant active and inactive Cdc42 inhibit microtentacle formation indicating that the free cycling of Cdc42 between its active and inactive state is essential for septin regulation and microtentacle formation. Cell attachment and aggregation models suggest that septins play an essential role in the metastatic behavior of tumor cells.
Collapse
|
47
|
Abstract
Clostridium difficile is the cause of antibiotics-associated diarrhea and pseudomembranous colitis. The pathogen produces three protein toxins: C. difficile toxins A (TcdA) and B (TcdB), and C. difficile transferase toxin (CDT). The single-chain toxins TcdA and TcdB are the main virulence factors. They bind to cell membrane receptors and are internalized. The N-terminal glucosyltransferase and autoprotease domains of the toxins translocate from low-pH endosomes into the cytosol. After activation by inositol hexakisphosphate (InsP6), the autoprotease cleaves and releases the glucosyltransferase domain into the cytosol, where GTP-binding proteins of the Rho/Ras family are mono-O-glucosylated and, thereby, inactivated. Inactivation of Rho proteins disturbs the organization of the cytoskeleton and affects multiple Rho-dependent cellular processes, including loss of epithelial barrier functions, induction of apoptosis, and inflammation. CDT, the third C. difficile toxin, is a binary actin-ADP-ribosylating toxin that causes depolymerization of actin, thereby inducing formation of the microtubule-based protrusions. Recent progress in understanding of the toxins' actions include insights into the toxin structures, their interaction with host cells, and functional consequences of their actions.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| | - Thomas Jank
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| |
Collapse
|
48
|
Mold Alkaloid Cytochalasin D Modifies the Morphology and Secretion of fMLP-, LPS-, or PMA-Stimulated Neutrophils upon Adhesion to Fibronectin. Mediators Inflamm 2017; 2017:4308684. [PMID: 28740333 PMCID: PMC5504967 DOI: 10.1155/2017/4308684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/11/2017] [Accepted: 04/27/2017] [Indexed: 12/15/2022] Open
Abstract
Neutrophils play an essential role in innate immunity due to their ability to migrate into infected tissues and kill microbes with bactericides located in their secretory granules. Neutrophil transmigration and degranulation are tightly regulated by actin cytoskeleton. Invading pathogens produce alkaloids that cause the depolymerization of actin, such as the mold alkaloid cytochalasin D. We studied the effect of cytochalasin D on the morphology and secretion of fMLP-, LPS-, or PMA-stimulated human neutrophils upon adhesion to fibronectin. Electron microscopy showed that the morphology of the neutrophils adherent to fibronectin in the presence of various stimuli differed. But in the presence of cytochalasin D, all stimulated neutrophils exhibited a uniform nonspread shape and developed thread-like membrane tubulovesicular extensions (cytonemes) measuring 200 nm in diameter. Simultaneous detection of neutrophil secretory products by mass spectrometry showed that all tested stimuli caused the secretion of MMP-9, a key enzyme in the neutrophil migration. Cytochalasin D impaired the MMP-9 secretion but initiated the release of cathepsin G and other granular bactericides, proinflammatory agents. The release of bactericides apparently occurs through the formation, shedding, and lysis of cytonemes. The production of alkaloids which modify neutrophil responses to stimulation via actin depolymerization may be part of the strategy of pathogen invasion.
Collapse
|
49
|
The Contribution of Bacteriophages to the Biology and Virulence of Pathogenic Clostridia. ADVANCES IN APPLIED MICROBIOLOGY 2017; 101:169-200. [PMID: 29050666 DOI: 10.1016/bs.aambs.2017.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacteriophages are key players in the evolution of most bacteria. Temperate phages have been associated with virulence of some of the deadliest pathogenic bacteria. Among the most notorious cases, the genes encoding the botulinum neurotoxin produced by Clostridium botulinum types C and D and the α-toxin (TcnA) produced by Clostridium novyi are both encoded within prophage genomes. Clostridium difficile is another important human pathogen and the recent identification of a complete binary toxin locus (CdtLoc) carried on a C. difficile prophage raises the potential for horizontal transfer of toxin genes by mobile genetic elements. Although the TcdA and TcdB toxins produced by C. difficile have never been found outside the pathogenicity locus (PaLoc), some prophages can still influence their production. Prophages can alter the expression of several metabolic and regulatory genes in C. difficile, as well as cell surface proteins such as CwpV, which confers phage resistance. Homologs of an Agr-like quorum sensing system have been identified in a C. difficile prophage, suggesting that it could possibly participate in cell-cell communication. Yet, other C. difficile prophages contain riboswitches predicted to recognize the secondary messenger molecule c-di-GMP involved in bacterial multicellular behaviors. Altogether, recent findings on clostridial phages underline the diversity of mechanisms and intricate relationship linking phages with their host. Here, milestone discoveries linking phages and virulence of some of the most pathogenic clostridial species will be retraced, with a focus on C. botulinum, C. novyi, C. difficile, and Clostridium perfringens phages, for which evidences are mostly available.
Collapse
|
50
|
Frequency of antibiotic associated diarrhea caused by Clostridium difficile among hospitalized patients in intensive care unit, Kerman, Iran. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2017; 10:229-234. [PMID: 29118940 PMCID: PMC5660274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AIM This study evaluated the frequency of C. difficile and CDAD in the ICU of Shahid Bahonhar Hospital, Kerman, Iran. BACKGROUND Clostridium difficile (C. difficile) is the most important antibiotic associated diarrhea agent in intensive care unit (ICU) patients. Based on its toxin producing ability, C .difficile is divided to toxigenic and non-toxigenic strains. METHODS A total of 233 diarrheal samples were collected from ICU patients. The samples were cultured on Clostridium difficile medium with 5% defibrinated sheep blood containing cycloserine (500 mg/L), cefoxitin (16 mg/L) and lysozyme (5mg/L). The isolates were confirmed as C. difficile by polymerase chain reaction (PCR) of 16s rRNA gene and the presence of toxins genes (tcdA, tcdB, cdtA and cdtB) was also confirmed. Then, the toxin production of isolates was evaluated using ELISA. RESULTS C. difficile was isolated from 49 (21%) out of 233 samples. The total isolates fell into the A-/B-/CDT- (48.97%), A+/B-/CDT- (28%), A+/B+/CDT- (20.4%) and A+/B+/CDT+ (2%) types. Both types of C.difficile, A-/B-/CDT- and A+/B-/CDT-, which account for 77.5% of all isolates, were unable to produce the toxin (nontoxigenic). On the other hand, A+/B+/CDT+ and A+/B+/CDT- (22.5%), were able to produce toxin or were toxigenic. CONCLUSION The frequency of C. difficile was about 21% and only 22.4% of C. difficile isolates were able to produce toxins. It is expected that C. difficile A+/B+/CDT± are toxigenic and related to C. difficile associated diarrhea (CDAD). Additionally, about 4.7% of hospitalized patients in ICU suffered from CDAD, which is higher than the rates reported from industrialized countries. Notably, 28% of isolates were C. difficile A+/B-/CDT- which only carries tcdA genes without toxin production.
Collapse
|