1
|
Bicknell RDC, Campione NE, Brock GA, Paterson JR. Adaptive responses in Cambrian predator and prey highlight the arms race during the rise of animals. Curr Biol 2025; 35:882-888.e2. [PMID: 39755119 DOI: 10.1016/j.cub.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/24/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025]
Abstract
Predation is an important driver of species-level change in modern and fossil ecosystems, often through selection for defensive phenotypes in prey responding to predation pressures over time.1,2,3,4,5,6,7,8 Records of changes in shell morphology and injury patterns in biomineralized taxa are ideal for demonstrating such adaptive responses.9,10,11 The rapid increase in diversity and abundance of biomineralizing organisms during the early Cambrian is often attributed to predation and an evolutionary arms race.12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 A Cambrian arms race is typically discussed on a macroevolutionary scale, particularly in the context of escalation.12,27,28,29 Despite abundant fossils demonstrating early Cambrian predation, empirical evidence of adaptive responses to predations is lacking. To explore the Cambrian arms race hypothesis, we assessed a large sample of organophosphatic sclerites of the tommotiid Lapworthella fasciculata from a lower Cambrian carbonate succession in South Australia,30,31,32 >200 of which show holes made by a perforating predator.33,34 Critically, the frequency of perforated sclerites increases over time, with a combination of time-series analyses and generalized linear models suggesting a positive correlation with sclerite thickness. These observations reflect a population-level adaptive response in L. fasciculata and the oldest known microevolutionary arms race between predator and prey. Propagation of such interactions across early Cambrian ecosystems likely resulted in the proliferation of biomineralizing taxa with enhanced defenses, illustrating the importance of predation as a major ecological driver of early animal evolution.12,14,20,35.
Collapse
Affiliation(s)
- Russell D C Bicknell
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; Division of Paleontology (Invertebrates), American Museum of Natural History, New York, NY 10024, USA.
| | - Nicolás E Campione
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Glenn A Brock
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - John R Paterson
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
2
|
Alexander RD, Zhuravlev AY, Bowyer FT, Pichevin L, Poulton SW, Kouchinsky A, Wood R. Low oxygen but dynamic marine redox conditions permitted the Cambrian Radiation. SCIENCE ADVANCES 2025; 11:eads2846. [PMID: 39854457 PMCID: PMC11759046 DOI: 10.1126/sciadv.ads2846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025]
Abstract
Whether metazoan diversification during the Cambrian Radiation was driven by increased marine oxygenation remains highly debated. Repeated global oceanic oxygenation events have been inferred during this interval, but the degree of shallow marine oxygenation and its relationship to biodiversification and clade appearance remain uncertain. To resolve this, we interrogate an interval from ~527 to 519 Ma, encompassing multiple proposed global oceanic oxygenation events. We integrate the spatial and temporal distribution of shallow water, in situ reef metazoans, and trilobites, with high-resolution multi-proxy redox data through the highly biodiverse Siberian Platform. We document primarily dysoxic water column conditions, suggesting that early Cambrian metazoans, including motile skeletal benthos, had low oxygen demands. We further document oxygenation events coincident with positive carbon isotope excursions that led to modestly elevated oxygen levels. These events correspond to regional increases in species richness and habitat expansion of mainly endemic species, offering a potentially globally applicable model for biodiversification during the Cambrian Radiation.
Collapse
Affiliation(s)
- Ruaridh D. Alexander
- School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK
| | - Andrey Yu. Zhuravlev
- Borissiak Palaeontological Institute, Russian Academy of Sciences, Profsoyuznaya Street 123, Moscow 117647, Russia
| | - Fred T. Bowyer
- School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Laetitia Pichevin
- School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK
| | - Simon W. Poulton
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Artem Kouchinsky
- Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, Stockholm SE-10405, Sweden
| | - Rachel Wood
- School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK
| |
Collapse
|
3
|
Romanova DY, Moroz LL. The ancestral architecture of the immune system in simplest animals. Front Immunol 2025; 15:1529836. [PMID: 39840034 PMCID: PMC11747439 DOI: 10.3389/fimmu.2024.1529836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Affiliation(s)
- Daria Y. Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| | - Leonid L. Moroz
- Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
| |
Collapse
|
4
|
Carlisle E, Yin Z, Pisani D, Donoghue PCJ. Ediacaran origin and Ediacaran-Cambrian diversification of Metazoa. SCIENCE ADVANCES 2024; 10:eadp7161. [PMID: 39536100 PMCID: PMC11559618 DOI: 10.1126/sciadv.adp7161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
The timescale of animal diversification has been a focus of debate over how evolutionary history should be calibrated to geologic time. Molecular clock analyses have invariably estimated a Cryogenian or Tonian origin of animals while unequivocal animal fossils first occur in the Ediacaran. However, redating of key Ediacaran biotas and the discovery of several Ediacaran crown-Metazoa prompt recalibration of molecular clock analyses. We present revised fossil calibrations and use them in molecular clock analyses estimating the timescale of metazoan evolutionary history. Integrating across uncertainties including phylogenetic relationships, clock model, and calibration strategy, we estimate Metazoa to have originated in the early Ediacaran, Eumetazoa in the middle Ediacaran, and Bilateria in the upper Ediacaran, with many crown-phyla originating across the Ediacaran-Cambrian interval or elsewise fully within the Cambrian. These results are in much closer accord with the fossil record, coinciding with marine oxygenation, but they reject a literal reading of the fossil record.
Collapse
Affiliation(s)
- Emily Carlisle
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Zongjun Yin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- CAS Center for Excellence in Life and Paleoenvironment, Nanjing 210008, China
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Philip C. J. Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
5
|
Chevalier S, Beauchard O, Teacă A, Soetaert K, Grégoire M. Partial recovery of macrozoobenthos on the northwestern shelf of the Black Sea. MARINE POLLUTION BULLETIN 2024; 207:116857. [PMID: 39216251 DOI: 10.1016/j.marpolbul.2024.116857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
The northwestern shelf of the Black Sea has been affected by eutrophication and bottom hypoxia since the sixties. Consequently, the macrozoobenthos has suffered a well-established decline in biodiversity. However, the nature of the current benthic communities remains questionable. From 1995 to 2017, we compiled species and abiotic data for 138 sites over the shelf. Through an appropriate multivariate analytical approach, we identified benthic community changes solely due to organic pollution variations. Our results show signs of recovery with an increase in biodiversity and proportion of species vulnerable to organic enrichment. These changes were related to a decrease in riverine loads and subsequent eutrophication. However, some long-lived species typical of the area still did not exhibit noticeable recovery, which suggests that either the recovery process has not yet been achieved or some environmental conditions are still not met to warrant a sea floor ecosystem state substantially healthy.
Collapse
Affiliation(s)
- Séverine Chevalier
- MAST, Modelling for Aquatic Systems, University of Liège, Liège, Belgium; Netherlands Institute for Sea Research and Utrecht University, Department of Estuarine and Delta Systems,Yerseke 4401 NT, the Netherlands.
| | - Olivier Beauchard
- Netherlands Institute for Sea Research and Utrecht University, Department of Estuarine and Delta Systems,Yerseke 4401 NT, the Netherlands
| | - Adrian Teacă
- National Institute for Research and Development on Marine Geology and Geo-ecology - GeoEcoMar, 23-25 Dimitrie Onciul Str., 024053 Bucharest, Romania
| | - Karline Soetaert
- Netherlands Institute for Sea Research and Utrecht University, Department of Estuarine and Delta Systems,Yerseke 4401 NT, the Netherlands
| | - Marilaure Grégoire
- MAST, Modelling for Aquatic Systems, University of Liège, Liège, Belgium
| |
Collapse
|
6
|
Hehmeyer J, Plessier F, Marlow H. Adaptive Cellular Radiations and the Genetic Mechanisms Underlying Animal Nervous System Diversification. Annu Rev Cell Dev Biol 2024; 40:407-425. [PMID: 39052757 DOI: 10.1146/annurev-cellbio-111822-124041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In animals, the nervous system evolved as the primary interface between multicellular organisms and the environment. As organisms became larger and more complex, the primary functions of the nervous system expanded to include the modulation and coordination of individual responsive cells via paracrine and synaptic functions as well as to monitor and maintain the organism's own internal environment. This was initially accomplished via paracrine signaling and eventually through the assembly of multicell circuits in some lineages. Cells with similar functions and centralized nervous systems have independently arisen in several lineages. We highlight the molecular mechanisms that underlie parallel diversifications of the nervous system.
Collapse
Affiliation(s)
- Jenks Hehmeyer
- Integrative Biology Program, The University of Chicago, Chicago, Illinois, USA
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, USA;
| | - Flora Plessier
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, Illinois, USA
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, USA;
| | - Heather Marlow
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, USA;
| |
Collapse
|
7
|
Bowyer FT, Wood RA, Yilales M. Sea level controls on Ediacaran-Cambrian animal radiations. SCIENCE ADVANCES 2024; 10:eado6462. [PMID: 39083611 PMCID: PMC11290527 DOI: 10.1126/sciadv.ado6462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The drivers of Ediacaran-Cambrian metazoan radiations remain unclear, as does the fidelity of the record. We use a global age framework [580-510 million years (Ma) ago] to estimate changes in marine sedimentary rock volume and area, reconstructed biodiversity (mean genus richness), and sampling intensity, integrated with carbonate carbon isotopes (δ13Ccarb) and global redox data [carbonate Uranium isotopes (δ238Ucarb)]. Sampling intensity correlates with overall mean reconstructed biodiversity >535 Ma ago, while second-order (~10-80 Ma) global transgressive-regressive cycles controlled the distribution of different marine sedimentary rocks. The temporal distribution of the Avalon assemblage is partly controlled by the temporally and spatially limited record of deep-marine siliciclastic rocks. Each successive rise of metazoan morphogroups that define the Avalon, White Sea, and Cambrian assemblages appears to coincide with global shallow marine oxygenation events at δ13Ccarb maxima, which precede major sea level transgressions. While the record of biodiversity is biased, early metazoan radiations and oxygenation events are linked to major sea level cycles.
Collapse
|
8
|
Lu Z, Rickaby REM, Payne JL, Prow AN. Phanerozoic co-evolution of O 2-CO 2 and ocean habitability. Natl Sci Rev 2024; 11:nwae099. [PMID: 38915915 PMCID: PMC11194836 DOI: 10.1093/nsr/nwae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 06/26/2024] Open
Abstract
This perspective reviews how atmospheric compositions, animals and marine algae evolved together to determine global ocean habitability during the past 500 million years.
Collapse
Affiliation(s)
- Zunli Lu
- Department of Earth & Environmental Sciences, University, Syracuse, USA
| | | | - Jonathan L Payne
- Department of Earth and Planetary Sciences, Stanford University, USA
| | - Ashley N Prow
- Department of Earth & Environmental Sciences, University, Syracuse, USA
| |
Collapse
|
9
|
Jin C, Zhang Z, Cheng M, Wang G, Chang H, Cao Z, Zhang T. Reduction in Marine Primary Productivity in the Early Cambrian Nanhua Basin, South China. ACS OMEGA 2024; 9:19892-19903. [PMID: 38737017 PMCID: PMC11080022 DOI: 10.1021/acsomega.3c09161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
The Cambrian explosion is represented by a rapid diversification of early animals in which the role of marine primary productivity remains obscure. In this study, we analyzed multiple geochemical data, including TOC, major, and trace elements, in the basinal Yuanjia section, South China. Covariations among TOC, P/Al, CuEF, and NiEF suggest that they could be taken as effective marine productivity proxies in the early Cambrian Nanhua Basin. The similarities of CdEF and Cd/Mo in the Nanhua Basin and modern upwelling settings suggest that they might be effective to track upwelling, where Cd and Mo were mainly controlled by plankton biomass and redox conditions, respectively. Our results indicate that CoEF and Co × Mn were invalid in evaluating upwelling because of the significant effects of water-column redox conditions on Co enrichments in the Nanhua Basin. The decreased TOC, P/Al, CuEF, and NiEF reflect a long-term decline in marine productivity from late age 2 to age 3. In comparison with the published results in the outer shelf (Jinsha, TZS drill core, YJK drill core, and GDM-1 well) and slope areas (TX-1 well), the fall in marine productivity might be common in the early Cambrian Nanhua Basin. Our results exhibit that the reduced marine productivity was accompanied by weakened upwelling, quiet hydrothermal activities, and enhanced local terrestrial fluxes, indicating that variations in marine productivity might be mainly driven by the development of upwelling in the early Cambrian Nanhua Basin. Comparison of marine productivity with fossil records suggests that food availability was sufficient to sustain the Cambrian explosion in the Nanhua Basin. We infer that marine productivity might indirectly stimulate early animal evolution through its significant impact on water-column oxygen levels in the early Cambrian Nanhua Basin.
Collapse
Affiliation(s)
- Chengsheng Jin
- College
of Resource Environment and Tourism, Hubei
University of Arts and Science, Xiangyang 441053, China
| | - Zihu Zhang
- State
Key Laboratory of Oil and Gas Reservoir Geology and Exploitation &
Institute of Sedimentary Geology, Chengdu
University of Technology, Chengdu 610059, China
| | - Meng Cheng
- State
Key Laboratory of Oil and Gas Reservoir Geology and Exploitation &
Institute of Sedimentary Geology, Chengdu
University of Technology, Chengdu 610059, China
| | - Guochang Wang
- Yunnan
Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, Yunnan 650091, China
| | - Huajin Chang
- College
of Resource Environment and Tourism, Hubei
University of Arts and Science, Xiangyang 441053, China
| | - Zhengqi Cao
- College
of Resource Environment and Tourism, Hubei
University of Arts and Science, Xiangyang 441053, China
| | - Tao Zhang
- College
of Resource Environment and Tourism, Hubei
University of Arts and Science, Xiangyang 441053, China
| |
Collapse
|
10
|
Domazet-Lošo M, Široki T, Šimičević K, Domazet-Lošo T. Macroevolutionary dynamics of gene family gain and loss along multicellular eukaryotic lineages. Nat Commun 2024; 15:2663. [PMID: 38531970 DOI: 10.1038/s41467-024-47017-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The gain and loss of genes fluctuate over evolutionary time in major eukaryotic clades. However, the full profile of these macroevolutionary trajectories is still missing. To give a more inclusive view on the changes in genome complexity across the tree of life, here we recovered the evolutionary dynamics of gene family gain and loss ranging from the ancestor of cellular organisms to 352 eukaryotic species. We show that in all considered lineages the gene family content follows a common evolutionary pattern, where the number of gene families reaches the highest value at a major evolutionary and ecological transition, and then gradually decreases towards extant organisms. This supports theoretical predictions and suggests that the genome complexity is often decoupled from commonly perceived organismal complexity. We conclude that simplification by gene family loss is a dominant force in Phanerozoic genomes of various lineages, probably underpinned by intense ecological specializations and functional outsourcing.
Collapse
Affiliation(s)
- Mirjana Domazet-Lošo
- Department of Applied Computing, Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000, Zagreb, Croatia.
| | - Tin Široki
- Department of Applied Computing, Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000, Zagreb, Croatia
| | - Korina Šimičević
- Department of Applied Computing, Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000, Zagreb, Croatia
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia.
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000, Zagreb, Croatia.
| |
Collapse
|
11
|
Li L, Topper TP, Betts MJ, Altanshagai G, Enkhbaatar B, Li G, Li S, Skovsted CB, Cui L, Zhang X. Tubule system of earliest shells as a defense against increasing microbial attacks. iScience 2024; 27:109112. [PMID: 38380247 PMCID: PMC10877964 DOI: 10.1016/j.isci.2024.109112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/14/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
The evolutionary mechanism behind the early Cambrian animal skeletonization was a complex and multifaceted process involving environmental, ecological, and biological factors. Predation pressure, oxygenation, and seawater chemistry change have frequently been proposed as the main drivers of this biological innovation, yet the selection pressures from microorganisms have been largely overlooked. Here we present evidence that calcareous shells of the earliest mollusks from the basal Cambrian (Fortunian Age, ca. 539-529 million years ago) of Mongolia developed advanced tubule systems that evolved primarily as a defensive strategy against extensive microbial attacks within a microbe-dominated marine ecosystem. These high-density tubules, comprising approximately 35% of shell volume, enable nascent mineralized mollusks to cope with increasing microbial bioerosion caused by boring endolithic cyanobacteria, and hence represent an innovation in shell calcification. Our finding demonstrates that enhanced microboring pressures played a significant role in shaping the calcification of the earliest mineralized mollusks during the Cambrian Explosion.
Collapse
Affiliation(s)
- Luoyang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education and College of Marine Geosciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Mineral Resources, National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Timothy P. Topper
- Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, Xi’an 710069, China
- Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden
| | - Marissa J. Betts
- Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, Xi’an 710069, China
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Gundsambuu Altanshagai
- Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar 15160, Mongolia
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14200, Mongolia
| | - Batktuyag Enkhbaatar
- Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar 15160, Mongolia
| | - Guoxiang Li
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Sanzhong Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education and College of Marine Geosciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Mineral Resources, National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Christian B. Skovsted
- Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden
| | - Linhao Cui
- Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, Xi’an 710069, China
| | - Xingliang Zhang
- Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, Xi’an 710069, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
12
|
Ai Y, Zhu G, Li T, Zhang Z, Zhang Y, Duan P, Liu J, Zhao K, Li X. Paleo-marine redox environment fluctuation during the early Cambrian: Insight from iron isotope in the Tarim Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169277. [PMID: 38110098 DOI: 10.1016/j.scitotenv.2023.169277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
The Ediacaran to Cambrian period is generally considered to be the vital transition in the history of marine redox environment and life evolution on earth. The ocean oxygenation levels during this transition period are still debated. Since iron is widely involved in biogeochemical cycles and undergoes redox cycling both in the seawater and sediments, it has become a significant proxy to reconstruct paleo-marine environment. In order to constrain the paleo-marine redox state in the early Cambrian, the iron isotope composition of bulk rock (δ56FeT) is interpreted combining with iron-speciation, redox sensitive elements and pyrite sulfur isotope (δ34Spy) of Yuertusi Formation in Tarim Block. The δ56FeT values varies from -0.39 ‰ to 0.48 ‰, with an average of 0.07 ‰, mainly controlled by pyrite mineral facies in this study. Based on the mechanism of pyrite generation in different redox condition, it is proposed that the marine environment of the lower Cambrian in the Tarim basin is dominated by anoxic with intermittent euxinic state. The dynamic evolution of redox environment can be divided into three intervals. The gradual decrease of δ56Fe in Interval I indicates the paleo-marine environment changed from anoxic ferruginous to euxinic, and the paleo-marine sulfate reservoir decreased to a limited level, which might be attributed to abundant burial of organic matter and pyrite. For Interval II, δ56Fe values first increase to evident positive because of partial oxidization then decreased to that of seawater (about 0 ‰) due to complete oxidization. In Interval III, the continuous decrease of δ56Fe values infers a sustaining oxidization. In summary, the paleo-marine environment of the lower Cambrian Yuertusi Formation evolved from anoxic ferruginous to euxinic and then oxidized continuous. Iron isotope statistics from geological historical periods indicate that seawater was relatively oxidized after the NOE event but did not reach the oxidation levels of present-day seawater.
Collapse
Affiliation(s)
- Yifei Ai
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
| | - Guangyou Zhu
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China.
| | - Tingting Li
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
| | - Zhiyao Zhang
- MOE Key Laboratory of Tectonics and Petroleum Resources, School of Earth Resources, China University of Geosciences, Wuhan 430074, China
| | - Yan Zhang
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
| | - Pengzhen Duan
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
| | - Jincheng Liu
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
| | - Kun Zhao
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
| | - Xi Li
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
| |
Collapse
|
13
|
Park TYS, Nielsen ML, Parry LA, Sørensen MV, Lee M, Kihm JH, Ahn I, Park C, de Vivo G, Smith MP, Harper DAT, Nielsen AT, Vinther J. A giant stem-group chaetognath. SCIENCE ADVANCES 2024; 10:eadi6678. [PMID: 38170772 PMCID: PMC10796117 DOI: 10.1126/sciadv.adi6678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Chaetognaths, with their characteristic grasping spines, are the oldest known pelagic predators, found in the lowest Cambrian (Terreneuvian). Here, we describe a large stem chaetognath, Timorebestia koprii gen. et sp. nov., from the lower Cambrian Sirius Passet Lagerstätte, which exhibits lateral and caudal fins, a distinct head region with long antennae and a jaw apparatus similar to Amiskwia sagittiformis. Amiskwia has previously been interpreted as a total-group chaetognathiferan, as either a stem-chaetognath or gnathostomulid. We show that T. koprii shares a ventral ganglion with chaetognaths to the exclusion of other animal groups, firmly placing these fossils on the chaetognath stem. The large size (up to 30 cm) and gut contents in T. koprii suggest that early chaetognaths occupied a higher trophic position in pelagic food chains than today.
Collapse
Affiliation(s)
- Tae-Yoon S. Park
- Division of Earth Sciences, Korea Polar Research Institute, 26 Songdomirae-ro Yeonsu-gu, Incheon 21990, Republic of Korea
- University of Science and Technology, 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Morten Lunde Nielsen
- Division of Earth Sciences, Korea Polar Research Institute, 26 Songdomirae-ro Yeonsu-gu, Incheon 21990, Republic of Korea
- School of Earth Sciences, Palaeobiology Research Group, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- British Geological Survey, Nicker Hill, Keyworth NG12 5GG, UK
| | - Luke A. Parry
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | | | - Mirinae Lee
- Division of Earth Sciences, Korea Polar Research Institute, 26 Songdomirae-ro Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Ji-Hoon Kihm
- Division of Earth Sciences, Korea Polar Research Institute, 26 Songdomirae-ro Yeonsu-gu, Incheon 21990, Republic of Korea
- University of Science and Technology, 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Inhye Ahn
- Division of Earth Sciences, Korea Polar Research Institute, 26 Songdomirae-ro Yeonsu-gu, Incheon 21990, Republic of Korea
- University of Science and Technology, 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Changkun Park
- Division of Earth Sciences, Korea Polar Research Institute, 26 Songdomirae-ro Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Giacinto de Vivo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - M. Paul Smith
- Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK
| | - David A. T. Harper
- Palaeoecosystems Group, Department of Earth Sciences, Durham University, Durham DH1 3LE, UK
| | - Arne T. Nielsen
- Department of Geoscience and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, Copenhagen DK-1350, Denmark
| | - Jakob Vinther
- School of Earth Sciences, Palaeobiology Research Group, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
14
|
Belato FA, Mello B, Coates CJ, Halanych KM, Brown FD, Morandini AC, de Moraes Leme J, Trindade RIF, Costa-Paiva EM. Divergence time estimates for the hypoxia-inducible factor-1 alpha (HIF1α) reveal an ancient emergence of animals in low-oxygen environments. GEOBIOLOGY 2024; 22:e12577. [PMID: 37750460 DOI: 10.1111/gbi.12577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 07/13/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
Unveiling the tempo and mode of animal evolution is necessary to understand the links between environmental changes and biological innovation. Although the earliest unambiguous metazoan fossils date to the late Ediacaran period, molecular clock estimates agree that the last common ancestor (LCA) of all extant animals emerged ~850 Ma, in the Tonian period, before the oldest evidence for widespread ocean oxygenation at ~635-560 Ma in the Ediacaran period. Metazoans are aerobic organisms, that is, they are dependent on oxygen to survive. In low-oxygen conditions, most animals have an evolutionarily conserved pathway for maintaining oxygen homeostasis that triggers physiological changes in gene expression via the hypoxia-inducible factor (HIFa). However, here we confirm the absence of the characteristic HIFa protein domain responsible for the oxygen sensing of HIFa in sponges and ctenophores, indicating the LCA of metazoans lacked the functional protein domain as well, and so could have maintained their transcription levels unaltered under the very low-oxygen concentrations of their environments. Using Bayesian relaxed molecular clock dating, we inferred that the ancestral gene lineage responsible for HIFa arose in the Mesoproterozoic Era, ~1273 Ma (Credibility Interval 957-1621 Ma), consistent with the idea that important genetic machinery associated with animals evolved much earlier than the LCA of animals. Our data suggest at least two duplication events in the evolutionary history of HIFa, which generated three vertebrate paralogs, products of the two successive whole-genome duplications that occurred in the vertebrate LCA. Overall, our results support the hypothesis of a pre-Tonian emergence of metazoans under low-oxygen conditions, and an increase in oxygen response elements during animal evolution.
Collapse
Affiliation(s)
- Flavia A Belato
- Institute of Biosciences, Department of Zoology, University of Sao Paulo, São Paulo - SP, Brazil
| | - Beatriz Mello
- Biology Institute, Genetics Department, Federal University of Rio de Janeiro, Rio de Janeiro - RJ, Brazil
| | - Christopher J Coates
- Zoology, Ryan Institute, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Kenneth M Halanych
- Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Federico D Brown
- Institute of Biosciences, Department of Zoology, University of Sao Paulo, São Paulo - SP, Brazil
| | - André C Morandini
- Institute of Biosciences, Department of Zoology, University of Sao Paulo, São Paulo - SP, Brazil
| | | | - Ricardo I F Trindade
- Institute of Astronomy, Geophysics and Atmospheric Sciences, University of Sao Paulo, São Paulo - SP, Brazil
| | - Elisa Maria Costa-Paiva
- Institute of Biosciences, Department of Zoology, University of Sao Paulo, São Paulo - SP, Brazil
- Institute of Astronomy, Geophysics and Atmospheric Sciences, University of Sao Paulo, São Paulo - SP, Brazil
| |
Collapse
|
15
|
Karvalics LZ, Bujtor L. Towards the Big History of information. Approaching the origins of information behaviour. Biosystems 2023; 232:104991. [PMID: 37544407 DOI: 10.1016/j.biosystems.2023.104991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
A palaeontological analysis of the evolutionary steps of Metazoa is tracing back the appearance and first steps of information behaviour as far as the Proterozoic Eon. Either the neural cell or the nervous system or the eyesight did not trigger the appearance of the information behaviour, but it did a novel way of diet. Carnivorous diet appeared on Earth slightly before the information behaviour as a completely new way of feeding - and what is more important: the application of light into the behavioural complexes as a radically innovative survival supporting tool. A genetic toolkit was ready for Metazoa, and the combination of the neural system, eyesight and carnivorous diet initiated the information behaviour. We provide an answer for this simple question: why did the carnivorous diet result in the first disruptive innovation in information behaviour? The junction of Big History, palaeontology and information history provides many challenging new aspects for further research.
Collapse
Affiliation(s)
| | - László Bujtor
- Institute of Geography and Environmental Sciences, Eszterházy Károly Catholic University, H-3300, Eger, Leányka str. 6-8, Hungary.
| |
Collapse
|
16
|
Ispolatov Y, Doebeli C, Doebeli M. On the evolutionary emergence of predation. J Theor Biol 2023; 572:111578. [PMID: 37437709 DOI: 10.1016/j.jtbi.2023.111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
In models for the evolution of predation from initially purely competitive species interactions, the propensity of predation is most often assumed to be a direct consequence of the relative morphological and physiological traits of interacting species. Here we explore a model in which predation ability is an independently evolving phenotypic feature, so that even when the relative morphological or physiological traits allow for predation, predation only occurs if the predation ability of individuals has independently evolved to high enough values. In addition to delineating the conditions for the evolutionary emergence of predation, the model reproduces stationary and non-stationary multilevel food webs with the top predators not necessarily having size superiority.
Collapse
Affiliation(s)
- Yaroslav Ispolatov
- Departamento de Física, Center for Interdisciplinary Research in Astrophysics and Space Science, Universidad de Santiago de Chile, Victor Jara 3493, Santiago, Chile.
| | - Carlos Doebeli
- Imperial College London, Department of Mathematics,, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Michael Doebeli
- Departments of Mathematics and Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, V6T 1Z4, BC, Canada
| |
Collapse
|
17
|
Li YX, Tarduno JA, Jiao W, Liu X, Peng S, Xu S, Yang A, Yang Z. Late Cambrian geomagnetic instability after the onset of inner core nucleation. Nat Commun 2023; 14:4596. [PMID: 37524710 PMCID: PMC10390560 DOI: 10.1038/s41467-023-40309-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
The Ediacaran Period marks a pivotal time in geodynamo evolution when the geomagnetic field is thought to approach the weak state where kinetic energy exceeds magnetic energy, as manifested by an extremely high frequency of polarity reversals, high secular variation, and an ultralow dipole field strength. However, how the geodynamo transitioned from this state into one with more stable field behavior is unknown. Here, we address this issue through a high-resolution magnetostratigraphic investigation of the ~494.5 million-year-old Jiangshanian Global Standard Stratotype and Point (GSSP) section in South China. Our paleomagnetic results document zones with rapid reversals, stable polarity and a ~80 thousand-year-long interval without a geocentric axial dipole field. From these changes, we suggest that for most of the Cambrian, the solid inner core had not yet grown to a size sufficiently large to stabilize the geodynamo. This unusual field behavior can explain paleomagnetic data used to define paradoxical true polar wander, supporting instead the rotational stability of the solid Earth during the great radiation of life in the Cambrian.
Collapse
Affiliation(s)
- Yong-Xiang Li
- State Key Laboratory for Mineral Deposits Research, Institute of Continental Geodynamics, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China.
| | - John A Tarduno
- Department of Earth & Environmental Sciences, University of Rochester, Rochester, NY, USA
- Department of Physics & Astronomy, University of Rochester, Rochester, NY, USA
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY, USA
| | - Wenjun Jiao
- State Key Laboratory for Mineral Deposits Research, Institute of Continental Geodynamics, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Xinyu Liu
- State Key Laboratory for Mineral Deposits Research, Institute of Continental Geodynamics, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Shanchi Peng
- State Key Laboratory of Geology and Palaeontology, Nanjing Institute of Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Shihua Xu
- State Key Laboratory for Mineral Deposits Research, Institute of Continental Geodynamics, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Aihua Yang
- State Key Laboratory for Mineral Deposits Research, Institute of Continental Geodynamics, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhenyu Yang
- College of Resources, Environment & Tourism, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
18
|
A diverse Ediacara assemblage survived under low-oxygen conditions. Nat Commun 2022; 13:7306. [PMID: 36435820 PMCID: PMC9701187 DOI: 10.1038/s41467-022-35012-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022] Open
Abstract
The Ediacaran biota were soft-bodied organisms, many with enigmatic phylogenetic placement and ecology, living in marine environments between 574 and 539 million years ago. Some studies hypothesize a metazoan affinity and aerobic metabolism for these taxa, whereas others propose a fundamentally separate taxonomic grouping and a reliance on chemoautotrophy. To distinguish between these hypotheses and test the redox-sensitivity of Ediacaran organisms, here we present a high-resolution local and global redox dataset from carbonates that contain in situ Ediacaran fossils from Siberia. Cerium anomalies are consistently >1, indicating that local environments, where a diverse Ediacaran assemblage is preserved in situ as nodules and carbonaceous compressions, were pervasively anoxic. Additionally, δ238U values match other terminal Ediacaran sections, indicating widespread marine euxinia. These data suggest that some Ediacaran biotas were tolerant of at least intermittent anoxia, and thus had the capacity for a facultatively anaerobic lifestyle. Alternatively, these soft-bodied Ediacara organisms may have colonized the seafloor during brief oxygenation events not recorded by redox proxy data. Broad temporal correlations between carbon, sulfur, and uranium isotopes further highlight the dynamic redox landscape of Ediacaran-Cambrian evolutionary events.
Collapse
|
19
|
Ding Y, Sun W, Liu S, Xie J, Tang D, Zhou X, Zhou L, Li Z, Song J, Li Z, Xu H, Tang P, Liu K, Li W, Chen D. Low oxygen levels with high redox heterogeneity in the late Ediacaran shallow ocean: Constraints from I/(Ca + Mg) and Ce/Ce* of the Dengying Formation, South China. GEOBIOLOGY 2022; 20:790-809. [PMID: 36250398 DOI: 10.1111/gbi.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 03/23/2022] [Accepted: 07/22/2022] [Indexed: 06/16/2023]
Abstract
Most previous studies focused on the redox state of the deep water, leading to an incomplete understanding of the spatiotemporal evolution of the redox-stratified ocean during the Ediacaran-Cambrian transition. In order to decode the redox condition of shallow marine environments during the late Ediacaran, this study presents I/(Ca + Mg), carbon and oxygen isotope, major, trace, and rare earth element data of subtidal to peritidal dolomite from the Dengying Formation at Yangba, South China. In combination with the reported radiometric and biostratigraphic data, the Dengying Formation and coeval successions worldwide are subdivided into a positive δ13 C excursion (up to ~6‰) in the lower part (~551-547 Ma) and a stable δ13 C plateau (generally between 0‰ and 3‰) in the middle-upper part (~547-541 Ma). The overall low I/(Ca + Mg) ratios (<0.5 μmol/mol) and slightly negative to no Ce anomalies (0.80 < [Ce/Ce*]SN < 1.25), point to low-oxygen levels in shallow marine environments at Yangba. Moreover, four pulsed negative excursions in (Ce/Ce*)SN (between 0.62 and 0.8) and the associated two positive excursions in I/(Ca + Mg) ratios (up to 2.02 μmol/mol) are observed, indicative of weak oxygenations in the shallow marine environments. The comparison with other upper Ediacaran shallow water successions worldwide reveals that the (Ce/Ce*)SN and I/(Ca + Mg) values generally fall in the Precambrian range but their temporal trends differ among these successions (e.g., Ce anomaly profiles significantly different between Yangba and the Yangtze Gorge sections), which point to low oxygen levels with high redox heterogeneity in the surface ocean. This is consistent with the widespread anoxia as revealed by low δ238 U values reported by previous studies. Thus, the atmospheric oxygen concentrations during the late Ediacaran are estimated to be very low, similar to the case during the most Mesoproterozoic to early Neoproterozoic period.
Collapse
Affiliation(s)
- Yi Ding
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China
- Key Laboratory of Deep-Time Geography and Environment Reconstruction and Applications of Ministry of Natural Resources, Chengdu University of Technology, Chengdu, China
| | - Wei Sun
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China
| | - Shugen Liu
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China
- Xihua University, Chengdu, China
| | - Jirong Xie
- Exploration and Development Research Institute, PetroChina Southwest Oil & Gas Field Company, Chengdu, China
| | - Dongjie Tang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing, China
| | - Xiqiang Zhou
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Earth Science, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Limin Zhou
- National Research Center of Geoanalysis, Beijing, China
| | - Zhiwu Li
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China
| | - Jinmin Song
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China
| | - Zeqi Li
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China
| | - Hongyuan Xu
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China
| | - Pan Tang
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kang Liu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjun Li
- Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Daizhao Chen
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Earth Science, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Sperling EA, Boag TH, Duncan MI, Endriga CR, Marquez JA, Mills DB, Monarrez PM, Sclafani JA, Stockey RG, Payne JL. Breathless through Time: Oxygen and Animals across Earth's History. THE BIOLOGICAL BULLETIN 2022; 243:184-206. [PMID: 36548971 DOI: 10.1086/721754] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractOxygen levels in the atmosphere and ocean have changed dramatically over Earth history, with major impacts on marine life. Because the early part of Earth's history lacked both atmospheric oxygen and animals, a persistent co-evolutionary narrative has developed linking oxygen change with changes in animal diversity. Although it was long believed that oxygen rose to essentially modern levels around the Cambrian period, a more muted increase is now believed likely. Thus, if oxygen increase facilitated the Cambrian explosion, it did so by crossing critical ecological thresholds at low O2. Atmospheric oxygen likely remained at low or moderate levels through the early Paleozoic era, and this likely contributed to high metazoan extinction rates until oxygen finally rose to modern levels in the later Paleozoic. After this point, ocean deoxygenation (and marine mass extinctions) is increasingly linked to large igneous province eruptions-massive volcanic carbon inputs to the Earth system that caused global warming, ocean acidification, and oxygen loss. Although the timescales of these ancient events limit their utility as exact analogs for modern anthropogenic global change, the clear message from the geologic record is that large and rapid CO2 injections into the Earth system consistently cause the same deadly trio of stressors that are observed today. The next frontier in understanding the impact of oxygen changes (or, more broadly, temperature-dependent hypoxia) in deep time requires approaches from ecophysiology that will help conservation biologists better calibrate the response of the biosphere at large taxonomic, spatial, and temporal scales.
Collapse
|
21
|
Borges FO, Sampaio E, Santos CP, Rosa R. Impacts of Low Oxygen on Marine Life: Neglected, but a Crucial Priority for Research. THE BIOLOGICAL BULLETIN 2022; 243:104-119. [PMID: 36548969 DOI: 10.1086/721468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractGlobal ocean O2 content has varied significantly across the eons, both shaping and being shaped by the evolutionary history of life on planet Earth. Indeed, past O2 fluctuations have been associated with major extinctions and the reorganization of marine biota. Moreover, its most recent iteration-now anthropogenically driven-represents one of the most prominent challenges for both marine ecosystems and human societies, with ocean deoxygenation being regarded as one of the main drivers of global biodiversity loss. Yet ocean deoxygenation has received far less attention than concurrent environmental variables of marine climate change, namely, ocean warming and acidification, particularly in the field of experimental marine ecology. Together with the lack of consistent criteria defining gradual and acute changes in O2 content, a general lack of multifactorial studies featuring all three drivers and their interactions prevents an adequate interpretation of the potential effects of extreme and gradual deoxygenation. We present a comprehensive overview of the interplay between O2 and marine life across space and time and discuss the current knowledge gaps and future steps for deoxygenation research. This work may also contribute to the ongoing call for an integrative perspective on the combined effects of these three drivers of change for marine organisms and ecosystems worldwide.
Collapse
|
22
|
McClain CR, Bryant SR, Hanks G, Bowles MW. Extremophiles in Earth's Deep Seas: A View Toward Life in Exo-Oceans. ASTROBIOLOGY 2022; 22:1009-1028. [PMID: 35549348 DOI: 10.1089/ast.2021.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Humanity's search for extraterrestrial life is a modern manifestation of the exploratory and curious nature that has led us through millennia of scientific discoveries. With the ongoing exploration of extraterrestrial bodies, the potential for discovery of extraterrestrial life has expanded. We may better inform this search through an understanding of how life persists and flourishes on Earth in a myriad of environmental extremes. A significant proportion of our knowledge of extremophiles on Earth comes from studies on deep ocean life. Here, we review and synthesize the range of environmental extremes observed in the deep sea, the life that persists in these extreme conditions, and the biological adaptations utilized by these remarkable life-forms. We also review confirmed and predicted extraterrestrial oceans in our solar system and propose deep-sea sites that may serve as planetary field analog environments. We show that the clever ingenuity of evolution under deep-sea conditions suggests that the plausibility of extraterrestrial life is much greater than previously thought.
Collapse
Affiliation(s)
- Craig R McClain
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - S River Bryant
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Granger Hanks
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | | |
Collapse
|
23
|
Maria Costa-Paiva E, Mello B, Santos Bezerra B, Coates CJ, Halanych KM, Brown F, de Moraes Leme J, Trindade RIF. Molecular dating of the blood pigment hemocyanin provides new insight into the origin of animals. GEOBIOLOGY 2022; 20:333-345. [PMID: 34766436 DOI: 10.1111/gbi.12481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The Neoproterozoic included changes in oceanic redox conditions, the configuration of continents and climate, extreme ice ages (Sturtian and Marinoan), and the rise of complex life forms. A much-debated topic in geobiology concerns the influence of atmospheric oxygenation on Earth and the origin and diversification of animal lineages, with the most widely popularized hypotheses relying on causal links between oxygen levels and the rise of animals. The vast majority of extant animals use aerobic metabolism for growth and homeostasis; hence, the binding and transportation of oxygen represent a vital physiological task. Considering the blood pigment hemocyanin (Hc) is present in sponges and ctenophores, and likely to be present in the common ancestor of animals, we investigated the evolution and date of Hc emergence using bioinformatics approaches on both transcriptomic and genomic data. Bayesian molecular dating suggested that the ancestral animal Hc gene arose approximately 881 Ma during the Tonian Period (1000-720 Ma), prior to the extreme glaciation events of the Cryogenian Period (720-635 Ma). This result is corroborated by a recently discovered fossil of a putative sponge ~890 Ma and modern molecular dating for the origin of metazoans of ~1,000-650 Ma (but does contradict previous inferences regarding the origin of Hc ~700-600 Ma). Our data reveal that crown-group animals already possessed hemocyanin-like blood pigments, which may have enhanced the oxygen-carrying capacity of these animals in hypoxic environments at that time or acted in the transport of hormones, detoxification of heavy metals, and immunity pathways.
Collapse
Affiliation(s)
- Elisa Maria Costa-Paiva
- Zoology Department, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
- Geophysics and Atmospheric Sciences, Institute of Astronomy, University of Sao Paulo, Sao Paulo, Brazil
| | - Beatriz Mello
- Genetics Department, Biology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Santos Bezerra
- Zoology Department, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Christopher J Coates
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Kenneth M Halanych
- Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Federico Brown
- Zoology Department, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Ricardo I F Trindade
- Geophysics and Atmospheric Sciences, Institute of Astronomy, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
24
|
Stockey C, Adams NF, Harvey THP, Donoghue PCJ, Purnell MA. Dietary inference from dental topographic analysis of feeding tools in diverse animals. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher Stockey
- Centre for Palaeobiology Research, School of Geography, Geology and the Environment University of Leicester, University Road Leicester UK
| | - Neil F. Adams
- Centre for Palaeobiology Research, School of Geography, Geology and the Environment University of Leicester, University Road Leicester UK
| | - Thomas H. P. Harvey
- Centre for Palaeobiology Research, School of Geography, Geology and the Environment University of Leicester, University Road Leicester UK
| | | | - Mark A. Purnell
- Centre for Palaeobiology Research, School of Geography, Geology and the Environment University of Leicester, University Road Leicester UK
| |
Collapse
|
25
|
Thermochronologic constraints on the origin of the Great Unconformity. Proc Natl Acad Sci U S A 2022; 119:2118682119. [PMID: 35078936 PMCID: PMC8812566 DOI: 10.1073/pnas.2118682119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
The Great Unconformity involves a common gap of hundreds of millions to billions of years in the geologic record. The cause of this missing time has long eluded explanation, but recently two opposing hypotheses claim either a glacial or a plate tectonic origin in the Neoproterozoic. We provide thermochronologic evidence of rock cooling and multiple kilometers of exhumation in the Cryogenian Period in support of a glacial origin for erosion contributing to the composite basement nonconformity found across the North American interior. The broad synchronicity of this cooling signal at the continental scale can only be readily explained by glacial denudation. The origin of the phenomenon known as the Great Unconformity has been a fundamental yet unresolved problem in the geosciences for over a century. Recent hypotheses advocate either global continental exhumation averaging 3 to 5 km during Cryogenian (717 to 635 Ma) snowball Earth glaciations or, alternatively, diachronous episodic exhumation throughout the Neoproterozoic (1,000 to 540 Ma) due to plate tectonic reorganization from supercontinent assembly and breakup. To test these hypotheses, the temporal patterns of Neoproterozoic thermal histories were evaluated for four North American locations using previously published medium- to low-temperature thermochronology and geologic information. We present inverse time–temperature simulations within a Bayesian modeling framework that record a consistent signal of relatively rapid, high-magnitude cooling of ∼120 to 200 °C interpreted as erosional exhumation of upper crustal basement during the Cryogenian. These models imply widespread, synchronous cooling consistent with at least ∼3 to 5 km of unroofing during snowball Earth glaciations, but also demonstrate that plate tectonic drivers, with the potential to cause both exhumation and burial, may have significantly influenced the thermal history in regions that were undergoing deformation concomitant with glaciation. In the cratonic interior, however, glaciation remains the only plausible mechanism that satisfies the required timing, magnitude, and broad spatial pattern of continental erosion revealed by our thermochronological inversions. To obtain a full picture of the extent and synchroneity of such erosional exhumation, studies on stable cratonic crust below the Great Unconformity must be repeated on all continents.
Collapse
|
26
|
Martinelli LA, Augusto FG. The co-evolution of life and biogeochemical cycles in our planet. BIOTA NEOTROPICA 2022. [DOI: 10.1590/1676-0611-bn-2022-1402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract The Earth has undergone numerous geological and biological changes over billions of years. The evolution of plants and animals had a direct relationship with the elements’ changes in the atmosphere and the development of the biogeochemical cycles on Earth. The Anthropocene is the age of the Homo sapiens leaves its geological signature on the planet. Human domination and/or interference in the biogeochemical cycles results in an environmental change that affects not only ecosystems, in general, but also the biota and global biodiversity. In this way, we are creating another mass extinction event, the “sixth extinction wave” as well as transforming the ecosystems’ functions and services.
Collapse
|
27
|
Cohen PA, Kodner RB. The earliest history of eukaryotic life: uncovering an evolutionary story through the integration of biological and geological data. Trends Ecol Evol 2021; 37:246-256. [PMID: 34949483 DOI: 10.1016/j.tree.2021.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022]
Abstract
While there is significant data on eukaryogenesis and the early development of the eukaryotic lineage, major uncertainties regarding their origins and evolution remain, including questions of taxonomy, timing, and paleoecology. Here we examine the origin and diversification of the eukaryotes in the Proterozoic Eon as viewed through fossils, organic biomarkers, molecular clocks, phylogenies, and redox proxies. Our interpretation of the integration of these data suggest that eukaryotes were likely aerobic and established in Proterozoic ecosystems. We argue that we must closely examine and integrate both biological and geological evidence and examine points of agreement and contention to gain new insights into the true origin and early evolutionary history of this vastly important group.
Collapse
Affiliation(s)
- Phoebe A Cohen
- Williams College Department of Geosciences, Williamstown, MA, USA.
| | - Robin B Kodner
- Western Washington University Department of Environmental Sciences, Bellingham, WA, USA.
| |
Collapse
|
28
|
De Baets K, Huntley JW, Scarponi D, Klompmaker AA, Skawina A. Phanerozoic parasitism and marine metazoan diversity: dilution versus amplification. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200366. [PMID: 34538136 PMCID: PMC8450635 DOI: 10.1098/rstb.2020.0366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Growing evidence suggests that biodiversity mediates parasite prevalence. We have compiled the first global database on occurrences and prevalence of marine parasitism throughout the Phanerozoic and assess the relationship with biodiversity to test if there is support for amplification or dilution of parasitism at the macroevolutionary scale. Median prevalence values by era are 5% for the Paleozoic, 4% for the Mesozoic, and a significant increase to 10% for the Cenozoic. We calculated period-level shareholder quorum sub-sampled (SQS) estimates of mean sampled diversity, three-timer (3T) origination rates, and 3T extinction rates for the most abundant host clades in the Paleobiology Database to compare to both occurrences of parasitism and the more informative parasite prevalence values. Generalized linear models (GLMs) of parasite occurrences and SQS diversity measures support both the amplification (all taxa pooled, crinoids and blastoids, and molluscs) and dilution hypotheses (arthropods, cnidarians, and bivalves). GLMs of prevalence and SQS diversity measures support the amplification hypothesis (all taxa pooled and molluscs). Though likely scale-dependent, parasitism has increased through the Phanerozoic and clear patterns primarily support the amplification of parasitism with biodiversity in the history of life. This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’.
Collapse
Affiliation(s)
- Kenneth De Baets
- GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-University Erlangen-Nürnberg, Loewenichstraße 28, 91054 Erlangen, Germany
| | - John Warren Huntley
- Department of Geological Sciences, University of Missouri, 101 Geological Sciences Building, Columbia, MO 65211, USA
| | - Daniele Scarponi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, University of Bologna, Piazza di Porta San Donato 1, 40131 Bologna, Italy
| | - Adiël A Klompmaker
- Department of Museum Research and Collections and Alabama Museum of Natural History, University of Alabama, Box 870340, Tuscaloosa, AL 35487, USA
| | - Aleksandra Skawina
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warszawa, Poland
| |
Collapse
|
29
|
Bush AM, Payne JL. Biotic and Abiotic Controls on the Phanerozoic History of Marine Animal Biodiversity. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012021-035131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the past 541 million years, marine animals underwent three intervals of diversification (early Cambrian, Ordovician, Cretaceous–Cenozoic) separated by nondirectional fluctuation, suggesting diversity-dependent dynamics with the equilibrium diversity shifting through time. Changes in factors such as shallow-marine habitat area and climate appear to have modulated the nondirectional fluctuations. Directional increases in diversity are best explained by evolutionary innovations in marine animals and primary producers coupled with stepwise increases in the availability of food and oxygen. Increasing intensity of biotic interactions such as predation and disturbance may have led to positive feedbacks on diversification as ecosystems became more complex. Important areas for further research include improving the geographic coverage and temporal resolution of paleontological data sets, as well as deepening our understanding of Earth system evolution and the physiological and ecological traits that modulated organismal responses to environmental change.
Collapse
Affiliation(s)
- Andrew M. Bush
- Department of Geosciences and Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Jonathan L. Payne
- Department of Geological Sciences, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
30
|
Abstract
AbstractAnimals, fungi, and algae with complex multicellular bodies all evolved independently from unicellular ancestors. The early history of these major eukaryotic multicellular clades, if not their origins, co-occur with an extreme phase of global glaciations known as the Snowball Earth. Here, I propose that the long-term loss of low-viscosity environments due to several rounds global glaciation drove the multiple origins of complex multicellularity in eukaryotes and the subsequent radiation of complex multicellular groups into previously unoccupied niches. In this scenario, life adapts to Snowball Earth oceans by evolving large size and faster speeds through multicellularity, which acts to compensate for high-viscosity seawater and achieve fluid flow at sufficient levels to satisfy metabolic needs. Warm, low-viscosity seawater returned with the melting of the Snowball glaciers, and with it, by virtue of large and fast multicellular bodies, new ways of life were unveiled.
Collapse
|
31
|
Antell GT, Saupe EE. Bottom-up controls, ecological revolutions and diversification in the oceans through time. Curr Biol 2021; 31:R1237-R1251. [PMID: 34637737 DOI: 10.1016/j.cub.2021.08.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Animals originated in the oceans and evolved there for hundreds of millions of years before adapting to terrestrial environments. Today, oceans cover more than two-thirds of Earth and generate as much primary production as land. The path from the first macrobiota to modern marine biodiversity involved parallel increases in terrestrial nutrient input, marine primary production, species' abundance, metabolic rates, ecotypic diversity and taxonomic diversity. Bottom-up theories of ecosystem cascades arrange these changes in a causal sequence. At the base of marine food webs, nutrient fluxes and atmosphere-ocean chemistry interact with phytoplankton to regulate production. First-order consumers (e.g., zooplankton) might propagate changes in quantity and quality of phytoplankton to changes in abundance and diversity of larger predators (e.g., nekton). However, many uncertainties remain about the mechanisms and effect size of bottom-up control, particularly in oceans across the entire history of animal life. Here, we review modern and fossil evidence for hypothesized bottom-up pathways, and we assess the ramifications of these processes for four key intervals in marine ecosystems: the Ediacaran-Cambrian (635-485 million years ago), the Ordovician (485-444 million years ago), the Devonian (419-359 million years ago) and the Mesozoic (252-66 million years ago). We advocate for a clear articulation of bottom-up hypotheses to better understand causal relationships and proposed effects, combined with additional ecological experiments, paleontological documentation, isotope geochemistry and geophysical reconstructions. How small-scale ecological change transitions into large-scale evolutionary change remains an outstanding question for empirical and theoretical research.
Collapse
Affiliation(s)
- Gawain T Antell
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK.
| | - Erin E Saupe
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
| |
Collapse
|
32
|
Lyons TW, Diamond CW, Planavsky NJ, Reinhard CT, Li C. Oxygenation, Life, and the Planetary System during Earth's Middle History: An Overview. ASTROBIOLOGY 2021; 21:906-923. [PMID: 34314605 PMCID: PMC8403206 DOI: 10.1089/ast.2020.2418] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The long history of life on Earth has unfolded as a cause-and-effect relationship with the evolving amount of oxygen (O2) in the oceans and atmosphere. Oxygen deficiency characterized our planet's first 2 billion years, yet evidence for biological O2 production and local enrichments in the surface ocean appear long before the first accumulations of O2 in the atmosphere roughly 2.4 to 2.3 billion years ago. Much has been written about this fundamental transition and the related balance between biological O2 production and sinks coupled to deep Earth processes that could buffer against the accumulation of biogenic O2. However, the relationship between complex life (eukaryotes, including animals) and later oxygenation is less clear. Some data suggest O2 was higher but still mostly low for another billion and a half years before increasing again around 800 million years ago, potentially setting a challenging course for complex life during its initial development and ecological expansion. The apparent rise in O2 around 800 million years ago is coincident with major developments in complex life. Multiple geochemical and paleontological records point to a major biogeochemical transition at that time, but whether rising and still dynamic biospheric oxygen triggered or merely followed from innovations in eukaryotic ecology, including the emergence of animals, is still debated. This paper focuses on the geochemical records of Earth's middle history, roughly 1.8 to 0.5 billion years ago, as a backdrop for exploring possible cause-and-effect relationships with biological evolution and the primary controls that may have set its pace, including solid Earth/tectonic processes, nutrient limitation, and their possible linkages. A richer mechanistic understanding of the interplay between coevolving life and Earth surface environments can provide a template for understanding and remotely searching for sustained habitability and even life on distant exoplanets.
Collapse
Affiliation(s)
- Timothy W. Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
- Address correspondence to: Timothy W. Lyons, Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA
| | - Charles W. Diamond
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Noah J. Planavsky
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Christopher T. Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chao Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
33
|
Krissansen-Totton J, Kipp MA, Catling DC. Carbon cycle inverse modeling suggests large changes in fractional organic burial are consistent with the carbon isotope record and may have contributed to the rise of oxygen. GEOBIOLOGY 2021; 19:342-363. [PMID: 33764615 PMCID: PMC8359855 DOI: 10.1111/gbi.12440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/08/2021] [Accepted: 03/09/2021] [Indexed: 05/23/2023]
Abstract
Abundant geologic evidence shows that atmospheric oxygen levels were negligible until the Great Oxidation Event (GOE) at 2.4-2.1 Ga. The burial of organic matter is balanced by the release of oxygen, and if the release rate exceeds efficient oxygen sinks, atmospheric oxygen can accumulate until limited by oxidative weathering. The organic burial rate relative to the total carbon burial rate can be inferred from the carbon isotope record in sedimentary carbonates and organic matter, which provides a proxy for the oxygen source flux through time. Because there are no large secular trends in the carbon isotope record over time, it is commonly assumed that the oxygen source flux changed only modestly. Therefore, declines in oxygen sinks have been used to explain the GOE. However, the average isotopic value of carbon fluxes into the atmosphere-ocean system can evolve due to changing proportions of weathering and outgassing inputs. If so, large secular changes in organic burial would be possible despite unchanging carbon isotope values in sedimentary rocks. Here, we present an inverse analysis using a self-consistent carbon cycle model to determine the maximum change in organic burial since ~4 Ga allowed by the carbon isotope record and other geological proxies. We find that fractional organic burial may have increased by 2-5 times since the Archean. This happens because O2 -dependent continental weathering of 13 C-depleted organics changes carbon isotope inputs to the atmosphere-ocean system. This increase in relative organic burial is consistent with an anoxic-to-oxic atmospheric transition around 2.4 Ga without declining oxygen sinks, although these likely contributed. Moreover, our inverse analysis suggests that the Archean absolute organic burial flux was comparable to modern, implying high organic burial efficiency and ruling out very low Archean primary productivity.
Collapse
Affiliation(s)
- Joshua Krissansen-Totton
- Department of Earth and Space Sciences/Astrobiology Program, University of Washington, Seattle, WA, USA
- Virtual Planetary Laboratory, NASA Nexus for Exoplanet System Science, Seattle, WA, USA
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA, USA
| | - Michael A Kipp
- Department of Earth and Space Sciences/Astrobiology Program, University of Washington, Seattle, WA, USA
- Virtual Planetary Laboratory, NASA Nexus for Exoplanet System Science, Seattle, WA, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - David C Catling
- Department of Earth and Space Sciences/Astrobiology Program, University of Washington, Seattle, WA, USA
- Virtual Planetary Laboratory, NASA Nexus for Exoplanet System Science, Seattle, WA, USA
| |
Collapse
|
34
|
Pates S, Daley AC, Legg DA, Rahman IA. Vertically migrating Isoxys and the early Cambrian biological pump. Proc Biol Sci 2021; 288:20210464. [PMID: 34157876 PMCID: PMC8220267 DOI: 10.1098/rspb.2021.0464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The biological pump is crucial for transporting nutrients fixed by surface-dwelling primary producers to demersal animal communities. Indeed, the establishment of an efficient biological pump was likely a key factor enabling the diversification of animals over 500 Myr ago during the Cambrian explosion. The modern biological pump operates through two main vectors: the passive sinking of aggregates of organic matter, and the active vertical migration of animals. The coevolution of eukaryotes and sinking aggregates is well understood for the Proterozoic and Cambrian; however, little attention has been paid to the establishment of the vertical migration of animals. Here we investigate the morphological variation and hydrodynamic performance of the Cambrian euarthropod Isoxys. We combine elliptical Fourier analysis of carapace shape with computational fluid dynamics simulations to demonstrate that Isoxys species likely occupied a variety of niches in Cambrian oceans, including vertical migrants, providing the first quantitative evidence that some Cambrian animals were adapted for vertical movement in the water column. Vertical migration was one of several early Cambrian metazoan innovations that led to the biological pump taking on a modern-style architecture over 500 Myr ago.
Collapse
Affiliation(s)
- Stephen Pates
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - David A Legg
- Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Imran A Rahman
- Oxford University Museum of Natural History, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Bhattacharyya K, McLean DL, MacIver MA. Intersection of motor volumes predicts the outcome of ambush predation of larval zebrafish. J Exp Biol 2021; 224:jeb235481. [PMID: 33649181 PMCID: PMC7938803 DOI: 10.1242/jeb.235481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022]
Abstract
Escape maneuvers are key determinants of animal survival and are under intense selection pressure. A number of escape maneuver parameters contribute to survival, including response latency, escape speed and direction. However, the relative importance of these parameters is context dependent, suggesting that interactions between parameters and predatory context determine the likelihood of escape success. To better understand how escape maneuver parameters interact and contribute to survival, we analyzed the responses of larval zebrafish (Danio rerio) to the attacks of dragonfly nymphs (Sympetrum vicinum). We found that no single parameter explains the outcome. Instead, the relative intersection of the swept volume of the nymph's grasping organs with the volume containing all possible escape trajectories of the fish is the strongest predictor of escape success. In cases where the prey's motor volume exceeds that of the predator, the prey survives. By analyzing the intersection of these volumes, we compute the survival benefit of recruiting the Mauthner cell, a neuron in anamniotes devoted to producing escapes. We discuss how the intersection of motor volume approach provides a framework that unifies the influence of many escape maneuver parameters on the likelihood of survival.
Collapse
Affiliation(s)
- Kiran Bhattacharyya
- Department of Biomedical Engineering, Northwestern University, Evaxnston, IL 60201, USA
| | - David L McLean
- Department of Neurobiology, Northwestern University, Evanston, IL 60201, USA
| | - Malcolm A MacIver
- Department of Biomedical Engineering, Northwestern University, Evaxnston, IL 60201, USA
- Department of Neurobiology, Northwestern University, Evanston, IL 60201, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60201, USA
| |
Collapse
|
36
|
Ros-Rocher N, Pérez-Posada A, Leger MM, Ruiz-Trillo I. The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition. Open Biol 2021; 11:200359. [PMID: 33622103 PMCID: PMC8061703 DOI: 10.1098/rsob.200359] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
How animals evolved from a single-celled ancestor, transitioning from a unicellular lifestyle to a coordinated multicellular entity, remains a fascinating question. Key events in this transition involved the emergence of processes related to cell adhesion, cell–cell communication and gene regulation. To understand how these capacities evolved, we need to reconstruct the features of both the last common multicellular ancestor of animals and the last unicellular ancestor of animals. In this review, we summarize recent advances in the characterization of these ancestors, inferred by comparative genomic analyses between the earliest branching animals and those radiating later, and between animals and their closest unicellular relatives. We also provide an updated hypothesis regarding the transition to animal multicellularity, which was likely gradual and involved the use of gene regulatory mechanisms in the emergence of early developmental and morphogenetic plans. Finally, we discuss some new avenues of research that will complement these studies in the coming years.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Alberto Pérez-Posada
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain.,Centro Andaluz de Biología del Desarrollo (CSIC-Universidad Pablo de Olavide), Carretera de Utrera Km 1, 41013 Sevilla, Andalusia, Spain
| | - Michelle M Leger
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain.,ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
37
|
Abstract
Although calcareous anatomical structures have evolved in diverse animal groups, such structures have been unknown in insects. Here, we report the discovery of high-magnesium calcite [CaMg(CO3)2] armor overlaying the exoskeletons of major workers of the leaf-cutter ant Acromyrmex echinatior. Live-rearing and in vitro synthesis experiments indicate that the biomineral layer accumulates rapidly as ant workers mature, that the layer is continuously distributed, covering nearly the entire integument, and that the ant epicuticle catalyzes biomineral nucleation and growth. In situ nanoindentation demonstrates that the biomineral layer significantly hardens the exoskeleton. Increased survival of ant workers with biomineralized exoskeletons during aggressive encounters with other ants and reduced infection by entomopathogenic fungi demonstrate the protective role of the biomineral layer. The discovery of biogenic high-magnesium calcite in the relatively well-studied leaf-cutting ants suggests that calcareous biominerals enriched in magnesium may be more common in metazoans than previously recognized. Biomineral armour is known in a number of diverse creatures but has not previously been observed in insects. Here, the authors report on the discovery and characterization of high-magnesium calcite armour which overlays the exoskeletons of leaf-cutter ants.
Collapse
|
38
|
|
39
|
The struggle to equilibrate outer and inner milieus: Renal evolution revisited. Ann Anat 2020; 233:151610. [PMID: 33065247 DOI: 10.1016/j.aanat.2020.151610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022]
Abstract
The journey of life, from primordial protoplasm to a complex vertebrate form, is a tale of survival against incessant alterations in climate, surface topography, food chain, and chemistry of the external environment. Kidneys present with an ensemble embodiment of the adaptations devised by diverse life-forms to cope with such challenges and maintain a chemical equilibrium of water and solutes, both in and outside the body. This minireview revisits renal evolution utilizing the classic: From Fish to Philosopher; the story of our internal environment, by Prof. Homer W. Smith (1895-1962) as a template. Prof. Smith's views exemplified the invention of glomeruli, or its abolishment, as a mechanism to filter water. Moreover, with the need to preserve water, as in reptiles, the loop of Henle was introduced to concentrate urine. When compared to smaller mammals, the larger ones, albeit having loops of Henle of similar lengths, demonstrated a distinct packing of the nephrons in kidneys. Moreover, the renal portal system degenerated in mammals, while still present in other vertebrates. This account will present with a critique of the current concepts of renal evolution while examining how various other factors, including the ones that we know more about now, such as genetic factors, synchronize to achieve renal development. Finally, it will try to assess the validity of ideas laid by Prof. Smith with the knowledge that we possess now, and understand the complex architecture that evolution has imprinted on the kidneys during its struggle to survive over epochs.
Collapse
|
40
|
Abstract
Phagocytosis, or 'cell eating', is a eukaryote-specific process where particulate matter is engulfed via invaginations of the plasma membrane. The origin of phagocytosis has been central to discussions on eukaryogenesis for decades-, where it is argued as being either a prerequisite for, or consequence of, the acquisition of the ancestral mitochondrion. Recently, genomic and cytological evidence has increasingly supported the view that the pre-mitochondrial host cell-a bona fide archaeon branching within the 'Asgard' archaea-was incapable of phagocytosis and used alternative mechanisms to incorporate the alphaproteobacterial ancestor of mitochondria. Indeed, the diversity and variability of proteins associated with phagosomes across the eukaryotic tree suggest that phagocytosis, as seen in a variety of extant eukaryotes, may have evolved independently several times within the eukaryotic crown-group. Since phagocytosis is critical to the functioning of modern marine food webs (without it, there would be no microbial loop or animal life), multiple late origins of phagocytosis could help explain why many of the ecological and evolutionary innovations of the Neoproterozoic Era (e.g. the advent of eukaryotic biomineralization, the 'Rise of Algae' and the origin of animals) happened when they did.
Collapse
Affiliation(s)
- Daniel B. Mills
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
41
|
Wood R, Donoghue PCJ, Lenton TM, Liu AG, Poulton SW. The origin and rise of complex life: progress requires interdisciplinary integration and hypothesis testing. Interface Focus 2020; 10:20200024. [PMCID: PMC7333910 DOI: 10.1098/rsfs.2020.0024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 01/11/2025] Open
Abstract
Understanding of the triggers and timing of the rise of complex life ca 2100 to 720 million years ago has expanded dramatically in recent years. This theme issue brings together diverse and novel geochemical and palaeontological data presented as part of the Royal Society ‘The origin and rise of complex life: integrating models , geochemical and palaeontological data ’ discussion meeting held in September 2019. The individual papers offer prescient insights from multiple disciplines. Here we summarize their contribution towards the goal of the meeting; to create testable hypotheses for the differing roles of changing climate, oceanic redox, nutrient availability, and ecosystem feedbacks across this profound, but enigmatic, transitional period.
Collapse
Affiliation(s)
- Rachel Wood
- School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, UK
| | | | | | - Alexander G. Liu
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Simon W. Poulton
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
42
|
Lenton TM. On the use of models in understanding the rise of complex life. Interface Focus 2020; 10:20200018. [PMID: 32642056 PMCID: PMC7333900 DOI: 10.1098/rsfs.2020.0018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 11/12/2022] Open
Abstract
Recently, several seemingly irreconcilably different models have been proposed for relationships between Earth system processes and the rise of complex life. These models provide very different scenarios of Proterozoic atmospheric oxygen and ocean nutrient levels, whether they constrained complex life, and of how the rise of complex life affected biogeochemical conditions. For non-modellers, it can be hard to evaluate which-if any-of the models and their results have more credence-hence this article. I briefly review relevant hypotheses, how models are being used to incarnate and sometimes test those hypotheses, and key principles of biogeochemical cycling models should embody. Then I critically review the use of biogeochemical models in: inferring key variables from proxies; reconstructing ancient biogeochemical cycling; and examining how complex life affected biogeochemical cycling. Problems are found in published model results purporting to demonstrate long-term stable states of very low Proterozoic atmospheric pO2 and ocean P levels. I explain what they stem from and highlight key empirical uncertainties that need to be resolved. Then I suggest how models and data can be better combined to advance our scientific understanding of the relationship between Earth system processes and the rise of complex life.
Collapse
|
43
|
Budd GE, Mann RP. Survival and selection biases in early animal evolution and a source of systematic overestimation in molecular clocks. Interface Focus 2020; 10:20190110. [PMID: 32637066 PMCID: PMC7333906 DOI: 10.1098/rsfs.2019.0110] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Important evolutionary events such as the Cambrian Explosion have inspired many attempts at explanation: why do they happen when they do? What shapes them, and why do they eventually come to an end? However, much less attention has been paid to the idea of a 'null hypothesis'-that certain features of such diversifications arise simply through their statistical structure. Such statistical features also appear to influence our perception of the timing of these events. Here, we show in particular that study of unusually large clades leads to systematic overestimates of clade ages from some types of molecular clocks, and that the size of this effect may be enough to account for the puzzling mismatches seen between these molecular clocks and the fossil record. Our analysis of the fossil record of the late Ediacaran to Cambrian suggests that it is likely to be recording a true evolutionary radiation of the bilaterians at this time, and that explanations involving various sorts of cryptic origins for the bilaterians do not seem to be necessary.
Collapse
Affiliation(s)
- Graham E. Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala 752 36, Sweden
| | - Richard P. Mann
- Department of Statistics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
- The Alan Turing Institute, London NW1 2DB, UK
| |
Collapse
|
44
|
Tostevin R, Mills BJW. Reconciling proxy records and models of Earth's oxygenation during the Neoproterozoic and Palaeozoic. Interface Focus 2020; 10:20190137. [PMID: 32642053 PMCID: PMC7333907 DOI: 10.1098/rsfs.2019.0137] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 11/12/2022] Open
Abstract
A hypothesized rise in oxygen levels in the Neoproterozoic, dubbed the Neoproterozoic Oxygenation Event, has been repeatedly linked to the origin and rise of animal life. However, a new body of work has emerged over the past decade that questions this narrative. We explore available proxy records of atmospheric and marine oxygenation and, considering the unique systematics of each geochemical system, attempt to reconcile the data. We also present new results from a comprehensive COPSE biogeochemical model that combines several recent additions, to create a continuous model record from 850 to 250 Ma. We conclude that oxygen levels were intermediate across the Ediacaran and early Palaeozoic, and highly dynamic. Stable, modern-like conditions were not reached until the Late Palaeozoic. We therefore propose that the terms Neoproterozoic Oxygenation Window and Palaeozoic Oxygenation Event are more appropriate descriptors of the rise of oxygen in Earth's atmosphere and oceans.
Collapse
Affiliation(s)
- Rosalie Tostevin
- Department of Geological Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | | |
Collapse
|
45
|
Mitchell EG, Bobkov N, Bykova N, Dhungana A, Kolesnikov AV, Hogarth IRP, Liu AG, Mustill TMR, Sozonov N, Rogov VI, Xiao S, Grazhdankin DV. The influence of environmental setting on the community ecology of Ediacaran organisms. Interface Focus 2020; 10:20190109. [PMID: 32642052 DOI: 10.1098/rsfs.2019.0109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 11/12/2022] Open
Abstract
The broad-scale environment plays a substantial role in shaping modern marine ecosystems, but the degree to which palaeocommunities were influenced by their environment is unclear. To investigate how broad-scale environment influenced the community ecology of early animal ecosystems, we employed spatial point process analyses (SPPA) to examine the community structure of seven late Ediacaran (558-550 Ma) bedding-plane assemblages drawn from a range of environmental settings and global localities. The studied palaeocommunities exhibit marked differences in the response of their component taxa to sub-metre-scale habitat heterogeneities on the seafloor. Shallow-marine (nearshore) palaeocommunities were heavily influenced by local habitat heterogeneities, in contrast to their deeper-water counterparts. The local patchiness within shallow-water communities may have been further accentuated by the presence of grazers and detritivores, whose behaviours potentially initiated a propagation of increasing habitat heterogeneity of benthic communities from shallow to deep-marine depositional environments. Higher species richness in shallow-water Ediacaran assemblages compared to deep-water counterparts across the studied time-interval could have been driven by this environmental patchiness, because habitat heterogeneities increase species richness in modern marine environments. Our results provide quantitative support for the 'Savannah' hypothesis for early animal diversification-whereby Ediacaran diversification was driven by patchiness in the local benthic environment.
Collapse
Affiliation(s)
- Emily G Mitchell
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Nikolai Bobkov
- Trofimuk Institute of Petroleum Geology and Geophysics, 3, Ac. Koptyuga ave., Novosibirsk 630090, Russian Federation.,Novosibirsk State University, Novosibirsk, Novosibirsk Oblast 630090, Russian Federation
| | - Natalia Bykova
- Trofimuk Institute of Petroleum Geology and Geophysics, 3, Ac. Koptyuga ave., Novosibirsk 630090, Russian Federation.,Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Alavya Dhungana
- Department of Earth Sciences, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Anton V Kolesnikov
- Trofimuk Institute of Petroleum Geology and Geophysics, 3, Ac. Koptyuga ave., Novosibirsk 630090, Russian Federation.,Geological Institute, Russian Academy of Sciences, Pygevsky 7, Moscow 119017, Russia.,Faculty of Geography, Moscow State Pedagogical University, Kibalchicha str. 16, Moscow 129626, Russia
| | - Ian R P Hogarth
- Department of Chemical Engineering, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Alexander G Liu
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Tom M R Mustill
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Nikita Sozonov
- Trofimuk Institute of Petroleum Geology and Geophysics, 3, Ac. Koptyuga ave., Novosibirsk 630090, Russian Federation.,Novosibirsk State University, Novosibirsk, Novosibirsk Oblast 630090, Russian Federation
| | - Vladimir I Rogov
- Trofimuk Institute of Petroleum Geology and Geophysics, 3, Ac. Koptyuga ave., Novosibirsk 630090, Russian Federation
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Dmitriy V Grazhdankin
- Trofimuk Institute of Petroleum Geology and Geophysics, 3, Ac. Koptyuga ave., Novosibirsk 630090, Russian Federation.,Novosibirsk State University, Novosibirsk, Novosibirsk Oblast 630090, Russian Federation
| |
Collapse
|
46
|
Mángano MG, Buatois LA. The rise and early evolution of animals: where do we stand from a trace-fossil perspective? Interface Focus 2020; 10:20190103. [PMID: 32642049 DOI: 10.1098/rsfs.2019.0103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 01/10/2023] Open
Abstract
The trace-fossil record provides a wealth of information to track the rise and early evolution of animals. It comprises the activity of both hard- and soft-bodied organisms, is continuous through the Ediacaran (635-539 Ma)- Cambrian (539-485 Ma) transition, yields insights into animal behaviour and their role as ecosystem engineers, and allows for a more refined characterization of palaeoenvironmental context. In order to unravel macroevolutionary signals from the trace-fossil record, a variety of approaches is available, including not only estimation of degree of bioturbation, but also analysis of ichnodiversity and ichnodisparity trajectories, and evaluation of the occupation of infaunal ecospace and styles of ecosystem engineering. Analysis of the trace-fossil record demonstrates the presence of motile benthic bilaterians in the Ediacaran, mostly feeding from biofilms. Although Ediacaran trace fossils are simple and emplaced at or immediately below the sediment surface, an increase in ichnofossil complexity, predation pressure, sediment disturbance and penetration depth is apparent during the terminal Ediacaran. Regardless of this increase, a dramatic rise in trace fossil diversity and disparity took place during the earliest Cambrian, underscoring that the novelty of the Fortunian (539-529 Ma) cannot be underestimated. The Fortunian still shows the persistence of an Ediacaran-style matground ecology, but is fundamentally characterized by the appearance of new trace-fossil architectural plans reflecting novel ways of interacting with the substrate. The appearance of Phanerozoic-style benthic ecosystems attests to an increased length and connectivity of the food web and improved efficiency in organic carbon transfer and nutrient recycling. A profound reorganization of the infaunal ecospace is recorded in both high-energy sand-dominated nearshore areas and low-energy mud-dominated offshore environments, during the early Cambrian, starting approximately during Cambrian Age 2 (529-521 Ma), but continuing during the rest of the early Cambrian. A model comprising four evolutionary phases is proposed to synthetize information from the Ediacaran-Cambrian trace-fossil record. The use of a rich ichnological toolbox; critical, systematic and comprehensive evaluation of the Ediacaran-Cambrian trace-fossil record; and high-resolution integration of the ichnological dataset and sedimentological information show that the advent of biogenic mixing was an important factor in fully marine environments at the dawn of the Phanerozoic.
Collapse
Affiliation(s)
- M Gabriela Mángano
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan, Canada S7N 5E2
| | - Luis A Buatois
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan, Canada S7N 5E2
| |
Collapse
|
47
|
Coatham SJ, Vinther J, Rayfield EJ, Klug C. Was the Devonian placoderm Titanichthys a suspension feeder? ROYAL SOCIETY OPEN SCIENCE 2020; 7:200272. [PMID: 32537223 PMCID: PMC7277245 DOI: 10.1098/rsos.200272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/23/2020] [Indexed: 05/08/2023]
Abstract
Large nektonic suspension feeders have evolved multiple times. The apparent trend among apex predators for some evolving into feeding on small zooplankton is of interest for understanding the associated shifts in anatomy and behaviour, while the spatial and temporal distribution gives clues to an inherent relationship with ocean primary productivity and how past and future perturbations to these may impact on the different tiers of the food web. The evolution of large nektonic suspension feeders-'gentle giants'-occurred four times among chondrichthyan fishes (e.g. whale sharks, basking sharks and manta rays), as well as in baleen whales (mysticetes), the Mesozoic pachycormid fishes and at least twice in radiodontan stem group arthropods (Anomalocaridids) during the Cambrian explosion. The Late Devonian placoderm Titanichthys has tentatively been considered to have been a megaplanktivore, primarily due to its gigantic size and narrow, edentulous jaws while no suspension-feeding apparatus have ever been reported. Here, the potential for microphagy and other feeding behaviours in Titanichthys is assessed via a comparative study of jaw mechanics in Titanichthys and other placoderms with presumably differing feeding habits (macrophagy and durophagy). Finite-element models of the lower jaws of Titanichthys termieri in comparison to Dunkleosteus terrelli and Tafilalichthys lavocati reveal considerably less resistance to von Mises stress in this taxon. Comparisons with a selection of large-bodied extant taxa of similar ecological diversity reveal similar disparities in jaw stress resistance. Our results, therefore, conform to the hypothesis that Titanichthys was a suspension feeder with jaws ill-suited for biting and crushing but well suited for gaping ram feeding.
Collapse
Affiliation(s)
- Samuel J. Coatham
- Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, UK
- Author for correspondence: Samuel J. Coatham e-mail:
| | - Jakob Vinther
- Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, UK
| | - Emily J. Rayfield
- Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, UK
| | - Christian Klug
- Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006Zürich, Switzerland
| |
Collapse
|
48
|
Cole DB, Mills DB, Erwin DH, Sperling EA, Porter SM, Reinhard CT, Planavsky NJ. On the co-evolution of surface oxygen levels and animals. GEOBIOLOGY 2020; 18:260-281. [PMID: 32175670 DOI: 10.1111/gbi.12382] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/04/2020] [Accepted: 01/22/2020] [Indexed: 05/22/2023]
Abstract
Few topics in geobiology have been as extensively debated as the role of Earth's oxygenation in controlling when and why animals emerged and diversified. All currently described animals require oxygen for at least a portion of their life cycle. Therefore, the transition to an oxygenated planet was a prerequisite for the emergence of animals. Yet, our understanding of Earth's oxygenation and the environmental requirements of animal habitability and ecological success is currently limited; estimates for the timing of the appearance of environments sufficiently oxygenated to support ecologically stable populations of animals span a wide range, from billions of years to only a few million years before animals appear in the fossil record. In this light, the extent to which oxygen played an important role in controlling when animals appeared remains a topic of debate. When animals originated and when they diversified are separate questions, meaning either one or both of these phenomena could have been decoupled from oxygenation. Here, we present views from across this interpretive spectrum-in a point-counterpoint format-regarding crucial aspects of the potential links between animals and surface oxygen levels. We highlight areas where the standard discourse on this topic requires a change of course and note that several traditional arguments in this "life versus environment" debate are poorly founded. We also identify a clear need for basic research across a range of fields to disentangle the relationships between oxygen availability and emergence and diversification of animal life.
Collapse
Affiliation(s)
- Devon B Cole
- School of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia
| | - Daniel B Mills
- Department of Geological Sciences, Stanford University, Stanford, California
| | - Douglas H Erwin
- Department of Paleobiology, National Museum of Natural History, Washington, District of Columbia
- Santa Fe Institute, Santa Fe, New Mexico
| | - Erik A Sperling
- Department of Geological Sciences, Stanford University, Stanford, California
| | - Susannah M Porter
- Department of Earth Science, University of California Santa Barbara, Santa Barbara, California
| | - Christopher T Reinhard
- School of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia
| | - Noah J Planavsky
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut
| |
Collapse
|
49
|
Broman E, Bonaglia S, Holovachov O, Marzocchi U, Hall POJ, Nascimento FJA. Uncovering diversity and metabolic spectrum of animals in dead zone sediments. Commun Biol 2020; 3:106. [PMID: 32144383 PMCID: PMC7060179 DOI: 10.1038/s42003-020-0822-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Ocean deoxygenation driven by global warming and eutrophication is a primary concern for marine life. Resistant animals may be present in dead zone sediments, however there is lack of information on their diversity and metabolism. Here we combined geochemistry, microscopy, and RNA-seq for estimating taxonomy and functionality of micrometazoans along an oxygen gradient in the largest dead zone in the world. Nematodes are metabolically active at oxygen concentrations below 1.8 µmol L-1, and their diversity and community structure are different between low oxygen areas. This is likely due to toxic hydrogen sulfide and its potential to be oxidized by oxygen or nitrate. Zooplankton resting stages dominate the metazoan community, and these populations possibly use cytochrome c oxidase as an oxygen sensor to exit dormancy. Our study sheds light on mechanisms of animal adaptation to extreme environments. These biological resources can be essential for recolonization of dead zones when oxygen conditions improve.
Collapse
Affiliation(s)
- Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden.
- Baltic Sea Centre, Stockholm University, Stockholm, 106 91, Sweden.
| | - Stefano Bonaglia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden.
- Nordcee, Department of Biology, University of Southern Denmark, Odense, 5230, Denmark.
| | - Oleksandr Holovachov
- Department of Zoology, Swedish Museum of Natural History, Stockholm, 10405, Sweden
| | - Ugo Marzocchi
- Center for Electromicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Per O J Hall
- Department of Marine Sciences, University of Gothenburg, Box 461, Gothenburg, 40530, Sweden
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, 106 91, Sweden
| |
Collapse
|
50
|
Finding relationships among biological entities. LOGIC AND CRITICAL THINKING IN THE BIOMEDICAL SCIENCES 2020. [PMCID: PMC7499094 DOI: 10.1016/b978-0-12-821364-3.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Confusion over the concepts of “relationships” and “similarities” lies at the heart of many battles over the direction and intent of research projects. Here is a short story that demonstrates the difference between the two concepts: You look up at the clouds, and you begin to see the shape of a lion. The cloud has a tail, like a lion’s tale, and a fluffy head, like a lion’s mane. With a little imagination the mouth of the lion seems to roar down from the sky. You have succeeded in finding similarities between the cloud and a lion. If you look at a cloud and you imagine a tea kettle producing a head of steam and you recognize that the physical forces that create a cloud and the physical forces that produced steam from a heated kettle are the same, then you have found a relationship. Most popular classification algorithms operate by grouping together data objects that have similar properties or values. In so doing, they may miss finding the true relationships among objects. Traditionally, relationships among data objects are discovered by an intellectual process. In this chapter, we will discuss the scientific gains that come when we classify biological entities by relationships, not by their similarities.
Collapse
|