1
|
Suzuki Y, Yamaguchi K, Hardell KNL, Ota K, Kamikado T, Kawamura Y, Buffenstein R, Oka K, Miura K. Establishment of primary and immortalized fibroblasts reveals resistance to cytotoxic agents and loss of necroptosis-inducing ability in long-lived Damaraland mole-rats. GeroScience 2025; 47:1381-1396. [PMID: 39623066 PMCID: PMC11872962 DOI: 10.1007/s11357-024-01420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/27/2024] [Indexed: 03/04/2025] Open
Abstract
The Damaraland mole-rat (DMR; Fukomys damarensis) is a long-lived (~ 20 years) Bathyergid rodent that diverged 26 million years ago from its close relative, the naked mole-rat (NMR). While the properties of NMR cultured fibroblasts have been extensively studied and have revealed several unusual features of this cancer-resistant, long-lived species, comparative DMR studies are extremely limited. We optimized conditions for successfully culturing primary DMR skin fibroblasts and also established immortalized DMR cells using simian virus 40 early region expression. Like NMRs, DMR fibroblasts are more resistant than mice to various cytotoxins including heavy metals, DNA-damaging agents, oxidative stressors, and proteasome inhibitors. DMR genome sequencing analyses revealed the presence of premature stop codons in the master regulator genes of necroptosis, an inflammatory programmed cell death-receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL), although these mutations have different locations to those found in the NMR. DMR cells, like NMR cells, did not show significantly increased cell death in response to necroptosis induction. Our data suggest that both Bathyergid species require species-specific cell culture conditions for optimized growth, display similar resistance to cytotoxins, and show loss-of-function mutations abrogating the ability to employ necroptosis. These shared traits may contribute to their evolved adaptations to their subterranean lifestyle and prolonged longevity. These convergent insights and valuable resource may be pertinent to biomedical research.
Collapse
Affiliation(s)
- Yusuke Suzuki
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Kanta Yamaguchi
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | | | - Kurumi Ota
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Taira Kamikado
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Yoshimi Kawamura
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Rochelle Buffenstein
- Calico Life Sciences LLC, South San Francisco, USA
- Department of Biological Sciences, University of Illinois, Chicago, USA
| | - Kaori Oka
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan.
| | - Kyoko Miura
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan.
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
2
|
Taheri F, Hou C. Life History Differences Between Lepidoptera Larvae and Blattodea Nymphs Lead to Different Energy Allocation Strategies and Cellular Qualities. INSECTS 2024; 15:991. [PMID: 39769593 PMCID: PMC11676388 DOI: 10.3390/insects15120991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Different life histories result in different strategies to allocate energy in biosynthesis, including growth and reproduction, and somatic maintenance. One of the most notable life history differences between Lepidoptera and Blattodea species is that the former grow much faster than the latter, and during metamorphosis, a large amount of tissue in Lepidoptera species disintegrates. In this review, using Lepidoptera caterpillars and cockroach nymphs as examples, we show that, due to these differences in growth processes, cockroach nymphs spend 20 times more energy on synthesizing one unit of biomass (indirect cost of growth) than butterfly caterpillars. Because of the low indirect cost of growth in caterpillars, the fraction of metabolic energy allocated to growth is six times lower, and that for maintenance is seven times higher in caterpillars, compared to cockroach nymphs, despite caterpillar's higher growth rates. Moreover, due to the higher biosynthetic energy cost in cockroach nymphs, they have better cellular qualities, including higher proteasomal activity for protein quality control and higher resistance to oxidative stress. We also show that under food restriction conditions, the fraction of assimilated energy allocated to growth was reduced by 120% in cockroach nymphs, as they lost body weight under food restriction, while this reduction was only 14% in hornworms, and the body mass increased at a lower rate. Finaly, we discuss future research, especially the difference in adult lifespans associated with the energetic differences.
Collapse
Affiliation(s)
| | - Chen Hou
- Department of Biology, Missouri University of Science and Technology, Rolla, MO 65409, USA;
| |
Collapse
|
3
|
Wagner M, Zhu G, Khalid F, Phan T, Maity P, Lupu L, Agyeman-Duah E, Wiese S, Lindenberg KS, Schön M, Landwehrmeyer GB, Penzo M, Kochanek S, Scharffetter-Kochanek K, Mulaw M, Iben S. General loss of proteostasis links Huntington disease to Cockayne syndrome. Neurobiol Dis 2024; 201:106668. [PMID: 39284372 DOI: 10.1016/j.nbd.2024.106668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/13/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
Cockayne syndrome (CS) is an autosomal recessive disorder of developmental delay, multiple organ system degeneration and signs of premature ageing. We show here, using the RNA-seq data from two CS mutant cell lines, that the CS key transcriptional signature displays significant enrichment of neurodegeneration terms, including genes relevant in Huntington disease (HD). By using deep learning approaches and two published RNA-Seq datasets, the CS transcriptional signature highly significantly classified and predicted HD and control samples. Neurodegeneration is one hallmark of CS disease, and fibroblasts from CS patients with different causative mutations display disturbed ribosomal biogenesis and a consecutive loss of protein homeostasis - proteostasis. Encouraged by the transcriptomic data, we asked whether this pathomechanism is also active in HD. In different HD cell-culture models, we showed that mutant Huntingtin impacts ribosomal biogenesis and function. This led to an error-prone protein synthesis and, as shown in different mouse models and human tissue, whole proteome instability, and a general loss of proteostasis.
Collapse
Affiliation(s)
- Maximilian Wagner
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany; Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Gaojie Zhu
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Fatima Khalid
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Tamara Phan
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Ludmila Lupu
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Eric Agyeman-Duah
- Unit for Single-Cell Genomics, Medical Faculty, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Katrin S Lindenberg
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Michael Schön
- Department of Anatomy, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | | | - Marianna Penzo
- Department of Medical and Surgical Sciences and Center for Applied Biomedical Research (CRBA), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Stefan Kochanek
- Department of Gene Therapy, University of Ulm, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - Karin Scharffetter-Kochanek
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Medhanie Mulaw
- Unit for Single-Cell Genomics, Medical Faculty, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany.
| | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany.
| |
Collapse
|
4
|
Harper JM. Primary Cell Culture as a Model System for Evolutionary Molecular Physiology. Int J Mol Sci 2024; 25:7905. [PMID: 39063147 PMCID: PMC11277064 DOI: 10.3390/ijms25147905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Primary cell culture is a powerful model system to address fundamental questions about organismal physiology at the cellular level, especially for species that are difficult, or impossible, to study under natural or semi-natural conditions. Due to their ease of use, primary fibroblast cultures are the dominant model system, but studies using both somatic and germ cells are also common. Using these models, genome evolution and phylogenetic relationships, the molecular and biochemical basis of differential longevities among species, and the physiological consequences of life history evolution have been studied in depth. With the advent of new technologies such as gene editing and the generation of induced pluripotent stem cells (iPSC), the field of molecular evolutionary physiology will continue to expand using both descriptive and experimental approaches.
Collapse
Affiliation(s)
- James M Harper
- Department of Biological Sciences, Sam Houston State University, 1900 Avenue I, Huntsville, TX 77341, USA
| |
Collapse
|
5
|
Yusri K, Kumar S, Fong S, Gruber J, Sorrentino V. Towards Healthy Longevity: Comprehensive Insights from Molecular Targets and Biomarkers to Biological Clocks. Int J Mol Sci 2024; 25:6793. [PMID: 38928497 PMCID: PMC11203944 DOI: 10.3390/ijms25126793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Aging is a complex and time-dependent decline in physiological function that affects most organisms, leading to increased risk of age-related diseases. Investigating the molecular underpinnings of aging is crucial to identify geroprotectors, precisely quantify biological age, and propose healthy longevity approaches. This review explores pathways that are currently being investigated as intervention targets and aging biomarkers spanning molecular, cellular, and systemic dimensions. Interventions that target these hallmarks may ameliorate the aging process, with some progressing to clinical trials. Biomarkers of these hallmarks are used to estimate biological aging and risk of aging-associated disease. Utilizing aging biomarkers, biological aging clocks can be constructed that predict a state of abnormal aging, age-related diseases, and increased mortality. Biological age estimation can therefore provide the basis for a fine-grained risk stratification by predicting all-cause mortality well ahead of the onset of specific diseases, thus offering a window for intervention. Yet, despite technological advancements, challenges persist due to individual variability and the dynamic nature of these biomarkers. Addressing this requires longitudinal studies for robust biomarker identification. Overall, utilizing the hallmarks of aging to discover new drug targets and develop new biomarkers opens new frontiers in medicine. Prospects involve multi-omics integration, machine learning, and personalized approaches for targeted interventions, promising a healthier aging population.
Collapse
Affiliation(s)
- Khalishah Yusri
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sanjay Kumar
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sheng Fong
- Department of Geriatric Medicine, Singapore General Hospital, Singapore 169608, Singapore
- Clinical and Translational Sciences PhD Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Science Division, Yale-NUS College, Singapore 138527, Singapore
| | - Vincenzo Sorrentino
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Neuroscience Cellular & Molecular Mechanisms, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Hamazaki J, Murata S. Relationships between protein degradation, cellular senescence, and organismal aging. J Biochem 2024; 175:473-480. [PMID: 38348509 PMCID: PMC11058314 DOI: 10.1093/jb/mvae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 05/01/2024] Open
Abstract
Aging is a major risk factor for many diseases. Recent studies have shown that age-related disruption of proteostasis leads to the accumulation of abnormal proteins and that dysfunction of the two major intracellular proteolytic pathways, the ubiquitin-proteasome pathway, and the autophagy-lysosome pathway, is largely responsible for this process. Conversely, it has been shown that activation of these proteolytic pathways may contribute to lifespan extension and suppression of pathological conditions, making it a promising intervention for anti-aging. This review provides an overview of the important role of intracellular protein degradation in aging and summarizes how the disruption of proteostasis is involved in age-related diseases.
Collapse
Affiliation(s)
- Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 1130033, Japan
| |
Collapse
|
7
|
Yang W, Hu Y, Cui S. Fighting with Aging: The Secret for Keeping Health and Longevity of Naked Mole Rats. Aging Dis 2024; 16:AD.2024.0109. [PMID: 38300643 PMCID: PMC11745443 DOI: 10.14336/ad.2024.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Health and longevity are the dreams of mankind and the main field of the medical community. The naked mole rat (NMR) is a unique murine animal with extremely long lives (exceeding 38 years), revealing little signs of aging such as reproductive decline, neural degenerative diseases, and cancer. They provide us with valuable perspectives on preventing age-related diseases. This review systematically summarized the characters of different systems of naked mole rats in aging resistance, and furtherly exploited the mechanisms for aging resistance form genome, telomeres, protein recycling, metabolism, and oxidative stress attitudes. As a species with a high similarity with human beings, it cannot be ruled out that after reasonable validity, safety and ethical evaluation, the dominant genes of naked mole rats will be developed in medical transformation, to realize the dream of human health and longevity.
Collapse
Affiliation(s)
- Wenjing Yang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China.
| | - Yifan Hu
- Changhai Hospital, Naval Medical University, Shanghai, China
- No. 904 Hospital of the PLA Joint Logistics Support Force, Wuxi, China
| | - Shufang Cui
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China.
| |
Collapse
|
8
|
Ng D, Pawling J, Dennis JW. Gene purging and the evolution of Neoave metabolism and longevity. J Biol Chem 2023; 299:105409. [PMID: 37918802 PMCID: PMC10722388 DOI: 10.1016/j.jbc.2023.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023] Open
Abstract
Maintenance of the proteasome requires oxidative phosphorylation (ATP) and mitigation of oxidative damage, in an increasingly dysfunctional relationship with aging. SLC3A2 plays a role on both sides of this dichotomy as an adaptor to SLC7A5, a transporter of branched-chain amino acids (BCAA: Leu, Ile, Val), and to SLC7A11, a cystine importer supplying cysteine to the synthesis of the antioxidant glutathione. Endurance in mammalian muscle depends in part on oxidation of BCAA; however, elevated serum levels are associated with insulin resistance and shortened lifespans. Intriguingly, the evolution of modern birds (Neoaves) has entailed the purging of genes including SLC3A2, SLC7A5, -7, -8, -10, and SLC1A4, -5, largely removing BCAA exchangers and their interacting Na+/Gln symporters in pursuit of improved energetics. Additional gene purging included mitochondrial BCAA aminotransferase (BCAT2), pointing to reduced oxidation of BCAA and increased hepatic conversion to triglycerides and glucose. Fat deposits are anhydrous and highly reduced, maximizing the fuel/weight ratio for prolonged flight, but fat accumulation in muscle cells of aging humans contributes to inflammation and senescence. Duplications of the bidirectional α-ketoacid transporters SLC16A3, SLC16A7, the cystine transporters SLC7A9, SLC7A11, and N-glycan branching enzymes MGAT4B, MGAT4C in Neoaves suggests a shift to the transport of deaminated essential amino acid, and stronger mitigation of oxidative stress supported by the galectin lattice. We suggest that Alfred Lotka's theory of natural selection as a maximum power organizer (PNAS 8:151,1922) made an unusually large contribution to Neoave evolution. Further molecular analysis of Neoaves may reveal novel rewiring with applications for human health and longevity.
Collapse
Affiliation(s)
- Deanna Ng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Judy Pawling
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - James W Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto Ontario, Canada.
| |
Collapse
|
9
|
Jové M, Mota-Martorell N, Fernàndez-Bernal A, Portero-Otin M, Barja G, Pamplona R. Phenotypic molecular features of long-lived animal species. Free Radic Biol Med 2023; 208:728-747. [PMID: 37748717 DOI: 10.1016/j.freeradbiomed.2023.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
One of the challenges facing science/biology today is uncovering the molecular bases that support and determine animal and human longevity. Nature, in offering a diversity of animal species that differ in longevity by more than 5 orders of magnitude, is the best 'experimental laboratory' to achieve this aim. Mammals, in particular, can differ by more than 200-fold in longevity. For this reason, most of the available evidence on this topic derives from comparative physiology studies. But why can human beings, for instance, reach 120 years whereas rats only last at best 4 years? How does nature change the longevity of species? Longevity is a species-specific feature resulting from an evolutionary process. Long-lived animal species, including humans, show adaptations at all levels of biological organization, from metabolites to genome, supported by signaling and regulatory networks. The structural and functional features that define a long-lived species may suggest that longevity is a programmed biological property.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Anna Fernàndez-Bernal
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), E28040, Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain.
| |
Collapse
|
10
|
Gressler AE, Leng H, Zinecker H, Simon AK. Proteostasis in T cell aging. Semin Immunol 2023; 70:101838. [PMID: 37708826 PMCID: PMC10804938 DOI: 10.1016/j.smim.2023.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Aging leads to a decline in immune cell function, which leaves the organism vulnerable to infections and age-related multimorbidities. One major player of the adaptive immune response are T cells, and recent studies argue for a major role of disturbed proteostasis contributing to reduced function of these cells upon aging. Proteostasis refers to the state of a healthy, balanced proteome in the cell and is influenced by synthesis (translation), maintenance and quality control of proteins, as well as degradation of damaged or unwanted proteins by the proteasome, autophagy, lysosome and cytoplasmic enzymes. This review focuses on molecular processes impacting on proteostasis in T cells, and specifically functional or quantitative changes of each of these upon aging. Importantly, we describe the biological consequences of compromised proteostasis in T cells, which range from impaired T cell activation and function to enhancement of inflamm-aging by aged T cells. Finally, approaches to improve proteostasis and thus rejuvenate aged T cells through pharmacological or physical interventions are discussed.
Collapse
Affiliation(s)
- A Elisabeth Gressler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Houfu Leng
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Heidi Zinecker
- Ascenion GmbH, Am Zirkus 1, Bertold-Brecht-Platz 3, 10117 Berlin, Germany
| | - Anna Katharina Simon
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom.
| |
Collapse
|
11
|
Fuqua JD, Lawrence MM, Hettinger ZR, Borowik AK, Brecheen PL, Szczygiel MM, Abbott CB, Peelor FF, Confides AL, Kinter M, Bodine SC, Dupont‐Versteegden EE, Miller BF. Impaired proteostatic mechanisms other than decreased protein synthesis limit old skeletal muscle recovery after disuse atrophy. J Cachexia Sarcopenia Muscle 2023; 14:2076-2089. [PMID: 37448295 PMCID: PMC10570113 DOI: 10.1002/jcsm.13285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/10/2023] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Skeletal muscle mass and strength diminish during periods of disuse but recover upon return to weight bearing in healthy adults but are incomplete in old muscle. Efforts to improve muscle recovery in older individuals commonly aim at increasing myofibrillar protein synthesis via mammalian target of rapamycin (mTOR) stimulation despite evidence demonstrating that old muscle has chronically elevated levels of mammalian target of rapamycin complex 1 (mTORC1) activity. We hypothesized that protein synthesis is higher in old muscle than adult muscle, which contributes to a proteostatic stress that impairs recovery. METHODS We unloaded hindlimbs of adult (10-month) and old (28-month) F344BN rats for 14 days to induce atrophy, followed by reloading up to 60 days with deuterium oxide (D2 O) labelling to study muscle regrowth and proteostasis. RESULTS We found that old muscle has limited recovery of muscle mass during reloading despite having higher translational capacity and myofibrillar protein synthesis (0.029 k/day ± 0.002 vs. 0.039 k/day ± 0.002, P < 0.0001) than adult muscle. We showed that collagen protein synthesis was not different (0.005 k (1/day) ± 0.0005 vs. 0.004 k (1/day) ± 0.0005, P = 0.15) in old compared to adult, but old muscle had higher collagen concentration (4.5 μg/mg ± 1.2 vs. 9.8 μg/mg ± 0.96, P < 0.01), implying that collagen breakdown was slower in old muscle than adult muscle. This finding was supported by old muscle having more insoluble collagen (4.0 ± 1.1 vs. 9.2 ± 0.9, P < 0.01) and an accumulation of advanced glycation end products (1.0 ± 0.06 vs. 1.5 ± 0.08, P < 0.001) than adult muscle during reloading. Limited recovery of muscle mass during reloading is in part due to higher protein degradation (0.017 1/t ± 0.002 vs. 0.028 1/t ± 0.004, P < 0.05) and/or compromised proteostasis as evidenced by accumulation of ubiquitinated insoluble proteins (1.02 ± 0.06 vs. 1.22 ± 0.06, P < 0.05). Last, we showed that synthesis of individual proteins related to protein folding/refolding, protein degradation and neural-related biological processes was higher in old muscle during reloading than adult muscle. CONCLUSIONS Our data suggest that the failure of old muscle to recover after disuse is not due to limitations in the ability to synthesize myofibrillar proteins but because of other impaired proteostatic mechanisms (e.g., protein folding and degradation). These data provide novel information on individual proteins that accumulate in protein aggregates after disuse and certain biological processes such as protein folding and degradation that likely play a role in impaired recovery. Therefore, interventions to enhance regrowth of old muscle after disuse should be directed towards the identified impaired proteostatic mechanisms and not aimed at increasing protein synthesis.
Collapse
Affiliation(s)
- Jordan D. Fuqua
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Marcus M. Lawrence
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Kinesiology and Outdoor RecreationSouthern Utah UniversityCedar CityUTUSA
| | - Zachary R. Hettinger
- Department of Physical Therapy, College of Health SciencesUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | - Agnieszka K. Borowik
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Parker L. Brecheen
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Marcelina M. Szczygiel
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Claire B. Abbott
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Frederick F. Peelor
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Amy L. Confides
- Department of Physical Therapy, College of Health SciencesUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | - Michael Kinter
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Sue C. Bodine
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Internal MedicineUniversity of IowaIowa CityIAUSA
- Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIAUSA
- Iowa City Veterans Affairs Medical CenterIowa CityIAUSA
| | - Esther E. Dupont‐Versteegden
- Department of Physical Therapy, College of Health SciencesUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | - Benjamin F. Miller
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
- Oklahoma City Veterans Affairs Medical CenterOklahoma CityOKUSA
| |
Collapse
|
12
|
Liu W, Zhu P, Li M, Li Z, Yu Y, Liu G, Du J, Wang X, Yang J, Tian R, Seim I, Kaya A, Li M, Li M, Gladyshev VN, Zhou X. Large-scale across species transcriptomic analysis identifies genetic selection signatures associated with longevity in mammals. EMBO J 2023; 42:e112740. [PMID: 37427458 PMCID: PMC10476176 DOI: 10.15252/embj.2022112740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Lifespan varies significantly among mammals, with more than 100-fold difference between the shortest and longest living species. This natural difference may uncover the evolutionary forces and molecular features that define longevity. To understand the relationship between gene expression variation and longevity, we conducted a comparative transcriptomics analysis of liver, kidney, and brain tissues of 103 mammalian species. We found that few genes exhibit common expression patterns with longevity in the three organs analyzed. However, pathways related to translation fidelity, such as nonsense-mediated decay and eukaryotic translation elongation, correlated with longevity across mammals. Analyses of selection pressure found that selection intensity related to the direction of longevity-correlated genes is inconsistent across organs. Furthermore, expression of methionine restriction-related genes correlated with longevity and was under strong selection in long-lived mammals, suggesting that a common strategy is utilized by natural selection and artificial intervention to control lifespan. Our results indicate that lifespan regulation via gene expression is driven through polygenic and indirect natural selection.
Collapse
Affiliation(s)
- Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Zihao Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yang Yu
- School of Life SciencesUniversity of Science and Technology of ChinaAnhuiChina
| | - Gaoming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiao Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Jing Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ran Tian
- Integrative Biology Laboratory, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Inge Seim
- Integrative Biology Laboratory, College of Life SciencesNanjing Normal UniversityNanjingChina
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLDAustralia
| | - Alaattin Kaya
- Department of BiologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural UniversityChengduChina
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
13
|
Kawamura Y, Oka K, Semba T, Takamori M, Sugiura Y, Yamasaki R, Suzuki Y, Chujo T, Nagase M, Oiwa Y, Fujioka S, Homma S, Yamamura Y, Miyawaki S, Narita M, Fukuda T, Sakai Y, Ishimoto T, Tomizawa K, Suematsu M, Yamamoto T, Bono H, Okano H, Miura K. Cellular senescence induction leads to progressive cell death via the INK4a-RB pathway in naked mole-rats. EMBO J 2023; 42:e111133. [PMID: 37431790 PMCID: PMC10425838 DOI: 10.15252/embj.2022111133] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 07/12/2023] Open
Abstract
Naked mole-rats (NMRs) have exceptional longevity and are resistant to age-related physiological decline and diseases. Given the role of cellular senescence in aging, we postulated that NMRs possess unidentified species-specific mechanisms to prevent senescent cell accumulation. Here, we show that upon induction of cellular senescence, NMR fibroblasts underwent delayed and progressive cell death that required activation of the INK4a-retinoblastoma protein (RB) pathway (termed "INK4a-RB cell death"), a phenomenon not observed in mouse fibroblasts. Naked mole-rat fibroblasts uniquely accumulated serotonin and were inherently vulnerable to hydrogen peroxide (H2 O2 ). After activation of the INK4a-RB pathway, NMR fibroblasts increased monoamine oxidase levels, leading to serotonin oxidization and H2 O2 production, which resulted in increased intracellular oxidative damage and cell death activation. In the NMR lung, induction of cellular senescence caused delayed, progressive cell death mediated by monoamine oxidase activation, thereby preventing senescent cell accumulation, consistent with in vitro results. The present findings indicate that INK4a-RB cell death likely functions as a natural senolytic mechanism in NMRs, providing an evolutionary rationale for senescent cell removal as a strategy to resist aging.
Collapse
Affiliation(s)
- Yoshimi Kawamura
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Kaori Oka
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Takashi Semba
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| | - Mayuko Takamori
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Yuki Sugiura
- Department of BiochemistryKeio University School of MedicineTokyoJapan
| | - Riyo Yamasaki
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
| | - Yusuke Suzuki
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
| | - Takeshi Chujo
- Department of Molecular PhysiologyKumamoto UniversityKumamotoJapan
| | - Mari Nagase
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
| | - Yuki Oiwa
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
- Department of Chemical BiologyNational Center for Geriatrics and GerontologyObuJapan
| | - Shusuke Fujioka
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Sayuri Homma
- Department of PharmacologyHoshi University School of Pharmacy and Pharmaceutical SciencesTokyoJapan
| | - Yuki Yamamura
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
| | - Shingo Miyawaki
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
- Laboratory of Veterinary Surgery, Faculty of Applied Biological SciencesGifu UniversityGifuJapan
| | - Minoru Narita
- Department of PharmacologyHoshi University School of Pharmacy and Pharmaceutical SciencesTokyoJapan
- Division of Cancer PathophysiologyNational Cancer Center Research Institute (NCCRI)TokyoJapan
| | - Takaichi Fukuda
- Department of Anatomy and NeurobiologyKumamoto UniversityKumamotoJapan
| | - Yusuke Sakai
- Department of PathologyNational Institute of Infectious DiseasesTokyoJapan
| | - Takatsugu Ishimoto
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Kazuhito Tomizawa
- Department of Molecular PhysiologyKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy AgingKumamoto UniversityKumamotoJapan
| | - Makoto Suematsu
- Department of BiochemistryKeio University School of MedicineTokyoJapan
- WPI‐Bio2Q Research CenterCentral Institute for Experimental AnimalsKawasakiJapan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi), Kyoto UniversityKyotoJapan
- Medical‐risk Avoidance based on iPS Cells TeamRIKEN Center for Advanced Intelligence Project (AIP)KyotoJapan
| | - Hidemasa Bono
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
- Laboratory of BioDX, PtBio Collaborative Research Laboratory, Genome Editing Innovation CenterHiroshima UniversityHigashi‐HiroshimaJapan
| | - Hideyuki Okano
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Kyoko Miura
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
- Department of PhysiologyKeio University School of MedicineTokyoJapan
- Center for Metabolic Regulation of Healthy AgingKumamoto UniversityKumamotoJapan
| |
Collapse
|
14
|
Vila-Sanjurjo A, Mallo N, Atkins JF, Elson JL, Smith PM. Our current understanding of the toxicity of altered mito-ribosomal fidelity during mitochondrial protein synthesis: What can it tell us about human disease? Front Physiol 2023; 14:1082953. [PMID: 37457031 PMCID: PMC10349377 DOI: 10.3389/fphys.2023.1082953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/28/2023] [Indexed: 07/18/2023] Open
Abstract
Altered mito-ribosomal fidelity is an important and insufficiently understood causative agent of mitochondrial dysfunction. Its pathogenic effects are particularly well-known in the case of mitochondrially induced deafness, due to the existence of the, so called, ototoxic variants at positions 847C (m.1494C) and 908A (m.1555A) of 12S mitochondrial (mt-) rRNA. It was shown long ago that the deleterious effects of these variants could remain dormant until an external stimulus triggered their pathogenicity. Yet, the link from the fidelity defect at the mito-ribosomal level to its phenotypic manifestation remained obscure. Recent work with fidelity-impaired mito-ribosomes, carrying error-prone and hyper-accurate mutations in mito-ribosomal proteins, have started to reveal the complexities of the phenotypic manifestation of mito-ribosomal fidelity defects, leading to a new understanding of mtDNA disease. While much needs to be done to arrive to a clear picture of how defects at the level of mito-ribosomal translation eventually result in the complex patterns of disease observed in patients, the current evidence indicates that altered mito-ribosome function, even at very low levels, may become highly pathogenic. The aims of this review are three-fold. First, we compare the molecular details associated with mito-ribosomal fidelity to those of general ribosomal fidelity. Second, we gather information on the cellular and organismal phenotypes associated with defective translational fidelity in order to provide the necessary grounds for an understanding of the phenotypic manifestation of defective mito-ribosomal fidelity. Finally, the results of recent experiments directly tackling mito-ribosomal fidelity are reviewed and future paths of investigation are discussed.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Grupo GIBE, Departamento de Bioloxía e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Natalia Mallo
- Grupo GIBE, Departamento de Bioloxía e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - John F Atkins
- Schools of Biochemistry and Microbiology, University College Cork, Cork, Ireland
| | - Joanna L Elson
- The Bioscience Institute, Newcastle University, Newcastle uponTyne, United Kingdom
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Paul M Smith
- Department of Paediatrics, Raigmore Hospital, Inverness, Scotland, United Kingdom
| |
Collapse
|
15
|
Müller MBD, Kasturi P, Jayaraj GG, Hartl FU. Mechanisms of readthrough mitigation reveal principles of GCN1-mediated translational quality control. Cell 2023:S0092-8674(23)00587-1. [PMID: 37339632 PMCID: PMC10364623 DOI: 10.1016/j.cell.2023.05.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Readthrough into the 3' untranslated region (3' UTR) of the mRNA results in the production of aberrant proteins. Metazoans efficiently clear readthrough proteins, but the underlying mechanisms remain unknown. Here, we show in Caenorhabditis elegans and mammalian cells that readthrough proteins are targeted by a coupled, two-level quality control pathway involving the BAG6 chaperone complex and the ribosome-collision-sensing protein GCN1. Readthrough proteins with hydrophobic C-terminal extensions (CTEs) are recognized by SGTA-BAG6 and ubiquitylated by RNF126 for proteasomal degradation. Additionally, cotranslational mRNA decay initiated by GCN1 and CCR4/NOT limits the accumulation of readthrough products. Unexpectedly, selective ribosome profiling uncovered a general role of GCN1 in regulating translation dynamics when ribosomes collide at nonoptimal codons, enriched in 3' UTRs, transmembrane proteins, and collagens. GCN1 dysfunction increasingly perturbs these protein classes during aging, resulting in mRNA and proteome imbalance. Our results define GCN1 as a key factor acting during translation in maintaining protein homeostasis.
Collapse
Affiliation(s)
- Martin B D Müller
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Prasad Kasturi
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Gopal G Jayaraj
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
16
|
Khalid F, Phan T, Qiang M, Maity P, Lasser T, Wiese S, Penzo M, Alupei M, Orioli D, Scharffetter-Kochanek K, Iben S. TFIIH mutations can impact on translational fidelity of the ribosome. Hum Mol Genet 2023; 32:1102-1113. [PMID: 36308430 PMCID: PMC10026254 DOI: 10.1093/hmg/ddac268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/25/2022] [Indexed: 11/14/2022] Open
Abstract
TFIIH is a complex essential for transcription of protein-coding genes by RNA polymerase II, DNA repair of UV-lesions and transcription of rRNA by RNA polymerase I. Mutations in TFIIH cause the cancer prone DNA-repair disorder xeroderma pigmentosum (XP) and the developmental and premature aging disorders trichothiodystrophy (TTD) and Cockayne syndrome. A total of 50% of the TTD cases are caused by TFIIH mutations. Using TFIIH mutant patient cells from TTD and XP subjects we can show that the stress-sensitivity of the proteome is reduced in TTD, but not in XP. Using three different methods to investigate the accuracy of protein synthesis by the ribosome, we demonstrate that translational fidelity of the ribosomes of TTD, but not XP cells, is decreased. The process of ribosomal synthesis and maturation is affected in TTD cells and can lead to instable ribosomes. Isolated ribosomes from TTD patients show an elevated error rate when challenged with oxidized mRNA, explaining the oxidative hypersensitivity of TTD cells. Treatment of TTD cells with N-acetyl cysteine normalized the increased translational error-rate and restored translational fidelity. Here we describe a pathomechanism that might be relevant for our understanding of impaired development and aging-associated neurodegeneration.
Collapse
Affiliation(s)
- Fatima Khalid
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Tamara Phan
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mingyue Qiang
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Theresa Lasser
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Marianna Penzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - Marius Alupei
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Donata Orioli
- Institute of Molecular Genetics, Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | | | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
17
|
Brieño-Enríquez MA, Faykoo-Martinez M, Goben M, Grenier JK, McGrath A, Prado AM, Sinopoli J, Wagner K, Walsh PT, Lopa SH, Laird DJ, Cohen PE, Wilson MD, Holmes MM, Place NJ. Postnatal oogenesis leads to an exceptionally large ovarian reserve in naked mole-rats. Nat Commun 2023; 14:670. [PMID: 36810851 PMCID: PMC9944903 DOI: 10.1038/s41467-023-36284-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
In the long-lived naked mole-rat (NMR), the entire process of oogenesis occurs postnatally. Germ cell numbers increase significantly in NMRs between postnatal days 5 (P5) and P8, and germs cells positive for proliferation markers (Ki-67, pHH3) are present at least until P90. Using pluripotency markers (SOX2 and OCT4) and the primordial germ cell (PGC) marker BLIMP1, we show that PGCs persist up to P90 alongside germ cells in all stages of female differentiation and undergo mitosis both in vivo and in vitro. We identified VASA+ SOX2+ cells at 6 months and at 3-years in subordinate and reproductively activated females. Reproductive activation was associated with proliferation of VASA+ SOX2+ cells. Collectively, our results suggest that highly desynchronized germ cell development and the maintenance of a small population of PGCs that can expand upon reproductive activation are unique strategies that could help to maintain the NMR's ovarian reserve for its 30-year reproductive lifespan.
Collapse
Affiliation(s)
- Miguel Angel Brieño-Enríquez
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Mariela Faykoo-Martinez
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Mississauga, Mississauga, ON, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Meagan Goben
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer K Grenier
- RNA sequencing core and Center for Reproductive Genomics, College of Veterinary, Cornell University, Ithaca, NY, USA
| | - Ashley McGrath
- Department of Population Medicine & Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Alexandra M Prado
- Department of Population Medicine & Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Jacob Sinopoli
- Department of Population Medicine & Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Kate Wagner
- Department of Population Medicine & Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Patrick T Walsh
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samia H Lopa
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diana J Laird
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Paula E Cohen
- Center for Reproductive Genomics, Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Michael D Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Melissa M Holmes
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Mississauga, Mississauga, ON, Canada
| | - Ned J Place
- Department of Population Medicine & Diagnostic Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
18
|
Oka K, Yamakawa M, Kawamura Y, Kutsukake N, Miura K. The Naked Mole-Rat as a Model for Healthy Aging. Annu Rev Anim Biosci 2023; 11:207-226. [PMID: 36318672 DOI: 10.1146/annurev-animal-050322-074744] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Naked mole-rats (NMRs, Heterocephalus glaber) are the longest-lived rodents with a maximum life span exceeding 37 years. They exhibit a delayed aging phenotype and resistance to age-related functional decline/diseases. Specifically, they do not display increased mortality with age, maintain several physiological functions until nearly the end of their lifetime, and rarely develop cancer and Alzheimer's disease. NMRs live in a hypoxic environment in underground colonies in East Africa and are highly tolerant of hypoxia. These unique characteristics of NMRs have attracted considerable interest from zoological and biomedical researchers. This review summarizes previous studies of the ecology, hypoxia tolerance, longevity/delayed aging, and cancer resistance of NMRs and discusses possible mechanisms contributing to their healthy aging. In addition, we discuss current issues and future perspectives to fully elucidate the mechanisms underlying delayed aging and resistance to age-related diseases in NMRs.
Collapse
Affiliation(s)
- Kaori Oka
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; , ,
| | - Masanori Yamakawa
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Kanagawa, Japan; ,
| | - Yoshimi Kawamura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; , ,
| | - Nobuyuki Kutsukake
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Kanagawa, Japan; , .,Research Center for Integrative Evolutionary Science, Sokendai (The Graduate University for Advanced Studies), Kanagawa, Japan
| | - Kyoko Miura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; , , .,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
19
|
Frankowska N, Bryl E, Fulop T, Witkowski JM. Longevity, Centenarians and Modified Cellular Proteodynamics. Int J Mol Sci 2023; 24:ijms24032888. [PMID: 36769212 PMCID: PMC9918038 DOI: 10.3390/ijms24032888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
We have shown before that at least one intracellular proteolytic system seems to be at least as abundant in the peripheral blood lymphocytes of centenarians as in the same cells of young individuals (with the cells of the elderly population showing a significant dip compared to both young and centenarian cohorts). Despite scarce published data, in this review, we tried to answer the question how do different types of cells of longevous people-nonagenarians to (semi)supercentenarians-maintain the quality and quantity of their structural and functional proteins? Specifically, we asked if more robust proteodynamics participate in longevity. We hypothesized that at least some factors controlling the maintenance of cellular proteomes in centenarians will remain at the "young" level (just performing better than in the average elderly). In our quest, we considered multiple aspects of cellular protein maintenance (proteodynamics), including the quality of transcribed DNA, its epigenetic changes, fidelity and quantitative features of transcription of both mRNA and noncoding RNAs, the process of translation, posttranslational modifications leading to maturation and functionalization of nascent proteins, and, finally, multiple facets of the process of elimination of misfolded, aggregated, and otherwise dysfunctional proteins (autophagy). We also included the status of mitochondria, especially production of ATP necessary for protein synthesis and maintenance. We found that with the exception of the latter and of chaperone function, practically all of the considered aspects did show better performance in centenarians than in the average elderly, and most of them approached the levels/activities seen in the cells of young individuals.
Collapse
Affiliation(s)
- Natalia Frankowska
- Department of Physiopathology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Jacek M. Witkowski
- Department of Physiopathology, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-1510
| |
Collapse
|
20
|
Emmrich S, Trapp A, Tolibzoda Zakusilo F, Straight ME, Ying AK, Tyshkovskiy A, Mariotti M, Gray S, Zhang Z, Drage MG, Takasugi M, Klusmann J, Gladyshev VN, Seluanov A, Gorbunova V. Characterization of naked mole-rat hematopoiesis reveals unique stem and progenitor cell patterns and neotenic traits. EMBO J 2022; 41:e109694. [PMID: 35694726 PMCID: PMC9340489 DOI: 10.15252/embj.2021109694] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Naked mole rats (NMRs) are the longest-lived rodents yet their stem cell characteristics remain enigmatic. Here, we comprehensively mapped the NMR hematopoietic landscape and identified unique features likely contributing to longevity. Adult NMRs form red blood cells in spleen and marrow, which comprise a myeloid bias toward granulopoiesis together with decreased B-lymphopoiesis. Remarkably, youthful blood and marrow single-cell transcriptomes and cell compositions are largely maintained until at least middle age. Similar to primates, the primitive stem and progenitor cell (HSPC) compartment is marked by CD34 and THY1. Stem cell polarity is seen for Tubulin but not CDC42, and is not lost until 12 years of age. HSPC respiration rates are as low as in purified human stem cells, in concert with a strong expression signature for fatty acid metabolism. The pool of quiescent stem cells is higher than in mice, and the cell cycle of hematopoietic cells is prolonged. By characterizing the NMR hematopoietic landscape, we identified resilience phenotypes such as an increased quiescent HSPC compartment, absence of age-related decline, and neotenic traits likely geared toward longevity.
Collapse
Affiliation(s)
| | | | | | | | - Albert K Ying
- Division of GeneticsDepartment of MedicineBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Alexander Tyshkovskiy
- Division of GeneticsDepartment of MedicineBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Marco Mariotti
- Division of GeneticsDepartment of MedicineBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Spencer Gray
- Department of BiologyUniversity of RochesterRochesterNYUSA
| | - Zhihui Zhang
- Department of BiologyUniversity of RochesterRochesterNYUSA
| | - Michael G Drage
- Pathology and Laboratory MedicineUniversity of Rochester Medical CenterRochesterNYUSA
| | | | - Jan‐Henning Klusmann
- Pediatric Hematology and OncologyMartin‐Luther‐University Halle‐WittenbergHalleGermany
| | - Vadim N Gladyshev
- Division of GeneticsDepartment of MedicineBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | | | - Vera Gorbunova
- Department of BiologyUniversity of RochesterRochesterNYUSA
| |
Collapse
|
21
|
Tu SM, Pisters LL. Stem-Cell Theory of Cancer: Implications for Antiaging and Anticancer Strategies. Cancers (Basel) 2022; 14:1338. [PMID: 35267646 PMCID: PMC8909197 DOI: 10.3390/cancers14051338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
A stem-cell theory of cancer predicates that not only does the cell affect the niche, the niche also affects the cell. It implicates that even though genetic makeup may be supreme, cellular context is key. When we attempt to solve the mystery of a long cancer-free life, perhaps we need to search no further than the genetics and epigenetics of the naked mole-rat. When we try to unlock the secrets in the longevity and quality of life, perhaps we need to look no further than the lifestyle and habits of the super centenarians. We speculate that people with Down's syndrome and progeria age faster but have fewer cancers, because they are depleted of stem cells, and, as a consequence, have fewer opportunities for stem cell defects that could predispose them to the development of cancer. We contemplate whether these incredible experiments of nature may provide irrefutable evidence that cancer is a stem-cell disease-fewer aberrant stem cells, fewer cancers; no defective stem cells, no cancer. In this perspective, we investigate a stem-cell origin of aging and cancer. We elaborate an intriguing inverse relationship between longevity and malignancy in the naked mole-rat, in Down's syndrome, and in progeria. We postulate that stem-cell pools and stemness factors may affect aging and dictate cancer. We propose that a healthy microbiome may protect and preserve stem cell reserves and provide meaningful antiaging effects and anticancer benefits.
Collapse
Affiliation(s)
- Shi-Ming Tu
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Louis L. Pisters
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
22
|
Shcherbakov D, Nigri M, Akbergenov R, Brilkova M, Mantovani M, Petit PI, Grimm A, Karol AA, Teo Y, Sanchón AC, Kumar Y, Eckert A, Thiam K, Seebeck P, Wolfer DP, Böttger EC. Premature aging in mice with error-prone protein synthesis. SCIENCE ADVANCES 2022; 8:eabl9051. [PMID: 35235349 PMCID: PMC8890705 DOI: 10.1126/sciadv.abl9051] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The main source of error in gene expression is messenger RNA decoding by the ribosome. Translational accuracy has been suggested on a purely correlative basis to positively coincide with maximum possible life span among different rodent species, but causal evidence that translation errors accelerate aging in vivo and limit life span is lacking. We have now addressed this question experimentally by creating heterozygous knock-in mice that express the ribosomal ambiguity mutation RPS9 D95N, resulting in genome-wide error-prone translation. Here, we show that Rps9 D95N knock-in mice exhibit reduced life span and a premature onset of numerous aging-related phenotypes, such as reduced weight, chest deformation, hunchback posture, poor fur condition, and urinary syndrome, together with lymphopenia, increased levels of reactive oxygen species-inflicted damage, accelerated age-related changes in DNA methylation, and telomere attrition. Our results provide an experimental link between translational accuracy, life span, and aging-related phenotypes in mammals.
Collapse
Affiliation(s)
- Dimitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Martina Nigri
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, CH-8057 Zurich, Switzerland
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Margarita Brilkova
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Matilde Mantovani
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | | | - Amandine Grimm
- Universitäre Psychiatrische Kliniken Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, CH-4055 Basel, Switzerland
| | - Agnieszka A. Karol
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Youjin Teo
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Adrián Cortés Sanchón
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Yadhu Kumar
- Eurofins Genomics Europe Sequencing GmbH, D-78467 Konstanz, Germany
| | - Anne Eckert
- Universitäre Psychiatrische Kliniken Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, CH-4055 Basel, Switzerland
| | | | - Petra Seebeck
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, CH-8057 Zurich, Switzerland
| | - David P. Wolfer
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, CH-8057 Zurich, Switzerland
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
- Corresponding author.
| |
Collapse
|
23
|
Fan X, Fan Z, Yang Z, Huang T, Tong Y, Yang D, Mao X, Yang M. Flavonoids-Natural Gifts to Promote Health and Longevity. Int J Mol Sci 2022; 23:ijms23042176. [PMID: 35216290 PMCID: PMC8879655 DOI: 10.3390/ijms23042176] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
The aging of mammals is accompanied by the progressive atrophy of tissues and organs and the accumulation of random damage to macromolecular DNA, protein, and lipids. Flavonoids have excellent antioxidant, anti-inflammatory, and neuroprotective effects. Recent studies have shown that flavonoids can delay aging and prolong a healthy lifespan by eliminating senescent cells, inhibiting senescence-related secretion phenotypes (SASPs), and maintaining metabolic homeostasis. However, only a few systematic studies have described flavonoids in clinical treatment for anti-aging, which needs to be explored further. This review first highlights the association between aging and macromolecular damage. Then, we discuss advances in the role of flavonoid molecules in prolonging the health span and lifespan of organisms. This study may provide crucial information for drug design and developmental and clinical applications based on flavonoids.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziqiang Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Ziyue Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Tiantian Huang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Yingdong Tong
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xueping Mao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
24
|
Zhao Y, Seluanov A, Gorbunova V. Revelations About Aging and Disease from Unconventional Vertebrate Model Organisms. Annu Rev Genet 2021; 55:135-159. [PMID: 34416119 PMCID: PMC8903061 DOI: 10.1146/annurev-genet-071719-021009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aging is a major risk factor for multiple diseases. Understanding the underlying mechanisms of aging would help to delay and prevent age-associated diseases. Short-lived model organisms have been extensively used to study the mechanisms of aging. However, these short-lived species may be missing the longevity mechanisms that are needed to extend the lifespan of an already long-lived species such as humans. Unconventional long-lived animal species are an excellent resource to uncover novel mechanisms of longevity and disease resistance. Here, we review mechanisms that evolved in nonmodel vertebrate species to counteract age-associated diseases. Some antiaging mechanisms are conserved across species; however, various nonmodel species also evolved unique mechanisms to delay aging and prevent disease. This variety of antiaging mechanisms has evolved due to the remarkably diverse habitats and behaviors of these species. We propose that exploring a wider range of unconventional vertebrates will provide important resources to study antiaging mechanisms that are potentially applicable to humans.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| |
Collapse
|
25
|
Phan T, Maity P, Ludwig C, Streit L, Michaelis J, Tsesmelis M, Scharffetter-Kochanek K, Iben S. Nucleolar TFIIE plays a role in ribosomal biogenesis and performance. Nucleic Acids Res 2021; 49:11197-11210. [PMID: 34581812 PMCID: PMC8565312 DOI: 10.1093/nar/gkab866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022] Open
Abstract
Ribosome biogenesis is a highly energy-demanding process in eukaryotes which requires the concerted action of all three RNA polymerases. In RNA polymerase II transcription, the general transcription factor TFIIH is recruited by TFIIE to the initiation site of protein-coding genes. Distinct mutations in TFIIH and TFIIE give rise to the degenerative disorder trichothiodystrophy (TTD). Here, we uncovered an unexpected role of TFIIE in ribosomal RNA synthesis by RNA polymerase I. With high resolution microscopy we detected TFIIE in the nucleolus where TFIIE binds to actively transcribed rDNA. Mutations in TFIIE affects gene-occupancy of RNA polymerase I, rRNA maturation, ribosomal assembly and performance. In consequence, the elevated translational error rate with imbalanced protein synthesis and turnover results in an increase in heat-sensitive proteins. Collectively, mutations in TFIIE—due to impaired ribosomal biogenesis and translational accuracy—lead to a loss of protein homeostasis (proteostasis) which can partly explain the clinical phenotype in TTD.
Collapse
Affiliation(s)
- Tamara Phan
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Baden-Württemberg, 89081 Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Baden-Württemberg, 89081 Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University Munich, Freising, Bavaria 85354, Germany
| | - Lisa Streit
- Institute of Biophysics, Ulm University, Ulm, Baden-Württemberg 89081, Germany
| | - Jens Michaelis
- Institute of Biophysics, Ulm University, Ulm, Baden-Württemberg 89081, Germany
| | - Miltiadis Tsesmelis
- Institute of Physiological Chemistry, Ulm University, Ulm, Baden-Württemberg 89081, Germany
| | | | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Baden-Württemberg, 89081 Germany
| |
Collapse
|
26
|
Yamamura Y, Kawamura Y, Oiwa Y, Oka K, Onishi N, Saya H, Miura K. Isolation and characterization of neural stem/progenitor cells in the subventricular zone of the naked mole-rat brain. Inflamm Regen 2021; 41:31. [PMID: 34719407 PMCID: PMC8559411 DOI: 10.1186/s41232-021-00182-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/18/2021] [Indexed: 12/11/2022] Open
Abstract
Background The naked mole-rat (NMR) is the longest-lived rodent with a maximum lifespan of more than 37 years and shows a negligible senescence phenotype, suggesting that tissue stem cells of NMRs are highly capable of maintaining homeostasis. However, the properties of NMR tissue stem cells, including neural stem cells (NSCs), are largely unclear. Methods Neural stem/progenitor cells (NS/PCs) were isolated from the subventricular zone of the neonate NMR brain (NMR-NS/PCs) and cultured in neurosphere and adherent culture conditions. Expression of NSC markers and markers of neurons, astrocytes, and oligodendrocytes was analyzed by immunocytochemistry. In adherent culture conditions, the proliferation rate and cell cycle of NMR-NS/PCs were assessed and compared with those of NS/PCs from mice (mouse-NS/PCs). The DNA damage response to γ-irradiation was analyzed by immunocytochemistry and reverse transcription-quantitative PCR. Results NMR-NS/PCs expressed several NSC markers and differentiated into neurons, astrocytes, and oligodendrocytes. NMR-NS/PCs proliferated markedly slower than mouse-NS/PCs, and a higher percentage of NMR-NS/PCs than mouse-NS/PCs was in G0/G1 phase. Notably, upon γ-irradiation, NMR-NS/PCs exhibited a faster initiation of the DNA damage response and were less prone to dying than mouse-NS/PCs. Conclusions NMR-NS/PCs were successfully isolated and cultured. The slow proliferation of NMR-NS/PCs and their resistance to DNA damage may help to prevent stem cell exhaustion in the brain during the long lifespan of NMRs. Our findings provide novel insights into the mechanism underlying delayed aging of NMRs. Further analysis of NMR tissue stem cells may lead to the development of new strategies that can prevent aging in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s41232-021-00182-7.
Collapse
Affiliation(s)
- Yuki Yamamura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Yoshimi Kawamura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Yuki Oiwa
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Kaori Oka
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Nobuyuki Onishi
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-0016, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-0016, Japan
| | - Kyoko Miura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-0811, Japan. .,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
27
|
Narayan V, McMahon M, O'Brien JJ, McAllister F, Buffenstein R. Insights into the Molecular Basis of Genome Stability and Pristine Proteostasis in Naked Mole-Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:287-314. [PMID: 34424521 DOI: 10.1007/978-3-030-65943-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The naked mole-rat (Heterocephalus glaber) is the longest-lived rodent, with a maximal reported lifespan of 37 years. In addition to its long lifespan - which is much greater than predicted based on its small body size (longevity quotient of ~4.2) - naked mole-rats are also remarkably healthy well into old age. This is reflected in a striking resistance to tumorigenesis and minimal declines in cardiovascular, neurological and reproductive function in older animals. Over the past two decades, researchers have been investigating the molecular mechanisms regulating the extended life- and health- span of this animal, and since the sequencing and assembly of the naked mole-rat genome in 2011, progress has been rapid. Here, we summarize findings from published studies exploring the unique molecular biology of the naked mole-rat, with a focus on mechanisms and pathways contributing to genome stability and maintenance of proteostasis during aging. We also present new data from our laboratory relevant to the topic and discuss our findings in the context of the published literature.
Collapse
Affiliation(s)
| | - Mary McMahon
- Calico Life Sciences, LLC, South San Francisco, CA, USA
| | | | | | - Rochelle Buffenstein
- Calico Life Sciences, LLC, South San Francisco, CA, USA. .,Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
28
|
Morevati M, Mace ML, Egstrand S, Nordholm A, Doganli C, Strand J, Rukov JL, Torsetnes SB, Gorbunova V, Olgaard K, Lewin E. Extrarenal expression of α-klotho, the kidney related longevity gene, in Heterocephalus glaber, the long living Naked Mole Rat. Sci Rep 2021; 11:15375. [PMID: 34321565 PMCID: PMC8319335 DOI: 10.1038/s41598-021-94972-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/16/2021] [Indexed: 11/19/2022] Open
Abstract
The Naked Mole Rat (NMR), Heterocephalus glaber, provides an interesting model for studying biomarkers of longevity due to its long lifespan of more than 30 years, almost ten times longer than that of mice and rats. α-Klotho (klotho) is an aging-suppressor gene, and overexpression of klotho is associated with extended lifespan in mice. Klotho is predominantly expressed in the kidney. The expression profile of klotho in the NMR has not previously been reported. The present investigation studied the expression of klotho in the kidney of NMR with that of Rattus Norvegicus (RN) and demonstrated that klotho was expressed in the kidney of NMR at the same level as found in RN. Besides, a significant expression of Kl mRNA was found in the liver of NMR, in contrast to RN, where no hepatic expression was detected. The Klotho expression was further confirmed at the protein level. Thus, the results of the present comparative study indicate a differential tissue expression of klotho between different species. Besides its important function in the kidney, Klotho might also be of significance in the liver of NMR. It is suggested that the hepatic extrarenal expression of klotho may function as a further longevity-related factor in supplement to the Klotho in the kidney.
Collapse
Affiliation(s)
- M Morevati
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark.
| | - M L Mace
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark
| | - S Egstrand
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark
- Nephrological Department B, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - A Nordholm
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark
- Nephrological Department B, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - C Doganli
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - J Strand
- Randers Regnskov, Randers, Denmark
| | - J L Rukov
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark
| | - S B Torsetnes
- Department of Neurology, Akershus University Hospital, Oslo, Norway
| | - V Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - K Olgaard
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark
| | - E Lewin
- Nephrological Department P 2131, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100, Copenhagen, Denmark
- Nephrological Department B, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Aranda-Anzaldo A, Dent MAR. Is cancer a disease set up by cellular stress responses? Cell Stress Chaperones 2021; 26:597-609. [PMID: 34031811 PMCID: PMC8275745 DOI: 10.1007/s12192-021-01214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 09/29/2022] Open
Abstract
For several decades, the somatic mutation theory (SMT) has been the dominant paradigm on cancer research, leading to the textbook notion that cancer is fundamentally a genetic disease. However, recent discoveries indicate that mutations, including "oncogenic" ones, are widespread in normal somatic cells, suggesting that mutations may be necessary but not sufficient for cancer to develop. Indeed, a fundamental but as yet unanswered question is whether or not the first step in oncogenesis corresponds to a mutational event. On the other hand, for some time, it has been acknowledged the important role in cancer progression of molecular processes that participate in buffering cellular stress. However, their role is considered secondary or complementary to that of putative oncogenic mutations. Here we present and discuss evidence that cancer may have its origin in epigenetic processes associated with cellular adaptation to stressful conditions, and so it could be a direct consequence of stress-buffering mechanisms that allow cells with aberrant phenotypes (not necessarily associated with genetic mutations) to survive and propagate within the organism. We put forward the hypothesis that there would be an inverse correlation between the activation threshold of the cellular stress responses (CSRs) and the risk of cancer, so that species or individuals with low-threshold CSRs will display a higher incidence or risk of cancer.
Collapse
Affiliation(s)
- Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx, México.
| | - Myrna A R Dent
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx, México
| |
Collapse
|
30
|
Boughey H, Jurga M, El-Khamisy SF. DNA Homeostasis and Senescence: Lessons from the Naked Mole Rat. Int J Mol Sci 2021; 22:ijms22116011. [PMID: 34199458 PMCID: PMC8199619 DOI: 10.3390/ijms22116011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
As we age, our bodies accrue damage in the form of DNA mutations. These mutations lead to the generation of sub-optimal proteins, resulting in inadequate cellular homeostasis and senescence. The build-up of senescent cells negatively affects the local cellular micro-environment and drives ageing associated disease, including neurodegeneration. Therefore, limiting the accumulation of DNA damage is essential for healthy neuronal populations. The naked mole rats (NMR) are from eastern Africa and can live for over three decades in chronically hypoxic environments. Despite their long lifespan, NMRs show little to no biological decline, neurodegeneration, or senescence. Here, we discuss molecular pathways and adaptations that NMRs employ to maintain genome integrity and combat the physiological and pathological decline in organismal function.
Collapse
Affiliation(s)
- Harvey Boughey
- The Healthy Lifespan Institute and the Institute of Neuroscience, University of Sheffield, Sheffield S10 2TN, UK;
| | - Mateusz Jurga
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK;
| | - Sherif F. El-Khamisy
- The Healthy Lifespan Institute and the Institute of Neuroscience, University of Sheffield, Sheffield S10 2TN, UK;
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK;
- Correspondence: ; Tel.: +44-(0)-114-2222-791; Fax: +44-(0)-114-222-2850
| |
Collapse
|
31
|
A biomimetic natural sciences approach to understanding the mechanisms of ageing in burden of lifestyle diseases. Clin Sci (Lond) 2021; 135:1251-1272. [PMID: 34037207 DOI: 10.1042/cs20201452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
The worldwide landscape of an ageing population and age-related disease brings with it huge socio-economic and public healthcare concerns across nations. Correspondingly, monumental human and financial resources have been invested in biomedical research, with a mission to decode the mechanisms of ageing and how these contribute to age-related disease. Multiple hallmarks of ageing have been identified that are common across taxa, highlighting their fundamental importance. These include dysregulated mitochondrial metabolism and telomeres biology, epigenetic modifications, cell-matrix interactions, proteostasis, dysregulated nutrient sensing, stem cell exhaustion, inflammageing and immuno-senescence. While our understanding of the molecular basis of ageing is improving, it remains a complex and multifactorial process that remains to be fully understood. A key aspect of the shortfall in our understanding of the ageing process lies in translating data from standard animal models to humans. Consequently, we suggest that a 'biomimetic' and comparative approach, integrating knowledge from species in the wild, as opposed to inbred genetically homogenous laboratory animals, can provide powerful insights into human ageing processes. Here we discuss some particularities and comparative patterns among several species from the animal kingdom, endowed with longevity or short lifespans and unique metabolic profiles that could be potentially exploited to the understanding of ageing and age-related diseases. Based upon lessons from nature, we also highlight several avenues for renewed focus in the pathophysiology of ageing and age-related disease (i.e. diet-microbiome-health axis, oxidative protein damage, adaptive homoeostasis and planetary health). We propose that a biomimetic alliance with collaborative research from different disciplines can improve our understanding of ageing and age-related diseases with long-term sustainable utility.
Collapse
|
32
|
Holtze S, Gorshkova E, Braude S, Cellerino A, Dammann P, Hildebrandt TB, Hoeflich A, Hoffmann S, Koch P, Terzibasi Tozzini E, Skulachev M, Skulachev VP, Sahm A. Alternative Animal Models of Aging Research. Front Mol Biosci 2021; 8:660959. [PMID: 34079817 PMCID: PMC8166319 DOI: 10.3389/fmolb.2021.660959] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Most research on mechanisms of aging is being conducted in a very limited number of classical model species, i.e., laboratory mouse (Mus musculus), rat (Rattus norvegicus domestica), the common fruit fly (Drosophila melanogaster) and roundworm (Caenorhabditis elegans). The obvious advantages of using these models are access to resources such as strains with known genetic properties, high-quality genomic and transcriptomic sequencing data, versatile experimental manipulation capabilities including well-established genome editing tools, as well as extensive experience in husbandry. However, this approach may introduce interpretation biases due to the specific characteristics of the investigated species, which may lead to inappropriate, or even false, generalization. For example, it is still unclear to what extent knowledge of aging mechanisms gained in short-lived model organisms is transferable to long-lived species such as humans. In addition, other specific adaptations favoring a long and healthy life from the immense evolutionary toolbox may be entirely missed. In this review, we summarize the specific characteristics of emerging animal models that have attracted the attention of gerontologists, we provide an overview of the available data and resources related to these models, and we summarize important insights gained from them in recent years. The models presented include short-lived ones such as killifish (Nothobranchius furzeri), long-lived ones such as primates (Callithrix jacchus, Cebus imitator, Macaca mulatta), bathyergid mole-rats (Heterocephalus glaber, Fukomys spp.), bats (Myotis spp.), birds, olms (Proteus anguinus), turtles, greenland sharks, bivalves (Arctica islandica), and potentially non-aging ones such as Hydra and Planaria.
Collapse
Affiliation(s)
- Susanne Holtze
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Ekaterina Gorshkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Stan Braude
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Alessandro Cellerino
- Biology Laboratory, Scuola Normale Superiore, Pisa, Italy
- Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Philip Dammann
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Central Animal Laboratory, University Hospital Essen, Essen, Germany
| | - Thomas B. Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Faculty of Veterinary Medicine, Free University of Berlin, Berlin, Germany
| | - Andreas Hoeflich
- Division Signal Transduction, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Philipp Koch
- Core Facility Life Science Computing, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Eva Terzibasi Tozzini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maxim Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir P. Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Arne Sahm
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
33
|
Hosseini-Farahabadi S, Baradaran-Heravi A, Zimmerman C, Choi K, Flibotte S, Roberge M. Small molecule Y-320 stimulates ribosome biogenesis, protein synthesis, and aminoglycoside-induced premature termination codon readthrough. PLoS Biol 2021; 19:e3001221. [PMID: 33939688 PMCID: PMC8118496 DOI: 10.1371/journal.pbio.3001221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 05/13/2021] [Accepted: 04/09/2021] [Indexed: 11/18/2022] Open
Abstract
Premature termination codons (PTC) cause over 10% of genetic disease cases. Some aminoglycosides that bind to the ribosome decoding center can induce PTC readthrough and restore low levels of full-length functional proteins. However, concomitant inhibition of protein synthesis limits the extent of PTC readthrough that can be achieved by aminoglycosides like G418. Using a cell-based screen, we identified a small molecule, the phenylpyrazoleanilide Y-320, that potently enhances TP53, DMD, and COL17A1 PTC readthrough by G418. Unexpectedly, Y-320 increased cellular protein levels and protein synthesis, measured by SYPRO Ruby protein staining and puromycin labeling, as well as ribosome biogenesis measured using antibodies to rRNA and ribosomal protein S6. Y-320 did not increase the rate of translation elongation and it exerted its effects independently of mTOR signaling. At the single cell level, exposure to Y-320 and G418 increased ribosome content and protein synthesis which correlated strongly with PTC readthrough. As a single agent, Y-320 did not affect translation fidelity measured using a luciferase reporter gene but it enhanced misincorporation by G418. RNA-seq data showed that Y-320 up-regulated the expression of CXC chemokines CXCL10, CXCL8, CXCL2, CXCL11, CXCL3, CXCL1, and CXCL16. Several of these chemokines exert their cellular effects through the receptor CXCR2 and the CXCR2 antagonist SB225002 reduced cellular protein levels and PTC readthrough in cells exposed to Y-320 and G418. These data show that the self-limiting nature of PTC readthrough by G418 can be compensated by Y-320, a potent enhancer of PTC readthrough that increases ribosome biogenesis and protein synthesis. They also support a model whereby increased PTC readthrough is enabled by increased protein synthesis mediated by an autocrine chemokine signaling pathway. The findings also raise the possibility that inflammatory processes affect cellular propensity to readthrough agents and that immunomodulatory drugs like Y-320 might find application in PTC readthrough therapy.
Collapse
Affiliation(s)
- Sara Hosseini-Farahabadi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alireza Baradaran-Heravi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carla Zimmerman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kunho Choi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephane Flibotte
- UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
34
|
Kattner P, Zeiler K, Herbener VJ, Ferla-Brühl KL, Kassubek R, Grunert M, Burster T, Brühl O, Weber AS, Strobel H, Karpel-Massler G, Ott S, Hagedorn A, Tews D, Schulz A, Prasad V, Siegelin MD, Nonnenmacher L, Fischer-Posovszky P, Halatsch ME, Debatin KM, Westhoff MA. What Animal Cancers teach us about Human Biology. Theranostics 2021; 11:6682-6702. [PMID: 34093847 PMCID: PMC8171098 DOI: 10.7150/thno.56623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
Cancers in animals present a large, underutilized reservoir of biomedical information with critical implication for human oncology and medicine in general. Discussing two distinct areas of tumour biology in non-human hosts, we highlight the importance of these findings for our current understanding of cancer, before proposing a coordinated strategy to harvest biomedical information from non-human resources and translate it into a clinical setting. First, infectious cancers that can be transmitted as allografts between individual hosts, have been identified in four distinct, unrelated groups, dogs, Tasmanian devils, Syrian hamsters and, surprisingly, marine bivalves. These malignancies might hold the key to improving our understanding of the interaction between tumour cell and immune system and, thus, allow us to devise novel treatment strategies that enhance anti-cancer immunosurveillance, as well as suggesting more effective organ and stem cell transplantation strategies. The existence of these malignancies also highlights the need for increased scrutiny when considering the existence of infectious cancers in humans. Second, it has long been understood that no linear relationship exists between the number of cells within an organism and the cancer incidence rate. To resolve what is known as Peto's Paradox, additional anticancer strategies within different species have to be postulated. These naturally occurring idiosyncrasies to avoid carcinogenesis represent novel potential therapeutic strategies.
Collapse
Affiliation(s)
- Patricia Kattner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Katharina Zeiler
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
- Department of Neurosurgery, University Medical Center Ulm, Ulm, Germany
| | - Verena J. Herbener
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | | | | | - Michael Grunert
- Department of Nuclear Medicine, German Armed Forces Hospital of Ulm, Ulm, Germany
- Department of Nuclear Medicine, University Medical Center Ulm, Ulm, Germany
| | - Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan Republic
| | - Oliver Brühl
- Laboratorio Analisi Sicilia Catania, Lentini; SR, Italy
| | - Anna Sarah Weber
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Georg Karpel-Massler
- Department of Neurosurgery, University Medical Center Ulm, Ulm, Germany
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Sibylle Ott
- Animal Research Center, University of Ulm, Ulm, Germany
| | | | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Vikas Prasad
- Department of Nuclear Medicine, University Medical Center Ulm, Ulm, Germany
| | - Markus D. Siegelin
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Lisa Nonnenmacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | | | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
35
|
Pras A, Nollen EAA. Regulation of Age-Related Protein Toxicity. Front Cell Dev Biol 2021; 9:637084. [PMID: 33748125 PMCID: PMC7973223 DOI: 10.3389/fcell.2021.637084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/10/2021] [Indexed: 12/23/2022] Open
Abstract
Proteome damage plays a major role in aging and age-related neurodegenerative diseases. Under healthy conditions, molecular quality control mechanisms prevent toxic protein misfolding and aggregation. These mechanisms include molecular chaperones for protein folding, spatial compartmentalization for sequestration, and degradation pathways for the removal of harmful proteins. These mechanisms decline with age, resulting in the accumulation of aggregation-prone proteins that are harmful to cells. In the past decades, a variety of fast- and slow-aging model organisms have been used to investigate the biological mechanisms that accelerate or prevent such protein toxicity. In this review, we describe the most important mechanisms that are required for maintaining a healthy proteome. We describe how these mechanisms decline during aging and lead to toxic protein misassembly, aggregation, and amyloid formation. In addition, we discuss how optimized protein homeostasis mechanisms in long-living animals contribute to prolonging their lifespan. This knowledge might help us to develop interventions in the protein homeostasis network that delay aging and age-related pathologies.
Collapse
Affiliation(s)
| | - Ellen A. A. Nollen
- Laboratory of Molecular Neurobiology of Ageing, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
36
|
Swovick K, Firsanov D, Welle KA, Hryhorenko JR, Wise JP, George C, Sformo TL, Seluanov A, Gorbunova V, Ghaemmaghami S. Interspecies Differences in Proteome Turnover Kinetics Are Correlated With Life Spans and Energetic Demands. Mol Cell Proteomics 2021; 20:100041. [PMID: 33639418 PMCID: PMC7950207 DOI: 10.1074/mcp.ra120.002301] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/27/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Cells continually degrade and replace damaged proteins. However, the high energetic demand of protein turnover generates reactive oxygen species that compromise the long-term health of the proteome. Thus, the relationship between aging, protein turnover, and energetic demand remains unclear. Here, we used a proteomic approach to measure rates of protein turnover within primary fibroblasts isolated from a number of species with diverse life spans including the longest-lived mammal, the bowhead whale. We show that organismal life span is negatively correlated with turnover rates of highly abundant proteins. In comparison with mice, cells from long-lived naked mole rats have slower rates of protein turnover, lower levels of ATP production, and reduced reactive oxygen species levels. Despite having slower rates of protein turnover, naked mole rat cells tolerate protein misfolding stress more effectively than mouse cells. We suggest that in lieu of a rapid constitutive turnover, long-lived species may have evolved more energetically efficient mechanisms for selective detection and clearance of damaged proteins.
Collapse
Affiliation(s)
- Kyle Swovick
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Denis Firsanov
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Kevin A Welle
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, New York, USA
| | - Jennifer R Hryhorenko
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, New York, USA
| | - John P Wise
- Department of Pharmacology and Toxicology, Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Craig George
- North Slope Borough Department of Wildlife Management, Barrow, Alaska, USA
| | - Todd L Sformo
- North Slope Borough Department of Wildlife Management, Barrow, Alaska, USA; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Sina Ghaemmaghami
- Department of Biology, University of Rochester, Rochester, New York, USA; Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
37
|
Witkowski JM, Bryl E, Fulop T. Proteodynamics and aging of eukaryotic cells. Mech Ageing Dev 2021; 194:111430. [PMID: 33421431 DOI: 10.1016/j.mad.2021.111430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
All aspects of each protein existence in the eukaryotic cells, starting from the pre-translation events, through translation, multiple different post-translational modifications, functional life and eventual proteostatic removal after loss of functionality and changes in physico-chemical properties, can be collectively called the proteodynamics. With aging, passing of time as well as accumulating effects of exposures, interactions and wearing-off lead to problems at each of the above mentioned stages, eventually leading to general malfunction of the proteome. This work briefly reviews and summarizes current knowledge concerning this important topic.
Collapse
Affiliation(s)
- Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland.
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdańsk, Gdańsk, Poland
| | - Tamas Fulop
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
38
|
Adult Neural Plasticity in Naked Mole-Rats: Implications of Fossoriality, Longevity and Sociality on the Brain's Capacity for Change. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:105-135. [PMID: 34424514 DOI: 10.1007/978-3-030-65943-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Naked mole-rats (Heterocephalus glaber) are small African rodents that have many unique behavioral and physiological adaptations well-suited for testing hypotheses about mammalian neural plasticity. In this chapter, we focus on three features of naked mole-rat biology and how they impact neural plasticity in this species: (1) their fossorial lifestyle, (2) their extreme longevity with a lack of demonstrable senescence, and (3) their unusual social structure. Critically, each of these features requires some degree of biological flexibility. First, their fossorial habitat situates them in an environment with characteristics to which the central nervous system is particularly sensitive (e.g., oxygen content, photoperiod, spatial complexity). Second, their long lifespan requires adaptations to combat senescence and declines in neural functioning. Finally, their extreme reproductive skew and sustained ability for release from reproductive suppression indicates remarkable neural sensitivity to the sociosexual environment that is distinct from chronological age. These three features of naked mole-rat life are not mutually exclusive, but they do each offer unique considerations for the possibilities, constraints, and mechanisms associated with adult neural plasticity.
Collapse
|
39
|
Scherbakov D, Duscha S, Juskeviciene R, Restelli L, Frank S, Laczko E, Boettger EC. Mitochondrial misreading in skeletal muscle accelerates metabolic aging and confers lipid accumulation and increased inflammation. RNA (NEW YORK, N.Y.) 2020; 27:rna.077347.120. [PMID: 33262249 PMCID: PMC7901843 DOI: 10.1261/rna.077347.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
We have recently reported on an experimental model of mitochondrial mistranslation conferred by amino acid exchange V338Y in the mitochondrial ribosomal protein MrpS5. Here we used a combination of RNA-Seq and metabolic profiling of homozygous transgenic MrpS5V338Y/V338Y mice to analyze the changes associated with the V338Y mutation in post-mitotic skeletal muscle. Metabolic profiling demonstrated age-dependent metabolic changes in the mutant V338Y animals, which included enhanced levels of age-associated metabolites and which were accompanied by increased glycolysis, lipid desaturation and eicosanoid biosynthesis, and alterations of the pentose phosphate pathway. In addition, transcriptome signatures of aged V338Y mutant muscle pointed to elevated inflammation, likely reflecting the increased levels of bioactive lipids. Our findings indicate that mistranslation-mediated chronic impairment of mitochondrial function affects specific bioenergetic processes in muscle in an age-dependent manner.
Collapse
|
40
|
Translational control in the naked mole-rat as a model highly resistant to cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188455. [PMID: 33148499 DOI: 10.1016/j.bbcan.2020.188455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Dysregulation of mRNA translation is involved in the onset and progression of different types of cancer. To gain insight into novel genetic strategies to avoid this malady, we reviewed the available genomic, transcriptomic, and proteomic data about the translational machinery from the naked-mole rat (NMR) Heterocephalus glaber, a new model of study that exhibits high resistance to cancer. The principal features that might confer cancer resistance are 28S rRNA fragmentation, RPL26 and eIF4G overexpression, global downregulation of mTOR pathway, specific amino acid residues in RAPTOR (P908) and RICTOR (V1695), and the absence of 4E-BP3. These features are not only associated with cancer but also might couple longevity and adaptation to hypoxia. We propose that the regulation of translation is among the strategies endowing NMR cancer resistance.
Collapse
|
41
|
Skariah G, Todd PK. Translational control in aging and neurodegeneration. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1628. [PMID: 32954679 DOI: 10.1002/wrna.1628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Protein metabolism plays central roles in age-related decline and neurodegeneration. While a large body of research has explored age-related changes in protein degradation, alterations in the efficiency and fidelity of protein synthesis with aging are less well understood. Age-associated changes occur in both the protein synthetic machinery (ribosomal proteins and rRNA) and within regulatory factors controlling translation. At the same time, many of the interventions that prolong lifespan do so in part by pre-emptively decreasing protein synthesis rates to allow better harmonization to age-related declines in protein catabolism. Here we review the roles of translation regulation in aging, with a specific focus on factors implicated in age-related neurodegeneration. We discuss how emerging technologies such as ribosome profiling and superior mass spectrometric approaches are illuminating age-dependent mRNA-specific changes in translation rates across tissues to reveal a critical interplay between catabolic and anabolic pathways that likely contribute to functional decline. These new findings point to nodes in posttranscriptional gene regulation that both contribute to aging and offer targets for therapy. This article is categorized under: Translation > Translation Regulation Translation > Ribosome Biogenesis Translation > Translation Mechanisms.
Collapse
Affiliation(s)
- Geena Skariah
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Ann Arbor VA Healthcare System, Department of Veterans Affairs, Ann Arbor, Michigan, USA
| |
Collapse
|
42
|
Does proteostasis get lost in translation? Implications for protein aggregation across the lifespan. Ageing Res Rev 2020; 62:101119. [PMID: 32603841 DOI: 10.1016/j.arr.2020.101119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Protein aggregation is a phenomenon of major relevance in neurodegenerative and neuromuscular disorders, cataracts, diabetes and many other diseases. Research has unveiled that proteins also aggregate in multiple tissues during healthy aging yet, the biological and biomedical relevance of this apparently asymptomatic phenomenon remains to be understood. It is known that proteome homeostasis (proteostasis) is maintained by a balanced protein synthesis rate, high protein synthesis accuracy, efficient protein folding and continual tagging of damaged proteins for degradation, suggesting that protein aggregation during healthy aging may be associated with alterations in both protein synthesis and the proteostasis network (PN) pathways. In particular, dysregulation of protein synthesis and alterations in translation fidelity are hypothesized to lead to the production of misfolded proteins which could explain the occurrence of age-related protein aggregation. Nevertheless, some data on this topic is controversial and the biological mechanisms that lead to widespread protein aggregation remain to be elucidated. We review the recent literature about the age-related decline of proteostasis, highlighting the need to build an integrated view of protein synthesis rate, fidelity and quality control pathways in order to better understand the proteome alterations that occur during aging and in age-related diseases.
Collapse
|
43
|
Multifaceted deregulation of gene expression and protein synthesis with age. Proc Natl Acad Sci U S A 2020; 117:15581-15590. [PMID: 32576685 DOI: 10.1073/pnas.2001788117] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein synthesis represents a major metabolic activity of the cell. However, how it is affected by aging and how this in turn impacts cell function remains largely unexplored. To address this question, herein we characterized age-related changes in both the transcriptome and translatome of mouse tissues over the entire life span. We showed that the transcriptome changes govern those in the translatome and are associated with altered expression of genes involved in inflammation, extracellular matrix, and lipid metabolism. We also identified genes that may serve as candidate biomarkers of aging. At the translational level, we uncovered sustained down-regulation of a set of 5'-terminal oligopyrimidine (5'-TOP) transcripts encoding protein synthesis and ribosome biogenesis machinery and regulated by the mTOR pathway. For many of them, ribosome occupancy dropped twofold or even more. Moreover, with age, ribosome coverage gradually decreased in the vicinity of start codons and increased near stop codons, revealing complex age-related changes in the translation process. Taken together, our results reveal systematic and multidimensional deregulation of protein synthesis, showing how this major cellular process declines with age.
Collapse
|
44
|
Shepard A, Kissil JL. The use of non-traditional models in the study of cancer resistance-the case of the naked mole rat. Oncogene 2020; 39:5083-5097. [PMID: 32535616 DOI: 10.1038/s41388-020-1355-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
Abstract
Non-traditional model organisms are typically defined as any model the deviates from the typical laboratory animals, such as mouse, rat, and worm. These models are becoming increasingly important in human disease research, such as cancer, as they often display unusual biological features. Naked mole rats (NMRs) are currently one of the most popular non-traditional model, particularly in the longevity and cancer research fields. NMRs display an exceptionally long lifespan (~30 years), yet have been observed to display a low incidence of cancer, making them excellent candidates for understanding endogenous cancer resistance mechanisms. Over the past decade, many potential resistance mechanisms have been characterized. These include unique biological mechanisms involved in genome stability, protein stability, oxidative metabolism, and other cellular mechanisms such as cell cycle regulation and senescence. This review aims to summarize the many identified cancer resistance mechanisms to understand some of the main hypotheses that have thus far been generated. Many of these proposed mechanisms remain to be fully characterized or confirmed in vivo, giving the field a direction to grow and further understand the complex biology displayed by the NMR.
Collapse
Affiliation(s)
- Alyssa Shepard
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Joseph L Kissil
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
45
|
Yang HW, Kim HD, Kim TS, Kim J. Senescent Cells Differentially Translate Senescence-Related mRNAs Via Ribosome Heterogeneity. J Gerontol A Biol Sci Med Sci 2020; 74:1015-1024. [PMID: 30285098 DOI: 10.1093/gerona/gly228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
The ribosome has a lateral stalk which consists of rpLP0, rpLP1, and rpLP2. One of these proteins, rpLP2, is decreased in translating ribosome when cellular senescence is induced. Y-box binding protein-1 (YB-1) is also reduced in polysomal fraction of senescent cells. We discovered that rpLP2 depletion in the ribosome can cause the detachment of YB-1 in polysomes and that it is linked to cellular senescence. Our results also revealed that a decrement of CK2α or GRK2 in senescent cells induced an increment of unphosphorylated rpLP2, resulting in release of YB-1 from polysomes. This heterogeneous senescent ribosome has different translational efficiencies for some senescence-related genes. We also showed that the decrease of rpLP1/rpLP2 and YB-1 in senescent ribosomes was not specific to cell type or stress type and the same phenomenon was also observed in aged mouse livers regardless of gender. Taken together, our results suggest that the senescent ribosome complex appears to have low levels of rpLP1/rpLP2 and YB-1, resulting in altered translational efficiency for senescence-related genes.
Collapse
Affiliation(s)
- Hee Woong Yang
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hag Dong Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea.,HAEL Lab, TechnoComplex Building, Korea University, Seoul, Republic of Korea
| | - Tae-Sung Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea.,HAEL Lab, TechnoComplex Building, Korea University, Seoul, Republic of Korea
| |
Collapse
|
46
|
Maina JN, Igbokwe CO. Comparative morphometric analysis of lungs of the semifossorial giant pouched rat (Cricetomys gambianus) and the subterranean Nigerian mole rat (Cryptomys foxi). Sci Rep 2020; 10:5244. [PMID: 32251351 PMCID: PMC7090082 DOI: 10.1038/s41598-020-61873-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Lungs of the rodent species, the African giant pouched rat (Cricetomys gambianus) and the Nigerian mole rat (Cryptomys foxi) were investigated. Significant morphometric differences exist between the two species. The volume of the lung per unit body mass was 2.7 times larger; the respiratory surface area 3.4 times greater; the volume of the pulmonary capillary blood 2 times more; the harmonic mean thickness of the blood-gas (tissue) barrier (τht) ~29% thinner and; the total pulmonary morphometric diffusing capacity (DLo2) for O2 2.3 times more in C. foxi. C. gambianus occupies open burrows that are ventilated with air while C. foxi lives in closed burrows. The less morphometrically specialized lungs of C. gambianus may be attributed to its much larger body mass (~6 times more) and possibly lower metabolic rate and its semifossorial life whereas the 'superior' lungs of C. foxi may largely be ascribed to the subterranean hypoxic and hypercapnic environment it occupies. Compared to other rodents species that have been investigated hitherto, the τht was mostly smaller in the lungs of the subterranean species and C. foxi has the highest mass-specific DLo2. The fossorial- and the subterranean rodents have acquired various pulmonary structural specializations that relate to habitats occupied.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park Campus, Kingsway, Johannesburg, 2006, South Africa.
| | - Casmir O Igbokwe
- Department of Zoology, University of Johannesburg, Auckland Park Campus, Kingsway, Johannesburg, 2006, South Africa
- Visiting Postdoctoral Fellow, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
47
|
Abstract
Cellular parabiosis is tissue-based phenotypic suppression of cellular dysfunction by intercellular molecular traffic keeping initiated age-related diseases and conditions in long latency. Interruption of cellular parabiosis (e.g. by chronic inflammation) promotes the onset of initiated pathologies. The stability of initiated latent cancers and other age-related diseases (ARD) hints to phenotypically silent genome alterations. I propose that latency in the onset of ageing and ARD is largely due to phenotypic suppression of cellular dysfunctions via molecular traffic among neighbouring cells. Intercellular trafficking ranges from the transfer of ions and metabolites (via gap junctions) to entire organelles (via tunnelling nanotubes). Any mechanism of cell-to-cell communication resulting in functional cross-complementation among the cells is called cellular parabiosis. Such ‘cellular solidarity’ creates tissue homeostasis by buffering defects and averaging cellular functions within the tissues. Chronic inflammation is known to (i) interrupt cellular parabiosis by the activity of extracellular proteases, (ii) activate dormant pathologies and (iii) shorten disease latency, as in tumour promotion and inflammaging. Variation in cellular parabiosis and protein oxidation can account for interspecies correlations between body mass, ARD latency and longevity. Now, prevention of ARD onset by phenotypic suppression, and healing by phenotypic reversion, become conceivable.
Collapse
Affiliation(s)
- Miroslav Radman
- 1 Mediterranean Institute for Life Sciences (MedILS) , 21000 Split , Croatia.,2 Naos Institute for Life Sciences , 13290 Aix-en-Provence , France.,3 Inserm u-1001, University R. Descartes Medical School , Cochin Site, 75014 Paris , France
| |
Collapse
|
48
|
Abstract
Ageing is considered as a snowballing phenotype of the accumulation of damaged dysfunctional or toxic proteins and silent mutations (polymorphisms) that sensitize relevant proteins to oxidative damage as inborn predispositions to age-related diseases. Ageing is not a disease, but it causes (or shares common cause with) age-related diseases as suggested by similar slopes of age-related increase in the incidence of diseases and death. Studies of robust and more standard species revealed that dysfunctional oxidatively damaged proteins are the root cause of radiation-induced morbidity and mortality. Oxidized proteins accumulate with age and cause reversible ageing-like phenotypes with some irreversible consequences (e.g. mutations). Here, we observe in yeast that aggregation rate of damaged proteins follows the Gompertz law of mortality and review arguments for a causal relationship between oxidative protein damage, ageing and disease. Aerobes evolved proteomes remarkably resistant to oxidative damage, but imperfectly folded proteins become sensitive to oxidation. We show that α-synuclein mutations that predispose to early-onset Parkinson's disease bestow an increased intrinsic sensitivity of α-synuclein to in vitro oxidation. Considering how initially silent protein polymorphism becomes phenotypic while causing age-related diseases and how protein damage leads to genome alterations inspires a vision of predictive diagnostic, prognostic, prevention and treatment of degenerative diseases.
Collapse
Affiliation(s)
- Anita Krisko
- 1 Mediterranean Institute for Life Sciences (MedILS) , 21000 Split , Croatia
| | - Miroslav Radman
- 1 Mediterranean Institute for Life Sciences (MedILS) , 21000 Split , Croatia.,2 Naos Institute for Life Sciences , 13290 Aix-en-Provence , France.,3 Inserm U-1001, Université Paris-Descartes, Faculté de Médecine Paris-Descartes , 74014 Paris , France
| |
Collapse
|
49
|
Mori N. [Brain and Neuronal Aging: Aged Brain Controls via Gene Expression Fidelity and Master Regulatory Factors]. YAKUGAKU ZASSHI 2020; 140:395-404. [PMID: 32115559 DOI: 10.1248/yakushi.19-00193-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Providing plausible strategies for brain aging protection should be a critical concern for countries with large elderly populations including Japan. Age-related cognitive impairments and movement disorders, such as Alzheimer's and Parkinson's diseases, are caused by neurodegeneration that primarily initiates in the hippocampus and the midbrain substantia nigra, respectively. Neurons are postmitotic, and therefore, the accuracy of cellular metabolism should be crucial for maintaining neural functions throughout their life. Thus accuracy of protein synthesis is a critical concern in discussing mechanisms of aging. The essence of the so-called "error catastrophe theory" of aging was on the fidelity of ribosomal translation and/or aminoacylation of tRNA. There is evidence that reduced protein synthesis accuracy results in neurodegeneration. Similarly, reduced proteostasis via autophagy and proteasomes in aging is crucial for protein quality control and well documented as a risk for aging. In both neurodegeneration and protein quality controls, various proteins are involved in their regulation, but recent evidence suggests that repressor element-1 silencing transcription factor (REST) could be a master regulatory protein that is crucial for orchestrating the neural protecting events in human brain aging. REST is induced in the aged brain, and protects neurons against oxidative stress and protein toxicity. Interestingly, REST is identical with neuron-restrictive silencer factor (NRSF), the master regulator of neural development. Thus NRSF/REST play important roles in both neurogenesis and neurodegeneration. In this review, I summarize the interesting scientific crossover, and discuss the potential use of NRSF/REST as a pharmaceutical target for controlling aging, particularly in relation to brain aging.
Collapse
Affiliation(s)
- Nozomu Mori
- Department of Anatomy and Neurobiology, Nagasaki University School of Medicine
| |
Collapse
|
50
|
Tombline G, Gigas J, Macoretta N, Zacher M, Emmrich S, Zhao Y, Seluanov A, Gorbunova V. Proteomics of Long-Lived Mammals. Proteomics 2020; 20:e1800416. [PMID: 31737995 PMCID: PMC7117992 DOI: 10.1002/pmic.201800416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/25/2019] [Indexed: 12/29/2022]
Abstract
Mammalian species differ up to 100-fold in their aging rates and maximum lifespans. Long-lived mammals appear to possess traits that extend lifespan and healthspan. Genomic analyses have not revealed a single pro-longevity function that would account for all longevity effects. In contrast, it appears that pro-longevity mechanisms may be complex traits afforded by connections between metabolism and protein functions that are impossible to predict by genomic approaches alone. Thus, metabolomics and proteomics studies will be required to understand the mechanisms of longevity. Several examples are reviewed that demonstrate the naked mole rat (NMR) shows unique proteomic signatures that contribute to longevity by overcoming several hallmarks of aging. SIRT6 is also discussed as an example of a protein that evolves enhanced enzymatic function in long-lived species. Finally, it is shown that several longevity-related proteins such as Cip1/p21, FOXO3, TOP2A, AKT1, RICTOR, INSR, and SIRT6 harbor posttranslational modification (PTM) sites that preferentially appear in either short- or long-lived species and provide examples of crosstalk between PTM sites. Prospects of enhancing lifespan and healthspan of humans by altering metabolism and proteoforms with drugs that mimic changes observed in long-lived species are discussed.
Collapse
Affiliation(s)
- Gregory Tombline
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Jonathan Gigas
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Nicholas Macoretta
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Max Zacher
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Stephan Emmrich
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Yang Zhao
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Andrei Seluanov
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| | - Vera Gorbunova
- University of Rochester, Department of Biology, Rochester,
New York 14627, USA
| |
Collapse
|