1
|
Tamashiro H, Ishikawa K, Sadotomo K, Ogasawara E, Nakada K. Mitochondrial Respiratory Dysfunction Is Not Correlated With Mitochondrial Genotype in Premature Aging Mice. Aging Cell 2025:e70085. [PMID: 40318128 DOI: 10.1111/acel.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 05/07/2025] Open
Abstract
mtDNA mutator mice (Polgmut/mut mice) have reinforced the mitochondrial theory of aging. These mice accumulate multiple mutations in mtDNA with age due to a homozygous proofreading-deficient mutation in mtDNA polymerase gamma (Polg), resulting in mitochondrial respiratory dysfunction and premature aging phenotypes. However, whether the accumulation of multiple mutations in Polgmut/mut mice induces mitochondrial respiratory dysfunction remains unclear. Here, we determined the accurate mtDNA genotype, including the frequency of total mutations and the number of non-synonymous substitutions and pathogenic mutations, using next-generation sequencing in the progeny of all three genotypes obtained from the mating of heterozygous mtDNA mutator mice (Polg+/mut mice) and examined their correlation with mitochondrial respiratory activity. Although Polg+/mut mice showed equivalent mtDNA genotype to Polg+/+ (wild-type) mice, the mitochondrial respiratory activity in the Polg+/mut mice was mildly reduced. To further investigate the causal relationship between mtDNA genotype and mitochondrial respiratory activity, we experimentally varied the mtDNA genotype in Polg mice. However, mitochondrial respiratory activity was mildly reduced in Polg+/mut mice and severely reduced in Polgmut/mut mice, regardless of the mtDNA genotype. Moreover, by varying the mtDNA genotype, some Polg+/+ mice showed mtDNA genotype equivalent to those of Polgmut/mut mice, but mitochondrial respiratory activity in Polg+/+ mice was normal. These results indicate that the mitochondrial respiratory dysfunction observed in mice with proofreading-deficient mutation in Polg is correlated with the nuclear genotype of Polg rather than the mtDNA genotype. Thus, the mitochondrial theory of aging in Polgmut/mut mice needs further re-examination.
Collapse
Affiliation(s)
- Hiroaki Tamashiro
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan
| | - Kaori Ishikawa
- Institute of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Koichi Sadotomo
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan
| | - Emi Ogasawara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Kazuto Nakada
- Institute of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Ishikawa K, Miyata D, Hattori S, Tani H, Kuriyama T, Wei FY, Miyakawa T, Nakada K. Accumulation of mitochondrial DNA with a point mutation in tRNA Leu(UUR) gene induces brain dysfunction in mice. Pharmacol Res 2024; 208:107374. [PMID: 39197713 DOI: 10.1016/j.phrs.2024.107374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Brain functions are mediated via the complex interplay between several complex factors, and hence, identifying the underlying cause of an abnormality within a certain brain region can be challenging. In mitochondrial disease, abnormalities in brain function are thought to be attributed to accumulation of mitochondrial DNA (mtDNA) with pathogenic mutations; however, only few previous studies have directly demonstrated that accumulation of mutant mtDNA induced abnormalities in brain function. Herein, we examined the effects of mtDNA mutations on brain function via behavioral analyses using a mouse model with an A2748G point mutation in mtDNA tRNALeu(UUR). Our results revealed that mice with a high percentage of mutant mtDNA showed a characteristic trend toward reduced prepulse inhibition and memory-dependent test performance, similar to that observed in psychiatric disorders, such as schizophrenia; however, muscle strength and motor coordination were not markedly affected. Upon examining the hippocampus and frontal lobes of the brain, mitochondrial morphology was abnormal, and the brain weight was slightly reduced. These results indicate that the predominant accumulation of a point mutation in the tRNALeu(UUR) gene may affect brain functions, particularly the coordination of sensory and motor functions and memory processes. These abnormalities probably caused by both direct effects of accumulation of the mutant mtDNA in neuronal cells and indirect effects via changes of systemic extracellular environments. Overall, these findings will lead to a better understanding of the pathogenic mechanism underlying this complex disease and facilitate the development of optimal treatment methods.
Collapse
Affiliation(s)
- Kaori Ishikawa
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan.
| | - Daiki Miyata
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Japan; Research Creation Support Center, Aichi Medical University, Japan
| | - Haruna Tani
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Takayoshi Kuriyama
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Japan
| | - Kazuto Nakada
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan.
| |
Collapse
|
3
|
Antolínez-Fernández Á, Esteban-Ramos P, Fernández-Moreno MÁ, Clemente P. Molecular pathways in mitochondrial disorders due to a defective mitochondrial protein synthesis. Front Cell Dev Biol 2024; 12:1410245. [PMID: 38855161 PMCID: PMC11157125 DOI: 10.3389/fcell.2024.1410245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Mitochondria play a central role in cellular metabolism producing the necessary ATP through oxidative phosphorylation. As a remnant of their prokaryotic past, mitochondria contain their own genome, which encodes 13 subunits of the oxidative phosphorylation system, as well as the tRNAs and rRNAs necessary for their translation in the organelle. Mitochondrial protein synthesis depends on the import of a vast array of nuclear-encoded proteins including the mitochondrial ribosome protein components, translation factors, aminoacyl-tRNA synthetases or assembly factors among others. Cryo-EM studies have improved our understanding of the composition of the mitochondrial ribosome and the factors required for mitochondrial protein synthesis and the advances in next-generation sequencing techniques have allowed for the identification of a growing number of genes involved in mitochondrial pathologies with a defective translation. These disorders are often multisystemic, affecting those tissues with a higher energy demand, and often present with neurodegenerative phenotypes. In this article, we review the known proteins required for mitochondrial translation, the disorders that derive from a defective mitochondrial protein synthesis and the animal models that have been established for their study.
Collapse
Affiliation(s)
- Álvaro Antolínez-Fernández
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula Esteban-Ramos
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Ángel Fernández-Moreno
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula Clemente
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Burr SP, Chinnery PF. Origins of tissue and cell-type specificity in mitochondrial DNA (mtDNA) disease. Hum Mol Genet 2024; 33:R3-R11. [PMID: 38779777 PMCID: PMC11112380 DOI: 10.1093/hmg/ddae059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 02/05/2024] [Indexed: 05/25/2024] Open
Abstract
Mutations of mitochondrial (mt)DNA are a major cause of morbidity and mortality in humans, accounting for approximately two thirds of diagnosed mitochondrial disease. However, despite significant advances in technology since the discovery of the first disease-causing mtDNA mutations in 1988, the comprehensive diagnosis and treatment of mtDNA disease remains challenging. This is partly due to the highly variable clinical presentation linked to tissue-specific vulnerability that determines which organs are affected. Organ involvement can vary between different mtDNA mutations, and also between patients carrying the same disease-causing variant. The clinical features frequently overlap with other non-mitochondrial diseases, both rare and common, adding to the diagnostic challenge. Building on previous findings, recent technological advances have cast further light on the mechanisms which underpin the organ vulnerability in mtDNA diseases, but our understanding is far from complete. In this review we explore the origins, current knowledge, and future directions of research in this area.
Collapse
Affiliation(s)
- Stephen P Burr
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Patrick F Chinnery
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| |
Collapse
|
5
|
Olkhova EA, Smith LA, Bradshaw C, Gorman GS, Erskine D, Ng YS. Neurological Phenotypes in Mouse Models of Mitochondrial Disease and Relevance to Human Neuropathology. Int J Mol Sci 2023; 24:ijms24119698. [PMID: 37298649 DOI: 10.3390/ijms24119698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Mitochondrial diseases represent the most common inherited neurometabolic disorders, for which no effective therapy currently exists for most patients. The unmet clinical need requires a more comprehensive understanding of the disease mechanisms and the development of reliable and robust in vivo models that accurately recapitulate human disease. This review aims to summarise and discuss various mouse models harbouring transgenic impairments in genes that regulate mitochondrial function, specifically their neurological phenotype and neuropathological features. Ataxia secondary to cerebellar impairment is one of the most prevalent neurological features of mouse models of mitochondrial dysfunction, consistent with the observation that progressive cerebellar ataxia is a common neurological manifestation in patients with mitochondrial disease. The loss of Purkinje neurons is a shared neuropathological finding in human post-mortem tissues and numerous mouse models. However, none of the existing mouse models recapitulate other devastating neurological phenotypes, such as refractory focal seizures and stroke-like episodes seen in patients. Additionally, we discuss the roles of reactive astrogliosis and microglial reactivity, which may be driving the neuropathology in some of the mouse models of mitochondrial dysfunction, as well as mechanisms through which cellular death may occur, beyond apoptosis, in neurons undergoing mitochondrial bioenergy crisis.
Collapse
Affiliation(s)
- Elizaveta A Olkhova
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Laura A Smith
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Carla Bradshaw
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Daniel Erskine
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
6
|
Wang X, Lu H, Li M, Zhang Z, Wei Z, Zhou P, Cao Y, Ji D, Zou W. Research development and the prospect of animal models of mitochondrial DNA-related mitochondrial diseases. Anal Biochem 2023; 669:115122. [PMID: 36948236 DOI: 10.1016/j.ab.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/19/2023] [Accepted: 03/19/2023] [Indexed: 03/24/2023]
Abstract
Mitochondrial diseases (MDs) are genetic and clinical heterogeneous diseases caused by mitochondrial oxidative phosphorylation defects. It is not only one of the most common genetic diseases, but also the only genetic disease involving two different genomes in humans. As a result of the complicated genetic condition, the pathogenesis of MDs is not entirely elucidated at present, and there is a lack of effective treatment in the clinic. Establishing the ideal animal models is the critical preclinical platform to explore the pathogenesis of MDs and to verify new therapeutic strategies. However, the development of animal modeling of mitochondrial DNA (mtDNA)-related MDs is time-consuming due to the limitations of physiological structure and technology. A small number of animal models of mtDNA mutations have been constructed using cell hybridization and other methods. However, the diversity of mtDNA mutation sites and clinical phenotypes make establishing relevant animal models tricky. The development of gene editing technology has become a new hope for establishing animal models of mtDNA-related mitochondrial diseases.
Collapse
Affiliation(s)
- Xiaolei Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hedong Lu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Min Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
7
|
Tolle I, Tiranti V, Prigione A. Modeling mitochondrial DNA diseases: from base editing to pluripotent stem-cell-derived organoids. EMBO Rep 2023; 24:e55678. [PMID: 36876467 PMCID: PMC10074100 DOI: 10.15252/embr.202255678] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/12/2023] [Accepted: 02/15/2023] [Indexed: 03/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) diseases are multi-systemic disorders caused by mutations affecting a fraction or the entirety of mtDNA copies. Currently, there are no approved therapies for the majority of mtDNA diseases. Challenges associated with engineering mtDNA have in fact hindered the study of mtDNA defects. Despite these difficulties, it has been possible to develop valuable cellular and animal models of mtDNA diseases. Here, we describe recent advances in base editing of mtDNA and the generation of three-dimensional organoids from patient-derived human-induced pluripotent stem cells (iPSCs). Together with already available modeling tools, the combination of these novel technologies could allow determining the impact of specific mtDNA mutations in distinct human cell types and might help uncover how mtDNA mutation load segregates during tissue organization. iPSC-derived organoids could also represent a platform for the identification of treatment strategies and for probing the in vitro effectiveness of mtDNA gene therapies. These studies have the potential to increase our mechanistic understanding of mtDNA diseases and may open the way to highly needed and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Isabella Tolle
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
8
|
Tani H, Ishikawa K, Tamashiro H, Ogasawara E, Yasukawa T, Matsuda S, Shimizu A, Kang D, Hayashi JI, Wei FY, Nakada K. Aberrant RNA processing contributes to the pathogenesis of mitochondrial diseases in trans-mitochondrial mouse model carrying mitochondrial tRNALeu(UUR) with a pathogenic A2748G mutation. Nucleic Acids Res 2022; 50:9382-9396. [PMID: 35998911 PMCID: PMC9458463 DOI: 10.1093/nar/gkac699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial tRNAs are indispensable for the intra-mitochondrial translation of genes related to respiratory subunits, and mutations in mitochondrial tRNA genes have been identified in various disease patients. However, the molecular mechanism underlying pathogenesis remains unclear due to the lack of animal models. Here, we established a mouse model, designated 'mito-mice tRNALeu(UUR)2748', that carries a pathogenic A2748G mutation in the tRNALeu(UUR) gene of mitochondrial DNA (mtDNA). The A2748G mutation is orthologous to the human A3302G mutation found in patients with mitochondrial diseases and diabetes. A2748G mtDNA was maternally inherited, equally distributed among tissues in individual mice, and its abundance did not change with age. At the molecular level, A2748G mutation is associated with aberrant processing of precursor mRNA containing tRNALeu(UUR) and mt-ND1, leading to a marked decrease in the steady-levels of ND1 protein and Complex I activity in tissues. Mito-mice tRNALeu(UUR)2748 with ≥50% A2748G mtDNA exhibited age-dependent metabolic defects including hyperglycemia, insulin insensitivity, and hepatic steatosis, resembling symptoms of patients carrying the A3302G mutation. This work demonstrates a valuable mouse model with an inheritable pathological A2748G mutation in mt-tRNALeu(UUR) that shows metabolic syndrome-like phenotypes at high heteroplasmy level. Furthermore, our findings provide molecular basis for understanding A3302G mutation-mediated mitochondrial disorders.
Collapse
Affiliation(s)
- Haruna Tani
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan,Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kaori Ishikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroaki Tamashiro
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Emi Ogasawara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takehiro Yasukawa
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan,Department of Pathology and Oncology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shigeru Matsuda
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8575, Japan,Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Akinori Shimizu
- Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, Jonan-ku, Fukuoka, Fukuoka 814-0180, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan,Kashiigaoka Rehabilitation Hospital, Higashi-ku, Fukuoka, Fukuoka 813-0002, Japan
| | - Jun-Ichi Hayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kazuto Nakada
- To whom correspondence should be addressed. Tel: +81 29 853 6694; Fax: +81 29 853 6614;
| |
Collapse
|
9
|
Stewart JB. Current progress with mammalian models of mitochondrial DNA disease. J Inherit Metab Dis 2021; 44:325-342. [PMID: 33099782 DOI: 10.1002/jimd.12324] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
Mitochondrial disorders make up a large class of heritable diseases that cause a broad array of different human pathologies. They can affect many different organ systems, or display very specific tissue presentation, and can lead to illness either in childhood or later in life. While the over 1200 genes encoded in the nuclear DNA play an important role in human mitochondrial disease, it has been known for over 30 years that mutations of the mitochondria's own small, multicopy DNA chromosome (mtDNA) can lead to heritable human diseases. Unfortunately, animal mtDNA has resisted transgenic and directed genome editing technologies until quite recently. As such, animal models to aid in our understanding of these diseases, and to explore preclinical therapeutic research have been quite rare. This review will discuss the unusual properties of animal mitochondria that have hindered the generation of animal models. It will also discuss the existing mammalian models of human mtDNA disease, describe the methods employed in their generation, and will discuss recent advances in the targeting of DNA-manipulating enzymes to the mitochondria and how these may be employed to generate new models.
Collapse
Affiliation(s)
- James Bruce Stewart
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Mitochondrial DNA A3243G variant-associated retinopathy: Current perspectives and clinical implications. Surv Ophthalmol 2021; 66:838-855. [PMID: 33610586 DOI: 10.1016/j.survophthal.2021.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Cellular function and survival are critically dependent on the proper functionality of the mitochondrion. Neurodegenerative cellular processes including cellular adenosine triphosphate production, intermediary metabolism control, and apoptosis regulation are all mitochondrially mediated. The A to G transition at position 3243 in the mitochondrial MTTL1 gene that encodes for the leucine transfer RNA (m.3243A>G) causes a variety of diseases, including maternally inherited loss of hearing and diabetes syndrome (MIDD), mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS). Ophthalmological findings-including posterior sub-capsular cataract, ptosis, external ophthalmoplegia, and pigmentary retinopathy- have all been associated with the m.3243A>G variant. Pigmentary retinopathy is, however, the most common ocular finding, occurring in 38% to 86% of cases. To date, little is known about the pathogenesis, natural history, and heteroplasmic and phenotypic correlations of m.3243A>G-associated pigmentary retinopathy. We summarize the current understanding of mitochondrial genetics and pathogenesis of some associated diseases. We then review the pathophysiology, histology, clinical features, treatment, and important ocular and systemic phenotypic manifestations of m.3243A>G variant associated retinopathy. Mitochondrial diseases require a multidisciplinary team approach to ensure effective treatment, regular follow-up, and accurate genetic counseling.
Collapse
|
11
|
Ishikawa K, Nakada K. Attempts to understand the mechanisms of mitochondrial diseases: The reverse genetics of mouse models for mitochondrial disease. Biochim Biophys Acta Gen Subj 2020; 1865:129835. [PMID: 33358867 DOI: 10.1016/j.bbagen.2020.129835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/25/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mitochondrial disease is a general term for a disease caused by a decline in mitochondrial function. The pathology of this disease is extremely diverse and complex, and the mechanism of its pathogenesis is still unknown. Using mouse models that develop the disease via the same processes as in humans is the easiest path to understanding the underlying mechanism. However, creating a mouse model is extremely difficult due to the lack of technologies that enable editing of mitochondrial DNA (mtDNA). SCOPE OF REVIEW This paper outlines the complex pathogenesis of mitochondrial disease, and the difficulties in producing relevant mouse models. Then, the paper provides a detailed discussion on several mice created with mutations in mtDNA. The paper also introduces the pathology of mouse models with mutations including knockouts of nuclear genes that directly affect mitochondrial function. MAJOR CONCLUSIONS Several mice with mtDNA mutations and those with nuclear DNA mutations have been established. Although these models help elucidate the pathological mechanism of mitochondrial disease, they lack sufficient diversity to enable a complete understanding. Considering the variety of factors that affect the cause and mechanism of mitochondrial disease, it is necessary to account for this background diversity in mouse models as well. GENERAL SIGNIFICANCE Mouse models are indispensable for understanding the pathological mechanism of mitochondrial disease, as well as for searching new treatments. There is a need for the creation and examination of mouse models with more diverse mutations and altered nuclear backgrounds and breeding environments.
Collapse
Affiliation(s)
- Kaori Ishikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuto Nakada
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
12
|
Cytochrome c oxidase deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148335. [PMID: 33171185 DOI: 10.1016/j.bbabio.2020.148335] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
Cytochrome c oxidase (COX) deficiency is characterized by a high degree of genetic and phenotypic heterogeneity, partly reflecting the extreme structural complexity, multiple post-translational modification, variable, tissue-specific composition, and the high number of and intricate connections among the assembly factors of this enzyme. In fact, decreased COX specific activity can manifest with different degrees of severity, affect the whole organism or specific tissues, and develop a wide spectrum of disease natural history, including disease onsets ranging from birth to late adulthood. More than 30 genes have been linked to COX deficiency, but the list is still incomplete and in fact constantly updated. We here discuss the current knowledge about COX in health and disease, focusing on genetic aetiology and link to clinical manifestations. In addition, information concerning either fundamental biological features of the enzymes or biochemical signatures of its defects have been provided by experimental in vivo models, including yeast, fly, mouse and fish, which expanded our knowledge on the functional features and the phenotypical consequences of different forms of COX deficiency.
Collapse
|
13
|
Affiliation(s)
- Igor A Sobenin
- National Medical Research Center of Cardiology, Moscow, Russian Federation
| | | |
Collapse
|
14
|
Yuan G, Yang S, Liu M, Yang S. RGS12 is required for the maintenance of mitochondrial function during skeletal development. Cell Discov 2020; 6:59. [PMID: 32922858 PMCID: PMC7459111 DOI: 10.1038/s41421-020-00190-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial morphology and function are crucial for tissue homeostasis, such as for skeletal development, but the cellular and molecular mechanisms remain unclear. Here, we provide evidence that regulator of G-protein signaling 12 (RGS12) is present in the mitochondria of primary chondrocytes and cartilage tissues. Deletion of RGS12 in type II collagen-positive cells led to a significant decrease in mitochondrial number, membrane potential, and oxidative phosphorylation function. Mechanistically, RGS12 promoted the function of ATP5A as an enhancer of tyrosine phosphorylation. Mice with RGS12 deficiency in the chondrocyte lineage showed serious body retardation, decreased bone mass, and chondrocyte apoptosis due to the defective activity of ATP synthase. To our knowledge, this is the first report that RGS12 is required for maintaining the function of mitochondria, which may allow it to orchestrate responses to cellular homeostasis.
Collapse
Affiliation(s)
- Gongsheng Yuan
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA USA
| | - Shuting Yang
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA USA
| | - Min Liu
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA USA
| | - Shuying Yang
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA USA.,The Penn Center for Musculoskeletal Disorders, University of Pennsylvania, School of Medicine, Philadelphia, PA USA.,Center for Innovation & Precision Dentistry, University of Pennsylvania, School of Dental Medicine, School of Engineering and Applied Sciences, Philadelphia, PA USA
| |
Collapse
|
15
|
Uittenbogaard M, Chiaramello A. Maternally inherited mitochondrial respiratory disorders: from pathogenetic principles to therapeutic implications. Mol Genet Metab 2020; 131:38-52. [PMID: 32624334 PMCID: PMC7749081 DOI: 10.1016/j.ymgme.2020.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023]
Abstract
Maternally inherited mitochondrial respiratory disorders are rare, progressive, and multi-systemic diseases that remain intractable, with no effective therapeutic interventions. Patients share a defective oxidative phosphorylation pathway responsible for mitochondrial ATP synthesis, in most cases due to pathogenic mitochondrial variants transmitted from mother to child or to a rare de novo mutation or large-scale deletion of the mitochondrial genome. The clinical diagnosis of these mitochondrial diseases is difficult due to exceptionally high clinical variability, while their genetic diagnosis has improved with the advent of next-generation sequencing. The mechanisms regulating the penetrance of the mitochondrial variants remain unresolved with the patient's nuclear background, epigenomic regulation, heteroplasmy, mitochondrial haplogroups, and environmental factors thought to act as rheostats. The lack of animal models mimicking the phenotypic manifestations of these disorders has hampered efforts toward curative therapies. Patient-derived cellular paradigms provide alternative models for elucidating the pathogenic mechanisms and screening pharmacological small molecules to enhance mitochondrial function. Recent progress has been made in designing promising approaches to curtail the negative impact of dysfunctional mitochondria and alleviate clinical symptoms: 1) boosting mitochondrial biogenesis; 2) shifting heteroplasmy; 3) reprogramming metabolism; and 4) administering hypoxia-based treatment. Here, we discuss their varying efficacies and limitations and provide an outlook on their therapeutic potential and clinical application.
Collapse
Affiliation(s)
- Martine Uittenbogaard
- George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, 2300 I Street N.W., Washington, DC 20037, USA
| | - Anne Chiaramello
- George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, 2300 I Street N.W., Washington, DC 20037, USA.
| |
Collapse
|
16
|
Maligana N, Julius RS, Shivambu TC, Chimimba CT. Genetic identification of freely traded synanthropic invasive murid rodents in pet shops in Gauteng Province, South Africa. AFRICAN ZOOLOGY 2020. [DOI: 10.1080/15627020.2019.1704632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ndivhuwo Maligana
- DSI-NRF Centre of Excellence for Invasion Biology and Mammal Research Institute, University of Pretoria, South Africa
| | - Rolanda S Julius
- DSI-NRF Centre of Excellence for Invasion Biology and Mammal Research Institute, University of Pretoria, South Africa
| | - Tinyiko C Shivambu
- DSI-NRF Centre of Excellence for Invasion Biology and Mammal Research Institute, University of Pretoria, South Africa
| | - Christian T Chimimba
- DSI-NRF Centre of Excellence for Invasion Biology and Mammal Research Institute, University of Pretoria, South Africa
| |
Collapse
|
17
|
Zhu Y, You J, Xu C, Gu X. Associations of mitochondrial DNA 3777-4679 region mutations with maternally inherited essential hypertensive subjects in China. BMC MEDICAL GENETICS 2020; 21:105. [PMID: 32414374 PMCID: PMC7229621 DOI: 10.1186/s12881-020-01045-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 05/07/2020] [Indexed: 12/28/2022]
Abstract
Background Nuclear genome or family mitochondrial screening system has become the hot focus of studies into essential hypertension. The role of mitochondrial DNA (mtDNA) in sporadic Chinese patients with hypertension has not been fully understood. The study was to evaluate the associations of mtDNA mutations with maternally inherited essential hypertensive subjects in China. Methods From June 2009 to June 2016, a total of 800 gender-matched Chinese patients with maternally inherited essential hypertension (MIEH) and control group were 1:1 enrolled in this case-control study. Genomic DNA was extracted from each person’s peripheral blood cells. The main mtDNA locations for MIEH were screened with oligodeoxynucleotides 3777-4679 bp, analyzed and compared with the updated consensus Cambridge Sequence. Pathogenic mtDNA mutations were identified from the mitochondrial map. Results MIEH subjects presented significantly higher values than those of control group in abdominal circumference (AC), waist circumference (WC), body mass index (BMI), fasting blood glucose (FBG), triglyceride (TG), low-density lipoprotein cholesterol (LDL) and renal function (P < 0.05). MIEH subjects carried more amino acid changes and coding sequence variants (P < 0.01) than control group. The allele frequencies of the eight single nucleotide polymorphisms (SNPs) were significantly different between the two groups, including m.3970 C > T, m.4048G > A, m.4071C > T, m.4086C > T, m. 4164A > G and m.4248 T > C in ND1 gene, and m.4386 T > C and m.4394C > T in tRNAGln gene(P < 0.001). Fifty-five homoplasmic or heteroplasmic mutations were detected in 5 genes: ND1, tRNAIle, tRNAMet, tRNAGln and ND2 gene. The ND1 gene was the main mutation site, where the most mtDNA mutation was m.3970 C > T. Conclusions The mtDNA mutations were involved in the process of MIEH. We identified mitochondrial genetic characteristics in MIEH patients in China. The present research serves as a solid foundation for further detailed research on the association between MIEH and mitochondrial dysfunction, and their causal relationship in Chinese and other populations with a similar lifestyle.
Collapse
Affiliation(s)
- Ye Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China. .,Department of Cardiology, Northern Jiangsu People's Hospital, Nantong West Road No.98, Yangzhou, 225001, Jiangsu, China.
| | - Jia You
- Department of Internal Medicine, Yangzhou Maternal and Child HealthCare Hospital, Yangzhou, 225001, Jiangsu, China
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, USA
| | - Xiang Gu
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.,Department of Cardiology, Northern Jiangsu People's Hospital, Nantong West Road No.98, Yangzhou, 225001, Jiangsu, China
| |
Collapse
|
18
|
Ma H, Hayama T, Van Dyken C, Darby H, Koski A, Lee Y, Gutierrez NM, Yamada S, Li Y, Andrews M, Ahmed R, Liang D, Gonmanee T, Kang E, Nasser M, Kempton B, Brigande J, McGill TJ, Terzic A, Amato P, Mitalipov S. Deleterious mtDNA mutations are common in mature oocytes. Biol Reprod 2020; 102:607-619. [PMID: 31621839 PMCID: PMC7068114 DOI: 10.1093/biolre/ioz202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Heritable mitochondrial DNA (mtDNA) mutations are common, yet only a few recurring pathogenic mtDNA variants account for the majority of known familial cases in humans. Purifying selection in the female germline is thought to be responsible for the elimination of most harmful mtDNA mutations during oogenesis. Here we show that deleterious mtDNA mutations are abundant in ovulated mature mouse oocytes and preimplantation embryos recovered from PolG mutator females but not in their live offspring. This implies that purifying selection acts not in the maternal germline per se, but during post-implantation development. We further show that oocyte mtDNA mutations can be captured and stably maintained in embryonic stem cells and then reintroduced into chimeras, thereby allowing examination of the effects of specific mutations on fetal and postnatal development.
Collapse
Affiliation(s)
- Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Tomonari Hayama
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Crystal Van Dyken
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Hayley Darby
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Yeonmi Lee
- Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil Songpa-gu, Seoul 05505, Republic of Korea
| | - Nuria Marti Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Satsuki Yamada
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ying Li
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Michael Andrews
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, 3375 S.W. Terwilliger Blvd, Portland, Oregon 97239, USA
| | - Riffat Ahmed
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Dan Liang
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Thanasup Gonmanee
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Eunju Kang
- Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil Songpa-gu, Seoul 05505, Republic of Korea
| | - Mohammed Nasser
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Beth Kempton
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - John Brigande
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Trevor J McGill
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, 3375 S.W. Terwilliger Blvd, Portland, Oregon 97239, USA
| | - Andre Terzic
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Paula Amato
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| |
Collapse
|
19
|
Al Khatib I, Shutt TE. Advances Towards Therapeutic Approaches for mtDNA Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:217-246. [PMID: 31452143 DOI: 10.1007/978-981-13-8367-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondria maintain and express their own genome, referred to as mtDNA, which is required for proper mitochondrial function. While mutations in mtDNA can cause a heterogeneous array of disease phenotypes, there is currently no cure for this collection of diseases. Here, we will cover characteristics of the mitochondrial genome important for understanding the pathology associated with mtDNA mutations, and review recent approaches that are being developed to treat and prevent mtDNA disease. First, we will discuss mitochondrial replacement therapy (MRT), where mitochondria from a healthy donor replace maternal mitochondria harbouring mutant mtDNA. In addition to ethical concerns surrounding this procedure, MRT is only applicable in cases where the mother is known or suspected to carry mtDNA mutations. Thus, there remains a need for other strategies to treat patients with mtDNA disease. To this end, we will also discuss several alternative means to reduce the amount of mutant mtDNA present in cells. Such methods, referred to as heteroplasmy shifting, have proven successful in animal models. In particular, we will focus on the approach of targeting engineered endonucleases to specifically cleave mutant mtDNA. Together, these approaches offer hope to prevent the transmission of mtDNA disease and potentially reduce the impact of mtDNA mutations.
Collapse
Affiliation(s)
- Iman Al Khatib
- Deparments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Timothy E Shutt
- Deparments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
20
|
Ishikawa K, Kobayashi K, Yamada A, Umehara M, Oka T, Nakada K. Concentration of mitochondrial DNA mutations by cytoplasmic transfer from platelets to cultured mouse cells. PLoS One 2019; 14:e0213283. [PMID: 30830936 PMCID: PMC6398856 DOI: 10.1371/journal.pone.0213283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/18/2019] [Indexed: 01/11/2023] Open
Abstract
Accumulation of mutations in mitochondrial DNA (mtDNA) is thought to be responsible for mitochondrial, and other, diseases and biological phenomena, such as diabetes, cancer, neurodegenerative diseases, and aging. Mouse models may elucidate the relationship between mutations in mtDNA and these abnormalities. However, because of the difficulty of mtDNA manipulation, generation of mouse models has not sufficiently progressed to enable such studies. To overcome this difficulty and to establish a source of diverse mtDNA mutations, we here generated cultured mouse cells containing mtDNA derived from an mtDNA mutator mouse that accumulates random mtDNA mutations with age. Mutation analysis of the obtained transmitochondrial cytoplasmic hybrid cells (cybrids) revealed that the cells harbored diverse mtDNA mutations occurring at a higher frequency than in mouse tissues, and exhibited severe respiration defects that would be lethal in tissues or organs. Abnormal respiratory complex formation and high stress on the mitochondrial protein quality control system appeared to be involved in these severe respiration defects. The mutation rates of the majority of highly accumulated mutations converged to either approximately 5%, 10%, or 40%, suggesting that these mutations are linked on the respective mtDNA molecules, and mtDNA in cybrid cells likely consisted of mtDNA molecules clonally expanded from the small population of introduced mtDNAs. Thus, the linked mutations in these cybrid cells cannot be evaluated individually. In addition, mtDNA mutations homologous to confirmed pathogenic mutations in human were rarely observed in our generated cybrids. However, the transmitochondrial cybrids constitute a useful tool for concentrating pathogenic mtDNA mutations and as a source of diverse mtDNA mutations to elucidate the relationship between mtDNA mutations and diseases.
Collapse
Affiliation(s)
- Kaori Ishikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
- * E-mail: (KI); (KN)
| | - Kohei Kobayashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Akihito Yamada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Moe Umehara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Toshihiko Oka
- Department of Life Science, Rikkyo University, Nishi-Ikebukuro, Toshima-ku, Tokyo, Japan
| | - Kazuto Nakada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
- * E-mail: (KI); (KN)
| |
Collapse
|
21
|
Zhu Y, Gu X, Xu C. Mitochondrial DNA 7908-8816 region mutations in maternally inherited essential hypertensive subjects in China. BMC Med Genomics 2018; 11:89. [PMID: 30326913 PMCID: PMC6191914 DOI: 10.1186/s12920-018-0408-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/25/2018] [Indexed: 12/14/2022] Open
Abstract
Background Nuclear genes or family-based mitochondrial screening have been the focus of genetic studies into essential hypertension. Studies into the role of mitochondria in sporadic Chinese hypertensives are lacking. The objective of the study was to explore the relationship between mitochondrial DNA (mtDNA) variations and the development of maternally inherited essential hypertension (MIEH) in China. Methods Yangzhou residents who were outpatients or in-patients at the Department of Cardiology in Northern Jiangsu People’s Hospital (Jiangsu, China) from June 2009 to June 2015 were recruited in a 1:1 case control study of 600 gender-matched Chinese MIEH subjects and controls. Genomic DNA was isolated from whole blood cells. The most likely sites for hypertension were screened using oligodeoxynucleotides at positions 7908–8816, purified and subsequently analyzed by direct sequencing according to the revised consensus Cambridge sequence. The frequency, density, type and conservative evolution of mtDNA variations were comprehensively analyzed. Results We found a statistical difference between the two groups for body mass index, waist circumference, abdominal circumference, triglyceride, low-density lipoprotein cholesterol, fasting blood glucose, uric acid, creatinine and blood urea nitrogen (P < 0.05). More amino-acid changes and RNA variants were found in MIEH subjects than the controls (P < 0.01). The detection system simultaneously identified 40 different heteroplasmic or homoplasmic mutations in 4 genes: COXII, tRNALys, ATP8 and ATP 6. The mtDNA variations were mainly distributed in regions of ATP6 binding sites, and the site of highest mutation frequency was m. 8414C > T. Three changes in single bases (C8414T in ATP8, A8701G in ATP6 and G8584A in ATP6) were significantly different in the MIEH patients and the controls (P < 0.001). The m.8273_8281del mutation was identified from 59 MIEH patients. Conclusions Our results indicate that novel mtDNA mutations may be involved in the pathological process of MIEH, and mitochondrial genetic characteristics were identified in MIEH individuals. Electronic supplementary material The online version of this article (10.1186/s12920-018-0408-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.,Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Xiang Gu
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China. .,Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China.
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73134, USA
| |
Collapse
|
22
|
Kuszak AJ, Espey MG, Falk MJ, Holmbeck MA, Manfredi G, Shadel GS, Vernon HJ, Zolkipli-Cunningham Z. Nutritional Interventions for Mitochondrial OXPHOS Deficiencies: Mechanisms and Model Systems. ANNUAL REVIEW OF PATHOLOGY 2018; 13:163-191. [PMID: 29099651 PMCID: PMC5911915 DOI: 10.1146/annurev-pathol-020117-043644] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multisystem metabolic disorders caused by defects in oxidative phosphorylation (OXPHOS) are severe, often lethal, conditions. Inborn errors of OXPHOS function are termed primary mitochondrial disorders (PMDs), and the use of nutritional interventions is routine in their supportive management. However, detailed mechanistic understanding and evidence for efficacy and safety of these interventions are limited. Preclinical cellular and animal model systems are important tools to investigate PMD metabolic mechanisms and therapeutic strategies. This review assesses the mechanistic rationale and experimental evidence for nutritional interventions commonly used in PMDs, including micronutrients, metabolic agents, signaling modifiers, and dietary regulation, while highlighting important knowledge gaps and impediments for randomized controlled trials. Cellular and animal model systems that recapitulate mutations and clinical manifestations of specific PMDs are evaluated for their potential in determining pathological mechanisms, elucidating therapeutic health outcomes, and investigating the value of nutritional interventions for mitochondrial disease conditions.
Collapse
Affiliation(s)
- Adam J Kuszak
- Office of Dietary Supplements, National Institutes of Health, Bethesda, Maryland 20852, USA;
| | - Michael Graham Espey
- Division of Cancer Biology, National Cancer Institute, Rockville, Maryland 20850, USA;
| | - Marni J Falk
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marissa A Holmbeck
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06510-8023, USA;
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Gerald S Shadel
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06510-8023, USA;
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520-8023, USA;
| | - Hilary J Vernon
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA;
| | - Zarazuela Zolkipli-Cunningham
- Department of Pediatrics, Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
23
|
Analysis of mitochondrial function in human induced pluripotent stem cells from patients with mitochondrial diabetes due to the A3243G mutation. Sci Rep 2018; 8:949. [PMID: 29343702 PMCID: PMC5772054 DOI: 10.1038/s41598-018-19264-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/16/2017] [Indexed: 01/19/2023] Open
Abstract
We previously established human induced pluripotent stem (iPS) cells in two diabetic patients from different families with the mitochondrial A3243G mutation and isolated isogenic iPS cell clones with either undetectable or high levels of the mutation in both patients. In the present study, we analyzed the mitochondrial functions of two mutation-undetectable and two mutation-high clones in each patient through four methods to assess complex I activity, mitochondrial membrane potential, mitochondrial respiration, and mitochondrial ATP production. In the first patient, complex I activity, mitochondrial respiration, and mitochondrial ATP production were decreased in the mutation-high clones compared with the mutation-undetectable clones, and mitochondrial membrane potential was decreased in a mutation-high clone compared with a mutation-undetectable clone. In the second patient, complex I activity was decreased in one mutation-high clone compared with the other clones. The other parameters showed no differences in any clones. In addition, the complex I activity and mitochondrial respiration of the mutation-undetectable clones from both patients were located in the range of those of iPS cells from healthy subjects. The present study suggests that the mitochondrial function of the mutation-undetectable iPS cell clones obtained from two patients with the A3243G mutation is comparable to the control iPS cells.
Collapse
|
24
|
A Phenotype-Driven Approach to Generate Mouse Models with Pathogenic mtDNA Mutations Causing Mitochondrial Disease. Cell Rep 2017; 16:2980-2990. [PMID: 27626666 PMCID: PMC5039181 DOI: 10.1016/j.celrep.2016.08.037] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/18/2016] [Accepted: 08/11/2016] [Indexed: 01/30/2023] Open
Abstract
Mutations of mtDNA are an important cause of human disease, but few animal models exist. Because mammalian mitochondria cannot be transfected, the development of mice with pathogenic mtDNA mutations has been challenging, and the main strategy has therefore been to introduce mutations found in cell lines into mouse embryos. Here, we describe a phenotype-driven strategy that is based on detecting clonal expansion of pathogenic mtDNA mutations in colonic crypts of founder mice derived from heterozygous mtDNA mutator mice. As proof of concept, we report the generation of a mouse line transmitting a heteroplasmic pathogenic mutation in the alanine tRNA gene of mtDNA displaying typical characteristics of classic mitochondrial disease. In summary, we describe a straightforward and technically simple strategy based on mouse breeding and histology to generate animal models of mtDNA-mutation disease, which will be of great importance for studies of disease pathophysiology and preclinical treatment trials. We present a method to isolate and identify pathogenic mtDNA mutations in mice We describe a mouse with a pathogenic mutation in the mitochondrial tRNAALA gene The mice display disrupted mitochondrial translation as a result of the mutation The mice display molecular and histochemical symptoms of human mitochondrial disease
Collapse
|
25
|
Shimizu A, Tani H, Takibuchi G, Ishikawa K, Sakurazawa R, Inoue T, Hashimoto T, Nakada K, Takenaga K, Hayashi JI. Cytoplasmic transfer of heritable elements other than mtDNA from SAMP1 mice into mouse tumor cells suppresses their ability to form tumors in C57BL6 mice. Biochem Biophys Res Commun 2017; 493:252-257. [PMID: 28893537 DOI: 10.1016/j.bbrc.2017.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 11/30/2022]
Abstract
In a previous study, we generated transmitochondrial P29mtSAMP1 cybrids, which had nuclear DNA from the C57BL6 (referred to as B6) mouse strain-derived P29 tumor cells and mitochondrial DNA (mtDNA) exogenously-transferred from the allogeneic strain SAMP1. Because P29mtSAMP1 cybrids did not form tumors in syngeneic B6 mice, we proposed that allogeneic SAMP1 mtDNA suppressed tumor formation of P29mtSAMP1 cybrids. To test this hypothesis, current study generated P29mt(sp)B6 cybrids carrying all genomes (nuclear DNA and mtDNA) from syngeneic B6 mice by eliminating SAMP1 mtDNA from P29mtSAMP1 cybrids and reintroducing B6 mtDNA. However, the P29mt(sp)B6 cybrids did not form tumors in B6 mice, even though they had no SAMP1 mtDNA, suggesting that SAMP1 mtDNA is not involved in tumor suppression. Then, we examined another possibility of whether SAMP1 mtDNA fragments potentially integrated into the nuclear DNA of P29mtSAMP1 cybrids are responsible for tumor suppression. We generated P29H(sp)B6 cybrids by eliminating nuclear DNA from P29mt(sp)B6 cybrids and reintroducing nuclear DNA with no integrated SAMP1 mtDNA fragment from mtDNA-less P29 cells resistant to hygromycin in selection medium containing hygromycin. However, the P29H(sp)B6 cybrids did not form tumors in B6 mice, even though they carried neither SAMP1 mtDNA nor nuclear DNA with integrated SAMP1 mtDNA fragments. Moreover, overproduction of reactive oxygen species (ROS) and bacterial infection were not involved in tumor suppression. These observations suggest that tumor suppression was caused not by mtDNA with polymorphic mutations or infection of cytozoic bacteria but by hypothetical heritable cytoplasmic elements other than mtDNA from SAMP1 mice.
Collapse
Affiliation(s)
- Akinori Shimizu
- Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Haruna Tani
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Gaku Takibuchi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kaori Ishikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Ryota Sakurazawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Takafumi Inoue
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuto Nakada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Keizo Takenaga
- Department of Life Science, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Jun-Ichi Hayashi
- University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
26
|
Li R, Wen B, Zhao H, Ouyang N, Ou S, Wang W, Han J, Yang D. Embryo development after mitochondrial supplementation from induced pluripotent stem cells. J Assist Reprod Genet 2017; 34:1027-1033. [PMID: 28573522 DOI: 10.1007/s10815-017-0948-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022] Open
Abstract
PURPOSE The purpose of this study was to evaluate the effects of mitochondrial supplementation (MS) on early embryonic development and to assess the safety of MS treatments using induced pluripotent stem cells (iPSCs) as the mitochondrial donor. METHODS In this study, we evaluated the effect of MS on early embryonic development using induced pluripotent stem cells (iPSCs) as the donor. Mouse zygotes were injected with either mitochondria from iPSCs or a vehicle solution. Several parameters were evaluated, including the rates of blastocyst formation and implantation, the weight of E13.5 embryos and placentas, the distribution of the donor mitochondrial DNA (mtDNA), and the pattern of methylation in the differentially methylated regions (DMRs) of the H19 and Snrpn genes. RESULTS We found that neither the rates of blastocyst formation and implantation nor the weights of E13.5 embryos and placentas were significantly different between the MS and control groups. Additionally, the mtDNA from the iPSC donors could be detected in the muscle tissue of four fetuses and all placentas in the MS group. Finally, the methylation patterns of H19 and Snrpn DMRs remained unchanged by MS. CONCLUSIONS iPSC-derived mtDNA was directly involved in the process of embryonic development after MS. No adverse effects were seen when using iPSCs as a mitochondrial donor, but it remains to be seen whether this method can improve embryonic development, especially in older mice.
Collapse
Affiliation(s)
- Ruiqi Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Bingqiang Wen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Haijing Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Nengyong Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Songbang Ou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Wenjun Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Jianyong Han
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Dongzi Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China. .,Reproductive Medicine Centre, Department of Obstetrics and Gynaecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
27
|
Hayashi JI, Hashizume O, Ishikawa K, Shimizu A. Mutations in mitochondrial DNA regulate mitochondrial diseases and metastasis but do not regulate aging. Curr Opin Genet Dev 2016; 38:63-67. [PMID: 27078865 DOI: 10.1016/j.gde.2016.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/03/2016] [Accepted: 03/08/2016] [Indexed: 01/21/2023]
Abstract
The mitochondria theory of aging proposes that accumulation of mitochondrial DNA (mtDNA) with pathogenic mutations, and the resultant respiration defects, are responsible not only for mitochondrial diseases but also for aging and age-associated disorders, including tumor development. This theory is partly supported by results obtained from our transmitochondrial mice (mito-mice), which harbour mtDNA with mutations that are orthologous to those found in patients with mitochondrial diseases: mito-mice express disease phenotypes only when they express respiration defects caused by accumulation of mutated mtDNA. With regard to tumor development, specific mtDNA mutations that induce reactive oxygen species (ROS) enhance malignant transformation of lung carcinoma cells to cells with high metastatic potential. However, age-associated respiration defects in elderly human fibroblasts are due not to mtDNA mutations but to epigenetic regulation of nuclear-coded genes, as indicated by the fact that normal respiratory function is restored by reprogramming of elderly fibroblasts.
Collapse
Affiliation(s)
- Jun-Ichi Hayashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Osamu Hashizume
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kaori Ishikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Akinori Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
28
|
Generation of Xenomitochondrial Embryonic Stem Cells for the Production of Live Xenomitochondrial Mice. Methods Mol Biol 2015; 1351:163-73. [PMID: 26530681 DOI: 10.1007/978-1-4939-3040-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The unique features of the mitochondrial genome, such as its high copy number and lack of defined mechanisms of recombination, have hampered efforts to manipulate its sequence to create specific mutations in mouse mtDNA. As such, the generation of in vivo mouse models of mtDNA disease has proved technically challenging. This chapter describes a unique approach to create mitochondrial oxidative phosphorylation (OXPHOS) defects in mouse ES cells by transferring mtDNA from different murid species into Mus musculus domesticus ES cells using cytoplasmic hybrid ("cybrid") fusion. The resulting "xenocybrid" ES cells carry OXPHOS defects of varying severity, and can be utilized to generate live mouse models of mtDNA disease.
Collapse
|
29
|
Shimizu A, Enoki S, Ishikawa K, Mito T, Obata K, Nagashima R, Yonekawa H, Nakada K, Hayashi JI. Mouse somatic mutation orthologous to MELAS A3302G mutation in the mitochondrial tRNA gene confers respiration defects. Biochem Biophys Res Commun 2015; 467:1097-102. [DOI: 10.1016/j.bbrc.2015.09.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/12/2015] [Indexed: 01/05/2023]
|
30
|
Hayashi C, Takibuchi G, Shimizu A, Mito T, Ishikawa K, Nakada K, Hayashi JI. A somatic T15091C mutation in the Cytb gene of mouse mitochondrial DNA dominantly induces respiration defects. Biochem Biophys Res Commun 2015; 463:1021-7. [PMID: 26072375 DOI: 10.1016/j.bbrc.2015.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/07/2015] [Indexed: 10/23/2022]
Abstract
Our previous studies provided evidence that mammalian mitochondrial DNA (mtDNA) mutations that cause mitochondrial respiration defects behave in a recessive manner, because the induction of respiration defects could be prevented with the help of a small proportion (10%-20%) of mtDNA without the mutations. However, subsequent studies found the induction of respiration defects by the accelerated accumulation of a small proportion of mtDNA with various somatic mutations, indicating the presence of mtDNA mutations that behave in a dominant manner. Here, to provide the evidence for the presence of dominant mutations in mtDNA, we used mouse lung carcinoma P29 cells and examined whether some mtDNA molecules possess somatic mutations that dominantly induce respiration defects. Cloning and sequence analysis of 40-48 mtDNA molecules from P29 cells was carried out to screen for somatic mutations in protein-coding genes, because mutations in these genes could dominantly regulate respiration defects by formation of abnormal polypeptides. We found 108 missense mutations existing in one or more of 40-48 mtDNA molecules. Of these missense mutations, a T15091C mutation in the Cytb gene was expected to be pathogenic due to the presence of its orthologous mutation in mtDNA from a patient with cardiomyopathy. After isolation of many subclones from parental P29 cells, we obtained subclones with various proportions of T15091C mtDNA, and showed that the respiration defects were induced in a subclone with only 49% T15091C mtDNA. Because the induction of respiration defects could not be prevented with the help of the remaining 51% mtDNA without the T15091C mutation, the results indicate that the T15091C mutation in mtDNA dominantly induced the respiration defects.
Collapse
Affiliation(s)
- Chisato Hayashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Gaku Takibuchi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Akinori Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Takayuki Mito
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Kaori Ishikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuto Nakada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Jun-Ichi Hayashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
31
|
Mitochondrial DNA: Radically free of free-radical driven mutations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1354-61. [PMID: 26050972 DOI: 10.1016/j.bbabio.2015.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/08/2015] [Accepted: 06/02/2015] [Indexed: 01/31/2023]
Abstract
Mitochondrial DNA has long been posited as a likely target of oxidative damage induced mutation during the ageing process. Research over the past decades has uncovered the accumulation of mitochondrial DNA mutations in association with a mosaic pattern of cells displaying mitochondrial dysfunction in ageing individuals. Unfortunately, the underlying mechanisms are far less straightforward than originally anticipated. Recent research on mitochondria reveals that these genomes are far less helpless than originally envisioned. Additionally, new technologies have allowed us to analyze the mutational signatures of many more somatic mitochondrial DNA mutations, revealing surprising patterns that are inconsistent with a DNA-oxidative damage based hypothesis. In this review, we will discuss these recent observations and new insights into the eccentricities of mitochondrial genetics, and their impact on our understanding of mitochondrial mutations and their role in the ageing process. This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.
Collapse
|
32
|
Fayzulin RZ, Perez M, Kozhukhar N, Spadafora D, Wilson GL, Alexeyev MF. A method for mutagenesis of mouse mtDNA and a resource of mouse mtDNA mutations for modeling human pathological conditions. Nucleic Acids Res 2015; 43:e62. [PMID: 25820427 PMCID: PMC4482060 DOI: 10.1093/nar/gkv140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/10/2015] [Indexed: 12/23/2022] Open
Abstract
Mutations in human mitochondrial DNA (mtDNA) can cause mitochondrial disease and have been associated with neurodegenerative disorders, cancer, diabetes and aging. Yet our progress toward delineating the precise contributions of mtDNA mutations to these conditions is impeded by the limited availability of faithful transmitochondrial animal models. Here, we report a method for the isolation of mutations in mouse mtDNA and its implementation for the generation of a collection of over 150 cell lines suitable for the production of transmitochondrial mice. This method is based on the limited mutagenesis of mtDNA by proofreading-deficient DNA-polymerase γ followed by segregation of the resulting highly heteroplasmic mtDNA population by means of intracellular cloning. Among generated cell lines, we identify nine which carry mutations affecting the same amino acid or nucleotide positions as in human disease, including a mutation in the ND4 gene responsible for 70% of Leber Hereditary Optic Neuropathies (LHON). Similar to their human counterparts, cybrids carrying the homoplasmic mouse LHON mutation demonstrated reduced respiration, reduced ATP content and elevated production of mitochondrial reactive oxygen species (ROS). The generated resource of mouse mtDNA mutants will be useful both in modeling human mitochondrial disease and in understanding the mechanisms of ROS production mediated by mutations in mtDNA.
Collapse
Affiliation(s)
- Rafik Z Fayzulin
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA
| | - Michael Perez
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Natalia Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Domenico Spadafora
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Glenn L Wilson
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail F Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
33
|
Giordano C, Morea V, Perli E, d'Amati G. The phenotypic expression of mitochondrial tRNA-mutations can be modulated by either mitochondrial leucyl-tRNA synthetase or the C-terminal domain thereof. Front Genet 2015; 6:113. [PMID: 25852750 PMCID: PMC4370040 DOI: 10.3389/fgene.2015.00113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/04/2015] [Indexed: 11/23/2022] Open
Abstract
Mutations in mitochondrial (mt) DNA determine important human diseases. The majority of the known pathogenic mutations are located in transfer RNA (tRNA) genes and are responsible for a wide range of currently untreatable disorders. Experimental evidence both in yeast and in human cells has shown that the detrimental effects of mt-tRNA point mutations can be attenuated by increasing the expression of the cognate mt-aminoacyl-tRNA synthetases (aaRSs). In addition, constitutive high levels of isoleucyl-tRNA syntethase have been shown to reduce the penetrance of a homoplasmic mutation in mt-tRNAIle in a small kindred. More recently, we showed that the isolated carboxy-terminal domain of human mt-leucyl tRNA synthetase (LeuRS-Cterm) localizes to mitochondria and ameliorates the energetic defect in transmitochondrial cybrids carrying mutations either in the cognate mt-tRNALeu(UUR) or in the non-cognate mt-tRNAIle gene. Since the mt-LeuRS-Cterm does not possess catalytic activity, its rescuing ability is most likely mediated by a chaperon-like effect, consisting in the stabilization of the tRNA structure altered by the mutation. All together, these observations open potential therapeutic options for mt-tRNA mutations-associated diseases.
Collapse
Affiliation(s)
- Carla Giordano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome Rome, Italy
| | - Veronica Morea
- National Research Council of Italy, Institute of Molecular Biology and Pathology, Department of Biochemical Sciences, Sapienza University of Rome Rome, Italy
| | - Elena Perli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome Rome, Italy
| | - Giulia d'Amati
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome Rome, Italy ; Pasteur Institute-Cenci Bolognetti Foundation Rome, Italy
| |
Collapse
|
34
|
Hashizume O, Yamanashi H, Taketo MM, Nakada K, Hayashi JI. A specific nuclear DNA background is required for high frequency lymphoma development in transmitochondrial mice with G13997A mtDNA. PLoS One 2015; 10:e0118561. [PMID: 25738506 PMCID: PMC4349826 DOI: 10.1371/journal.pone.0118561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/20/2015] [Indexed: 11/19/2022] Open
Abstract
We previously found that mouse mitochondrial DNA (mtDNA) with a G13997A mutation (G13997A mtDNA) controls not only the transformation of cultured lung carcinoma cells from poorly metastatic into highly metastatic cells, but also the transformation of lymphocytes into lymphomas in living C57BL/6 (B6) mice. Because the nuclear genetic background of the B6 strain makes the strain prone to develop lymphomas, here we examined whether G13997A mtDNA independently induces lymphoma development even in mice with the nuclear genetic background of the A/J strain, which is not prone to develop lymphomas. Our results showed that the B6 nuclear genetic background is required for frequent lymphoma development in mice with G13997A mtDNA. Moreover, G13997A mtDNA in mice did not enhance the malignant transformation of lung adenomas into adenocarcinomas or that of hepatocellular carcinomas from poorly metastatic into highly metastatic carcinomas. Therefore, G13997A mtDNA enhances the frequency of lymphoma development under the abnormalities in the B6 nuclear genome, and does not independently control tumor development and tumor progression.
Collapse
Affiliation(s)
- Osamu Hashizume
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Haruka Yamanashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Makoto M. Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyou-ku, Kyoto, Japan
| | - Kazuto Nakada
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Jun-Ichi Hayashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
- TARA center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
35
|
Shimizu A, Mito T, Hashizume O, Yonekawa H, Ishikawa K, Nakada K, Hayashi JI. G7731A mutation in mouse mitochondrial tRNALys regulates late-onset disorders in transmitochondrial mice. Biochem Biophys Res Commun 2015; 459:66-70. [DOI: 10.1016/j.bbrc.2015.02.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/16/2015] [Indexed: 02/05/2023]
|
36
|
Torraco A, Peralta S, Iommarini L, Diaz F. Mitochondrial Diseases Part I: mouse models of OXPHOS deficiencies caused by defects in respiratory complex subunits or assembly factors. Mitochondrion 2015; 21:76-91. [PMID: 25660179 DOI: 10.1016/j.mito.2015.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/22/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
Mitochondrial disorders are the most common inborn errors of metabolism affecting the oxidative phosphorylation system (OXPHOS). Because of the poor knowledge of the pathogenic mechanisms, a cure for these disorders is still unavailable and all the treatments currently in use are supportive more than curative. Therefore, in the past decade a great variety of mouse models have been developed to assess the in vivo function of several mitochondrial proteins involved in human diseases. Due to the genetic and physiological similarity to humans, mice represent reliable models to study the pathogenic mechanisms of mitochondrial disorders and are precious to test new therapeutic approaches. Here we summarize the features of several mouse models of mitochondrial diseases directly related to defects in subunits of the OXPHOS complexes or in assembly factors. We discuss how these models recapitulate many human conditions and how they have contributed to the understanding of mitochondrial function in health and disease.
Collapse
Affiliation(s)
- Alessandra Torraco
- Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo, 15-00146 Rome, Italy.
| | - Susana Peralta
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | - Francisca Diaz
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
37
|
Abbott JA, Francklyn CS, Robey-Bond SM. Transfer RNA and human disease. Front Genet 2014; 5:158. [PMID: 24917879 PMCID: PMC4042891 DOI: 10.3389/fgene.2014.00158] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/14/2014] [Indexed: 12/25/2022] Open
Abstract
Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA) genes are “hotspots” for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase), mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers), and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing). Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.
Collapse
Affiliation(s)
- Jamie A Abbott
- Department of Biochemistry, College of Medicine, University of Vermont Burlington, VT, USA
| | | | - Susan M Robey-Bond
- Department of Biochemistry, College of Medicine, University of Vermont Burlington, VT, USA
| |
Collapse
|