1
|
Guo W, Zhang X, Li L, Shao P, Liang C, Zhang H, Liu K, Wang S, Peng Y, Luo J, Ju Y, De Marzo AM, Yu C, Chen L, Zhou B, Gao D. JAK/STAT signaling maintains an intermediate cell population during prostate basal cell fate determination. Nat Genet 2024; 56:2776-2789. [PMID: 39537874 DOI: 10.1038/s41588-024-01979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Unipotent basal and luminal stem cells maintain prostate homeostasis, with an intermediate cell population emerging during prostate inflammation or cancer. However, the identities of basal stem cell and intermediate cell population remain unclear. Here we identified a rare intermediate cell population expressing luminal markers (termed Basal-B) with enhanced organoid formation capacity, and a larger basal population (termed Basal-A). Genetic lineage tracing revealed Basal-B cells represented a transient basal stem cell state during prostate homeostasis and androgen-mediated regeneration. Activated JAK/STAT signaling was identified in Basal-B cells, and its inhibition significantly reduced Basal-B markers expression. Inflammation increased Basal-B-to-luminal cell transdifferentiation, but JAK/STAT inhibition notably attenuated this effect. Pten gene deletion increased Nkx3.1-expressing Basal-B-like cell population and led to neoplasia. In humans, h-Basal-B cells were more prevalent in benign prostate hyperplasia. This study reveals the identities of intermediate Basal-B cells and underscores the role of JAK/STAT signaling in prostate cell fate determination.
Collapse
Affiliation(s)
- Wangxin Guo
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiaoyu Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Li
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Shao
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongjiong Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kuo Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shuoming Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunyi Peng
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yi Ju
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Angelo M De Marzo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chen Yu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Luonan Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences, Hangzhou, China.
| | - Bin Zhou
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences, Hangzhou, China.
| | - Dong Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
2
|
Cooper PO, Yang J, Wang HH, Broman MM, Jayasundara SM, Sahoo SS, Yan B, Awdalkreem GD, Cresswell GM, Wang L, Goossens E, Lanman NA, Doerge RW, Zheng F, Cheng L, Alqahtani S, Crist SA, Braun RE, Kazemian M, Jerde TJ, Ratliff TL. Inflammation impacts androgen receptor signaling in basal prostate stem cells through interleukin 1 receptor antagonist. Commun Biol 2024; 7:1390. [PMID: 39455902 PMCID: PMC11511867 DOI: 10.1038/s42003-024-07071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic prostate inflammation in patients with benign prostate hyperplasia (BPH) correlates with the severity of symptoms. How inflammation contributes to prostate enlargement and/or BPH symptoms and the underlying mechanisms remain unclear. In this study, we utilize a unique transgenic mouse model that mimics chronic non-bacterial prostatitis in men and investigate the impact of inflammation on androgen receptor (AR) in basal prostate stem cells (bPSC) and their differentiation in vivo. We find that inflammation significantly enhances AR levels and activity in bPSC. More importantly, we identify interleukin 1 receptor antagonist (IL-1RA) as a crucial regulator of AR in bPSC during inflammation. IL-1RA is one of the top molecules upregulated by inflammation, and inhibiting IL-1RA reverses the enhanced AR activity in organoids derived from inflamed bPSC. Additionally, IL-1RA appears to activate AR by counteracting IL-1α's inhibitory effect. Furthermore, using a lineage tracing model, we observe that inflammation induces bPSC proliferation and differentiation into luminal cells even under castrate conditions, indicating that AR activation driven by inflammation is sufficient to promote bPSC proliferation and differentiation. Taken together, our study uncovers mechanisms through which inflammation modulates AR signaling in bPSC and induces bPSC luminal differentiation that may contribute to prostate hyperplasia.
Collapse
Affiliation(s)
- Paula O Cooper
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Jiang Yang
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Cancer Research, West Lafayette, IN, USA.
| | - Hsing-Hui Wang
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Immune Monitoring and Genomics Facility, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Meaghan M Broman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
| | | | | | - Bingyu Yan
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Gada D Awdalkreem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
| | - Gregory M Cresswell
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Flow Cytometry Core Facility, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Liang Wang
- Department of Pharmacology and Toxicology, Department of Urology, Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emery Goossens
- Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - Nadia A Lanman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
| | - Rebecca W Doerge
- Department of Statistics, Purdue University, West Lafayette, IN, USA
- Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Faye Zheng
- Department of Statistics, Purdue University, West Lafayette, IN, USA
- Sorcero, Inc., Washington, DC, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, the Legorreta Cancer Center at Brown University, and Brown University Health, Providence, RI, USA
| | - Saeed Alqahtani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
| | - Scott A Crist
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| | | | - Majid Kazemian
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Travis J Jerde
- Department of Pharmacology and Toxicology, Department of Urology, Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Timothy L Ratliff
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Cancer Research, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Liao H, Wang Z, Qian Y, Chen H, Shi Y, Huang J, Guo X, Yu M, Yu Y. Unveiling the Impact of Epstein-Barr Virus on the Risk of Prostate Cancer: A Mendelian Randomization Study. Nutr Cancer 2024; 77:93-101. [PMID: 39252461 DOI: 10.1080/01635581.2024.2399868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Given the consistent detection of Epstein-Barr virus (EBV) in prostate tissues and the clinical evidence suggesting its involvement in prostate cancer (PCa), the potential association between EBV infection and PCa warrants further investigation. This study aimed to assess the causal relationship between EBV infection and PCa using Mendelian randomization (MR). We utilized data from a publicly available genome-wide association study (GWAS) on PCa, alongside data on five serum anti-EBV virus-related antibodies. Our findings indicate a potential causal link between serum EBV EA-D antibody levels and an increased risk of PCa. These results highlight the need for additional research to elucidate the mechanisms by which EBV may contribute to the progression of PCa, potentially offering new insights into its pathogenesis and therapeutic targets.
Collapse
Affiliation(s)
- Haihong Liao
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Zhihan Wang
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuhang Qian
- Department of Urology, Shanghai 411 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Shanghai, China
| | - Haojie Chen
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuntian Shi
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Jiacheng Huang
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuchen Guo
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Mingming Yu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjiang Yu
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Su H, Huang L, Zhou J, Yang G. Prostate cancer stem cells and their targeted therapies. Front Cell Dev Biol 2024; 12:1410102. [PMID: 39175878 PMCID: PMC11338935 DOI: 10.3389/fcell.2024.1410102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Prostate cancer (PCa) is the most common malignancy among men worldwide. Through androgen receptor signaling inhibitor (ARSI) treatment, patients eventually succumb to castration-resistant prostate cancer (CRPC). For this, the prostate cancer stem cells (PCSCs), as a minor population of tumor cells that can promote tumor relapse, ARSI resistance, and disease progression, are gaining attention. Therefore, specific therapy targeting PCSCs has momentum. This study reviewed the identification and characterization of PCSCs and PCSC-based putative biomarkers and summarized their mechanisms of action. We further discussed clinical trials of novel therapeutic interventions focused on PCSC-related pathways, the PCSC microenvironment, cutting-edge miRNA therapy, and immunotherapy approaches from a mechanistic standpoint. This review provides updated insights into PCSC plasticity, identifying new PCSC biomarkers and optimized treatments for patients with advanced PCa.
Collapse
Affiliation(s)
- Huilan Su
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liqun Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Zhou
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Zhang X, Wang J, Guo W, Zhang H, Zhou B, Yu C, Gao D. The cell fates of intermediate cell population in prostate development. CELL INSIGHT 2024; 3:100182. [PMID: 39100536 PMCID: PMC11295577 DOI: 10.1016/j.cellin.2024.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024]
Abstract
Organ development, regeneration and cancer initiation are typically influenced by the proliferation and lineage plasticity of tissue-specific stem cells. Prostate intermediate cells, which exhibit characteristics of both basal and luminal cells, are prevalent in pathological states and during organ development. However, the identity, fate and function of these intermediate cells in prostate development are not well understood. Through single-cell RNA-seq analysis on neonatal urogenital sinus tissue, we identified intermediate cells exhibiting stem cell potential. A notable decline in the population of intermediate cells was observed during prostate development. Prostate intermediate cells were specifically labeled in early and late postnatal development by the enhanced dual-recombinase-mediated genetic tracing systems. Our findings revealed that these cells possess significant stem cell capabilities as demonstrated in organoid formation and cell fate mapping assays. These intermediate cells also exhibited intrinsic bipotential properties, enabling them to differentiate into both basal and luminal cells. Additionally, we discovered a novel transition from intermediate cell expressing neuroendocrine markers to neuroendocrine cell during prostate development. This study highlights intermediate cells as a crucial stem cell population and enhances our understanding of their role in prostate development and the plasticity of prostate cancer lineage.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wangxin Guo
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Hongjiong Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhou
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Chen Yu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Dong Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
6
|
Kim M, Tamukong P, Galvan GC, Yang Q, De Hoedt A, Freeman MR, You S, Freedland S. Prostate cancers with distinct transcriptional programs in Black and White men. Genome Med 2024; 16:92. [PMID: 39044302 PMCID: PMC11267822 DOI: 10.1186/s13073-024-01361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Black men are at a higher risk of prostate cancer (PC) diagnosis and present with more high-grade PC than White men in an equal access setting. This study aimed to identify differential transcriptional regulation between Black and White men with PC. METHODS We performed microarray of radical prostatectomy tissue blocks from 305 Black and 238 White men treated at the Durham Veterans Affairs Medical Center. Differential expression, gene set enrichment analysis, master regulator analysis, and network modeling were conducted to compare gene expression by race. Findings were validated using external datasets that are available in the Gene Expression Omnibus (GEO) database. The first was a multi-institutional cohort of 1152 prostate cancer patients (596 Black, 556 White) with microarray data (GEO ID: GSE169038). The second was an Emory cohort of 106 patients (22 Black, 48 White, 36 men of unknown race) with RNA-seq data (GEO ID: GSE54460). Additionally, we analyzed androgen receptor (AR) chromatin binding profiles using paired AR ChIP-Seq datasets from Black and White men (GEO IDs: GSE18440 and GSE18441). RESULTS We identified 871 differentially expressed genes between Black and White men. White men had higher activity of MYC-related pathways, while Black men showed increased activity of inflammation, steroid hormone responses, and cancer progression-related pathways. We further identified the top 10 transcription factors (TFs) in Black patients, which formed a transcriptional regulatory network centered on the AR. The activities of this network and the pathways were significantly different in Black vs. White men across multiple cohorts and PC molecular subtypes. CONCLUSIONS These findings suggest PC in Black and White men have distinct tumor transcriptional profiles. Furthermore, a highly interactive TF network centered on AR drives differential gene expression in Black men. Additional study is needed to understand the degree to which these differences in transcriptional regulatory elements contribute to PC health disparities.
Collapse
Affiliation(s)
- Minhyung Kim
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Patrick Tamukong
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Qian Yang
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Michael R Freeman
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Stephen Freedland
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Veteran Affairs Health Care System, Durham, NC, USA.
| |
Collapse
|
7
|
Chen R, Liu L, Chen H, Xing C, Zhang T, Pang Y, Yang X. Evaluation of the clinical application value of cytokine expression profiles in the differential diagnosis of prostate cancer. Cancer Immunol Immunother 2024; 73:139. [PMID: 38833027 PMCID: PMC11150366 DOI: 10.1007/s00262-024-03723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND The significance of tumor-secreted cytokines in tumor development has gained substantial attention. Nevertheless, the precise role of tumor-related inflammatory cytokines in prostate cancer (PCa) remains ambiguous. OBJECTIVES To gain deeper insights into the inflammatory response in the process of PCa. METHODS A total of 233 cases were collected, including 80 cases of prostate hyperplasia as disease control, 65 cases of postoperative prostate cancer and 36 cases of prostate cancer as PCa group. Additionally, 52 patients undergoing physical examinations during the same period were collected as the healthy control. The levels of 12 inflammatory cytokines in peripheral blood samples were analyzed using flow cytometric bead array technology. The levels of total prostate-specific antigen (TPSA) and free prostate-specific antigen (FPSA) in peripheral blood samples were analyzed using electrochemiluminescence technology. RESULTS Our findings revealed significant increases in serum IL-8 levels in PCa group compared to the healthy control group. Additionally, IL-6, IL-10, IFN-γ and IL-12p70 levels were markedly elevated in the PCa group compared to the disease control group (all p < 0.05). Conversely, the level of IL-4, TNF-α, IL-1β, IL-17A and IFN-α were lower in the PCa group compared to those in control group. Following surgery, the concentration of IL-6 decreased; whereas, the concentrations of IL-4, TNF-α, IL-17A, IL-1β, IL-12p70, and IFN-α increased, demonstrating significant differences (p < 0.05). The differential upregulation of IL-6 or downregulation of IL-17A in peripheral blood exhibited diagnostic efficacy in PCa patients. Moreover, we observed a significant increase in IL-17A levels, accompanied by decreased of IL-2, IL-4, IL-10, TNF-a, IFN-γ, IL-1β, and IL-12P70 in patients with distant metastasis. CONCLUSION The peripheral blood cytokines are closely associated with the occurrence and development of prostate cancer, especially the serum levels of IL-6 and IL-17A may be useful as potential predictors of PCa diagnosis.
Collapse
Affiliation(s)
- Rongfa Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Linna Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hui Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Chao Xing
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Tingting Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yilin Pang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xunjun Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
8
|
Feng W, Ladewig E, Salsabeel N, Zhao H, Lee YS, Gopalan A, Lange M, Luo H, Kang W, Fan N, Rosiek E, de Stanchina E, Chen Y, Carver BS, Leslie CS, Sawyers CL. ERG activates a stem-like proliferation-differentiation program in prostate epithelial cells with mixed basal-luminal identity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.15.540839. [PMID: 38585869 PMCID: PMC10996491 DOI: 10.1101/2023.05.15.540839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
To gain insight into how ERG translocations cause prostate cancer, we performed single cell transcriptional profiling of an autochthonous mouse model at an early stage of disease initiation. Despite broad expression of ERG in all prostate epithelial cells, proliferation was enriched in a small, stem-like population with mixed-luminal basal identity (called intermediate cells). Through a series of lineage tracing and primary prostate tissue transplantation experiments, we find that tumor initiating activity resides in a subpopulation of basal cells that co-express the luminal genes Tmprss2 and Nkx3.1 (called BasalLum) but not in the larger population of classical Krt8+ luminal cells. Upon ERG activation, BasalLum cells give rise to the highly proliferative intermediate state, which subsequently transitions to the larger population of Krt8+ luminal cells characteristic of ERG-positive human cancers. Furthermore, this proliferative population is characterized by an ERG-specific chromatin state enriched for NFkB, AP-1, STAT and NFAT binding, with implications for TF cooperativity. The fact that the proliferative potential of ERG is enriched in a small stem-like population implicates the chromatin context of these cells as a critical variable for unmasking its oncogenic activity.
Collapse
Affiliation(s)
- Weiran Feng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Erik Ladewig
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Nazifa Salsabeel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Huiyong Zhao
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Young Sun Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Matthew Lange
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Hanzhi Luo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Wenfei Kang
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Ning Fan
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Eric Rosiek
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Brett S. Carver
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Division of Urology, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Christina S. Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| |
Collapse
|
9
|
Fu Y, Li J, Cai W, Huang Y, Liu X, Ma Z, Tang Z, Bian X, Zheng J, Jiang J, Li C. The emerging tumor microbe microenvironment: From delineation to multidisciplinary approach-based interventions. Acta Pharm Sin B 2024; 14:1560-1591. [PMID: 38572104 PMCID: PMC10985043 DOI: 10.1016/j.apsb.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024] Open
Abstract
Intratumoral microbiota has become research hotspots, and emerges as a non-negligent new component of tumor microenvironments (TME), due to its powerful influence on tumor initiation, metastasis, immunosurveillance and prognosis despite in low-biomass. The accumulations of microbes, and their related components and metabolites within tumor tissues, endow TME with additional pluralistic features which are distinct from the conventional one. Therefore, it's definitely necessary to comprehensively delineate the sophisticated landscapes of tumor microbe microenvironment, as well as their functions and related underlying mechanisms. Herein, in this review, we focused on the fields of tumor microbe microenvironment, including the heterogeneity of intratumor microbiota in different types of tumors, the controversial roles of intratumoral microbiota, the basic features of tumor microbe microenvironment (i.e., pathogen-associated molecular patterns (PAMPs), typical microbial metabolites, autophagy, inflammation, multi-faceted immunomodulation and chemoresistance), as well as the multidisciplinary approach-based intervention of tumor microbiome for cancer therapy by applying wild-type or engineered live microbes, microbiota metabolites, antibiotics, synthetic biology and rationally designed biomaterials. We hope our work will provide valuable insight to deeply understand the interplay of cancer-immune-microbial, and facilitate the development of microbes-based tumor-specific treatments.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jia Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Wenyun Cai
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinlong Liu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongyi Ma
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Elsayed NS, Wolfe AJ, Burk RD. Urine microbiome in individuals with an impaired immune system. Front Cell Infect Microbiol 2024; 13:1308665. [PMID: 38274734 PMCID: PMC10808152 DOI: 10.3389/fcimb.2023.1308665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
With the advent of next generation sequencing, it is now appreciated that human urine is not sterile. Recent investigations of the urinary microbiome (urobiome) have provided insights into several urological diseases. Urobiome dysbiosis, defined as non-optimal urine microbiome composition, has been observed in many disorders; however, it is not clear whether this dysbiosis is the cause of urinary tract disorders or a consequence. In addition, immunologically altered disorders are associated with higher rates of urinary tract infections. These disorders include immunoproliferative and immunodeficiency diseases, cancer, and immunosuppressant therapy in transplant recipients. In this review, we examine the current state of knowledge of the urobiome in immunologically altered diseases, its composition and metabolomic consequences. We conclude that more data are required to describe the urobiome in immune altered states, knowledge that could facilitate understanding the role of the urobiome and its pathophysiological effects on urinary tract infections and other disorders of the urinary tract.
Collapse
Affiliation(s)
- Noha S. Elsayed
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Robert D. Burk
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States
- Departments of Microbiology and Immunology, Epidemiology and Population Health, and Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
11
|
Khan AA, Al-Mahrouqi N, Al-Yahyaee A, Al-Sayegh H, Al-Harthy M, Al-Zadjali S. Deciphering Urogenital Cancers through Proteomic Biomarkers: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 16:22. [PMID: 38201450 PMCID: PMC10778028 DOI: 10.3390/cancers16010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
Urogenital cancers, which include prostate, bladder, and kidney malignancies, exert a substantial impact on global cancer-related morbidity and mortality. Proteomic biomarkers, emerging as valuable tools, aim to enhance early detection, prognostic accuracy, and the development of personalized therapeutic strategies. This study undertook a comprehensive systematic review and meta-analysis of the existing literature investigating the role and potential of proteomic biomarkers in plasma, tissue, and urine samples in urogenital cancers. Our extensive search across several databases identified 1879 differentially expressed proteins from 37 studies, signifying their potential as unique biomarkers for these cancers. A meta-analysis of the significantly differentially expressed proteins was executed, accentuating the findings through visually intuitive volcano plots. A functional enrichment analysis unveiled their significant involvement in diverse biological processes, including signal transduction, immune response, cell communication, and cell growth. A pathway analysis highlighted the participation of key pathways such as the nectin adhesion pathway, TRAIL signaling pathway, and integrin signaling pathways. These findings not only pave the way for future investigations into early detection and targeted therapeutic approaches but also underscore the fundamental role of proteomics in advancing our understanding of the molecular mechanisms underpinning urogenital cancer pathogenesis. Ultimately, these findings hold remarkable potential to significantly enhance patient care and improve clinical outcomes.
Collapse
Affiliation(s)
- Aafaque Ahmad Khan
- Research Laboratories, Sultan Qaboos Comprehensive Cancer Care and Research Center, Muscat 123, Oman; (N.A.-M.); (A.A.-Y.); (H.A.-S.); (S.A.-Z.)
| | - Nahad Al-Mahrouqi
- Research Laboratories, Sultan Qaboos Comprehensive Cancer Care and Research Center, Muscat 123, Oman; (N.A.-M.); (A.A.-Y.); (H.A.-S.); (S.A.-Z.)
| | - Aida Al-Yahyaee
- Research Laboratories, Sultan Qaboos Comprehensive Cancer Care and Research Center, Muscat 123, Oman; (N.A.-M.); (A.A.-Y.); (H.A.-S.); (S.A.-Z.)
| | - Hasan Al-Sayegh
- Research Laboratories, Sultan Qaboos Comprehensive Cancer Care and Research Center, Muscat 123, Oman; (N.A.-M.); (A.A.-Y.); (H.A.-S.); (S.A.-Z.)
| | - Munjid Al-Harthy
- Medical Oncology Department, Urogenital Cancers Program, Sultan Qaboos Comprehensive Cancer Care and Research Center, Muscat 123, Oman;
| | - Shoaib Al-Zadjali
- Research Laboratories, Sultan Qaboos Comprehensive Cancer Care and Research Center, Muscat 123, Oman; (N.A.-M.); (A.A.-Y.); (H.A.-S.); (S.A.-Z.)
| |
Collapse
|
12
|
Cooper PO, Yang J, Wang HH, Broman MM, Awdalkreem GD, Cresswell GM, Wang L, Goossens E, Lanman NA, Doerge RW, Zheng F, Cheng L, Crist SA, Braun RE, Jerde TJ, Ratliff TL. Inflammation Impacts Androgen Receptor Signaling in Basal Prostate Stem Cells Through Interleukin 1 Receptor Antagonist. RESEARCH SQUARE 2023:rs.3.rs-3539806. [PMID: 38168414 PMCID: PMC10760215 DOI: 10.21203/rs.3.rs-3539806/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The majority of patients with benign prostate hyperplasia (BPH) exhibit chronic prostate inflammation and the extent of inflammation correlates with the severity of symptoms. How inflammation contributes to prostate enlargement and/or BPH symptoms and the underlying mechanisms are not clearly understood. We established a unique mouse model Prostate Ovalbumin Expressing Transgenic 3 (POET3) that mimics chronic non-bacterial prostatitis in men to study the role of inflammation in prostate hyperplasia. After the injection of ovalbumin peptide-specific T cells, POET3 prostates exhibited an influx of inflammatory cells and an increase in pro-inflammatory cytokines that led to epithelial and stromal hyperplasia. We have previously demonstrated with the POET3 model that inflammation expands the basal prostate stem cell (bPSC) population and promotes bPSC differentiation in organoid cultures. In this study, we investigated the mechanisms underlying the impact of inflammation on bPSC. We found that AR activity was enhanced in inflamed bPSC and was essential for bPSC differentiation in organoid cultures. Most importantly, we identified, for the first time, interleukin 1 receptor antagonist (IL-1RA) as a key regulator of AR in basal stem cells. IL-1RA was one of the top genes upregulated by inflammation and inhibition of IL-1RA abrogated the enhanced AR nuclear accumulation and activity in organoids derived from inflamed bPSC. The mirroring effects of IL-1RA recombinant protein and IL-1α neutralizing antibody suggest that IL-1RA may function by antagonizing IL-1α inhibition of AR expression. Furthermore, we established a lineage tracing model to follow bPSC during inflammation and under castrate conditions. We found that inflammation induced bPSC proliferation and differentiation into luminal cells even under castrate conditions, indicating that AR activation driven by inflammation in bPSC is sufficient for their proliferation and differentiation under androgen-deprived conditions. However, proliferation of the differentiated bPSC in the luminal layer significantly diminished with castration, suggesting inflammation may not maintain AR activity in stromal cells, as stromal cells deprived of androgen after castration could no longer provide paracrine growth factors essential for luminal proliferation. Taken together, we have discovered novel mechanisms through which inflammation modulates AR signaling in bPSC and induces bPSC luminal differentiation that contributes to prostate hyperplasia.
Collapse
Affiliation(s)
- Paula O. Cooper
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, West Lafayette, IN 47907, USA
- These authors contributed equally to the manuscript
| | - Jiang Yang
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, West Lafayette, IN 47907, USA
- These authors contributed equally to the manuscript
| | - Hsing-Hui Wang
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, West Lafayette, IN 47907, USA
- These authors contributed equally to the manuscript
| | - Meaghan M. Broman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, West Lafayette, IN 47907, USA
| | - Gada D. Awdalkreem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, West Lafayette, IN 47907, USA
| | - Gregory M. Cresswell
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, West Lafayette, IN 47907, USA
| | - Liang Wang
- Department of Pharmacology and Toxicology, Department of Urology, Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emery Goossens
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Nadia A. Lanman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, West Lafayette, IN 47907, USA
| | - Rebecca W. Doerge
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Faye Zheng
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Scott A. Crist
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, West Lafayette, IN 47907, USA
| | | | - Travis J. Jerde
- Department of Pharmacology and Toxicology, Department of Urology, Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Timothy L. Ratliff
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, West Lafayette, IN 47907, USA
| |
Collapse
|
13
|
Giafaglione JM, Crowell PD, Delcourt AML, Hashimoto T, Ha SM, Atmakuri A, Nunley NM, Dang RMA, Tian M, Diaz JA, Tika E, Payne MC, Burkhart DL, Li D, Navone NM, Corey E, Nelson PS, Lin NYC, Blanpain C, Ellis L, Boutros PC, Goldstein AS. Prostate lineage-specific metabolism governs luminal differentiation and response to antiandrogen treatment. Nat Cell Biol 2023; 25:1821-1832. [PMID: 38049604 PMCID: PMC10709144 DOI: 10.1038/s41556-023-01274-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/26/2023] [Indexed: 12/06/2023]
Abstract
Lineage transitions are a central feature of prostate development, tumourigenesis and treatment resistance. While epigenetic changes are well known to drive prostate lineage transitions, it remains unclear how upstream metabolic signalling contributes to the regulation of prostate epithelial identity. To fill this gap, we developed an approach to perform metabolomics on primary prostate epithelial cells. Using this approach, we discovered that the basal and luminal cells of the prostate exhibit distinct metabolomes and nutrient utilization patterns. Furthermore, basal-to-luminal differentiation is accompanied by increased pyruvate oxidation. We establish the mitochondrial pyruvate carrier and subsequent lactate accumulation as regulators of prostate luminal identity. Inhibition of the mitochondrial pyruvate carrier or supplementation with exogenous lactate results in large-scale chromatin remodelling, influencing both lineage-specific transcription factors and response to antiandrogen treatment. These results establish reciprocal regulation of metabolism and prostate epithelial lineage identity.
Collapse
Affiliation(s)
- Jenna M Giafaglione
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Preston D Crowell
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amelie M L Delcourt
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Takao Hashimoto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aishwarya Atmakuri
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas M Nunley
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rachel M A Dang
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mao Tian
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Johnny A Diaz
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elisavet Tika
- Laboratory of Stem Cells and Cancer, WEL Research Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marie C Payne
- Department of Mechanical & Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Deborah L Burkhart
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dapei Li
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nora M Navone
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Eva Corey
- University of Washington, Seattle, WA, USA
| | | | - Neil Y C Lin
- Department of Mechanical & Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cedric Blanpain
- Laboratory of Stem Cells and Cancer, WEL Research Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Leigh Ellis
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul C Boutros
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrew S Goldstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Fazilaty H, Basler K. Reactivation of embryonic genetic programs in tissue regeneration and disease. Nat Genet 2023; 55:1792-1806. [PMID: 37904052 DOI: 10.1038/s41588-023-01526-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023]
Abstract
Embryonic genetic programs are reactivated in response to various types of tissue damage, providing cell plasticity for tissue regeneration or disease progression. In acute conditions, these programs remedy the damage and then halt to allow a return to homeostasis. In chronic situations, including inflammatory diseases, fibrosis and cancer, prolonged activation of embryonic programs leads to disease progression and tissue deterioration. Induction of progenitor identity and cell plasticity, for example, epithelial-mesenchymal plasticity, are critical outcomes of reactivated embryonic programs. In this Review, we describe molecular players governing reactivated embryonic genetic programs, their role during disease progression, their similarities and differences and lineage reversion in pathology and discuss associated therapeutics and drug-resistance mechanisms across many organs. We also discuss the diversity of reactivated programs in different disease contexts. A comprehensive overview of commonalities between development and disease will provide better understanding of the biology and therapeutic strategies.
Collapse
Affiliation(s)
- Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
15
|
Davies A, Zoubeidi A, Beltran H, Selth LA. The Transcriptional and Epigenetic Landscape of Cancer Cell Lineage Plasticity. Cancer Discov 2023; 13:1771-1788. [PMID: 37470668 PMCID: PMC10527883 DOI: 10.1158/2159-8290.cd-23-0225] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/25/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023]
Abstract
Lineage plasticity, a process whereby cells change their phenotype to take on a different molecular and/or histologic identity, is a key driver of cancer progression and therapy resistance. Although underlying genetic changes within the tumor can enhance lineage plasticity, it is predominantly a dynamic process controlled by transcriptional and epigenetic dysregulation. This review explores the transcriptional and epigenetic regulators of lineage plasticity and their interplay with other features of malignancy, such as dysregulated metabolism, the tumor microenvironment, and immune evasion. We also discuss strategies for the detection and treatment of highly plastic tumors. SIGNIFICANCE Lineage plasticity is a hallmark of cancer and a critical facilitator of other oncogenic features such as metastasis, therapy resistance, dysregulated metabolism, and immune evasion. It is essential that the molecular mechanisms of lineage plasticity are elucidated to enable the development of strategies to effectively target this phenomenon. In this review, we describe key transcriptional and epigenetic regulators of cancer cell plasticity, in the process highlighting therapeutic approaches that may be harnessed for patient benefit.
Collapse
Affiliation(s)
- Alastair Davies
- Oncology Research Discovery, Pfizer Worldwide Research and Development, San Diego, CA, USA
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Luke A. Selth
- Flinders Health and Medical Research Institute and Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, South Australia, 5042 Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, 5005 Australia
| |
Collapse
|
16
|
Pérez-González A, Bévant K, Blanpain C. Cancer cell plasticity during tumor progression, metastasis and response to therapy. NATURE CANCER 2023; 4:1063-1082. [PMID: 37537300 PMCID: PMC7615147 DOI: 10.1038/s43018-023-00595-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/01/2023] [Indexed: 08/05/2023]
Abstract
Cell plasticity represents the ability of cells to be reprogrammed and to change their fate and identity, enabling homeostasis restoration and tissue regeneration following damage. Cell plasticity also contributes to pathological conditions, such as cancer, enabling cells to acquire new phenotypic and functional features by transiting across distinct cell states that contribute to tumor initiation, progression, metastasis and resistance to therapy. Here, we review the intrinsic and extrinsic mechanisms driving cell plasticity that promote tumor growth and proliferation as well as metastasis and drug tolerance. Finally, we discuss how cell plasticity could be exploited for anti-cancer therapy.
Collapse
Affiliation(s)
- Andrea Pérez-González
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Kevin Bévant
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WELBIO, ULB, Bruxelles, Belgium.
| |
Collapse
|
17
|
Lin M, Sun X, Lv L. New insights and options into the mechanisms and effects of combined targeted therapy and immunotherapy in prostate cancer. Mol Ther Oncolytics 2023; 29:91-106. [PMID: 37215386 PMCID: PMC10199166 DOI: 10.1016/j.omto.2023.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Chronic inflammation is believed to drive prostate carcinogenesis by producing reactive oxygen species or reactive nitrogen species to induce DNA damage. This effect might subsequently cause epigenetic and genomic alterations, leading to malignant transformation. Although established therapeutic advances have extended overall survival, tumors in patients with advanced prostate cancer are prone to metastasis, transformation into metastatic castration-resistant prostate cancer, and therapeutic resistance. The tumor microenvironment (TME) of prostate cancer is involved in carcinogenesis, invasion and drug resistance. A plethora of preclinical studies have focused on immune-based therapies. Understanding the intricate TME system in prostate cancer may hold much promise for developing novel therapies, designing combinational therapeutic strategies, and further overcoming resistance to established treatments to improve the lives of prostate cancer patients. In this review, we discuss nonimmune components and various immune cells within the TME and their putative roles during prostate cancer initiation, progression, and metastasis. We also outline the updated fundamental research focusing on therapeutic advances of targeted therapy as well as combinational options for prostate cancer.
Collapse
Affiliation(s)
- Mingen Lin
- Nourse Centre for Pet Nutrition, Wuhu 241200, China
| | - Xue Sun
- Nourse Centre for Pet Nutrition, Wuhu 241200, China
| | - Lei Lv
- Nourse Centre for Pet Nutrition, Wuhu 241200, China
- Shanghai Chowsing Pet Products Co., Ltd, Shanghai 201103, China
| |
Collapse
|
18
|
Oseni SO, Naar C, Pavlović M, Asghar W, Hartmann JX, Fields GB, Esiobu N, Kumi-Diaka J. The Molecular Basis and Clinical Consequences of Chronic Inflammation in Prostatic Diseases: Prostatitis, Benign Prostatic Hyperplasia, and Prostate Cancer. Cancers (Basel) 2023; 15:3110. [PMID: 37370720 DOI: 10.3390/cancers15123110] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic inflammation is now recognized as one of the major risk factors and molecular hallmarks of chronic prostatitis, benign prostatic hyperplasia (BPH), and prostate tumorigenesis. However, the molecular mechanisms by which chronic inflammation signaling contributes to the pathogenesis of these prostate diseases are poorly understood. Previous efforts to therapeutically target the upstream (e.g., TLRs and IL1-Rs) and downstream (e.g., NF-κB subunits and cytokines) inflammatory signaling molecules in people with these conditions have been clinically ambiguous and unsatisfactory, hence fostering the recent paradigm shift towards unraveling and understanding the functional roles and clinical significance of the novel and relatively underexplored inflammatory molecules and pathways that could become potential therapeutic targets in managing prostatic diseases. In this review article, we exclusively discuss the causal and molecular drivers of prostatitis, BPH, and prostate tumorigenesis, as well as the potential impacts of microbiome dysbiosis and chronic inflammation in promoting prostate pathologies. We specifically focus on the importance of some of the underexplored druggable inflammatory molecules, by discussing how their aberrant signaling could promote prostate cancer (PCa) stemness, neuroendocrine differentiation, castration resistance, metabolic reprogramming, and immunosuppression. The potential contribution of the IL1R-TLR-IRAK-NF-κBs signaling molecules and NLR/inflammasomes in prostate pathologies, as well as the prospective benefits of selectively targeting the midstream molecules in the various inflammatory cascades, are also discussed. Though this review concentrates more on PCa, we envision that the information could be applied to other prostate diseases. In conclusion, we have underlined the molecular mechanisms and signaling pathways that may need to be targeted and/or further investigated to better understand the association between chronic inflammation and prostate diseases.
Collapse
Affiliation(s)
- Saheed Oluwasina Oseni
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Corey Naar
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mirjana Pavlović
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Waseem Asghar
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James X Hartmann
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, and I-HEALTH, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Nwadiuto Esiobu
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James Kumi-Diaka
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
19
|
Pitzen SP, Dehm SM. Basal epithelial cells in prostate development, tumorigenesis, and cancer progression. Cell Cycle 2023; 22:1303-1318. [PMID: 37098827 PMCID: PMC10228417 DOI: 10.1080/15384101.2023.2206502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 04/27/2023] Open
Abstract
The prostate epithelium is composed of two predominant cell populations: luminal and basal epithelial cells. Luminal cells have a secretory function that supports male fertility while basal cells function in regeneration and maintenance of epithelial tissue. Recent studies in humans and mice have expanded our knowledge of the role and regulation of luminal and basal cells in prostate organogenesis, development, and homeostasis. The insights from healthy prostate biology can inform studies focused on the origins of prostate cancer, progression of the disease, and development of resistance to targeted hormonal therapies. In this review, we discuss a critical role for basal cells in the development and maintenance of healthy prostate tissue. Additionally, we provide evidence supporting a role for basal cells in oncogenesis and therapeutic resistance mechanisms of prostate cancer. Finally, we describe basal cell regulators that may promote lineage plasticity and basal cell identity in prostate cancers that have developed therapeutic resistance. These regulators could serve as therapeutic targets to inhibit or delay resistance and thereby improve outcomes for prostate cancer patients.
Collapse
Affiliation(s)
- Samuel P. Pitzen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Molecular, Cellular, and Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Scott M. Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
20
|
Fox JJ, Hashimoto T, Navarro HI, Garcia AJ, Shou BL, Goldstein AS. Highly multiplexed immune profiling throughout adulthood reveals kinetics of lymphocyte infiltration in the aging mouse prostate. Aging (Albany NY) 2023; 15:3356-3380. [PMID: 37179121 PMCID: PMC10449296 DOI: 10.18632/aging.204708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Aging is a significant risk factor for disease in several tissues, including the prostate. Defining the kinetics of age-related changes in these tissues is critical for identifying regulators of aging and evaluating interventions to slow the aging process and reduce disease risk. An altered immune microenvironment is characteristic of prostatic aging in mice, but whether features of aging in the prostate emerge predominantly in old age or earlier in adulthood has not previously been established. Using highly multiplexed immune profiling and time-course analysis, we tracked the abundance of 29 immune cell clusters in the aging mouse prostate. Early in adulthood, myeloid cells comprise the vast majority of immune cells in the 3-month-old mouse prostate. Between 6 and 12 months of age, there is a profound shift towards a T and B lymphocyte-dominant mouse prostate immune microenvironment. Comparing the prostate to other urogenital tissues, we found similar features of age-related inflammation in the mouse bladder but not the kidney. In summary, our study offers new insight into the kinetics of prostatic inflammaging and the window when interventions to slow down age-related changes may be most effective.
Collapse
Affiliation(s)
- Jonathan J. Fox
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Current Address: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Current Address: Keck School of Medicine, University of Southern California, Los Angeles, CA 90095, USA
| | - Takao Hashimoto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Héctor I. Navarro
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA 90095, USA
| | - Alejandro J. Garcia
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Benjamin L. Shou
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Current Address: Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew S. Goldstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Ferguson AM, Rubin MA. Lineage plasticity in prostate cancer: Looking beyond intrinsic alterations. Cancer Lett 2022; 548:215901. [PMID: 36075486 DOI: 10.1016/j.canlet.2022.215901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 01/22/2023]
Abstract
Emergence of small cell prostate cancer is linked to the plasticity of tumour cells and avoidance of environmental pressures. This process is thought to be reversable, however to-date evidence of this has been demonstrated in small-cell prostate cancer. To study the plasticity of prostate tumours, we look to clinical cohorts of patients covering the spectra of malignancy subtypes and utilise in vitro and in vivo models of disease progression. Current models have assisted in the understanding of the extremities of this plasticity, elucidating internal mechanisms and adaptations to stressors through transition to altered cell states. By interrogating the tumour microenvironment and earlier time points, we are beginning to form a deeper understanding of the full spectra of tumour plasticity. It could be proffered that this deeper understanding will lead to better patient outcome, with earlier interventions more likely to reverse plasticity and prevent trans-differentiation to the aggressive, small cell phenotype.
Collapse
Affiliation(s)
- Alison M Ferguson
- Department for BioMedical Research, University of Bern, Bern, 3008, Switzerland
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, Bern, 3008, Switzerland; Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, 3008, Switzerland.
| |
Collapse
|
22
|
Wei X, Zhang L, Zhang Y, Cooper C, Brewer C, Tsai CF, Wang YT, Glaz M, Wessells HB, Que J, Titus MA, Cirulli V, Glaser A, Liu T, Reder NP, Creighton CJ, Xin L. Ablating Lgr5-expressing prostatic stromal cells activates the ERK-mediated mechanosensory signaling and disrupts prostate tissue homeostasis. Cell Rep 2022; 40:111313. [PMID: 36070687 PMCID: PMC9491244 DOI: 10.1016/j.celrep.2022.111313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/12/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023] Open
Abstract
Functional implication of stromal heterogeneity in the prostate remains incompletely understood. Using lineage tracing and light-sheet imaging, we show that some fibroblast cells at the mouse proximal prostatic ducts and prostatic urethra highly express Lgr5. Genetic ablation of these anatomically restricted stromal cells, but not nonselective ablation of prostatic stromal cells, rapidly induces prostate epithelial turnover and dedifferentiation that are reversed following spontaneous restoration of the Lgr5+ stromal cells. RNA sequencing (RNA-seq) analysis indicates that ablating the Lgr5+ stromal cells activates a mechanosensory response. Ablating the Lgr5+ stromal cells impairs the control of prostatic ductal outlet, increases prostate tissue stiffness, and activates the mitogen-activated protein kinase (MAPK). Suppressing MAPK overrides the elevated epithelial proliferation. In summary, the Lgr5+ stromal cells regulate prostate tissue homeostasis and maintain its functional integrity in a long-distance manner. Our study implies that the cells at organ junctions most likely control organ homeostasis by sustaining a balanced mechanoforce.
Collapse
Affiliation(s)
- Xing Wei
- Department of Urology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Li Zhang
- Department of Urology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cody Cooper
- Alpenglow Biosciences, Inc., Seattle, WA 98103, USA
| | - Chris Brewer
- Alpenglow Biosciences, Inc., Seattle, WA 98103, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Micah Glaz
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98109, USA
| | - Hunter B Wessells
- Department of Urology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Mark A Titus
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston TX 77030, USA
| | - Vincenzino Cirulli
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Adam Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Xin
- Department of Urology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA; Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston TX 77030, USA.
| |
Collapse
|
23
|
Bleeker J, Wang ZA. Applications of Vertebrate Models in Studying Prostatitis and Inflammation-Associated Prostatic Diseases. Front Mol Biosci 2022; 9:898871. [PMID: 35865005 PMCID: PMC9294738 DOI: 10.3389/fmolb.2022.898871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
It has long been postulated that the inflammatory environment favors cell proliferation, and is conducive to diseases such as cancer. In the prostate gland, clinical data implicate important roles of prostatitis in the progression of both benign prostatic hyperplasia (BPH) and prostate cancer (PCa). However, their causal relationships have not been firmly established yet due to unresolved molecular and cellular mechanisms. By accurately mimicking human disease, vertebrate animals provide essential in vivo models to address this question. Here, we review the vertebrate prostatitis models that have been developed and discuss how they may reveal possible mechanisms by which prostate inflammation promotes BPH and PCa. Recent studies, particularly those involving genetically engineered mouse models (GEMMs), suggest that such mechanisms are multifaceted, which include epithelium barrier disruption, DNA damage and cell proliferation induced by paracrine signals, and expansion of potential cells of origin for cancer. Future research using rodent prostatitis models should aim to distinguish the etiologies of BPH and PCa, and facilitate the development of novel clinical approaches for prostatic disease prevention.
Collapse
|
24
|
Sarkar P, Malik S, Banerjee A, Datta C, Pal DK, Ghosh A, Saha A. Differential Microbial Signature Associated With Benign Prostatic Hyperplasia and Prostate Cancer. Front Cell Infect Microbiol 2022; 12:894777. [PMID: 35865814 PMCID: PMC9294280 DOI: 10.3389/fcimb.2022.894777] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Apart from other risk factors, chronic inflammation is also associated with the onset of Prostate Cancer (PCa), wherein pathogen infection and tissue microbiome dysbiosis are known to play a major role in both inflammatory response and cancer development. However, except for a few studies, the link between microbes and PCa remained poorly understood. To explore the potential microbiome signature associated with PCa in Indian patients, we investigated differential compositions of commensal bacteria among patients with benign prostatic hyperplasia (BPH) and PCa using 16S rRNA amplicon sequencing followed by qPCR analyses using two distinct primer sets. Using two independent cohorts, we show that Prevotella copri, Cupriavidus campinensis, and Propionibacterium acnes represent the three most abundant bacteria in diseased prostate lesions. LEfSe analyses identified that while Cupriavidus taiwanensis and Methylobacterium organophilum are distinctly elevated in PCa samples, Kocuria palustris and Cellvibrio mixtus are significantly enriched in BPH samples. Furthermore, we identify that a number of human tumor viruses, including Epstein-Barr virus (EBV) and hepatitis B virus (HBV), along with two high-risk human papillomaviruses - HPV-16 and HPV-18, are significantly associated with the PCa development and strongly correlated with PCa bacterial signature. The study may thus offer to develop a framework for exploiting this microbial signature for early diagnosis and prognosis of PCa development.
Collapse
Affiliation(s)
- Purandar Sarkar
- School of Biotechnology, Presidency University, New Town, Kolkata, India
| | - Samaresh Malik
- School of Biotechnology, Presidency University, New Town, Kolkata, India
| | - Anwesha Banerjee
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Chhanda Datta
- Department of Pathology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Dilip Kumar Pal
- Department of Urology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Amlan Ghosh
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Abhik Saha
- School of Biotechnology, Presidency University, New Town, Kolkata, India
| |
Collapse
|
25
|
Dong H, Wang X. Identification of Signature Genes and Construction of an Artificial Neural Network Model of Prostate Cancer. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1562511. [PMID: 35432828 PMCID: PMC9010146 DOI: 10.1155/2022/1562511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022]
Abstract
This study aimed to establish an artificial neural network (ANN) model based on prostate cancer signature genes (PCaSGs) to predict the patients with prostate cancer (PCa). In the present study, 270 differentially expressed genes (DEGs) were identified between PCa and normal prostate (NP) groups by differential gene expression analysis. Next, we performed Metascape gene annotation, pathway and process enrichment analysis, and PPI enrichment analysis on all 270 DEGs. Then, we identified and screened out 30 PCaSGs based on the random forest analysis and constructed an ANN model based on the gene score matrix consisting of 30 PCaSGs. Lastly, analysis of microarray dataset GSE46602 showed that the accuracy of this model for predicating PCa and NP samples was 88.9 and 78.6%, respectively. Our results suggested that the ANN model based on PCaSGs can be used for effectively predicting the patients with PCa and will be helpful for early PCa diagnosis and treatment.
Collapse
Affiliation(s)
- Hongye Dong
- Department of Kidney Disease and Blood Purifification Center, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xu Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
26
|
In Vitro Pharmacological Screening of Essential Oils from Baccharis parvidentata and Lippia origanoides Growing in Brazil. Molecules 2022; 27:molecules27061926. [PMID: 35335288 PMCID: PMC8953750 DOI: 10.3390/molecules27061926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, the in vitro antimicrobial, antiparasitic, antiproliferative and cytotoxic activities of essential oil from Baccharis parvidentata Malag. (EO-Bp) and Lippia origanoides Kunth (EO-Lo) were explored. The relevant effects were observed against the parasitic protozoans Plasmodium falciparum, Trypanosoma cruzi, Trypanosoma brucei and Leishmania amazonensis (ranging 0.6 to 39.7 µg/mL) and malignant MCF-7, MCF-7/HT, 22Rv1, and A431 cell lines (ranging 6.1 to 31.5 µg/mL). In parallel, EO-Bp showed better selective indexes in comparison with EO-Lo against peritoneal macrophages from BALB/c mice and MRC-5 cell line. In conclusion, EO-Lo is known to show a wide range of health benefits that could be added as another potential use of this oil with the current study. In the case of EO-Bp, the wide spectrum of its activities against protozoal parasites and malignant cells, as well as its selectivity in comparison with non-malignant cells, could suggest an interesting candidate for further tests as a new therapeutic alternative.
Collapse
|
27
|
Cambuli F, Foletto V, Alaimo A, De Felice D, Gandolfi F, Palumbieri MD, Zaffagni M, Genovesi S, Lorenzoni M, Celotti M, Bertossio E, Mazzero G, Bertossi A, Bisio A, Berardinelli F, Antoccia A, Gaspari M, Barbareschi M, Fiorentino M, Shen MM, Loda M, Romanel A, Lunardi A. Intra-epithelial non-canonical Activin A signaling safeguards prostate progenitor quiescence. EMBO Rep 2022; 23:e54049. [PMID: 35253958 PMCID: PMC9066067 DOI: 10.15252/embr.202154049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 01/21/2023] Open
Abstract
The healthy prostate is a relatively quiescent tissue. Yet, prostate epithelium overgrowth is a common condition during aging, associated with urinary dysfunction and tumorigenesis. For over thirty years, TGF-β ligands have been known to induce cytostasis in a variety of epithelia, but the intracellular pathway mediating this signal in the prostate, and its relevance for quiescence, have remained elusive. Here, using mouse prostate organoids to model epithelial progenitors, we find that intra-epithelial non-canonical Activin A signaling inhibits cell proliferation in a Smad-independent manner. Mechanistically, Activin A triggers Tak1 and p38 ΜAPK activity, leading to p16 and p21 nuclear import. Spontaneous evasion from this quiescent state occurs upon prolonged culture, due to reduced Activin A secretion, a condition associated with DNA replication stress and aneuploidy. Organoids capable to escape quiescence in vitro are also able to implant with increased frequency into immunocompetent mice. This study demonstrates that non-canonical Activin A signaling safeguards epithelial quiescence in the healthy prostate, with potential implications for the understanding of cancer initiation, and the development of therapies targeting quiescent tumor progenitors.
Collapse
Affiliation(s)
- Francesco Cambuli
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly,Department of Medicine, Genetics and DevelopmentUrologySystems BiologyHerbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA,Present address:
Molecular Pharmacology ProgramSloan Kettering InstituteMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Veronica Foletto
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Alessandro Alaimo
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Dario De Felice
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Francesco Gandolfi
- Laboratory of Bioinformatics and Computational GenomicsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Maria Dilia Palumbieri
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Michela Zaffagni
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Sacha Genovesi
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Marco Lorenzoni
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Martina Celotti
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Emiliana Bertossio
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | | | - Arianna Bertossi
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Alessandra Bisio
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Francesco Berardinelli
- Department of ScienceUniversity of Roma TreRomaItaly,Laboratory of Neurodevelopment, Neurogenetics and Molecular Neurobiology UnitIRCCS Santa Lucia FoundationRomaItaly
| | | | - Marco Gaspari
- Department of Experimental and Clinical MedicineUniversity of CatanzaroCatanzaroItaly
| | | | - Michelangelo Fiorentino
- Department of Experimental, Diagnostic and Specialty MedicineUniversity of BolognaBolognaItaly
| | - Michael M Shen
- Department of Medicine, Genetics and DevelopmentUrologySystems BiologyHerbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Massimo Loda
- Department of Pathology and Laboratory MedicineWeill Medical College of Cornell UniversityNew YorkNYUSA
| | - Alessandro Romanel
- Laboratory of Bioinformatics and Computational GenomicsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Andrea Lunardi
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| |
Collapse
|
28
|
Byun YJ, Kang HW, Piao XM, Zheng CM, Moon SK, Choi YH, Kim WT, Lee SC, Yun SJ, Kim WJ. Expression of hsv1-miR-H18 and hsv2-miR-H9 as a field defect marker for detecting prostate cancer. Prostate Int 2022; 10:1-6. [PMID: 35155300 PMCID: PMC8804185 DOI: 10.1016/j.prnil.2021.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022] Open
Abstract
Background Prostate-specific antigen (PSA) is a marker of prostate cancer (PCa), although its efficacy as a diagnostic marker remains controversial. A high false-positive rate leads to repeat biopsy in approximately 70% of patients, which may not be necessary. Epigenetic biomarkers of field cancerization have been investigated widely as promising tools for the diagnosis of patients with suspected tumors. In the current study, we examined the diagnostic value of two microRNA (miRNA) candidates, hsv1-miR-H18 and hsv2-miR-H9, using formalin-fixed paraffin-embedded (FFPE) tissues from patients with PCa or benign prostate hyperplasia (BPH) (as controls) to determine the usefulness of these markers for detecting the presence of cancer. Methods Expression of hsv1-miR-H18 and hsv2-miR-H9 in 201 FFPE tissues, including 52 primary tumors, 73 surrounding noncancerous tissues, and 90 BPH nontumor controls was examined by real-time PCR. Results Expression of hsv1-miR-H18 and hsv2-miR-H9 was significantly higher in primary tumors from PCa patients than in BPH controls (P < 0.0001). In patients within the PSA gray zone, the two viral miRNAs could distinguish PCa from controls with appropriate sensitivity and specificity. Expression of the two miRNAs did not differ between primary tumors and noncancerous surrounding tissues. Conclusions The viral miRNAs hsv1-miR-H18 and hsv2-miR-H9 may be associated with field cancerization of PCa and could be promising supplemental biomarkers to the PSA assay to decrease the rate of unnecessary biopsy, particularly in patients within the PSA gray zone.
Collapse
Affiliation(s)
- Young Joon Byun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Ho Won Kang
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Xuan-Mei Piao
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Chuang-Ming Zheng
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Sung-Kwon Moon
- Department of Food Science and Technology, Chung-Ang University, Ansung, 456-756, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan, Korea
| | - Won Tae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Sang-Cheol Lee
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
- Corresponding author. Department of Urology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Korea.
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
- Institute of Urotech, Cheongju, 28644, Korea
- Corresponding author. Department of Urology, College of Medicine, Chungbuk National University, Institute of Urotech, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
29
|
Wang K, Wang X, Fu X, Sun J, Zhao L, He H, Fan Y. Lung cancer metastasis-related protein 1 promotes the transferring from advanced metastatic prostate cancer to castration-resistant prostate cancer by activating the glucocorticoid receptor α signal pathway. Bioengineered 2022; 13:5373-5385. [PMID: 35184651 PMCID: PMC8974197 DOI: 10.1080/21655979.2021.2020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Androgen deprivation therapy is currently the main therapeutic strategy for the treatment of advanced metastatic prostate cancer (ADPC). However, the tumor type in ADPC patients transforms into castration-resistant prostate cancer (CRPC) after 18–24 months of treatments, the underlying mechanism of which remains unclear. The present study aimed to investigate the potential pathological mechanism of the conversion from ADPC to CRPC by exploring the function of lung cancer metastasis-related protein 1 (LCMR1). We found that LCMR1 and glucocorticoid receptor α (GRα) were highly expressed in CRPC tissues, compared to ADPC tissues, and were accompanied by high concentrations of inflammatory factors. Knocking down LCMR1 or GRα in CRPC cells led to inhibition of metastasis and proliferation and induction of apoptosis. The expression of HSP90 and IL-6 was upregulated and that of androgen receptor was downregulated by knocking down LCMR1 or GRα in CRPC cells. Luciferase assay results indicated that the transcription of GRα was promoted by the LCMR1 promoter. The growth rate of CRPC cells in vivo was greatly decreased by knocking down LCMR1 or GRα. Lastly, CRPC cell sensitivity to enzalutamide treatment was found significantly enhanced by the knockdown of LCMR1. Taken together, LCMR1 might regulate the conversion of ADPC to CRPC by activating the GRα signaling pathway.
Collapse
Affiliation(s)
- Kai Wang
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Xuliang Wang
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xian Fu
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ji Sun
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Liwei Zhao
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Huadong He
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yi Fan
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
30
|
Kwon OJ, Zhang B, Jia D, Zhang L, Wei X, Zhou Z, Liu D, Huynh KT, Zhang K, Zhang Y, Labhart P, Sboner A, Barbieri C, Haffner MC, Creighton CJ, Xin L. Elevated expression of the colony-stimulating factor 1 (CSF1) induces prostatic intraepithelial neoplasia dependent of epithelial-Gp130. Oncogene 2022; 41:1309-1323. [PMID: 34999736 PMCID: PMC8882147 DOI: 10.1038/s41388-021-02169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022]
Abstract
Macrophages are increased in human benign prostatic hyperplasia and prostate cancer. We generate a Pb-Csf1 mouse model with prostate-specific overexpression of macrophage colony-stimulating factor (M-Csf/Csf1). Csf1 overexpression promotes immune cell infiltration into the prostate, modulates the macrophage polarity in a lobe-specific manner, and induces senescence and low-grade prostatic intraepithelial neoplasia (PIN). The Pb-Csf1 prostate luminal cells exhibit increased stem cell features and undergo an epithelial-to-mesenchymal transition. Human prostate cancer patients with high CSF-1 expression display similar transcriptional alterations with the Pb-Csf1 model. P53 knockout alleviates senescence but fails to progress PIN lesions. Ablating epithelial Gp130 but not Il1r1 substantially blocks PIN lesion formation. The androgen receptor (AR) is downregulated in Pb-Csf1 mice. ChIP-Seq analysis reveals altered AR binding in 2482 genes although there is no significant widespread change in global AR transcriptional activity. Collectively, our study demonstrates that increased macrophage infiltration causes PIN formation but fails to transform prostate cells.
Collapse
Affiliation(s)
- Oh-Joon Kwon
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Boyu Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Deyong Jia
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Li Zhang
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Xing Wei
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Zhicheng Zhou
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Deli Liu
- Sandra and Edward Meyer Cancer Center and Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Khoi Trung Huynh
- Department of Biology, University of Washington, Seattle, WA, 98109, USA
| | - Kai Zhang
- Department of Urology, University of Washington, Seattle, WA, 98109, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Andrea Sboner
- Sandra and Edward Meyer Cancer Center and Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Chris Barbieri
- Sandra and Edward Meyer Cancer Center and Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Michael C Haffner
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Li Xin
- Department of Urology, University of Washington, Seattle, WA, 98109, USA.
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
31
|
Crowley L, Shen MM. Heterogeneity and complexity of the prostate epithelium: New findings from single-cell RNA sequencing studies. Cancer Lett 2022; 525:108-114. [PMID: 34728312 PMCID: PMC8629925 DOI: 10.1016/j.canlet.2021.10.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/07/2021] [Accepted: 10/25/2021] [Indexed: 01/30/2023]
Abstract
The recent advent of single-cell RNA-sequencing technology has provided new fundamental insights into the heterogeneity of the prostate epithelium. Several independent studies have described extensive heterogeneity of the luminal epithelial compartment, including a major division between a novel population of luminal cells located in the proximal region of the prostate ducts versus luminal cells located more distally. Proximal luminal cells as well as novel periurethral cells display increased progenitor potential in organoid culture and tissue reconstitution assays, but not in lineage-tracing analyses during prostate homeostasis, suggesting context-dependent plasticity of these populations. Here we describe and synthesize recent findings regarding the epithelial cell populations in the mouse prostate, draw comparisons to the human prostate, and address the relevance of these findings to prostate diseases and cancer.
Collapse
Affiliation(s)
| | - Michael M. Shen
- Author for correspondence at: phone: (212) 851-4723; fax: (212) 851-4572;
| |
Collapse
|
32
|
Prostate luminal progenitor cells: from mouse to human, from health to disease. Nat Rev Urol 2022; 19:201-218. [DOI: 10.1038/s41585-021-00561-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
|
33
|
Interruption of Klf5 acetylation in basal progenitor cells promotes luminal commitment by activating Notch signaling. J Genet Genomics 2021; 49:579-582. [PMID: 34952235 DOI: 10.1016/j.jgg.2021.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022]
|
34
|
Buskin A, Singh P, Lorenz O, Robson C, Strand DW, Heer R. A Review of Prostate Organogenesis and a Role for iPSC-Derived Prostate Organoids to Study Prostate Development and Disease. Int J Mol Sci 2021; 22:ijms222313097. [PMID: 34884905 PMCID: PMC8658468 DOI: 10.3390/ijms222313097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
The prostate is vulnerable to two major age-associated diseases, cancer and benign enlargement, which account for significant morbidity and mortality for men across the globe. Prostate cancer is the most common cancer reported in men, with over 1.2 million new cases diagnosed and 350,000 deaths recorded annually worldwide. Benign prostatic hyperplasia (BPH), characterised by the continuous enlargement of the adult prostate, symptomatically afflicts around 50% of men worldwide. A better understanding of the biological processes underpinning these diseases is needed to generate new treatment approaches. Developmental studies of the prostate have shed some light on the processes essential for prostate organogenesis, with many of these up- or downregulated genes expressions also observed in prostate cancer and/or BPH progression. These insights into human disease have been inferred through comparative biological studies relying primarily on rodent models. However, directly observing mechanisms of human prostate development has been more challenging due to limitations in accessing human foetal material. Induced pluripotent stem cells (iPSCs) could provide a suitable alternative as they can mimic embryonic cells, and iPSC-derived prostate organoids present a significant opportunity to study early human prostate developmental processes. In this review, we discuss the current understanding of prostate development and its relevance to prostate-associated diseases. Additionally, we detail the potential of iPSC-derived prostate organoids for studying human prostate development and disease.
Collapse
Affiliation(s)
- Adriana Buskin
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
- Correspondence: (A.B.); (R.H.)
| | - Parmveer Singh
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
| | - Oliver Lorenz
- Newcastle University School of Computing, Digital Institute, Urban Sciences Building, Newcastle University, Newcastle upon Tyne NE4 5TG, UK;
| | - Craig Robson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
| | - Douglas W. Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
- Correspondence: (A.B.); (R.H.)
| |
Collapse
|
35
|
Freeland J, Crowell PD, Giafaglione JM, Boutros PC, Goldstein AS. Aging of the progenitor cells that initiate prostate cancer. Cancer Lett 2021; 515:28-35. [PMID: 34052326 PMCID: PMC8494000 DOI: 10.1016/j.canlet.2021.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022]
Abstract
Many organs experience a loss of tissue mass and a decline in regenerative capacity during aging. In contrast, the prostate continues to grow in volume. In fact, age is the most important risk factor for prostate cancer. However, the age-related factors that influence the composition, morphology and molecular features of prostate epithelial progenitor cells, the cells-of-origin for prostate cancer, are poorly understood. Here, we review the evidence that prostate luminal progenitor cells are expanded with age. We explore the age-related changes to the microenvironment that may influence prostate epithelial cells and risk of transformation. Finally, we raise a series of questions about models of aging and regulators of prostate aging which need to be addressed. A fundamental understanding of aging in the prostate will yield critical insights into mechanisms that promote the development of age-related prostatic disease.
Collapse
Affiliation(s)
- Jack Freeland
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, USA
| | - Preston D Crowell
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, USA
| | - Jenna M Giafaglione
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, USA
| | - Paul C Boutros
- Departments of Human Genetics & Urology, Jonsson Comprehensive Cancer Center and Institute for Precision Health, University of California, Los Angeles, USA
| | - Andrew S Goldstein
- Departments of Molecular, Cell and Developmental Biology & Urology, Broad Stem Cell Research Center and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA.
| |
Collapse
|
36
|
Martens S, Coolens K, Van Bulck M, Arsenijevic T, Casamitjana J, Fernandez Ruiz A, El Kaoutari A, Martinez de Villareal J, Madhloum H, Esni F, Heremans Y, Leuckx G, Heimberg H, Bouwens L, Jacquemin P, De Paep DL, In't Veld P, D'Haene N, Bouchart C, Dusetti N, Van Laethem JL, Waelput W, Lefesvre P, Real FX, Rovira M, Rooman I. Discovery and 3D imaging of a novel ΔNp63-expressing basal cell type in human pancreatic ducts with implications in disease. Gut 2021; 71:gutjnl-2020-322874. [PMID: 34330784 PMCID: PMC9484383 DOI: 10.1136/gutjnl-2020-322874] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 07/20/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aggressive basal-like molecular subtype of pancreatic ductal adenocarcinoma (PDAC) harbours a ΔNp63 (p40) gene expression signature reminiscent of a basal cell type. Distinct from other epithelia with basal tumours, ΔNp63+ basal cells reportedly do not exist in the normal pancreas. DESIGN We evaluated ΔNp63 expression in human pancreas, chronic pancreatitis (CP) and PDAC. We further studied in depth the non-cancerous tissue and developed a three-dimensional (3D) imaging protocol (FLIP-IT, Fluorescence Light sheet microscopic Imaging of Paraffin-embedded or Intact Tissue) to study formalin-fixed paraffin-embedded samples at single cell resolution. Pertinent mouse models and HPDE cells were analysed. RESULTS In normal human pancreas, rare ΔNp63+ cells exist in ducts while their prevalence increases in CP and in a subset of PDAC. In non-cancer tissue, ΔNp63+ cells are atypical KRT19+ duct cells that overall lack SOX9 expression while they do express canonical basal markers and pertain to a niche of cells expressing gastrointestinal stem cell markers. 3D views show that the basal cells anchor on the basal membrane of normal medium to large ducts while in CP they exist in multilayer dome-like structures. In mice, ΔNp63 is not found in adult pancreas nor in selected models of CP or PDAC, but it is induced in organoids from larger Sox9low ducts. In HPDE, ΔNp63 supports a basal cell phenotype at the expense of a classical duct cell differentiation programme. CONCLUSION In larger human pancreatic ducts, basal cells exist. ΔNp63 suppresses duct cell identity. These cells may play an important role in pancreatic disease, including PDAC ontogeny, but are not present in mouse models.
Collapse
Affiliation(s)
- Sandrina Martens
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Katarina Coolens
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Mathias Van Bulck
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Bruxelles, Belgium
- Hopital Erasme Service de Gastroenterologie d'Hepato-Pancreatologie et d'Oncologie Digestive, Bruxelles, Belgium
| | - Joan Casamitjana
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, P-CMR[C], Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Angel Fernandez Ruiz
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, P-CMR[C], Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Abdessamad El Kaoutari
- Centre de Recherche en Cancérologie de Marseille - CRCM, INSERM UMR1068, CRCM, Marseille, France
- COMPO Unit, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | | | - Hediel Madhloum
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Farzad Esni
- Division of Pediatric General and Thoracic Surgery, University of Pittsburgh Department of Surgery, Pittsburgh, Pennsylvania, USA
| | - Yves Heremans
- Laboratory of Beta Cell Neogenesis, Vrije Universiteit Brussel, Brussel, Belgium
| | - Gunter Leuckx
- Laboratory of Beta Cell Neogenesis, Vrije Universiteit Brussel, Brussel, Belgium
| | - Harry Heimberg
- Laboratory of Beta Cell Neogenesis, Vrije Universiteit Brussel, Brussel, Belgium
| | - Luc Bouwens
- Cell Differentiation Laboratory, Vrije Universiteit Brussel, Brussel, Belgium
| | - Patrick Jacquemin
- Institut de Duve, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Peter In't Veld
- Diabetes Research Center, Vrije Universiteit Brussel, Brussel, Belgium
| | - Nicky D'Haene
- Department of Pathology, Hopital Erasme, Bruxelles, Belgium
| | - Christelle Bouchart
- Department of Radiation-Oncology, Jules Bordet Institute, Bruxelles, Belgium
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille - CRCM, INSERM UMR1068, CRCM, Marseille, France
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Bruxelles, Belgium
- Hopital Erasme Service de Gastroenterologie d'Hepato-Pancreatologie et d'Oncologie Digestive, Bruxelles, Belgium
| | - Wim Waelput
- Department of Pathology, UZ Brussel, Brussel, Belgium
- Department of Pathology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Pierre Lefesvre
- Department of Pathology, UZ Brussel, Brussel, Belgium
- Department of Pathology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Meritxell Rovira
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, P-CMR[C], Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Ilse Rooman
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussel, Belgium
| |
Collapse
|
37
|
Thankamony AP, Subbalakshmi AR, Jolly MK, Nair R. Lineage Plasticity in Cancer: The Tale of a Skin-Walker. Cancers (Basel) 2021; 13:3602. [PMID: 34298815 PMCID: PMC8306016 DOI: 10.3390/cancers13143602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Lineage plasticity, the switching of cells from one lineage to another, has been recognized as a cardinal property essential for embryonic development, tissue repair and homeostasis. However, such a highly regulated process goes awry when cancer cells exploit this inherent ability to their advantage, resulting in tumorigenesis, relapse, metastasis and therapy resistance. In this review, we summarize our current understanding on the role of lineage plasticity in tumor progression and therapeutic resistance in multiple cancers. Lineage plasticity can be triggered by treatment itself and is reported across various solid as well as liquid tumors. Here, we focus on the importance of lineage switching in tumor progression and therapeutic resistance of solid tumors such as the prostate, lung, hepatocellular and colorectal carcinoma and the myeloid and lymphoid lineage switch observed in leukemias. Besides this, we also discuss the role of epithelial-mesenchymal transition (EMT) in facilitating the lineage switch in biphasic cancers such as aggressive carcinosarcomas. We also discuss the mechanisms involved, current therapeutic approaches and challenges that lie ahead in taming the scourge of lineage plasticity in cancer.
Collapse
Affiliation(s)
- Archana P. Thankamony
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Kerala 695014, India;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Ayalur Raghu Subbalakshmi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| | - Radhika Nair
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Kerala 695014, India;
| |
Collapse
|
38
|
Ghosh S, Hazra J, Pal K, Nelson VK, Pal M. Prostate cancer: Therapeutic prospect with herbal medicine. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100034. [PMID: 34909665 PMCID: PMC8663990 DOI: 10.1016/j.crphar.2021.100034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is a major cause of morbidity and mortality in men worldwide. A geographic variation on the burden of the disease suggested that the environment, genetic makeup, lifestyle, and food habits modulate one's susceptibility to the disease. Although it has been generally thought to be an older age disease, and awareness and timely execution of screening programs have managed to contain the disease in the older population over the last decades, the incidence is still increasing in the population younger than 50. Existing treatment is efficient for PCa that is localized and responsive to androgen. However, the androgen resistant and metastatic PCa are challenging to treat. Conventional radiation and chemotherapies are associated with severe side effects in addition to being exorbitantly expensive. Many isolated phytochemicals and extracts of plants used in traditional medicine are known for their safety and diverse healing properties, including many with varying levels of anti-PCa activities. Many of the phytochemicals discussed here, as shown by many laboratories, inhibit tumor cell growth and proliferation by interfering with the components in the pathways responsible for the enhanced proliferation, metabolism, angiogenesis, invasion, and metastasis in the prostate cells while upregulating the mechanisms of cell death and cell cycle arrest. Notably, many of these agents simultaneously target multiple cellular pathways. We analyzed the available literature and provided an update on this issue in this review article.
Collapse
Affiliation(s)
- Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology Madras, Tamil Nadu, India
| | | | - Vinod K. Nelson
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Andhra Pradesh, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
39
|
Nascimento-Gonçalves E, Seixas F, Ferreira R, Colaço B, Parada B, Oliveira PA. An overview of the latest in state-of-the-art murine models for prostate cancer. Expert Opin Drug Discov 2021; 16:1349-1364. [PMID: 34224283 DOI: 10.1080/17460441.2021.1943354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Prostate cancer (PCa) is a complex, heterogenous and multifocal disease, which is debilitating for patients and often fatal - due to bone metastasis and castration-resistant cancer. The use of murine models that mimic human disease has been crucial in the development of innovative therapies and for better understanding the mechanisms associated with initiation and progression of PCa. AREAS COVERED This review presents a critical analysis of murine models for the study of PCa, highlighting their strengths, weaknesses and applications. EXPERT OPINION In animal models, disease may not occur exactly as it does in humans, and sometimes the levels of efficacy that certain treatments obtain in animal models cannot be translated into clinical practice. To choose the most appropriate animal model for each research work, it is crucial to understand the anatomical and physiological differences between the mouse and the human prostate, while it is also important to identify biological similarities and differences between murine and human prostate tumors. Although significant progress has already been made, thanks to many years of research and study, the number of new challenges and obstacles to overcome mean there is a long and difficult road still to travel.
Collapse
Affiliation(s)
- Elisabete Nascimento-Gonçalves
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Fernanda Seixas
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Animal and Veterinary Research Centre (CECAV), UTAD, Vila Real, Portugal
| | - Rita Ferreira
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Bruno Colaço
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Department of Zootechnics, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Belmiro Parada
- Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (Icbr), Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Urology and Renal Transplantation Department, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal
| |
Collapse
|
40
|
Li W, Shen MM. Prostate cancer cell heterogeneity and plasticity: Insights from studies of genetically-engineered mouse models. Semin Cancer Biol 2021; 82:60-67. [PMID: 34147640 DOI: 10.1016/j.semcancer.2021.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022]
Abstract
Although prostate adenocarcinoma lacks distinguishable histopathological subtypes, prostate cancer displays significant inter- and intratumor heterogeneity at the molecular level and with respect to disease prognosis and treatment response. In principle, understanding the basis for prostate cancer heterogeneity can help distinguish aggressive from indolent disease, and help overcome castration-resistance in advanced prostate cancer. In this review, we will discuss recent advances in understanding the cell types of origin, putative cancer stem cells, and tumor plasticity in prostate cancer, focusing on insights from studies of genetically engineered mouse models (GEMMs). We will also outline future directions for investigating tumor heterogeneity using mouse models of prostate cancer.
Collapse
Affiliation(s)
- Weiping Li
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032 USA
| | - Michael M Shen
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032 USA.
| |
Collapse
|
41
|
Fang C, Wu L, Zhu C, Xie W, Hu H, Zeng X. A potential therapeutic strategy for prostatic disease by targeting the oral microbiome. Med Res Rev 2021; 41:1812-1834. [PMID: 33377531 PMCID: PMC8246803 DOI: 10.1002/med.21778] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/22/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022]
Abstract
Nowadays, human microbiome research is rapidly growing and emerging evidence has witnessed the critical role that oral microbiome plays in the process of human health and disease. Oral microbial dysbiosis has been confirmed as a contributory cause for diseases in multiple body systems, ranging from the oral cavity to the gastrointestinal, endocrine, immune, cardiovascular, and even nervous system. As research progressing, oral microbiome-based diagnosis and therapy are proposed and applied, which may represent potential drug targets in systemic diseases. Recent studies have uncovered the possible association between periodontal disease and prostatic disease, suggesting new prevention and therapeutic treatment for the disease by targeting periodontal pathogens. Thus, we performed this review to first explore the association between the oral microbiome and prostatic disease, according to current knowledge based on published articles, and then mainly focus on the underlying molecular and cellular mechanisms and the potential prevention and treatment derived from these mechanistic studies.
Collapse
Affiliation(s)
- Cheng Fang
- Center for Evidence‐Based and Translational MedicineZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Lan Wu
- Department of StomatologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Cong Zhu
- Center for Evidence‐Based and Translational MedicineZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Wen‐Zhong Xie
- Department of StomatologyKaifeng University Health Science CenterKaifengHenanChina
| | - Hailiang Hu
- Department of PathologyDuke University School of MedicineDurhamNorth CarolinaUSA
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Xian‐Tao Zeng
- Center for Evidence‐Based and Translational MedicineZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| |
Collapse
|
42
|
Human Prostate Epithelial Cells Activate the AIM2 Inflammasome upon Cellular Senescence: Role of POP3 Protein in Aging-Related Prostatic Inflammation. Life (Basel) 2021; 11:life11040366. [PMID: 33923931 PMCID: PMC8073538 DOI: 10.3390/life11040366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Increased levels of type I (T1) interferon (IFN)-inducible POP3 protein in myeloid cells inhibit activation of the AIM2 inflammasome and production of IL-1β and IL-18 proinflammatory cytokines. The AIM2 mRNA levels were significantly higher in benign prostate hyperplasia (BPH) than the normal prostate. Further, human normal prostate epithelial cells (PrECs), upon becoming senescent, activated an inflammasome. Because in aging related BPH senescent PrECs accumulate, we investigated the role of POP3 and AIM2 proteins in pre-senescent and senescent PrECs. Here we report that the basal levels of the POP3 mRNA and protein were lower in senescent (versus young or old) PrECs that exhibited activation of the T1 IFN response. Further, treatment of PrECs and a BPH cell line (BPH-1) that expresses the androgen receptor (AR) with the male sex hormone dihydrotestosterone (DHT) increased the basal levels of POP3 mRNA and protein, but not AIM2, and inhibited activation of the AIM2 inflammasome. Of interest, a stable knockdown of POP3 protein expression in the BPH-1 cell line increased cytosolic DNA-induced activation of AIM2 inflammasome. These observations suggest a potential role of POP3 protein in aging-related prostatic inflammation.
Collapse
|
43
|
Halabi J, Jagger BW, Salazar V, Winkler ES, White JP, Humphrey PA, Hirsch AJ, Streblow DN, Diamond MS, Moley K. Zika Virus Causes Acute and Chronic Prostatitis in Mice and Macaques. J Infect Dis 2021; 221:1506-1517. [PMID: 31616920 DOI: 10.1093/infdis/jiz533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Sexual transmission and persistence of Zika virus (ZIKV) in the male reproductive tract has raised concerned for potential damaging effects on function. Animal studies have demonstrated that ZIKV virus can infect and damage the testis and epididymis, and these results has been correlated to lower sperm counts in ZIKV-infected humans. The prostate plays a vital role in the male reproductive tract, with acute and chronic prostatitis linked to male infertility. METHODS In this study, we evaluated the effects of ZIKV virus on the prostate in mice and nonhuman primates. RESULTS In mice, ZIKV infected the prostate and triggered inflammation that persisted even after virus clearance. Evidence of chronic prostatitis associated with ZIKV infection remained for several months. Similar histological findings were observed in the prostate of ZIKV-infected rhesus macaques. CONCLUSIONS These studies establish that ZIKV replicates in the prostate and can cause acute and chronic inflammatory and proliferative changes in mouse and nonhuman primate models.
Collapse
Affiliation(s)
- Jacques Halabi
- Department of Obstetrics and Gynecology, Washington University School of Medicine St. Louis, Missouri, USA
| | - Brett W Jagger
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan, USA St. Louis, Missouri, USA
| | - Vanessa Salazar
- Department of Medicine, Washington University School of Medicine St. Louis, Missouri, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine St. Louis, Missouri, USA
| | - James P White
- Department of Medicine, Washington University School of Medicine St. Louis, Missouri, USA
| | - Peter A Humphrey
- Department of Pathology, Yale School of Medicine New Haven, Connecticut, USA
| | - Alec J Hirsch
- Vaccine and Gene Therapy Institute, Oregon Health and Science University Beaverton, Oregon, USA.,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University Beaverton, Oregon, USA.,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University School of Medicine St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine St. Louis, Missouri, USA
| | - Kelle Moley
- Department of Obstetrics and Gynecology, Washington University School of Medicine St. Louis, Missouri, USA
| |
Collapse
|
44
|
Joseph DB, Turco AE, Vezina CM, Strand DW. Progenitors in prostate development and disease. Dev Biol 2021; 473:50-58. [PMID: 33529704 DOI: 10.1016/j.ydbio.2020.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
The prostate develops by epithelial budding and branching processes that occur during fetal and postnatal stages. The adult prostate demonstrates remarkable regenerative capacity, with the ability to regrow to its original size over multiple cycles of castration and androgen administration. This capacity for controlled regeneration prompted the search for an androgen-independent epithelial progenitor in benign prostatic hyperplasia (BPH) and prostate cancer (PCa). BPH is hypothesized to be a reawakening of ductal branching, resulting in the formation of new proximal glands, all while androgen levels are decreasing in the aging male. Advanced prostate cancer can be slowed with androgen deprivation, but resistance eventually occurs, suggesting the existence of an androgen-independent progenitor. Recent studies indicate that there are multiple castration-insensitive epithelial cell types in the proximal area of the prostate, but not all act as progenitors during prostate development or regeneration. This review highlights how recent cellular and anatomical studies are changing our perspective on the identity of the prostate progenitor.
Collapse
Affiliation(s)
- Diya B Joseph
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Anne E Turco
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
45
|
Jalali A, Kitching M, Martin K, Richardson C, Murphy TB, FitzGerald SP, Watson RW, Perry AS. Integrating inflammatory serum biomarkers into a risk calculator for prostate cancer detection. Sci Rep 2021; 11:2525. [PMID: 33510263 PMCID: PMC7844261 DOI: 10.1038/s41598-021-81965-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/13/2021] [Indexed: 01/07/2023] Open
Abstract
Improved prostate cancer detection methods would avoid over-diagnosis of clinically indolent disease informing appropriate treatment decisions. The aims of this study were to investigate the role of a panel of Inflammation biomarkers to inform the need for a biopsy to diagnose prostate cancer. Peripheral blood serum obtained from 436 men undergoing transrectal ultrasound guided biopsy were assessed for a panel of 18 inflammatory serum biomarkers in addition to Total and Free Prostate Specific Antigen (PSA). This panel was integrated into a previously developed Irish clinical risk calculator (IPRC) for the detection of prostate cancer and high-grade prostate cancer (Gleason Score ≥ 7). Using logistic regression and multinomial regression methods, two models (Logst-RC and Multi-RC) were developed considering linear and nonlinear effects of the panel in conjunction with clinical and demographic parameters for determination of the two endpoints. Both models significantly improved the predictive ability of the clinical model for detection of prostate cancer (from 0.656 to 0.731 for Logst-RC and 0.713 for Multi-RC) and high-grade prostate cancer (from 0.716 to 0.785 for Logst-RC and 0.767 for Multi-RC) and demonstrated higher clinical net benefit. This improved discriminatory power and clinical utility may allow for individualised risk stratification improving clinical decision making.
Collapse
Affiliation(s)
- Amirhossein Jalali
- UCD Conway Institute of Biomedical and Biomolecular Science, Dublin, Ireland. .,UCD School of Medicine, University College Dublin, Dublin, Ireland. .,School of Mathematical Sciences, University College Cork, Cork, Ireland.
| | - Michael Kitching
- UCD Conway Institute of Biomedical and Biomolecular Science, Dublin, Ireland.,UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | | | | | | | | | - Ronald William Watson
- UCD Conway Institute of Biomedical and Biomolecular Science, Dublin, Ireland.,UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Antoinette Sabrina Perry
- UCD Conway Institute of Biomedical and Biomolecular Science, Dublin, Ireland.,UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
46
|
Pascal LE, Mizoguchi S, Chen W, Rigatti LH, Igarashi T, Dhir R, Tyagi P, Wu Z, Yang Z, de Groat WC, DeFranco DB, Yoshimura N, Wang Z. Prostate-Specific Deletion of Cdh1 Induces Murine Prostatic Inflammation and Bladder Overactivity. Endocrinology 2021; 162:5992231. [PMID: 33211830 PMCID: PMC7745638 DOI: 10.1210/endocr/bqaa212] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/25/2022]
Abstract
Benign prostatic hyperplasia (BPH) is an age-related debilitating prostatic disease that is frequently associated with prostatic inflammation and bothersome lower urinary tract symptoms (LUTS). Animal models have shown that formalin- and bacterial-induced prostatic inflammation can induce bladder dysfunction; however, the underlying mechanisms contributing to prostatic inflammation in BPH and bladder dysfunction are not clear. We previously reported that E-cadherin expression in BPH is downregulated in hyperplastic nodules compared with expression in adjacent normal tissues. Here, we explored the potential consequences of prostatic E-cadherin downregulation on the prostate and bladder in vivo using an inducible murine model of prostate luminal epithelial-specific deletion of Cdh1. The prostate-specific antigen (PSA)-CreERT2 transgenic mouse strain expressing tamoxifen-inducible CreERT2 recombinase driven by a 6-kb human PSA promoter/enhancer was crossed with the B6.129-Cdh1tm2Kem/J mouse to generate bigenic PSA-CreERT2/Cdh1-/- mice. Deletion of E-cadherin was induced by transient administration of tamoxifen when mice reached sexual maturity (7 weeks of age). At 21 to 23 weeks of age, the prostate, bladder, and prostatic urethra were examined histologically, and bladder function was assessed using void spot assays and cystometry. Mice with Cdh1 deletion had increased prostatic inflammation, prostatic epithelial hyperplasia, and stromal changes at 21 to 23 weeks of age, as well as changes in bladder voiding function compared with age-matched controls. Thus, loss of E-cadherin in the murine prostate could result in prostatic defects that are characteristic of BPH and LUTS, suggesting that E-cadherin downregulation could be a driving force in human BPH development and progression.
Collapse
Affiliation(s)
- Laura E Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Correspondence: Zhou Wang, PhD, Department of Urology, University of Pittsburgh Medical Center, 5200 Centre Ave, Suite G40, Pittsburgh, PA 15232, USA. ; or Laura E. Pascal, PhD, Department of Urology, University of Pittsburgh Medical Center, 5200 Centre Ave, Suite G34, Pittsburgh, PA 15232, USA.
| | - Shinsuke Mizoguchi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wei Chen
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lora H Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Taro Igarashi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zeyu Wu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhenyu Yang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Donald B DeFranco
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Correspondence: Zhou Wang, PhD, Department of Urology, University of Pittsburgh Medical Center, 5200 Centre Ave, Suite G40, Pittsburgh, PA 15232, USA. ; or Laura E. Pascal, PhD, Department of Urology, University of Pittsburgh Medical Center, 5200 Centre Ave, Suite G34, Pittsburgh, PA 15232, USA.
| |
Collapse
|
47
|
Hass R, von der Ohe J, Ungefroren H. Impact of the Tumor Microenvironment on Tumor Heterogeneity and Consequences for Cancer Cell Plasticity and Stemness. Cancers (Basel) 2020; 12:3716. [PMID: 33322354 PMCID: PMC7764513 DOI: 10.3390/cancers12123716] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor heterogeneity is considered the major cause of treatment failure in current cancer therapies. This feature of solid tumors is not only the result of clonal outgrowth of cells with genetic mutations, but also of epigenetic alterations induced by physical and chemical signals from the tumor microenvironment (TME). Besides fibroblasts, endothelial and immune cells, mesenchymal stroma/stem-like cells (MSCs) and tumor-associated macrophages (TAMs) intimately crosstalk with cancer cells and can exhibit both anti- and pro-tumorigenic effects. MSCs can alter cancer cellular phenotypes to increase cancer cell plasticity, eventually resulting in the generation of cancer stem cells (CSCs). The shift between different phenotypic states (phenotype switching) of CSCs is controlled via both genetic programs, such as epithelial-mesenchymal transdifferentiation or retrodifferentiation, and epigenetic alterations triggered by signals from the TME, like hypoxia, spatial heterogeneity or stromal cell-derived chemokines. Finally, we highlight the role of spontaneous cancer cell fusion with various types of stromal cells. i.e., MSCs in shaping CSC plasticity. A better understanding of cell plasticity and phenotype shifting in CSCs is a prerequisite for exploiting this phenomenon to reduce tumor heterogeneity, thereby improving the chance for therapy success.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany;
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
48
|
Harshman LC, Wang XV, Hamid AA, Santone G, Drake CG, Carducci MA, DiPaola RS, Fichorova RN, Sweeney CJ. Impact of baseline serum IL-8 on metastatic hormone-sensitive prostate cancer outcomes in the Phase 3 CHAARTED trial (E3805). Prostate 2020; 80:1429-1437. [PMID: 32949185 PMCID: PMC7606809 DOI: 10.1002/pros.24074] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/08/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND The immunosuppressive cytokine interleukin- 8 (IL-8), produced by tumor cells and some myeloid cells, promotes inflammation, angiogenesis, and metastasis. In our discovery work, elevated serum IL-8 at androgen deprivation therapy (ADT) initiation portended worse overall survival (OS). Leveraging serum samples from the phase 3 CHAARTED trial of patients treated with ADT +/- docetaxel for metastatic hormone-sensitive prostate cancer (mHSPC), we validated these findings. METHODS Two hundred and thirty-three patients had serum samples drawn within 28 days of ADT initiation. The samples were assayed using the same Mesoscale Multiplex ELISA platform employed in the discovery cohort. After adjusting for performance status, disease volume, and de novo/metachronous metastases, multivariable Cox proportional hazards models assessed associations between IL-8 as continuous and binary variables on OS and time to castration-resistant prostate cancer (CRPC). The median IL-8 level (9.3 pg/ml) was the a priori binary cutpoint. Fixed-effects meta-analyses of the discovery and validation sets were performed. RESULTS Higher IL-8 levels were prognostic for shorter OS (continuous: hazard ratio [HR] 2.2, 95% confidence interval [CI]: 1.4-3.6, p = .001; binary >9.3: HR 1.7, 95% CI: 1.2-2.4, p = .007) and time to CRPC (continuous: HR 2.3, 95% CI: 1.6-3.3, p < .001; binary: HR 1.8, 95% CI: 1.3-2.5, p < .001) and independent of docetaxel use, disease burden, and time of metastases. Meta-analysis including the discovery cohort, also showed that binary IL-8 levels >9.3 pg/ml from patients treated with ADT alone was prognostic for poorer OS (HR 1.8, 95% CI: 1.2-2.7, p = .007) and shorter time to CRPC (HR 1.4, 95% CI: 0.99-1.9, p = .057). CONCLUSIONS In the phase 3 CHAARTED study of men with mHSPC at ADT initiation, elevated IL-8 portended worse survival and shorter time to castration-resistant prostate cancer independent of docetaxel administration, metastatic burden, and metachronous versus de novo metastatic presentation. These findings support targeting IL-8 as a strategy to improve mHSPC outcomes.
Collapse
Affiliation(s)
- Lauren C. Harshman
- Dana-Farber Cancer Institute, Lank Center for Genitourinary Oncology, Harvard Medical School. Boston, MA
| | - X. Victoria Wang
- Dana-Farber Cancer Institute, Department of Data Sciences Boston, MA
| | - Anis A. Hamid
- Dana-Farber Cancer Institute, Lank Center for Genitourinary Oncology, Harvard Medical School. Boston, MA
| | | | - Charles G. Drake
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
| | | | | | | | - Christopher J. Sweeney
- Dana-Farber Cancer Institute, Lank Center for Genitourinary Oncology, Harvard Medical School. Boston, MA
| |
Collapse
|
49
|
Crigna AT, Samec M, Koklesova L, Liskova A, Giordano FA, Kubatka P, Golubnitschaja O. Cell-free nucleic acid patterns in disease prediction and monitoring-hype or hope? EPMA J 2020; 11:603-627. [PMID: 33144898 PMCID: PMC7594983 DOI: 10.1007/s13167-020-00226-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Interest in the use of cell-free nucleic acids (CFNAs) as clinical non-invasive biomarker panels for prediction and prevention of multiple diseases has greatly increased over the last decade. Indeed, circulating CFNAs are attributable to many physiological and pathological processes such as imbalanced stress conditions, physical activities, extensive apoptosis of different origin, systemic hypoxic-ischemic events and tumour progression, amongst others. This article highlights the involvement of circulating CFNAs in local and systemic processes dealing with the question, whether specific patterns of CFNAs in blood, their detection, quantity and quality (such as their methylation status) might be instrumental to predict a disease development/progression and could be further utilised for accompanying diagnostics, targeted prevention, creation of individualised therapy algorithms, therapy monitoring and prognosis. Presented considerations conform with principles of 3P medicine and serve for improving individual outcomes and cost efficacy of medical services provided to the population.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
50
|
Jain S, Samal AG, Das B, Pradhan B, Sahu N, Mohapatra D, Behera PK, Satpathi PS, Mohanty AK, Satpathi S, Senapati S. Escherichia coli, a common constituent of benign prostate hyperplasia-associated microbiota induces inflammation and DNA damage in prostate epithelial cells. Prostate 2020; 80:1341-1352. [PMID: 32835423 DOI: 10.1002/pros.24063] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/25/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND The role of microbiota in the pathophysiology of benign prostate hyperplasia (BPH), especially in creating an inflammatory milieu may not be avoided. The major objectives of this study were to investigate the microbial composition of BPH tissues, its association with inflammation and check the effect of clinically isolated bacteria on prostate epithelial cells. METHODS The study includes 36 patients with a pathological diagnosis of BPH. Following strict aseptic measures, tissues were collected after transurethral resection of prostate, multiple pieces of the resected tissues were subjected to histopathological analysis, bacterial culture and genomic DNA extraction. Microbial composition was analyzed by culture and/or next-generation sequencing methods. Annotation of operational taxonomy unit has been done with an in-house algorithm. The extent of inflammation was scored through histological evaluation of tissue sections. The effect of clinical isolates on nuclear factor-κB (NF-κB) activity and induction of DNA-damage in the prostate epithelial cells were evaluated. RESULTS Histopathological analysis of the BPH tissues showed the presence of inflammation in almost all the tissues with a varied level at different regions of the same tissue section and the level of overall inflammation was different from patients to patients. Microbial culture of tissue samples showed the presence of live bacteria in 55.5% (20 out of 36) of the patient tissues. Majority of the isolates were coagulase-positive Staphylococcus, E. coli and Micrococcus spp. Further, V3 16S rRNA sequencing of the DNA isolated from BPH tissues showed the presence of multiple bacteria and the most common phylum in the BPH tissues were found to be Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. The E. coli, isolated from one of the tissue was able to activate NF-κB and induce DNA damage in prostate epithelial cells. Phospho-histone γH2A.X staining confirmed the presence of cells with damaged DNA lesion in BPH tissues and also correlated with the severity of inflammation. CONCLUSION Our study has shown that the BPH tissues do have a divergent microbial composition including the commonly found E. coli (phylum Proteobacteria), and these bacteria might contribute to the BPH-associated inflammation and/or tissue damage. The BPH-associated E. coli induced NF-κB signaling and DNA damage in prostate epithelial cells in vitro.
Collapse
Affiliation(s)
- Sumeet Jain
- Division of Cancer Biology, Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ajit Gopal Samal
- Department of Surgery, Hitech Medical College, Rourkela, Odisha, India
| | - Biswajit Das
- Division of Cancer Biology, Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Biswaranjan Pradhan
- School of Basic Sciences, S. K. Dash Center of Excellence of Biosciences and Engineering & Technology (SKBET), Indian Institute of Technology, Bhubaneswar, Odisha, India
| | - Nilanjan Sahu
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| | - Debasish Mohapatra
- Division of Cancer Biology, Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | | | | | - Akshaya K Mohanty
- Infectious Disease Biology Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Sanghamitra Satpathi
- Department of Pathology, Ispat General Hospital, Rourkela, Odisha, India
- Department of Pathology, Hitech Medical College and Hospital, Rourkela, Odisha, India
| | - Shantibhusan Senapati
- Division of Cancer Biology, Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|