1
|
Prichard A, Pogliano J. The intricate organizational strategy of nucleus-forming phages. Curr Opin Microbiol 2024; 79:102457. [PMID: 38581914 DOI: 10.1016/j.mib.2024.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/08/2024]
Abstract
Nucleus-forming phages (chimalliviruses) encode numerous genes responsible for creating intricate structures for viral replication. Research on this newly appreciated family of phages has begun to reveal the mechanisms underlying the subcellular organization of the nucleus-based phage replication cycle. These discoveries include the structure of the phage nuclear shell, the identification of a membrane-bound early phage infection intermediate, the dynamic localization of phage RNA polymerases, the phylogeny and core genome of chimalliviruses, and the variation in replication mechanisms across diverse nucleus-forming phages. This research is being propelled forward through the application of fluorescence microscopy and cryo-electron microscopy and the innovative use of new tools such as proximity labeling and RNA-targeting Clustered Regularly Interspaced Short Palindromic Repeats-Cas systems.
Collapse
Affiliation(s)
- Amy Prichard
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Kuiper BP, Schöntag AMC, Oksanen HM, Daum B, Quax TEF. Archaeal virus entry and egress. MICROLIFE 2024; 5:uqad048. [PMID: 38234448 PMCID: PMC10791045 DOI: 10.1093/femsml/uqad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Archaeal viruses display a high degree of structural and genomic diversity. Few details are known about the mechanisms by which these viruses enter and exit their host cells. Research on archaeal viruses has lately made significant progress due to advances in genetic tools and imaging techniques, such as cryo-electron tomography (cryo-ET). In recent years, a steady output of newly identified archaeal viral receptors and egress mechanisms has offered the first insight into how archaeal viruses interact with the archaeal cell envelope. As more details about archaeal viral entry and egress are unravelled, patterns are starting to emerge. This helps to better understand the interactions between viruses and the archaeal cell envelope and how these compare to infection strategies of viruses in other domains of life. Here, we provide an overview of recent developments in the field of archaeal viral entry and egress, shedding light onto the most elusive part of the virosphere.
Collapse
Affiliation(s)
- Bastiaan P Kuiper
- Biology of Archaea and Viruses, Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty for Science and Engineering, University of Groningen, 7th floor, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Anna M C Schöntag
- Biology of Archaea and Viruses, Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty for Science and Engineering, University of Groningen, 7th floor, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Bertram Daum
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Tessa E F Quax
- Biology of Archaea and Viruses, Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty for Science and Engineering, University of Groningen, 7th floor, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| |
Collapse
|
3
|
Overton MS, Manuel RD, Lawrence CM, Snyder JC. Viruses of the Turriviridae: an emerging model system for studying archaeal virus-host interactions. Front Microbiol 2023; 14:1258997. [PMID: 37808280 PMCID: PMC10551542 DOI: 10.3389/fmicb.2023.1258997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Viruses have played a central role in the evolution and ecology of cellular life since it first arose. Investigations into viral molecular biology and ecological dynamics have propelled abundant progress in our understanding of living systems, including genetic inheritance, cellular signaling and trafficking, and organismal development. As well, the discovery of viral lineages that infect members of all three domains suggest that these lineages originated at the earliest stages of biological evolution. Research into these viruses is helping to elucidate the conditions under which life arose, and the dynamics that directed its early development. Archaeal viruses have only recently become a subject of intense study, but investigations have already produced intriguing and exciting results. STIV was originally discovered in Yellowstone National Park and has been the focus of concentrated research. Through this research, a viral genetic system was created, a novel lysis mechanism was discovered, and the interaction of the virus with cellular ESCRT machinery was revealed. This review will summarize the discoveries within this group of viruses and will also discuss future work.
Collapse
Affiliation(s)
- Michael S. Overton
- Department of Biological Sciences, Cal Poly Pomona, Pomona, CA, United States
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Manuel
- Department of Biological Sciences, Cal Poly Pomona, Pomona, CA, United States
| | - C. Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Jamie C. Snyder
- Department of Biological Sciences, Cal Poly Pomona, Pomona, CA, United States
| |
Collapse
|
4
|
Kühlbrandt W. Forty years in cryoEM of membrane proteins. Microscopy (Oxf) 2022; 71:i30-i50. [PMID: 35275191 PMCID: PMC8855526 DOI: 10.1093/jmicro/dfab041] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/05/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
In a surprisingly short time, electron cryo-microscopy (cryoEM) has developed from a niche technique in structural biology to a mainstream method practiced in a rapidly growing number of laboratories around the world. From its beginnings about 40 years ago, cryoEM has had a major impact on the study of membrane proteins, in particular the energy-converting systems from bacterial, mitochondrial and chloroplast membranes. Early work on two-dimensional crystals attained resolutions ∼3.5 Å, but at present, single-particle cryoEM delivers much more detailed structures without crystals. Electron cryo-tomography of membranes and membrane-associated proteins adds valuable context, usually at lower resolution. The review ends with a brief outlook on future prospects.
Collapse
Affiliation(s)
- Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, Frankfurt am Main 60438, Germany
| |
Collapse
|
5
|
Turzynski V, Monsees I, Moraru C, Probst AJ. Imaging Techniques for Detecting Prokaryotic Viruses in Environmental Samples. Viruses 2021; 13:2126. [PMID: 34834933 PMCID: PMC8622608 DOI: 10.3390/v13112126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022] Open
Abstract
Viruses are the most abundant biological entities on Earth with an estimate of 1031 viral particles across all ecosystems. Prokaryotic viruses-bacteriophages and archaeal viruses-influence global biogeochemical cycles by shaping microbial communities through predation, through the effect of horizontal gene transfer on the host genome evolution, and through manipulating the host cellular metabolism. Imaging techniques have played an important role in understanding the biology and lifestyle of prokaryotic viruses. Specifically, structure-resolving microscopy methods, for example, transmission electron microscopy, are commonly used for understanding viral morphology, ultrastructure, and host interaction. These methods have been applied mostly to cultivated phage-host pairs. However, recent advances in environmental genomics have demonstrated that the majority of viruses remain uncultivated, and thus microscopically uncharacterized. Although light- and structure-resolving microscopy of viruses from environmental samples is possible, quite often the link between the visualization and the genomic information of uncultivated prokaryotic viruses is missing. In this minireview, we summarize the current state of the art of imaging techniques available for characterizing viruses in environmental samples and discuss potential links between viral imaging and environmental genomics for shedding light on the morphology of uncultivated viruses and their lifestyles in Earth's ecosystems.
Collapse
Affiliation(s)
- Victoria Turzynski
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany;
| | - Indra Monsees
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany;
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany;
| | - Alexander J. Probst
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany;
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
6
|
Baquero DP, Liu J, Prangishvili D. Egress of archaeal viruses. Cell Microbiol 2021; 23:e13394. [PMID: 34515400 DOI: 10.1111/cmi.13394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/15/2021] [Accepted: 08/30/2021] [Indexed: 11/28/2022]
Abstract
Viruses of Archaea, arguably the most mysterious part of the virosphere due to their unique morphotypes and genome contents, exploit diverse mechanisms for releasing virus progeny from the host cell. These include virus release as a result of the enzymatic degradation of the cell wall or budding through it, common for viruses of Bacteria and Eukarya, as well as a unique mechanism of virus egress through small polygonal perforations on the cell surface. The process of the formation of these perforations includes the development of pyramidal structures on the membrane of the infected cell, which gradually grow by the expansion of their faces and eventually open like flower petals. This mechanism of virion release is operating exclusively in cells of hyperthermophilic hosts from the phylum Crenarchaeota, which are encased solely by a layer of surface proteins, S-layer. The review focuses on recent developments in understanding structural and biochemical details of all three types of egress mechanisms of archaeal viruses. TAKE AWAYS: Many archaeal viruses exit the host via polygonal perforations on the cell membrane. The molecular mechanism of exit via specific apertures is unique for archaeal viruses. Some enveloped archaeal viruses exploit the budding mechanism for egress.
Collapse
Affiliation(s)
- Diana P Baquero
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, Paris, France
| | - Junfeng Liu
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, Paris, France
| | - David Prangishvili
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, Paris, France.,Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| |
Collapse
|
7
|
Lewis AM, Recalde A, Bräsen C, Counts JA, Nussbaum P, Bost J, Schocke L, Shen L, Willard DJ, Quax TEF, Peeters E, Siebers B, Albers SV, Kelly RM. The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol Rev 2021; 45:fuaa063. [PMID: 33476388 PMCID: PMC8557808 DOI: 10.1093/femsre/fuaa063] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered >50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further probe novel features of these microbes but also paved the way for their potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes.
Collapse
Affiliation(s)
- April M Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Alejandra Recalde
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher Bräsen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Phillip Nussbaum
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Jan Bost
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Schocke
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Tessa E F Quax
- Archaeal Virus–Host Interactions, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sonja-Verena Albers
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| |
Collapse
|
8
|
A filamentous archaeal virus is enveloped inside the cell and released through pyramidal portals. Proc Natl Acad Sci U S A 2021; 118:2105540118. [PMID: 34341107 DOI: 10.1073/pnas.2105540118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The majority of viruses infecting hyperthermophilic archaea display unique virion architectures and are evolutionarily unrelated to viruses of bacteria and eukaryotes. The lack of relationships to other known viruses suggests that the mechanisms of virus-host interaction in Archaea are also likely to be distinct. To gain insights into archaeal virus-host interactions, we studied the life cycle of the enveloped, ∼2-μm-long Sulfolobus islandicus filamentous virus (SIFV), a member of the family Lipothrixviridae infecting a hyperthermophilic and acidophilic archaeon Saccharolobus islandicus LAL14/1. Using dual-axis electron tomography and convolutional neural network analysis, we characterize the life cycle of SIFV and show that the virions, which are nearly two times longer than the host cell diameter, are assembled in the cell cytoplasm, forming twisted virion bundles organized on a nonperfect hexagonal lattice. Remarkably, our results indicate that envelopment of the helical nucleocapsids takes place inside the cell rather than by budding as in the case of most other known enveloped viruses. The mature virions are released from the cell through large (up to 220 nm in diameter), six-sided pyramidal portals, which are built from multiple copies of a single 89-amino-acid-long viral protein gp43. The overexpression of this protein in Escherichia coli leads to pyramid formation in the bacterial membrane. Collectively, our results provide insights into the assembly and release of enveloped filamentous viruses and illuminate the evolution of virus-host interactions in Archaea.
Collapse
|
9
|
Quemin ERJ, Machala EA, Vollmer B, Pražák V, Vasishtan D, Rosch R, Grange M, Franken LE, Baker LA, Grünewald K. Cellular Electron Cryo-Tomography to Study Virus-Host Interactions. Annu Rev Virol 2020; 7:239-262. [PMID: 32631159 DOI: 10.1146/annurev-virology-021920-115935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses are obligatory intracellular parasites that reprogram host cells upon infection to produce viral progeny. Here, we review recent structural insights into virus-host interactions in bacteria, archaea, and eukaryotes unveiled by cellular electron cryo-tomography (cryoET). This advanced three-dimensional imaging technique of vitreous samples in near-native state has matured over the past two decades and proven powerful in revealing molecular mechanisms underlying viral replication. Initial studies were restricted to cell peripheries and typically focused on early infection steps, analyzing surface proteins and viral entry. Recent developments including cryo-thinning techniques, phase-plate imaging, and correlative approaches have been instrumental in also targeting rare events inside infected cells. When combined with advances in dedicated image analyses and processing methods, details of virus assembly and egress at (sub)nanometer resolution were uncovered. Altogether, we provide a historical and technical perspective and discuss future directions and impacts of cryoET for integrative structural cell biology analyses of viruses.
Collapse
Affiliation(s)
- Emmanuelle R J Quemin
- Centre for Structural Systems Biology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, University of Hamburg, D-22607 Hamburg, Germany;
| | - Emily A Machala
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Benjamin Vollmer
- Centre for Structural Systems Biology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, University of Hamburg, D-22607 Hamburg, Germany;
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Vojtěch Pražák
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Daven Vasishtan
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Rene Rosch
- Centre for Structural Systems Biology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, University of Hamburg, D-22607 Hamburg, Germany;
| | - Michael Grange
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Linda E Franken
- Centre for Structural Systems Biology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, University of Hamburg, D-22607 Hamburg, Germany;
| | - Lindsay A Baker
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Kay Grünewald
- Centre for Structural Systems Biology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, University of Hamburg, D-22607 Hamburg, Germany;
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
10
|
Li Z, Rodriguez‐Franco M, Albers S, Quax TEF. The switch complex ArlCDE connects the chemotaxis system and the archaellum. Mol Microbiol 2020; 114:468-479. [PMID: 32416640 PMCID: PMC7534055 DOI: 10.1111/mmi.14527] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022]
Abstract
Cells require a sensory system and a motility structure to achieve directed movement. Bacteria and archaea possess rotating filamentous motility structures that work in concert with the sensory chemotaxis system. This allows microorganisms to move along chemical gradients. The central response regulator protein CheY can bind to the motor of the motility structure, the flagellum in bacteria, and the archaellum in archaea. Both motility structures have a fundamentally different protein composition and structural organization. Yet, both systems receive input from the chemotaxis system. So far, it was unknown how the signal is transferred from the archaeal CheY to the archaellum motor to initiate motor switching. We applied a fluorescent microscopy approach in the model euryarchaeon Haloferax volcanii and shed light on the sequence order in which signals are transferred from the chemotaxis system to the archaellum. Our findings indicate that the euryarchaeal-specific ArlCDE are part of the archaellum motor and that they directly receive input from the chemotaxis system via the adaptor protein CheF. Hence, ArlCDE are an important feature of the archaellum of euryarchaea, are essential for signal transduction during chemotaxis and represent the archaeal switch complex.
Collapse
Affiliation(s)
- Zhengqun Li
- Molecular Biology of Archaea, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | | | - Sonja‐Verena Albers
- Molecular Biology of Archaea, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Tessa E. F. Quax
- Archaeal Virus–Host Interactions, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| |
Collapse
|
11
|
Affiliation(s)
- Jennifer Wirth
- Plant Science and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
| | - Mark Young
- Plant Science and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
12
|
Peng X, Mayo-Muñoz D, Bhoobalan-Chitty Y, Martínez-Álvarez L. Anti-CRISPR Proteins in Archaea. Trends Microbiol 2020; 28:913-921. [PMID: 32499102 DOI: 10.1016/j.tim.2020.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/26/2022]
Abstract
Anti-CRISPR (Acr) proteins are natural inhibitors of CRISPR-Cas immune systems. To date, Acrs inhibiting types I, II, III, V, and VI CRISPR-Cas systems have been characterized. While most known Acrs are derived from bacterial phages and prophages, very few have been characterized in the domain Archaea, despite the nearly ubiquitous presence of CRISPR-Cas in archaeal cells. Here we summarize the discovery and characterization of the archaeal Acrs with the representatives encoded by a model archaeal virus, Sulfolobus islandicus rod-shaped virus 2 (SIRV2). AcrID1 inhibits subtype I-D CRISPR-Cas immunity through direct interaction with the large subunit Cas10d of the effector complex, and AcrIIIB1 inhibits subtype III-B CRISPR-Cas immunity through a mechanism interfering with middle/late gene targeting. Future development of efficient screening methods will be key to uncovering the diversity of archaeal Acrs.
Collapse
Affiliation(s)
- Xu Peng
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| | - David Mayo-Muñoz
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | | | | |
Collapse
|
13
|
Liber SR, Marin O, Butenko AV, Ron R, Shool L, Salomon A, Deutsch M, Sloutskin E. Polyhedral Water Droplets: Shape Transitions and Mechanism. J Am Chem Soc 2020; 142:8672-8678. [DOI: 10.1021/jacs.0c00184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shir R. Liber
- Physics Department & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Orlando Marin
- Physics Department & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Alexander V. Butenko
- Physics Department & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Racheli Ron
- Chemistry Department & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lee Shool
- Physics Department & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Adi Salomon
- Chemistry Department & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Moshe Deutsch
- Physics Department & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Eli Sloutskin
- Physics Department & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
14
|
Sarkar R, Xie TZ, Endres KJ, Wang Z, Moorefield CN, Saunders MJ, Ghorai S, Patri AK, Wesdemiotis C, Dobrynin AV, Newkome GR. Sierpiński Pyramids by Molecular Entanglement. J Am Chem Soc 2020; 142:5526-5530. [PMID: 32131597 DOI: 10.1021/jacs.0c01168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Planar, terpyridine-based metal complexes with the Sierpiński triangular motif and alkylated corners undergo a second self-assembly event to give megastructural Sierpiński pyramids; assembly is driven by the facile lipophilic-lipophilic association of the alkyl moieties and complementary perfect fit of the triangular building blocks. Confirmation of the 3D, pyramidal structures was verified and supported by a combination of TEM, AFM, and multiscale simulation techniques.
Collapse
Affiliation(s)
- Rajarshi Sarkar
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Ting-Zheng Xie
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Kevin J Endres
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Zilu Wang
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Charles N Moorefield
- Dendronex LLC, 109 Runway Drive, Reese Technology Center, Lubbock, Texas 79416, United States
| | - Mary Jane Saunders
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Suman Ghorai
- NCTR-ORA Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food & Drug Administration, HFT-30, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Anil K Patri
- NCTR-ORA Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food & Drug Administration, HFT-30, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Chrys Wesdemiotis
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States.,Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Andrey V Dobrynin
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - George R Newkome
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States.,Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States.,Center for Molecular Biology and Biotechnology, Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States
| |
Collapse
|
15
|
Architecture and modular assembly of Sulfolobus S-layers revealed by electron cryotomography. Proc Natl Acad Sci U S A 2019; 116:25278-25286. [PMID: 31767763 PMCID: PMC6911244 DOI: 10.1073/pnas.1911262116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many bacteria and most archaea are enveloped in S-layers, protective lattices of proteins that are among the most abundant on earth. S-layers define both the cell’s shape and periplasmic space, and play essential roles in cell division, adhesion, biofilm formation, protection against harsh environments and phages, and comprise important virulence factors in pathogenic bacteria. Despite their importance, structural information about archaeal S-layers is sparse. Here, we describe in situ structural data on archaeal S-layers by cutting-edge electron cryotomography. Our results shed light on the function and evolution of archaeal cell walls and thus our understanding of microbial life. They will also inform approaches in nanobiotechnology aiming to engineer S-layers for a vast array of applications. Surface protein layers (S-layers) often form the only structural component of the archaeal cell wall and are therefore important for cell survival. S-layers have a plethora of cellular functions including maintenance of cell shape, osmotic, and mechanical stability, the formation of a semipermeable protective barrier around the cell, and cell–cell interaction, as well as surface adhesion. Despite the central importance of S-layers for archaeal life, their 3-dimensional (3D) architecture is still poorly understood. Here we present detailed 3D electron cryomicroscopy maps of archaeal S-layers from 3 different Sulfolobus strains. We were able to pinpoint the positions and determine the structure of the 2 subunits SlaA and SlaB. We also present a model describing the assembly of the mature S-layer.
Collapse
|
16
|
Coulibaly F. Polyhedra, spindles, phage nucleus and pyramids: Structural biology of viral superstructures. Adv Virus Res 2019; 105:275-335. [PMID: 31522707 DOI: 10.1016/bs.aivir.2019.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Viral infection causes comprehensive rearrangements of the cell that reflect as much host defense mechanisms as virus-induced structures assembled to facilitate infection. Regardless of their pro- or antiviral role, large intracellular structures are readily detectable by microscopy and often provide a signature characteristic of a specific viral infection. The structural features and localization of these assemblies have thus been commonly used for the diagnostic and classification of viruses since the early days of virology. More recently, characterization of viral superstructures using molecular and structural approaches have revealed very diverse organizations and roles, ranging from dynamic viral factories behaving like liquid organelles to ultra-stable crystals embedding and protecting virions. This chapter reviews the structures, functions and biotechnological applications of virus-induced superstructures with a focus on assemblies that have a regular organization, for which detailed structural descriptions are available. Examples span viruses infecting all domains of life including the assembly of virions into crystalline arrays in eukaryotic and bacterial viruses, nucleus-like compartments involved in the replication of large bacteriophages, and pyramid-like structures mediating the egress of archaeal viruses. Among these superstructures, high-resolution structures are available for crystalline objects produced by insect viruses: viral polyhedra which function as the infectious form of occluded viruses, and spindles which are potent virulence factors of entomopoxviruses. In turn, some of these highly symmetrical objects have been used to develop and validate advanced structural approaches, pushing the boundary of structural biology.
Collapse
Affiliation(s)
- Fasséli Coulibaly
- Infection & Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
17
|
Obr M, Schur FKM. Structural analysis of pleomorphic and asymmetric viruses using cryo-electron tomography and subtomogram averaging. Adv Virus Res 2019; 105:117-159. [PMID: 31522703 DOI: 10.1016/bs.aivir.2019.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Describing the protein interactions that form pleomorphic and asymmetric viruses represents a considerable challenge to most structural biology techniques, including X-ray crystallography and single particle cryo-electron microscopy. Obtaining a detailed understanding of these interactions is nevertheless important, considering the number of relevant human pathogens that do not follow strict icosahedral or helical symmetry. Cryo-electron tomography and subtomogram averaging methods provide structural insights into complex biological environments and are well suited to go beyond structures of perfectly symmetric viruses. This chapter discusses recent developments showing that cryo-ET and subtomogram averaging can provide high-resolution insights into hitherto unknown structural features of pleomorphic and asymmetric virus particles. It also describes how these methods have significantly added to our understanding of retrovirus capsid assemblies in immature and mature viruses. Additional examples of irregular viruses and their associated proteins, whose structures have been studied via cryo-ET and subtomogram averaging, further support the versatility of these methods.
Collapse
Affiliation(s)
- Martin Obr
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Florian K M Schur
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.
| |
Collapse
|
18
|
Liu Y, Brandt D, Ishino S, Ishino Y, Koonin EV, Kalinowski J, Krupovic M, Prangishvili D. New archaeal viruses discovered by metagenomic analysis of viral communities in enrichment cultures. Environ Microbiol 2019; 21:2002-2014. [PMID: 30451355 PMCID: PMC11128462 DOI: 10.1111/1462-2920.14479] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/07/2018] [Accepted: 11/10/2018] [Indexed: 12/20/2022]
Abstract
Viruses infecting hyperthermophilic archaea of the phylum Crenarchaeota display enormous morphological and genetic diversity, and are classified into 12 families. Eight of these families include only one or two species, indicating sparse sampling of the crenarchaeal virus diversity. In an attempt to expand the crenarchaeal virome, we explored virus diversity in the acidic, hot spring Umi Jigoku in Beppu, Japan. Environmental samples were used to establish enrichment cultures under conditions favouring virus replication. The host diversity in the enrichment cultures was restricted to members of the order Sulfolobales. Metagenomic sequencing of the viral communities yielded seven complete or near-complete double-stranded DNA virus genomes. Six of these genomes could be attributed to polyhedral and filamentous viruses that were observed by electron microscopy in the enrichment cultures. Two icosahedral viruses represented species in the family Portogloboviridae. Among the filamentous viruses, two were identified as new species in the families Rudiviridae and Lipothrixviridae, whereas two other formed a group seemingly distinct from the known virus genera. No particle morphotype could be unequivocally assigned to the seventh viral genome, which apparently represents a new virus type. Our results suggest that filamentous viruses are globally distributed and are prevalent virus types in extreme geothermal environments.
Collapse
Affiliation(s)
- Ying Liu
- Department of Microbiology, BMGE, Institut Pasteur, Paris 75015, France
| | - David Brandt
- Center for Biotechnology, Universität Bielefeld, Bielefeld 33615, Germany
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 819-0395, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 819-0395, Japan
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jörn Kalinowski
- Center for Biotechnology, Universität Bielefeld, Bielefeld 33615, Germany
| | - Mart Krupovic
- Department of Microbiology, BMGE, Institut Pasteur, Paris 75015, France
| | | |
Collapse
|
19
|
Hall D, Takagi J, Nakamura H. Foreword to 'Multiscale structural biology: biophysical principles and mechanisms underlying the action of bio-nanomachines', a special issue in Honour of Fumio Arisaka's 70th birthday. Biophys Rev 2018; 10:105-129. [PMID: 29500796 PMCID: PMC5899743 DOI: 10.1007/s12551-018-0401-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/29/2018] [Indexed: 02/08/2023] Open
Abstract
This issue of Biophysical Reviews, titled 'Multiscale structural biology: biophysical principles and mechanisms underlying the action of bio-nanomachines', is a collection of articles dedicated in honour of Professor Fumio Arisaka's 70th birthday. Initially, working in the fields of haemocyanin and actin filament assembly, Fumio went on to publish important work on the elucidation of structural and functional aspects of T4 phage biology. As his career has transitioned levels of complexity from proteins (hemocyanin) to large protein complexes (actin) to even more massive bio-nanomachinery (phage), it is fitting that the subject of this special issue is similarly reflective of his multiscale approach to structural biology. This festschrift contains articles spanning biophysical structure and function from the bio-molecular through to the bio-nanomachine level.
Collapse
Affiliation(s)
- Damien Hall
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871 Japan
- Research School of Chemistry, Australian National University, Acton, ACT 2601 Australia
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871 Japan
| | - Haruki Nakamura
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
20
|
Albers SV, Jarrell KF. The Archaellum: An Update on the Unique Archaeal Motility Structure. Trends Microbiol 2018; 26:351-362. [PMID: 29452953 DOI: 10.1016/j.tim.2018.01.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/08/2018] [Accepted: 01/19/2018] [Indexed: 11/24/2022]
Abstract
Each of the three domains of life exhibits a unique motility structure: while Bacteria use flagella, Eukarya employ cilia, and Archaea swim using archaella. Since the new name for the archaeal motility structure was proposed, in 2012, a significant amount of new data on the regulation of transcription of archaella operons, the structure and function of archaellum subunits, their interactions, and cryo-EM data on in situ archaellum complexes in whole cells have been obtained. These data support the notion that the archaellum is evolutionary and structurally unrelated to the flagellum, but instead is related to archaeal and bacterial type IV pili and emphasize that it is a motility structure unique to the Archaea.
Collapse
Affiliation(s)
- Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II - Microbiology, University of Freiburg, 79104 Freiburg, Germany.
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
21
|
Novel Sulfolobus Virus with an Exceptional Capsid Architecture. J Virol 2018; 92:JVI.01727-17. [PMID: 29212941 DOI: 10.1128/jvi.01727-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/22/2017] [Indexed: 11/20/2022] Open
Abstract
A novel archaeal virus, denoted Sulfolobus ellipsoid virus 1 (SEV1), was isolated from an acidic hot spring in Costa Rica. The morphologically unique virion of SEV1 contains a protein capsid with 16 regularly spaced striations and an 11-nm-thick envelope. The capsid exhibits an unusual architecture in which the viral DNA, probably in the form of a nucleoprotein filament, wraps around the longitudinal axis of the virion in a plane to form a multilayered disk-like structure with a central hole, and 16 of these structures are stacked to generate a spool-like capsid. SEV1 harbors a linear double-stranded DNA genome of ∼23 kb, which encodes 38 predicted open reading frames (ORFs). Among the few ORFs with a putative function is a gene encoding a protein-primed DNA polymerase. Sixfold symmetrical virus-associated pyramids (VAPs) appear on the surface of the SEV1-infected cells, which are ruptured to allow the formation of a hexagonal opening and subsequent release of the progeny virus particles. Notably, the SEV1 virions acquire the lipid membrane in the cytoplasm of the host cell. The lipid composition of the viral envelope correlates with that of the cell membrane. These results suggest the use of a unique mechanism by SEV1 in membrane biogenesis.IMPORTANCE Investigation of archaeal viruses has greatly expanded our knowledge of the virosphere and its role in the evolution of life. Here we show that Sulfolobus ellipsoid virus 1 (SEV1), an archaeal virus isolated from a hot spring in Costa Rica, exhibits a novel viral shape and an unusual capsid architecture. The SEV1 DNA wraps multiple times in a plane around the longitudinal axis of the virion to form a disk-like structure, and 16 of these structures are stacked to generate a spool-like capsid. The virus acquires its envelope intracellularly and exits the host cell by creating a hexagonal hole on the host cell surface. These results shed significant light on the diversity of viral morphogenesis.
Collapse
|
22
|
Rodrigues-Oliveira T, Belmok A, Vasconcellos D, Schuster B, Kyaw CM. Archaeal S-Layers: Overview and Current State of the Art. Front Microbiol 2017; 8:2597. [PMID: 29312266 PMCID: PMC5744192 DOI: 10.3389/fmicb.2017.02597] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/12/2017] [Indexed: 01/01/2023] Open
Abstract
In contrast to bacteria, all archaea possess cell walls lacking peptidoglycan and a number of different cell envelope components have also been described. A paracrystalline protein surface layer, commonly referred to as S-layer, is present in nearly all archaea described to date. S-layers are composed of only one or two proteins and form different lattice structures. In this review, we summarize current understanding of archaeal S-layer proteins, discussing topics such as structure, lattice type distribution among archaeal phyla and glycosylation. The hexagonal lattice type is dominant within the phylum Euryarchaeota, while in the Crenarchaeota this feature is mainly associated with specific orders. S-layers exclusive to the Crenarchaeota have also been described, which are composed of two proteins. Information regarding S-layers in the remaining archaeal phyla is limited, mainly due to organism description through only culture-independent methods. Despite the numerous applied studies using bacterial S-layers, few reports have employed archaea as a study model. As such, archaeal S-layers represent an area for exploration in both basic and applied research.
Collapse
Affiliation(s)
- Thiago Rodrigues-Oliveira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Aline Belmok
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Deborah Vasconcellos
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Bernhard Schuster
- Department of NanoBiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cynthia M. Kyaw
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
23
|
Structure and assembly mechanism of virus-associated pyramids. Biophys Rev 2017; 10:551-557. [PMID: 29204884 DOI: 10.1007/s12551-017-0357-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/16/2017] [Indexed: 01/08/2023] Open
Abstract
Viruses have developed intricate molecular machines to infect, replicate within and escape from their host cells. Perhaps one of the most intriguing of these mechanisms is the pyramidal egress structure that has evolved in archaeal viruses, such as SIRV2 or STIV1. The structure and mechanism of these virus-associated pyramids (VAPs) has been studied by cryo-electron tomography and complementary biochemical techniques, revealing that VAPs are formed by multiple copies of a virus-encoded 10-kDa protein (PVAP) that integrate into the cell membrane and assemble into hollow, sevenfold symmetric pyramids. In this process, growing VAPs puncture the protective surface layer and ultimately open to release newly replicated viral particles into the surrounding medium. PVAP has the striking capability to spontaneously integrate and self-assemble into VAPs in biological membranes of the archaea, bacteria and eukaryotes. This renders the VAP a universal membrane remodelling system. In this review, we provide an overview of the VAP structure and assembly mechanism and discuss the possible use of VAPs in nano-biotechnology.
Collapse
|
24
|
Abstract
One of the most prominent features of archaea is the extraordinary diversity of their DNA viruses. Many archaeal viruses differ substantially in morphology from bacterial and eukaryotic viruses and represent unique virus families. The distinct nature of archaeal viruses also extends to the gene composition and architectures of their genomes and the properties of the proteins that they encode. Environmental research has revealed prominent roles of archaeal viruses in influencing microbial communities in ocean ecosystems, and recent metagenomic studies have uncovered new groups of archaeal viruses that infect extremophiles and mesophiles in diverse habitats. In this Review, we summarize recent advances in our understanding of the genomic and morphological diversity of archaeal viruses and the molecular biology of their life cycles and virus-host interactions, including interactions with archaeal CRISPR-Cas systems. We also examine the potential origins and evolution of archaeal viruses and discuss their place in the global virosphere.
Collapse
|
25
|
Peeters E, Boon M, Rollie C, Willaert RG, Voet M, White MF, Prangishvili D, Lavigne R, Quax TEF. DNA-Interacting Characteristics of the Archaeal Rudiviral Protein SIRV2_Gp1. Viruses 2017; 9:v9070190. [PMID: 28718834 PMCID: PMC5537682 DOI: 10.3390/v9070190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/02/2022] Open
Abstract
Whereas the infection cycles of many bacterial and eukaryotic viruses have been characterized in detail, those of archaeal viruses remain largely unexplored. Recently, studies on a few model archaeal viruses such as SIRV2 (Sulfolobus islandicus rod-shaped virus) have revealed an unusual lysis mechanism that involves the formation of pyramidal egress structures on the host cell surface. To expand understanding of the infection cycle of SIRV2, we aimed to functionally characterize gp1, which is a SIRV2 gene with unknown function. The SIRV2_Gp1 protein is highly expressed during early stages of infection and it is the only protein that is encoded twice on the viral genome. It harbours a helix-turn-helix motif and was therefore hypothesized to bind DNA. The DNA-binding behavior of SIRV2_Gp1 was characterized with electrophoretic mobility shift assays and atomic force microscopy. We provide evidence that the protein interacts with DNA and that it forms large aggregates, thereby causing extreme condensation of the DNA. Furthermore, the N-terminal domain of the protein mediates toxicity to the viral host Sulfolobus. Our findings may lead to biotechnological applications, such as the development of a toxic peptide for the containment of pathogenic bacteria, and add to our understanding of the Rudiviral infection cycle.
Collapse
Affiliation(s)
- Eveline Peeters
- Research Group of Microbiology, Department of Bio-Engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Maarten Boon
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, Heverlee, 3001 Leuven, Belgium.
| | - Clare Rollie
- Biomedical Sciences Research Complex, University of St Andrews, Fife, North Haugh, St. Andrews KY16 9AJ, UK.
| | - Ronnie G Willaert
- Alliance Research Group VUB-UGhent NanoMicrobiology, IJRG VUB-EPFL, BioNanotechnology & NanoMedicine, Research Group Structural Biology Brussels, Department of Bio-Engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Marleen Voet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, Heverlee, 3001 Leuven, Belgium.
| | - Malcolm F White
- Biomedical Sciences Research Complex, University of St Andrews, Fife, North Haugh, St. Andrews KY16 9AJ, UK.
| | | | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, Heverlee, 3001 Leuven, Belgium.
| | - Tessa E F Quax
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, Heverlee, 3001 Leuven, Belgium.
| |
Collapse
|
26
|
Abstract
Recently, dozens of virus structures have been solved to resolutions between 2.5 and 5.0 Å by means of electron cryomicroscopy. With these structures we are now firmly within the "atomic age" of electron cryomicroscopy, as these studies can reveal atomic details of protein and nucleic acid topology and interactions between specific residues. This improvement in resolution has been the result of direct electron detectors and image processing advances. Although enforcing symmetry facilitates reaching near-atomic resolution with fewer particle images, it unfortunately obscures some biologically interesting components of a virus. New approaches on relaxing symmetry and exploring structure dynamics and heterogeneity of viral assemblies have revealed important insights into genome packaging, virion assembly, cell entry, and other stages of the viral life cycle. In the future, novel methods will be required to reveal yet-unknown structural conformations of viruses, relevant to their biological activities. Ultimately, these results hold the promise of answering many unresolved questions linking structural diversity of viruses to their biological functions.
Collapse
Affiliation(s)
- Jason T Kaelber
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030.,National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Corey F Hryc
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030.,Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030;
| | - Wah Chiu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030.,National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030.,Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030;
| |
Collapse
|
27
|
Daum B, Vonck J, Bellack A, Chaudhury P, Reichelt R, Albers SV, Rachel R, Kühlbrandt W. Structure and in situ organisation of the Pyrococcus furiosus archaellum machinery. eLife 2017; 6. [PMID: 28653905 PMCID: PMC5517150 DOI: 10.7554/elife.27470] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/26/2017] [Indexed: 12/25/2022] Open
Abstract
The archaellum is the macromolecular machinery that Archaea use for propulsion or surface adhesion, enabling them to proliferate and invade new territories. The molecular composition of the archaellum and of the motor that drives it appears to be entirely distinct from that of the functionally equivalent bacterial flagellum and flagellar motor. Yet, the structure of the archaellum machinery is scarcely known. Using combined modes of electron cryo-microscopy (cryoEM), we have solved the structure of the Pyrococcus furiosus archaellum filament at 4.2 Å resolution and visualise the architecture and organisation of its motor complex in situ. This allows us to build a structural model combining the archaellum and its motor complex, paving the way to a molecular understanding of archaeal swimming motion.
Collapse
Affiliation(s)
- Bertram Daum
- Max Planck Institute of Biophysics, Frankfurt, Germany.,Living Systems Institute, University of Exeter, Exeter, United Kingdom.,College of Physics, Engineering and Physical Science, University of Exeter, Exeter, United Kingdom
| | - Janet Vonck
- Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Annett Bellack
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
| | - Paushali Chaudhury
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
| | - Robert Reichelt
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
| | - Sonja-Verena Albers
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
| | - Reinhard Rachel
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
28
|
Differentiation and Structure in Sulfolobus islandicus Rod-Shaped Virus Populations. Viruses 2017; 9:v9050120. [PMID: 28534836 PMCID: PMC5454432 DOI: 10.3390/v9050120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 11/17/2022] Open
Abstract
In the past decade, molecular surveys of viral diversity have revealed that viruses are the most diverse and abundant biological entities on Earth. In culture, however, most viral isolates that infect microbes are represented by a few variants isolated on type strains, limiting our ability to study how natural variation affects virus-host interactions in the laboratory. We screened a set of 137 hot spring samples for viruses that infect a geographically diverse panel of the hyperthemophilic crenarchaeon Sulfolobus islandicus. We isolated and characterized eight SIRVs (Sulfolobus islandicus rod-shaped viruses) from two different regions within Yellowstone National Park (USA). Comparative genomics revealed that all SIRV sequenced isolates share 30 core genes that represent 50–60% of the genome. The core genome phylogeny, as well as the distribution of variable genes (shared by some but not all SIRVs) and the signatures of host-virus interactions recorded on the CRISPR (clustered regularly interspaced short palindromic repeats) repeat-spacer arrays of S. islandicus hosts, identify different SIRV lineages, each associated with a different geographic location. Moreover, our studies reveal that SIRV core genes do not appear to be under diversifying selection and thus we predict that the abundant and diverse variable genes govern the coevolutionary arms race between SIRVs and their hosts.
Collapse
|
29
|
Investigation of the morphological transition of a phospholipid bilayer membrane in an external electric field via molecular dynamics simulation. J Mol Model 2017; 23:113. [PMID: 28289956 DOI: 10.1007/s00894-017-3292-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/20/2017] [Indexed: 12/12/2022]
Abstract
Elucidating the mechanisms for morphological transitions of the phospholipid bilayer membrane during cellular activity should lead to greater understanding of these membrane transitions and allow us to optimize biotechnologies such as drug delivery systems in organisms. To investigate the mechanism for and the dynamics of morphological changes in the phospholipid membrane, we performed molecular dynamics simulation of a phospholipid membrane with and without membrane protein under the influence of electric fields with different strengths. In the absence of membrane protein, it was possible to control the transition from one lamellar membrane morphology to another by applying a strong electric field. The strong electric field initially disordered the lipid molecules in the membrane, leading to the formation of a hydrophilic pore. The lipid molecules then spontaneously fused into a new lamellar membrane morphology. In the presence of membrane protein, a morphological transition from lamellar membrane to vesicle under the influence of a strong electric field was observed. Studying the complex transition dynamics associated with these changes in membrane morphology allowed us to gain deep insight into the electrofusion and electroporation that occur in the presence or absence of membrane protein, and the results obtained here should prove useful in work aimed at controlling membrane morphology. Graphical Abstract Memebrane morphological transition under the electric field of 0.6 V/nm with the membrane protein (down) and without membrane protein (up).
Collapse
|
30
|
Samson RY, Dobro MJ, Jensen GJ, Bell SD. The Structure, Function and Roles of the Archaeal ESCRT Apparatus. Subcell Biochem 2017; 84:357-377. [PMID: 28500532 DOI: 10.1007/978-3-319-53047-5_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although morphologically resembling bacteria, archaea constitute a distinct domain of life with a closer affiliation to eukaryotes than to bacteria. This similarity is seen in the machineries for a number of essential cellular processes, including DNA replication and gene transcription. Perhaps surprisingly, given their prokaryotic morphology, some archaea also possess a core cell division apparatus that is related to that involved in the final stages of membrane abscission in vertebrate cells, the ESCRT machinery.
Collapse
Affiliation(s)
- Rachel Y Samson
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall MSB, 212 S Hawthorne Drive, Bloomington, IN, 47405, USA
| | - Megan J Dobro
- School of Natural Science, Hampshire College, Amherst, MA, 01002, USA
| | - Grant J Jensen
- Division of Biology, California Institute of Technology, Pasadena, CA, 91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Stephen D Bell
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall MSB, 212 S Hawthorne Drive, Bloomington, IN, 47405, USA.
- Department of Biology, Indiana University, Simon Hall MSB, 212 S Hawthorne Drive, Bloomington, IN, 47405, USA.
| |
Collapse
|
31
|
Oikonomou CM, Chang YW, Jensen GJ. A new view into prokaryotic cell biology from electron cryotomography. Nat Rev Microbiol 2016; 14:205-20. [PMID: 26923112 PMCID: PMC5551487 DOI: 10.1038/nrmicro.2016.7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electron cryotomography (ECT) enables intact cells to be visualized in 3D in an essentially native state to 'macromolecular' (∼4 nm) resolution, revealing the basic architectures of complete nanomachines and their arrangements in situ. Since its inception, ECT has advanced our understanding of many aspects of prokaryotic cell biology, from morphogenesis to subcellular compartmentalization and from metabolism to complex interspecies interactions. In this Review, we highlight how ECT has provided structural and mechanistic insights into the physiology of bacteria and archaea and discuss prospects for the future.
Collapse
Affiliation(s)
- Catherine M Oikonomou
- Howard Hughes Medical Institute; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA
| | - Yi-Wei Chang
- Howard Hughes Medical Institute; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA
| | - Grant J Jensen
- Howard Hughes Medical Institute; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA
| |
Collapse
|
32
|
Guttman S, Ocko BM, Deutsch M, Sloutskin E. From faceted vesicles to liquid icoshedra: Where topology and crystallography meet. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
33
|
A virus of hyperthermophilic archaea with a unique architecture among DNA viruses. Proc Natl Acad Sci U S A 2016; 113:2478-83. [PMID: 26884161 DOI: 10.1073/pnas.1518929113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viruses package their genetic material in diverse ways. Most known strategies include encapsulation of nucleic acids into spherical or filamentous virions with icosahedral or helical symmetry, respectively. Filamentous viruses with dsDNA genomes are currently associated exclusively with Archaea. Here, we describe a filamentous hyperthermophilic archaeal virus, Pyrobaculum filamentous virus 1 (PFV1), with a type of virion organization not previously observed in DNA viruses. The PFV1 virion, 400 ± 20 × 32 ± 3 nm, contains an envelope and an inner core consisting of two structural units: a rod-shaped helical nucleocapsid formed of two 14-kDa major virion proteins and a nucleocapsid-encompassing protein sheath composed of a single major virion protein of 18 kDa. The virion organization of PFV1 is superficially similar to that of negative-sense RNA viruses of the family Filoviridae, including Ebola virus and Marburg virus. The linear dsDNA of PFV1 carries 17,714 bp, including 60-bp-long terminal inverted repeats, and contains 39 predicted ORFs, most of which do not show similarities to sequences in public databases. PFV1 is a lytic virus that completely disrupts the host cell membrane at the end of the infection cycle.
Collapse
|
34
|
Rensen E, Krupovic M, Prangishvili D. Mysterious hexagonal pyramids on the surface of Pyrobaculum cells. Biochimie 2015; 118:365-7. [PMID: 26115814 DOI: 10.1016/j.biochi.2015.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/12/2015] [Indexed: 11/27/2022]
Abstract
In attempts to induce putative temperate viruses, we UV-irradiated cells of the hyperthermophilic archaeon Pyrobaculum oguniense. Virus replication could not be detected; however, we observed the development of pyramidal structures with 6-fold symmetry on the cell surface. The hexagonal basis of the pyramids was continuous with the cellular cytoplasmic membrane and apparently grew via the gradual expansion of the 6 triangular lateral faces, ultimately protruding through the S-layer. When the base of these isosceles triangles reached approximately 200 nm in length, the pyramids opened like flower petals. The origin and function of these mysterious nanostructures remain unknown.
Collapse
Affiliation(s)
- Elena Rensen
- Department of Microbiology, Institut Pasteur, 25 rue du Dr. Roux, Paris 75015, France
| | - Mart Krupovic
- Department of Microbiology, Institut Pasteur, 25 rue du Dr. Roux, Paris 75015, France
| | - David Prangishvili
- Department of Microbiology, Institut Pasteur, 25 rue du Dr. Roux, Paris 75015, France.
| |
Collapse
|
35
|
Quemin ERJ, Quax TEF. Archaeal viruses at the cell envelope: entry and egress. Front Microbiol 2015; 6:552. [PMID: 26097469 PMCID: PMC4456609 DOI: 10.3389/fmicb.2015.00552] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/19/2015] [Indexed: 11/13/2022] Open
Abstract
The cell envelope represents the main line of host defense that viruses encounter on their way from one cell to another. The cytoplasmic membrane in general is a physical barrier that needs to be crossed both upon viral entry and exit. Therefore, viruses from the three domains of life employ a wide range of strategies for perforation of the cell membrane, each adapted to the cell surface environment of their host. Here, we review recent insights on entry and egress mechanisms of viruses infecting archaea. Due to the unique nature of the archaeal cell envelope, these particular viruses exhibit novel and unexpected mechanisms to traverse the cellular membrane.
Collapse
Affiliation(s)
| | - Tessa E F Quax
- Molecular Biology of Archaea, Institute for Biology II - Microbiology, University of Freiburg , Freiburg, Germany
| |
Collapse
|
36
|
Snyder JC, Bolduc B, Young MJ. 40 Years of archaeal virology: Expanding viral diversity. Virology 2015; 479-480:369-78. [PMID: 25866378 DOI: 10.1016/j.virol.2015.03.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/07/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
The first archaeal virus was isolated over 40 years ago prior to the recognition of the three domain structure of life. In the ensuing years, our knowledge of Archaea and their viruses has increased, but they still remain the most mysterious of life's three domains. Currently, over 100 archaeal viruses have been discovered, but few have been described in biochemical or structural detail. However, those that have been characterized have revealed a new world of structural, biochemical and genetic diversity. Several model systems for studying archaeal virus-host interactions have been developed, revealing evolutionary linkages between viruses infecting the three domains of life, new viral lysis systems, and unusual features of host-virus interactions. It is likely that the study of archaeal viruses will continue to provide fertile ground for fundamental discoveries in virus diversity, structure and function.
Collapse
Affiliation(s)
- Jamie C Snyder
- Department of Biological Sciences, California State Polytechnic University - Pomona, Pomona, CA, USA
| | - Benjamin Bolduc
- Departments of Plant Sciences and Microbiology, Montana State University, Bozeman, MT, USA
| | - Mark J Young
- Departments of Plant Sciences and Microbiology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
37
|
Chaturongakul S, Ounjai P. Phage-host interplay: examples from tailed phages and Gram-negative bacterial pathogens. Front Microbiol 2014; 5:442. [PMID: 25191318 PMCID: PMC4138488 DOI: 10.3389/fmicb.2014.00442] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/04/2014] [Indexed: 01/21/2023] Open
Abstract
Complex interactions between bacteriophages and their bacterial hosts play significant roles in shaping the structure of environmental microbial communities, not only by genetic transduction but also by modification of bacterial gene expression patterns. Survival of phages solely depends on their ability to infect their bacterial hosts, most importantly during phage entry. Successful dynamic adaptation of bacteriophages when facing selective pressures, such as host adaptation and resistance, dictates their abundance and diversification. Co-evolution of the phage tail fibers and bacterial receptors determine bacterial host ranges, mechanisms of phage entry, and other infection parameters. This review summarizes the current knowledge about the physical interactions between tailed bacteriophages and bacterial pathogens (e.g., Salmonella enterica and Pseudomonas aeruginosa) and the influences of the phage on host gene expression. Understanding these interactions can offer insights into phage-host dynamics and suggest novel strategies for the design of bacterial pathogen biological controls.
Collapse
Affiliation(s)
- Soraya Chaturongakul
- Department of Microbiology, Faculty of Science, Mahidol University Bangkok, Thailand ; Center for Emerging Bacterial Infections, Faculty of Science, Mahidol University Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University Bangkok, Thailand
| |
Collapse
|
38
|
Abstract
The Archaea-and their viruses-remain the most enigmatic of life's three domains. Once thought to inhabit only extreme environments, archaea are now known to inhabit diverse environments. Even though the first archaeal virus was described over 40 years ago, only 117 archaeal viruses have been discovered to date. Despite this small number, these viruses have painted a portrait of enormous morphological and genetic diversity. For example, research centered around the various steps of the archaeal virus life cycle has led to the discovery of unique mechanisms employed by archaeal viruses during replication, maturation, and virion release. In many instances, archaeal virus proteins display very low levels of sequence homology to other proteins listed in the public database, and therefore, structural characterization of these proteins has played an integral role in functional assignment. These structural studies have not only provided insights into structure-function relationships but have also identified links between viruses across all three domains of life.
Collapse
Affiliation(s)
- Nikki Dellas
- Thermal Biology Institute and Departments of.,Plant Sciences and
| | - Jamie C Snyder
- Thermal Biology Institute and Departments of.,Plant Sciences and
| | - Benjamin Bolduc
- Thermal Biology Institute and Departments of.,Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717;
| | - Mark J Young
- Thermal Biology Institute and Departments of.,Plant Sciences and
| |
Collapse
|