1
|
Matsumata M, Hirao K, Kobayashi T, Handa T, Zhou Y, Sugiyama T, Kakinuma H, Islam T, Kobayashi Y, Huang AJ, Kasaragod DK, McHugh TJ, Okamoto H. The habenula-interpeduncular nucleus-median raphe pathway regulates the outcome of social dominance conflicts in mice. Curr Biol 2025; 35:2064-2077.e9. [PMID: 40209712 DOI: 10.1016/j.cub.2025.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/02/2025] [Accepted: 03/18/2025] [Indexed: 04/12/2025]
Abstract
The habenula (Hb) to interpeduncular nucleus (IPN) projection is highly conserved across vertebrates and, in zebrafish, has been shown to regulate the decision between continuing to fight and surrender during social conflict. We have recently shown that, in loser zebrafish, habenular acetylcholine release acts on postsynaptic α7 nicotinic receptors to induce the expression of Ca2+-permeable AMPA receptors on the silent synapses of the IPN neurons that project to the median raphe (MnR). Leveraging this evolutionary conservation, we demonstrate that the disruption of cholinergic transmission from the Hb to the IPN biases mice toward winning social conflicts, whereas optogenetic activation has the opposite effect of biasing toward losing. Further circuit dissection revealed that the losing bias is likely to be mediated via inhibition of serotonin (5-hydroxytryptamine [5-HT]) neurons in the MnR by the IPN.
Collapse
Affiliation(s)
- Miho Matsumata
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Kenzo Hirao
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Takuma Kobayashi
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Takehisa Handa
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yijun Zhou
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Taku Sugiyama
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Hisaya Kakinuma
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tanvir Islam
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yuki Kobayashi
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Arthur J Huang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Deepa Kamath Kasaragod
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako 351-0198, Japan; RIKEN CBS-Kao Collaboration Center, Saitama 351-0198, Japan; Center for Advanced Biomedical Sciences, Faculty of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8489, Japan; Institute of Neuropsychiatry, 91 Bentencho, Shinjuku-ku, Tokyo 162-0851, Japan.
| |
Collapse
|
2
|
Alves PN, Nozais V, Hansen JY, Corbetta M, Nachev P, Martins IP, Thiebaut de Schotten M. Neurotransmitters' white matter mapping unveils the neurochemical fingerprints of stroke. Nat Commun 2025; 16:2555. [PMID: 40089467 PMCID: PMC11910582 DOI: 10.1038/s41467-025-57680-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
Distinctive patterns of brain neurotransmission frame determinant circuits for behavior. Understanding the relationship between their damage and the cognitive impairment provoked by brain lesions could provide insights into the pathophysiology and therapeutics of disabling disorders, like stroke. Yet, the challenges of neurotransmitter circuits mapping in vivo have hampered this investigation. Here, we developed an MRI white matter atlas of neurotransmitter circuits and created a method to chart how stroke damages neurotransmitter systems, which distinguishes pre and postsynaptic disruption. Our model, trained and tested in two large stroke patient samples, identified eight clusters with different neurochemical patterns. The associations with patients' cognitive profiles were scarce, denoting that a particular cognitive deficit might have finer underlying neurochemical disturbances that are unfit to the granularity of our analyses. These findings depict stroke neurochemical diaschisis patterns, provide insights into stroke cognitive deficits and potential treatments, and open a new window for tailored neurotransmitter modulation.
Collapse
Affiliation(s)
- Pedro Nascimento Alves
- Laboratório de Estudos de Linguagem, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
- Unidade de Acidentes Vasculares Cerebrais, Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, ULSSM, Lisbon, Portugal.
| | - Victor Nozais
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | - Justine Y Hansen
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Maurizio Corbetta
- Clinica Neurologica, Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Fondazione Biomedica, Padova, Italy
| | - Parashkev Nachev
- Queen Square Institute of Neurology, University College London, London, UK
| | - Isabel Pavão Martins
- Laboratório de Estudos de Linguagem, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Unidade de Acidentes Vasculares Cerebrais, Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, ULSSM, Lisbon, Portugal
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| |
Collapse
|
3
|
Spikol ED, Cheng J, Macurak M, Subedi A, Halpern ME. Genetically defined nucleus incertus neurons differ in connectivity and function. eLife 2024; 12:RP89516. [PMID: 38819436 PMCID: PMC11142643 DOI: 10.7554/elife.89516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
The nucleus incertus (NI), a conserved hindbrain structure implicated in the stress response, arousal, and memory, is a major site for production of the neuropeptide relaxin-3. On the basis of goosecoid homeobox 2 (gsc2) expression, we identified a neuronal cluster that lies adjacent to relaxin 3a (rln3a) neurons in the zebrafish analogue of the NI. To delineate the characteristics of the gsc2 and rln3a NI neurons, we used CRISPR/Cas9 targeted integration to drive gene expression specifically in each neuronal group, and found that they differ in their efferent and afferent connectivity, spontaneous activity, and functional properties. gsc2 and rln3a NI neurons have widely divergent projection patterns and innervate distinct subregions of the midbrain interpeduncular nucleus (IPN). Whereas gsc2 neurons are activated more robustly by electric shock, rln3a neurons exhibit spontaneous fluctuations in calcium signaling and regulate locomotor activity. Our findings define heterogeneous neurons in the NI and provide new tools to probe its diverse functions.
Collapse
Affiliation(s)
- Emma D Spikol
- Department of Molecular and Systems Biology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ji Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Michelle Macurak
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Abhignya Subedi
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Marnie E Halpern
- Department of Molecular and Systems Biology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
4
|
Tian ZR, Sharma A, Muresanu DF, Sharma S, Feng L, Zhang Z, Li C, Buzoianu AD, Lafuente JV, Nozari A, Sjöqvisst PO, Wiklund L, Sharma HS. Nicotine neurotoxicity exacerbation following engineered Ag and Cu (50-60 nm) nanoparticles intoxication. Neuroprotection with nanowired delivery of antioxidant compound H-290/51 together with serotonin 5-HT3 receptor antagonist ondansetron. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:189-233. [PMID: 37833012 DOI: 10.1016/bs.irn.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Nicotine abuse is frequent worldwide leading to about 8 millions people die every year due to tobacco related diseases. Military personnel often use nicotine smoking that is about 12.8% higher than civilian populations. Nicotine smoking triggers oxidative stress and are linked to several neurodegenerative diseases such as Alzheimer's disease. Nicotine neurotoxicity induces significant depression and oxidative stress in the brain leading to neurovascular damages and brain pathology. Thus, details of nicotine neurotoxicity and factors influencing them require additional investigations. In this review, effects of engineered nanoparticles from metals Ag and Cu (50-60 nm) on nicotine neurotoxicity are discussed with regard to nicotine smoking. Military personnel often work in the environment where chances of nanoparticles exposure are quite common. In our earlier studies, we have shown that nanoparticles alone induces breakdown of the blood-brain barrier (BBB) and exacerbates brain pathology in animal models. In present investigation, nicotine exposure in with Ag or Cu nanoparticles intoxicated group exacerbated BBB breakdown, induce oxidative stress and aggravate brain pathology. Treatment with nanowired H-290/51 a potent chain-breaking antioxidant together with nanowired ondansetron, a potent 5-HT3 receptor antagonist significantly reduced oxidative stress, BBB breakdown and brain pathology in nicotine exposure associated with Ag or Cu nanoparticles intoxication. The functional significance of this findings and possible mechanisms of nicotine neurotoxicity are discussed based on current literature.
Collapse
Affiliation(s)
- Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; ''RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Suraj Sharma
- Blekinge Institute of Technology, BTH, Karlskrona, Sweden
| | - Lianyuan Feng
- Blekinge Institute of Technology, BTH, Karlskrona, Sweden
| | - Zhiqiang Zhang
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Cong Li
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Anca D Buzoianu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Dade road No.111, Yuexiu District, Guangzhou, P.R. China; Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province, Guangzhou University of Chinese Medicine, Dade road No.111, Yuexiu District, Guangzhou, P.R. China
| | - José Vicente Lafuente
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston, MA, USA
| | - Per-Ove Sjöqvisst
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden; LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.
| |
Collapse
|
5
|
Fu CW, Huang CH, Tong SK, Chu CY, Chou MY. Nicotine reduces social dominance and neutralizes experience-dependent effects during social conflicts in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164876. [PMID: 37343866 DOI: 10.1016/j.scitotenv.2023.164876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Nicotine, a psychoactive pollutant, binds to nicotinic acetylcholine receptors and disrupts the cholinergic modulation and reward systems of the brain, leading to attention deficit, memory loss, and addiction. However, whether nicotine affects social behaviors remains unknown. We assessed the effects of nicotine on the fighting behavior of zebrafish. Adult zebrafish treated with 5 μM nicotine were used in dyadic fighting tests with size-matched control siblings. The results indicate that nicotine treatment not only significantly reduced the likelihood of winning but also impaired the winner-loser effects (winner and loser fish did not show higher winning and losing tendencies in the second fight, respectively, after treatment.) Nicotine led to a considerable increase in c-fos-positive signals in the interpeduncular nucleus (IPN) of the brain, indicating that nicotine induces neural activity in the habenula (Hb)-IPN circuit. We used transgenic fish in which the Hb-IPN circuit was silenced to verify whether nicotine impaired the winner-loser effect through the Hb-IPN pathway. Nicotine-treated fish in which the medial part of the dorsal Hb was silenced did not have a higher winning rate, and nicotine-treated fish in which the lateral part of the dorsal Hb was silenced did not have a higher loss rate. This finding suggests that nicotine impairs the winner-loser effect by modulating the Hb-IPN circuit. Therefore, in these zebrafish, nicotine exposure impaired social dominance and neutralized experience-dependent effects in social conflicts, and it may thereby disturb the social hierarchy and population stability of such fish.
Collapse
Affiliation(s)
- Chih-Wei Fu
- Department of Life Science, National Taiwan University, Taiwan
| | | | - Sok-Keng Tong
- Department of Life Science, National Taiwan University, Taiwan
| | - Chia-Ying Chu
- Department of Life Science, National Taiwan University, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taiwan.
| |
Collapse
|
6
|
Petrucco L, Lavian H, Wu YK, Svara F, Štih V, Portugues R. Neural dynamics and architecture of the heading direction circuit in zebrafish. Nat Neurosci 2023; 26:765-773. [PMID: 37095397 PMCID: PMC10166860 DOI: 10.1038/s41593-023-01308-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/16/2023] [Indexed: 04/26/2023]
Abstract
Animals generate neural representations of their heading direction. Notably, in insects, heading direction is topographically represented by the activity of neurons in the central complex. Although head direction cells have been found in vertebrates, the connectivity that endows them with their properties is unknown. Using volumetric lightsheet imaging, we find a topographical representation of heading direction in a neuronal network in the zebrafish anterior hindbrain, where a sinusoidal bump of activity rotates following directional swims of the fish and is otherwise stable over many seconds. Electron microscopy reconstructions show that, although the cell bodies are located in a dorsal region, these neurons arborize in the interpeduncular nucleus, where reciprocal inhibitory connectivity stabilizes the ring attractor network that encodes heading. These neurons resemble those found in the fly central complex, showing that similar circuit architecture principles may underlie the representation of heading direction across the animal kingdom and paving the way to an unprecedented mechanistic understanding of these networks in vertebrates.
Collapse
Affiliation(s)
- Luigi Petrucco
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilian University, Munich, Germany
| | - Hagar Lavian
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - You Kure Wu
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - Fabian Svara
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | | | - Ruben Portugues
- Institute of Neuroscience, Technical University of Munich, Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
7
|
Kinoshita M, Okamoto H. Acetylcholine potentiates glutamate transmission from the habenula to the interpeduncular nucleus in losers of social conflict. Curr Biol 2023:S0960-9822(23)00445-1. [PMID: 37105168 DOI: 10.1016/j.cub.2023.03.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Switching behaviors from aggression to submission in losers at the end of conspecific social fighting is essential to avoid serious injury or death. We have previously shown that the experience of defeat induces a loser-specific potentiation in the habenula (Hb)-interpeduncular nucleus (IPN) and show here that this is induced by acetylcholine. Calcium imaging and electrophysiological recording using acute brain slices from winners and losers of fighting behavior in zebrafish revealed that the ventral IPN (vIPN) dominates over the dorsal IPN in the neural response to Hb stimulation in losers. We also show that GluA1 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits on the postsynaptic membrane increased in the vIPN of losers. Furthermore, these loser-specific neural properties disappeared in the presence of an α7 nicotinic acetylcholine receptor (nAChR) antagonist and, conversely, were induced in brain slices of winners treated with α7 nAChR agonists. These data suggest that acetylcholine released from Hb terminals in the vIPN induces activation of α7 nAChR followed by an increase in postsynaptic membrane GluA1. This results in an increase in active synapses on postsynaptic neurons, resulting in the potentiation of neurotransmissions to the vIPN. This acetylcholine-induced neuromodulation could be the neural foundation for behavioral switching in losers. Our results could increase our understanding of the mechanisms of various mood disorders such as social anxiety disorder and social withdrawal.
Collapse
Affiliation(s)
- Masae Kinoshita
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198, Japan; RIKEN CBS-Kao Collaboration Center, Saitama 351-0198, Japan.
| |
Collapse
|
8
|
Agostini C, Bühler A, Antico Calderone A, Aadepu N, Herder C, Loosli F, Carl M. Conserved and diverged asymmetric gene expression in the brain of teleosts. Front Cell Dev Biol 2022; 10:1005776. [PMID: 36211473 PMCID: PMC9532764 DOI: 10.3389/fcell.2022.1005776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Morphological left-right brain asymmetries are universal phenomena in animals. These features have been studied for decades, but the functional relevance is often unclear. Studies from the zebrafish dorsal diencephalon on the genetics underlying the establishment and function of brain asymmetries have uncovered genes associated with the development of functional brain asymmetries. To gain further insights, comparative studies help to investigate the emergence of asymmetries and underlying genetics in connection to functional adaptation. Evolutionarily distant isogenic medaka inbred lines, that show divergence of complex traits such as morphology, physiology and behavior, are a valuable resource to investigate intra-species variations in a given trait of interest. For a detailed study of asymmetry in the medaka diencephalon we generated molecular probes of ten medaka genes that are expressed asymmetrically in the zebrafish habenulae and pineal complex. We find expression of eight genes in the corresponding brain areas of medaka with differences in the extent of left-right asymmetry compared to zebrafish. Our marker gene analysis of the diverged medaka inbred strains revealed marked inter-strain size differences of the respective expression domains in the parapineal and the habenulae, which we hypothesize may result from strain-specific gene loss. Thus, our analysis reveals both inter-species differences but also intra-species plasticity of gene expression in the teleost dorsal diencephalon. These findings are a starting point showing the potential to identify the genetics underlying the emergence and modulations of asymmetries. They are also the prerequisite to examine whether variance in habenular gene expression may cause variation of behavioral traits.
Collapse
Affiliation(s)
- Carolina Agostini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anja Bühler
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Narendar Aadepu
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Cathrin Herder
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Felix Loosli
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
- *Correspondence: Felix Loosli, ; Matthias Carl,
| | - Matthias Carl
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- *Correspondence: Felix Loosli, ; Matthias Carl,
| |
Collapse
|
9
|
Chen S, Sun X, Zhang Y, Mu Y, Su D. Habenula bibliometrics: Thematic development and research fronts of a resurgent field. Front Integr Neurosci 2022; 16:949162. [PMID: 35990593 PMCID: PMC9382245 DOI: 10.3389/fnint.2022.949162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
The habenula (Hb) is a small structure of the posterior diencephalon that is highly conserved across vertebrates but nonetheless has attracted relatively little research attention until the past two decades. The resurgent interest is motivated by neurobehavioral studies demonstrating critical functions in a broad spectrum of motivational and cognitive processes, including functions relevant to psychiatric diseases. The Hb is widely conceived as an "anti-reward" center that acts by regulating brain monoaminergic systems. However, there is still no general conceptual framework for habenula research, and no study has focused on uncovering potentially significant but overlooked topics that may advance our understanding of physiological functions or suggest potential clinical applications of Hb-targeted interventions. Using science mapping tools, we quantitatively and qualitatively analyzed the relevant publications retrieved from the Web of Science Core Collection (WoSCC) database from 2002 to 2021. Herein we present an overview of habenula-related publications, reveal primary research trends, and prioritize some key research fronts by complementary bibliometric analysis. High-priority research fronts include Ventral Pallidum, Nucleus Accumbens, Nicotine and MHb, GLT-1, Zebrafish, and GCaMP, Ketamine, Deep Brain Stimulation, and GPR139. The high intrinsic heterogeneity of the Hb, extensive connectivity with both hindbrain and forebrain structures, and emerging associations with all three dimensions of mental disorders (internalizing, externalizing, and psychosis) suggest that the Hb may be the neuronal substrate for a common psychopathology factor shared by all mental illnesses termed the p factor. A future challenge is to explore the therapeutic potential of habenular modulation at circuit, cellular, and molecular levels.
Collapse
Affiliation(s)
- Sifan Chen
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Sun
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yizhe Zhang
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Mu
- State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Diansan Su
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Ogawa S, Parhar IS. Functions of habenula in reproduction and socio-reproductive behaviours. Front Neuroendocrinol 2022; 64:100964. [PMID: 34793817 DOI: 10.1016/j.yfrne.2021.100964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022]
Abstract
Habenula is an evolutionarily conserved structure in the brain of vertebrates. Recent reports have drawn attention to the habenula as a processing centre for emotional decision-making and its role in psychiatric disorders. Emotional decision-making process is also known to be closely associated with reproductive conditions. The habenula receives innervations from reproductive centres within the brain and signals from key reproductive neuroendocrine regulators such as gonadal sex steroids, gonadotropin-releasing hormone (GnRH), and kisspeptin. In this review, based on morphological, biochemical, physiological, and pharmacological evidence we discuss an emerging role of the habenula in reproduction. Further, we discuss the modulatory role of reproductive endocrine factors in the habenula and their association with socio-reproductive behaviours such as mating, anxiety and aggression.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
11
|
Ponzoni L, Melzi G, Marabini L, Martini A, Petrillo G, Teh MT, Torres-Perez JV, Morara S, Gotti C, Braida D, Brennan CH, Sala M. Conservation of mechanisms regulating emotional-like responses on spontaneous nicotine withdrawal in zebrafish and mammals. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110334. [PMID: 33905756 PMCID: PMC8380689 DOI: 10.1016/j.pnpbp.2021.110334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nicotine withdrawal syndrome is a major clinical problem. Animal models with sufficient predictive validity to support translation of pre-clinical findings to clinical research are lacking. AIMS We evaluated the behavioural and neurochemical alterations in zebrafish induced by short- and long-term nicotine withdrawal. METHODS Zebrafish were exposed to 1 mg/L nicotine for 2 weeks. Dependence was determined using behavioural analysis following mecamylamine-induced withdrawal, and brain nicotinic receptor binding studies. Separate groups of nicotine-exposed and control fish were assessed for anxiety-like behaviours, anhedonia and memory deficits following 2-60 days spontaneous withdrawal. Gene expression analysis using whole brain samples from nicotine-treated and control fish was performed at 7 and 60 days after the last drug exposure. Tyrosine hydroxylase (TH) immunoreactivity in pretectum was also analysed. RESULTS Mecamylamine-precipitated withdrawal nicotine-exposed fish showed increased anxiety-like behaviour as evidenced by increased freezing and decreased exploration. 3H-Epibatidine labeled heteromeric nicotinic acethylcholine receptors (nAChR) significantly increased after 2 weeks of nicotine exposure while 125I-αBungarotoxin labeled homomeric nAChR remained unchanged. Spontaneous nicotine withdrawal elicited anxiety-like behaviour (increased bottom dwelling), reduced motivation in terms of no preference for the enriched side in a place preference test starting from Day 7 after withdrawal and a progressive decrease of memory attention (lowering discrimination index). Behavioural differences were associated with brain gene expression changes: nicotine withdrawn animals showed decreased expression of chrna 4 and chrna7 after 60 days, and of htr2a from 7 to 60 days.The expression of c-Fos was significantly increased at 7 days. Finally, Tyrosine hydroxylase (TH) immunoreactivity increased in dorsal parvocellular pretectal nucleus, but not in periventricular nucleus of posterior tuberculum nor in optic tectum, at 60 days after withdrawal. CONCLUSIONS Our findings show that nicotine withdrawal induced anxiety-like behaviour, cognitive alterations, gene expression changes and increase in pretectal TH expression, similar to those observed in humans and rodent models.
Collapse
Affiliation(s)
| | - Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Laura Marabini
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | | | | | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, England, UK
| | - Jose V Torres-Perez
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | | | | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine
| | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | |
Collapse
|
12
|
Choi JH, Duboue ER, Macurak M, Chanchu JM, Halpern ME. Specialized neurons in the right habenula mediate response to aversive olfactory cues. eLife 2021; 10:e72345. [PMID: 34878403 PMCID: PMC8691842 DOI: 10.7554/elife.72345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
Hemispheric specializations are well studied at the functional level but less is known about the underlying neural mechanisms. We identified a small cluster of cholinergic neurons in the dorsal habenula (dHb) of zebrafish, defined by their expression of the lecithin retinol acyltransferase domain containing 2 a (lratd2a) gene and their efferent connections with a subregion of the ventral interpeduncular nucleus (vIPN). The lratd2a-expressing neurons in the right dHb are innervated by a subset of mitral cells from both the left and right olfactory bulb and are activated upon exposure to the odorant cadaverine that is repellent to adult zebrafish. Using an intersectional strategy to drive expression of the botulinum neurotoxin specifically in these neurons, we find that adults no longer show aversion to cadaverine. Mutants with left-isomerized dHb that lack these neurons are also less repelled by cadaverine and their behavioral response to alarm substance, a potent aversive cue, is diminished. However, mutants in which both dHb have right identity appear more reactive to alarm substance. The results implicate an asymmetric dHb-vIPN neural circuit in the processing of repulsive olfactory cues and in modulating the resultant behavioral response.
Collapse
Affiliation(s)
- Jung-Hwa Choi
- Carnegie Institution for Science, Department of EmbryologyBaltimoreUnited States
| | - Erik R Duboue
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
- Wilkes Honors College, Florida Atlantic UniversityJupiterUnited States
| | - Michelle Macurak
- Carnegie Institution for Science, Department of EmbryologyBaltimoreUnited States
| | - Jean-Michel Chanchu
- Carnegie Institution for Science, Department of EmbryologyBaltimoreUnited States
| | - Marnie E Halpern
- Carnegie Institution for Science, Department of EmbryologyBaltimoreUnited States
| |
Collapse
|
13
|
Zaupa M, Naini SMA, Younes MA, Bullier E, Duboué ER, Le Corronc H, Soula H, Wolf S, Candelier R, Legendre P, Halpern ME, Mangin JM, Hong E. Trans-inhibition of axon terminals underlies competition in the habenulo-interpeduncular pathway. Curr Biol 2021; 31:4762-4772.e5. [PMID: 34529937 DOI: 10.1016/j.cub.2021.08.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 11/19/2022]
Abstract
Survival of animals is dependent on the correct selection of an appropriate behavioral response to competing external stimuli. Theoretical models have been proposed and underlying mechanisms are emerging to explain how one circuit is selected among competing neural circuits. The evolutionarily conserved forebrain to midbrain habenulo-interpeduncular nucleus (Hb-IPN) pathway consists of cholinergic and non-cholinergic neurons, which mediate different aversive behaviors. Simultaneous calcium imaging of neuronal cell bodies and of the population dynamics of their axon terminals reveals that signals in the cell bodies are not reflective of terminal activity. We find that axon terminals of cholinergic and non-cholinergic habenular neurons exhibit stereotypic patterns of spontaneous activity that are negatively correlated and localize to discrete subregions of the target IPN. Patch-clamp recordings show that calcium bursts in cholinergic terminals at the ventral IPN trigger excitatory currents in IPN neurons, which precede inhibition of non-cholinergic terminals at the adjacent dorsal IPN. Inhibition is mediated through presynaptic GABAB receptors activated in non-cholinergic habenular neurons upon GABA release from the target IPN. Together, the results reveal a hardwired mode of competition at the terminals of two excitatory neuronal populations, providing a physiological framework to explore the relationship between different aversive responses.
Collapse
Affiliation(s)
- Margherita Zaupa
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Seyedeh Maryam Alavi Naini
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Maroun Abi Younes
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Erika Bullier
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Erik R Duboué
- Jupiter Life Science Initiative, Wilkes Honors College and Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Hervé Le Corronc
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Hédi Soula
- INSERM, Sorbonne Université, Nutriomics, La Pitié Salpétrière, 75013 Paris, France
| | - Sebastien Wolf
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, 75005 Paris, France
| | - Raphaël Candelier
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, 75005 Paris, France
| | - Pascal Legendre
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Marnie E Halpern
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jean-Marie Mangin
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Elim Hong
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
14
|
The habenula clock influences response to a stressor. Neurobiol Stress 2021; 15:100403. [PMID: 34632007 PMCID: PMC8488752 DOI: 10.1016/j.ynstr.2021.100403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
The response of an animal to a sensory stimulus depends on the nature of the stimulus and on expectations, which are mediated by spontaneous activity. Here, we ask how circadian variation in the expectation of danger, and thus the response to a potential threat, is controlled. We focus on the habenula, a mediator of threat response that functions by regulating neuromodulator release, and use zebrafish as the experimental system. Single cell transcriptomics indicates that multiple clock genes are expressed throughout the habenula, while quantitative in situ hybridization confirms that the clock oscillates. Two-photon calcium imaging indicates a circadian change in spontaneous activity of habenula neurons. To assess the role of this clock, a truncated clocka gene was specifically expressed in the habenula. This partially inhibited the clock, as shown by changes in per3 expression as well as altered day-night variation in dopamine, serotonin and acetylcholine levels. Behaviourally, anxiety-like responses evoked by an alarm pheromone were reduced. Circadian effects of the pheromone were disrupted, such that responses in the day resembled those at night. Behaviours that are regulated by the pineal clock and not triggered by stressors were unaffected. We suggest that the habenula clock regulates the expectation of danger, thus providing one mechanism for circadian change in the response to a stressor.
Collapse
|
15
|
Bartoszek EM, Ostenrath AM, Jetti SK, Serneels B, Mutlu AK, Chau KTP, Yaksi E. Ongoing habenular activity is driven by forebrain networks and modulated by olfactory stimuli. Curr Biol 2021; 31:3861-3874.e3. [PMID: 34416179 PMCID: PMC8445323 DOI: 10.1016/j.cub.2021.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/13/2021] [Accepted: 08/05/2021] [Indexed: 01/08/2023]
Abstract
Ongoing neural activity, which represents internal brain states, is constantly modulated by the sensory information that is generated by the environment. In this study, we show that the habenular circuits act as a major brain hub integrating the structured ongoing activity of the limbic forebrain circuitry and the olfactory information. We demonstrate that ancestral homologs of amygdala and hippocampus in zebrafish forebrain are the major drivers of ongoing habenular activity. We also reveal that odor stimuli can modulate the activity of specific habenular neurons that are driven by this forebrain circuitry. Our results highlight a major role for the olfactory system in regulating the ongoing activity of the habenula and the forebrain, thereby altering brain's internal states.
Collapse
Affiliation(s)
- Ewelina Magdalena Bartoszek
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Anna Maria Ostenrath
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Suresh Kumar Jetti
- Neuro-Electronics Research Flanders, Kapeldreef 75, 3001 Leuven, Belgium
| | - Bram Serneels
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Aytac Kadir Mutlu
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Khac Thanh Phong Chau
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway; Neuro-Electronics Research Flanders, Kapeldreef 75, 3001 Leuven, Belgium.
| |
Collapse
|
16
|
Bühler A, Carl M. Zebrafish Tools for Deciphering Habenular Network-Linked Mental Disorders. Biomolecules 2021; 11:biom11020324. [PMID: 33672636 PMCID: PMC7924194 DOI: 10.3390/biom11020324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Everything that we think, feel or do depends on the function of neural networks in the brain. These are highly complex structures made of cells (neurons) and their interconnections (axons), which develop dependent on precisely coordinated interactions of genes. Any gene mutation can result in unwanted alterations in neural network formation and concomitant brain disorders. The habenula neural network is one of these important circuits, which has been linked to autism, schizophrenia, depression and bipolar disorder. Studies using the zebrafish have uncovered genes involved in the development of this network. Intriguingly, some of these genes have also been identified as risk genes of human brain disorders highlighting the power of this animal model to link risk genes and the affected network to human disease. But can we use the advantages of this model to identify new targets and compounds with ameliorating effects on brain dysfunction? In this review, we summarise the current knowledge on techniques to manipulate the habenula neural network to study the consequences on behavior. Moreover, we give an overview of existing behavioral test to mimic aspects of mental disorders and critically discuss the applicability of the zebrafish model in this field of research. Abstract The prevalence of patients suffering from mental disorders is substantially increasing in recent years and represents a major burden to society. The underlying causes and neuronal circuits affected are complex and difficult to unravel. Frequent disorders such as depression, schizophrenia, autism, and bipolar disorder share links to the habenular neural circuit. This conserved neurotransmitter system relays cognitive information between different brain areas steering behaviors ranging from fear and anxiety to reward, sleep, and social behaviors. Advances in the field using the zebrafish model organism have uncovered major genetic mechanisms underlying the formation of the habenular neural circuit. Some of the identified genes involved in regulating Wnt/beta-catenin signaling have previously been suggested as risk genes of human mental disorders. Hence, these studies on habenular genetics contribute to a better understanding of brain diseases. We are here summarizing how the gained knowledge on the mechanisms underlying habenular neural circuit development can be used to introduce defined manipulations into the system to study the functional behavioral consequences. We further give an overview of existing behavior assays to address phenotypes related to mental disorders and critically discuss the power but also the limits of the zebrafish model for identifying suitable targets to develop therapies.
Collapse
Affiliation(s)
- Anja Bühler
- Correspondence: (A.B.); (M.C.); Tel.: +39-0461-282745 (A.B.); +39-0461-283931 (M.C.)
| | - Matthias Carl
- Correspondence: (A.B.); (M.C.); Tel.: +39-0461-282745 (A.B.); +39-0461-283931 (M.C.)
| |
Collapse
|
17
|
Howard AGA, Baker PA, Ibarra-García-Padilla R, Moore JA, Rivas LJ, Tallman JJ, Singleton EW, Westheimer JL, Corteguera JA, Uribe RA. An atlas of neural crest lineages along the posterior developing zebrafish at single-cell resolution. eLife 2021; 10:e60005. [PMID: 33591267 PMCID: PMC7886338 DOI: 10.7554/elife.60005] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Neural crest cells (NCCs) are vertebrate stem cells that give rise to various cell types throughout the developing body in early life. Here, we utilized single-cell transcriptomic analyses to delineate NCC-derivatives along the posterior developing vertebrate, zebrafish, during the late embryonic to early larval stage, a period when NCCs are actively differentiating into distinct cellular lineages. We identified several major NCC/NCC-derived cell-types including mesenchyme, neural crest, neural, neuronal, glial, and pigment, from which we resolved over three dozen cellular subtypes. We dissected gene expression signatures of pigment progenitors delineating into chromatophore lineages, mesenchyme cells, and enteric NCCs transforming into enteric neurons. Global analysis of NCC derivatives revealed they were demarcated by combinatorial hox gene codes, with distinct profiles within neuronal cells. From these analyses, we present a comprehensive cell-type atlas that can be utilized as a valuable resource for further mechanistic and evolutionary investigations of NCC differentiation.
Collapse
Affiliation(s)
| | - Phillip A Baker
- Department of BioSciences, Rice UniversityHoustonUnited States
| | | | - Joshua A Moore
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - Lucia J Rivas
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - James J Tallman
- Department of BioSciences, Rice UniversityHoustonUnited States
| | | | | | | | - Rosa A Uribe
- Department of BioSciences, Rice UniversityHoustonUnited States
| |
Collapse
|
18
|
Kaur P, Kibat C, Teo E, Gruber J, Mathuru A, Tolwinski ANS. Use of Optogenetic Amyloid-β to Monitor Protein Aggregation in Drosophila melanogaster, Danio rerio and Caenorhabditis elegans. Bio Protoc 2020; 10:e3856. [PMID: 33659494 PMCID: PMC7842303 DOI: 10.21769/bioprotoc.3856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/20/2020] [Accepted: 11/22/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's Disease (AD) has long been associated with accumulation of extracellular amyloid plaques (Aβ) originating from the Amyloid Precursor Protein. Plaques have, however, been discovered in healthy individuals and not all AD brains show plaques, suggesting that extracellular Aβ aggregates may play a smaller role than anticipated. One limitation to studying Aβ peptide in vivo during disease progression is the inability to induce aggregation in a controlled manner. We developed an optogenetic method to induce Aβ aggregation and tested its biological influence in three model organisms-D. melanogaster, C. elegans and D. rerio. We generated a fluorescently labeled, optogenetic Aβ peptide that oligomerizes rapidly in vivo in the presence of blue light in all organisms. Here, we detail the procedures for expressing this fusion protein in animal models, investigating the effects on the nervous system using time lapse light-sheet microscopy, and performing metabolic assays to measure changes due to intracellular Aβ aggregation. This method, employing optogenetics to study the pathology of AD, allows spatial and temporal control in vivo that cannot be achieved by any other method at present.
Collapse
Affiliation(s)
| | - Caroline Kibat
- Institute of Molecular and Cell Biology (IMCB), Singapore
| | - Emelyne Teo
- Science Division, Yale-NUS College, Singapore
| | - Jan Gruber
- Science Division, Yale-NUS College, Singapore
- Department of Biochemistry, National University of Singapore, Singapore
| | - Ajay Mathuru
- Science Division, Yale-NUS College, Singapore
- Department of Physiology, YLL School of Medicine, National University of Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Singapore
| | | |
Collapse
|
19
|
Malev O, Lovrić M, Stipaničev D, Repec S, Martinović-Weigelt D, Zanella D, Ivanković T, Sindičić Đuretec V, Barišić J, Li M, Klobučar G. Toxicity prediction and effect characterization of 90 pharmaceuticals and illicit drugs measured in plasma of fish from a major European river (Sava, Croatia). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115162. [PMID: 32771868 DOI: 10.1016/j.envpol.2020.115162] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Chemical analysis of plasma samples of wild fish from the Sava River (Croatia) revealed the presence of 90 different pharmaceuticals/illicit drugs and their metabolites (PhACs/IDrgs). The concentrations of these PhACs/IDrgs in plasma were 10 to 1000 times higher than their concentrations in river water. Antibiotics, allergy/cold medications and analgesics were categories with the highest plasma concentrations. Fifty PhACs/IDrgs were identified as chemicals of concern based on the fish plasma model (FPM) effect ratios (ER) and their potential to activate evolutionary conserved biological targets. Chemicals of concern were also prioritized by calculating exposure-activity ratios (EARs) where plasma concentrations of chemicals were compared to their bioactivities in comprehensive ToxCast suite of in vitro assays. Overall, the applied prioritization methods indicated stimulants (nicotine, cotinine) and allergy/cold medications (prednisolone, dexamethasone) as having the highest potential biological impact on fish. The FPM model pointed to psychoactive substances (hallucinogens/stimulants and opioids) and psychotropic substances in the cannabinoids category (i.e. CBD and THC). EAR confirmed above and singled out additional chemicals of concern - anticholesteremic simvastatin and antiepileptic haloperidol. Present study demonstrates how the use of a combination of chemical analyses, and bio-effects based risk predictions with multiple criteria can help identify priority contaminants in freshwaters. The results reveal a widespread exposure of fish to complex mixtures of PhACs/IDrgs, which may target common molecular targets. While many of the prioritized chemicals occurred at low concentrations, their adverse effect on aquatic communities, due to continuous chronic exposure and additive effects, should not be neglected.
Collapse
Affiliation(s)
- Olga Malev
- Department for Translational Medicine, Srebrnjak Children's Hospital, Zagreb, Croatia; Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia.
| | - Mario Lovrić
- Know-Center, Inffeldgasse 13/6, A-8010, Graz, Austria; NMR Centre, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia.
| | - Draženka Stipaničev
- Croatian Waters, Central Water Management Laboratory, Ulica grada Vukovara 220, Zagreb, Croatia.
| | - Siniša Repec
- Croatian Waters, Central Water Management Laboratory, Ulica grada Vukovara 220, Zagreb, Croatia.
| | - Dalma Martinović-Weigelt
- University of St. Thomas, Department of Biology, Mail OWS 390, 2115 Summit Ave, Saint Paul, MN, 55105, USA.
| | - Davor Zanella
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia.
| | - Tomislav Ivanković
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia.
| | | | - Josip Barišić
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia.
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Göran Klobučar
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia.
| |
Collapse
|
20
|
Dynamic regulation of the cholinergic system in the spinal central nervous system. Sci Rep 2020; 10:15338. [PMID: 32948826 PMCID: PMC7501295 DOI: 10.1038/s41598-020-72524-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022] Open
Abstract
While the role of cholinergic neurotransmission from motoneurons is well established during neuromuscular development, whether it regulates central nervous system development in the spinal cord is unclear. Zebrafish presents a powerful model to investigate how the cholinergic system is set up and evolves during neural circuit formation. In this study, we carried out a detailed spatiotemporal analysis of the cholinergic system in embryonic and larval zebrafish. In 1-day-old embryos, we show that spinal motoneurons express presynaptic cholinergic genes including choline acetyltransferase (chata), vesicular acetylcholine transporters (vachta, vachtb), high-affinity choline transporter (hacta) and acetylcholinesterase (ache), while nicotinic acetylcholine receptor (nAChR) subunits are mainly expressed in interneurons. However, in 3-day-old embryos, we found an unexpected decrease in presynaptic cholinergic transcript expression in a rostral to caudal gradient in the spinal cord, which continued during development. On the contrary, nAChR subunits remained highly expressed throughout the spinal cord. We found that protein and enzymatic activities of presynaptic cholinergic genes were also reduced in the rostral spinal cord. Our work demonstrating that cholinergic genes are initially expressed in the embryonic spinal cord, which is dynamically downregulated during development suggests that cholinergic signaling may play a pivotal role during the formation of intra-spinal locomotor circuit.
Collapse
|
21
|
Palumbo F, Serneels B, Pelgrims R, Yaksi E. The Zebrafish Dorsolateral Habenula Is Required for Updating Learned Behaviors. Cell Rep 2020; 32:108054. [PMID: 32846116 PMCID: PMC7479510 DOI: 10.1016/j.celrep.2020.108054] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/23/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022] Open
Abstract
Operant learning requires multiple cognitive processes, such as learning, prediction of potential outcomes, and decision-making. It is less clear how interactions of these processes lead to the behavioral adaptations that allow animals to cope with a changing environment. We show that juvenile zebrafish can perform conditioned place avoidance learning, with improving performance across development. Ablation of the dorsolateral habenula (dlHb), a brain region involved in associative learning and prediction of outcomes, leads to an unexpected improvement in performance and delayed memory extinction. Interestingly, the control animals exhibit rapid adaptation to a changing learning rule, whereas dlHb-ablated animals fail to adapt. Altogether, our results show that the dlHb plays a central role in switching animals' strategies while integrating new evidence with prior experience.
Collapse
Affiliation(s)
- Fabrizio Palumbo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Bram Serneels
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway; KU Leuven, 3000 Leuven, Belgium
| | - Robbrecht Pelgrims
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030 Trondheim, Norway.
| |
Collapse
|
22
|
Wei J, Liu J, Liang S, Sun M, Duan J. Low-Dose Exposure of Silica Nanoparticles Induces Neurotoxicity via Neuroactive Ligand-Receptor Interaction Signaling Pathway in Zebrafish Embryos. Int J Nanomedicine 2020; 15:4407-4415. [PMID: 32606685 PMCID: PMC7310985 DOI: 10.2147/ijn.s254480] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/30/2020] [Indexed: 12/14/2022] Open
Abstract
Objective Silica nanoparticles (SiO2 NPs) have been extensively employed in biomedical field. SiO2 NPs are primarily designed to enter the circulatory system; however, little information is available on potential adverse effects of SiO2 NPs on the nervous system. Methods The neurotoxicity of SiO2 NPs at different concentrations (3, 6, 12 ng/nL) on zebrafish embryos was determined using immunofluorescence and microarray techniques, and subsequently confirmed by qRT-PCR. Results SiO2 NPs disrupt the axonal integrity and decrease the length of axons in Tg (NBT: EGFP) transgenic lines. The number of apoptotic cells in the brain and central nervous system of zebrafish embryos was increased in the presence of 12 ng/nL of SiO2 NPs, but the difference did not reach statistical significance. Screening for changes in the expression of genes involved in the neuroactive ligand–receptor interaction pathway was performed by microarray and confirmed by qRT-PCR. These analyses demonstrated that SiO2 NPs markedly downregulated genes associated with neural function (grm6a, drd1b, chrnb3b, adrb2a, grin2ab, npffr2.1, npy8br, gabrd, chrma3, gabrg3, gria3a, grm1a, adra2b, and glra3). Conclusion The obtained results documented that SiO2 NPs can induce developmental neurotoxicity by affecting the neuroactive ligand–receptor interaction signaling pathway. This new evidence may help to clarify the mechanism of SiO2 NPs-mediated neurotoxicity.
Collapse
Affiliation(s)
- Jialiu Wei
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jianhui Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
23
|
Lim CH, Kaur P, Teo E, Lam VYM, Zhu F, Kibat C, Gruber J, Mathuru AS, Tolwinski NS. Application of optogenetic Amyloid-β distinguishes between metabolic and physical damages in neurodegeneration. eLife 2020; 9:52589. [PMID: 32228858 PMCID: PMC7145416 DOI: 10.7554/elife.52589] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
The brains of Alzheimer’s disease patients show a decrease in brain mass and a preponderance of extracellular Amyloid-β plaques. These plaques are formed by aggregation of polypeptides that are derived from the Amyloid Precursor Protein (APP). Amyloid-β plaques are thought to play either a direct or an indirect role in disease progression, however the exact role of aggregation and plaque formation in the aetiology of Alzheimer’s disease (AD) is subject to debate as the biological effects of soluble and aggregated Amyloid-β peptides are difficult to separate in vivo. To investigate the consequences of formation of Amyloid-β oligomers in living tissues, we developed a fluorescently tagged, optogenetic Amyloid-β peptide that oligomerizes rapidly in the presence of blue light. We applied this system to the crucial question of how intracellular Amyloid-β oligomers underlie the pathologies of A. We use Drosophila, C. elegans and D. rerio to show that, although both expression and induced oligomerization of Amyloid-β were detrimental to lifespan and healthspan, we were able to separate the metabolic and physical damage caused by light-induced Amyloid-β oligomerization from Amyloid-β expression alone. The physical damage caused by Amyloid-β oligomers also recapitulated the catastrophic tissue loss that is a hallmark of late AD. We show that the lifespan deficit induced by Amyloid-β oligomers was reduced with Li+ treatment. Our results present the first model to separate different aspects of disease progression. Alzheimer's disease is a progressive condition that damages the brain over time. The cause is not clear, but a toxic molecule called Amyloid-β peptide seems to play a part. It builds up in the brains of people with Alzheimer's disease, forming hard clumps called plaques. Yet, though the plaques are a hallmark of the disease, experimental treatments designed to break them down do not seem to help. This raises the question – do Amyloid-β plaques actually cause Alzheimer's disease? Answering this question is not easy. One way to study the effect of amyloid plaques is to inject clumps of Amyloid-β peptides into model organisms. This triggers Alzheimer's-like brain damage, but it is not clear why. It remains difficult to tell the difference between the damage caused by the injected Amyloid-β peptides and the damage caused by the solid plaques that they form. For this, researchers need a way to trigger plaque formation directly inside animal brains. This would make it possible to test the effects of plaque-targeting treatments, like the drug lithium. Optogenetics is a technique that uses light to control molecules in living animals. Hsien, Kaur et al. have now used this approach to trigger plaque formation by fusing light-sensitive proteins to Amyloid-β peptides in worms, fruit flies and zebrafish. This meant that the peptides clumped together to form plaques whenever the animals were exposed to blue light. This revealed that, while both the Amyloid-β peptides and the plaques caused damage, the plaques were much more toxic. They damaged cell metabolism and caused tissue loss that resembled late Alzheimer's disease in humans. To find out whether it was possible to test Alzheimer's treatments in these animals, Hsien, Kaur et al. treated them with the drug, lithium. This increased their lifespan, reversing some of the damage caused by the plaques. Alzheimer's disease affects more than 46.8 million people worldwide and is the sixth leading cause of death in the USA. But, despite over 50 years of research, there is no cure. This new plaque-formation technique allows researchers to study the effects of amyloid plaques in living animals, providing a new way to test Alzheimer's treatments. This could be of particular help in studies of experimental drugs that aim to reduce plaque formation.
Collapse
Affiliation(s)
- Chu Hsien Lim
- Science Division, Yale- NUS College, Singapore, Singapore
| | - Prameet Kaur
- Science Division, Yale- NUS College, Singapore, Singapore
| | - Emelyne Teo
- Science Division, Yale- NUS College, Singapore, Singapore
| | | | - Fangchen Zhu
- Science Division, Yale- NUS College, Singapore, Singapore
| | - Caroline Kibat
- Science Division, Yale- NUS College, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore.,Department of Physiology, YLL School of Medicine, Singapore, Singapore
| | - Jan Gruber
- Science Division, Yale- NUS College, Singapore, Singapore.,Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Ajay S Mathuru
- Science Division, Yale- NUS College, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore.,Department of Physiology, YLL School of Medicine, Singapore, Singapore
| | | |
Collapse
|
24
|
Internal state dynamics shape brainwide activity and foraging behaviour. Nature 2019; 577:239-243. [DOI: 10.1038/s41586-019-1858-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 11/18/2019] [Indexed: 01/12/2023]
|
25
|
An interhemispheric neural circuit allowing binocular integration in the optic tectum. Nat Commun 2019; 10:5471. [PMID: 31784529 PMCID: PMC6884480 DOI: 10.1038/s41467-019-13484-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022] Open
Abstract
Binocular stereopsis requires the convergence of visual information from corresponding points in visual space seen by two different lines of sight. This may be achieved by superposition of retinal input from each eye onto the same downstream neurons via ipsi- and contralaterally projecting optic nerve fibers. Zebrafish larvae can perceive binocular cues during prey hunting but have exclusively contralateral retinotectal projections. Here we report brain activity in the tectal neuropil ipsilateral to the visually stimulated eye, despite the absence of ipsilateral retinotectal projections. This activity colocalizes with arbors of commissural neurons, termed intertectal neurons (ITNs), that connect the tectal hemispheres. ITNs are GABAergic, establish tectal synapses bilaterally and respond to small moving stimuli. ITN-ablation impairs capture swim initiation when prey is positioned in the binocular strike zone. We propose an intertectal circuit that controls execution of the prey-capture motor program following binocular localization of prey, without requiring ipsilateral retinotectal projections. Zebrafish larvae can binocularly detect prey objects in order to strike but lack ipsilateral retinotectal fibers for binocular superposition of visual information. Here the authors describe commissural intertectal neurons and show that they are required for the initiation of capture strikes.
Collapse
|
26
|
Chia JSM, Wall ES, Wee CL, Rowland TAJ, Cheng RK, Cheow K, Guillemin K, Jesuthasan S. Bacteria evoke alarm behaviour in zebrafish. Nat Commun 2019; 10:3831. [PMID: 31444339 PMCID: PMC6707203 DOI: 10.1038/s41467-019-11608-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
When injured, fish release an alarm substance (Schreckstoff) that elicits fear in members of their shoal. Although Schreckstoff has been proposed to be produced by club cells in the skin, several observations indicate that these giant cells function primarily in immunity. Previous data indicate that the alarm substance can be isolated from mucus. Here we show that mucus, as well as bacteria, are transported from the external surface into club cells, by cytoplasmic transfer or invasion of cells, including neutrophils. The presence of bacteria inside club cells raises the possibility that the alarm substance may contain a bacterial component. Indeed, lysate from a zebrafish Staphylococcus isolate is sufficient to elicit alarm behaviour, acting in concert with a substance from fish. These results suggest that Schreckstoff, which allows one individual to unwittingly change the emotional state of the surrounding population, derives from two kingdoms and is associated with processes that protect the host from bacteria.
Collapse
Affiliation(s)
- Joanne Shu Ming Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Elena S Wall
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | | | - Thomas A J Rowland
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- St. Edmund Hall, University of Oxford, Oxford, UK
| | - Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kathleen Cheow
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, M5G 1Z8, Canada
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Singapore, Singapore.
| |
Collapse
|
27
|
Lekk I, Duboc V, Faro A, Nicolaou S, Blader P, Wilson SW. Sox1a mediates the ability of the parapineal to impart habenular left-right asymmetry. eLife 2019; 8:47376. [PMID: 31373552 PMCID: PMC6677535 DOI: 10.7554/elife.47376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
Left-right asymmetries in the zebrafish habenular nuclei are dependent upon the formation of the parapineal, a unilateral group of neurons that arise from the medially positioned pineal complex. In this study, we show that both the left and right habenula are competent to adopt left-type molecular character and efferent connectivity upon the presence of only a few parapineal cells. This ability to impart left-sided character is lost in parapineal cells lacking Sox1a function, despite the normal specification of the parapineal itself. Precisely timed laser ablation experiments demonstrate that the parapineal influences neurogenesis in the left habenula at early developmental stages as well as neurotransmitter phenotype and efferent connectivity during subsequent stages of habenular differentiation. These results reveal a tight coordination between the formation of the unilateral parapineal nucleus and emergence of asymmetric habenulae, ensuring that appropriate lateralised character is propagated within left and right-sided circuitry.
Collapse
Affiliation(s)
- Ingrid Lekk
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.,Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Véronique Duboc
- Centre de Biologie Intégrative (FR 3743), Centre de Biologie du Développement (UMR5547), Université de Toulouse, CNRS, Toulouse, France.,Université Côte d'Azur, CHU, Inserm, CNRS, IRCAN, Nice, France
| | - Ana Faro
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Stephanos Nicolaou
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.,Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Patrick Blader
- Centre de Biologie Intégrative (FR 3743), Centre de Biologie du Développement (UMR5547), Université de Toulouse, CNRS, Toulouse, France
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
28
|
Henriques PM, Rahman N, Jackson SE, Bianco IH. Nucleus Isthmi Is Required to Sustain Target Pursuit during Visually Guided Prey-Catching. Curr Biol 2019; 29:1771-1786.e5. [PMID: 31104935 PMCID: PMC6557330 DOI: 10.1016/j.cub.2019.04.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/04/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022]
Abstract
Animals must frequently perform a sequence of behaviors to achieve a specific goal. However, the neural mechanisms that promote the continuation and completion of such action sequences are not well understood. Here, we characterize the anatomy, physiology, and function of the nucleus isthmi (NI), a cholinergic nucleus thought to modulate tectal-dependent, goal-directed behaviors. We find that the larval zebrafish NI establishes reciprocal connectivity with the optic tectum and identify two distinct types of isthmic projection neuron that either connect ipsilaterally to retinorecipient laminae of the tectum and pretectum or bilaterally to both tectal hemispheres. Laser ablation of NI caused highly specific deficits in tectally mediated loom-avoidance and prey-catching behavior. In the context of hunting, NI ablation did not affect prey detection or hunting initiation but resulted in larvae failing to sustain prey-tracking sequences and aborting their hunting routines. Moreover, calcium imaging revealed elevated neural activity in NI following onset of hunting behavior. We propose a model in which NI provides state-dependent feedback facilitation to the optic tectum and pretectum to potentiate neural activity and increase the probability of consecutive prey-tracking maneuvers during hunting sequences. Nucleus isthmi contains two types of neuron with distinct (pre)-tectal connectivity Neural activity in nucleus isthmi is recruited at onset of hunting behavior Nucleus isthmi is required for maintenance, but not initiation, of hunting routines
Collapse
Affiliation(s)
- Pedro M Henriques
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Niloy Rahman
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Samuel E Jackson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Isaac H Bianco
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
29
|
Chen WY, Peng XL, Deng QS, Chen MJ, Du JL, Zhang BB. Role of Olfactorily Responsive Neurons in the Right Dorsal Habenula-Ventral Interpeduncular Nucleus Pathway in Food-Seeking Behaviors of Larval Zebrafish. Neuroscience 2019; 404:259-267. [PMID: 30731157 DOI: 10.1016/j.neuroscience.2019.01.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 11/19/2022]
Abstract
The habenula (Hb) plays important roles in emotion-related behaviors. Besides receiving inputs from the limbic system and basal ganglia, Hb also gets inputs from multiple sensory modalities. Sensory responses of Hb neurons in zebrafish are asymmetrical: the left dorsal Hb and right dorsal Hb (dHb) preferentially respond to visual and olfactory stimuli, respectively, implying different functions of the left and right dHb. While visual responses of the left dHb (L-dHb) have been implicated in light-preference behavior, the significance of olfactory responses of the right dHb (R-dHb) remains under-examined. It was reported that the R-dHb can gate innate attraction to a bile salt. However, considering a broad range of odors that R-dHb respond to, it is of interest to examine the role of R-dHb in other olfactory behaviors, especially food seeking, which is essential for animals' survival. Here, using in vivo whole-cell recording and calcium imaging, we first characterized food extract-evoked responses of Hb neurons. Responsive neurons preferentially locate in the R- but not L-dHb and exhibit either ON- (~87%) or OFF-type responses (~13%). Interestingly, this right-to-left asymmetry of olfactory responses converts into a ventral-to-dorsal pattern in the interpeduncular nucleus (IPN), a main downstream target of Hb. Combining behavior assay, we further found that genetic dysfunction or lesion of the R-dHb and its corresponding downstream ventral IPN (V-IPN) impair the food seeking-associated increase of swimming activity. Thus, our study indicates that the asymmetrical olfactory response in the R-dHb to V-IPN pathway plays an important role in food-seeking behavior of zebrafish larvae.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, 19A Yu-quan Road, Beijing 100049, China
| | - Xiao-Lan Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Qiu-Sui Deng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, 19A Yu-quan Road, Beijing 100049, China
| | - Min-Jia Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, 19A Yu-quan Road, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, 319 Yue-yang Road, Shanghai 200031, China
| | - Jiu-Lin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, 19A Yu-quan Road, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, 319 Yue-yang Road, Shanghai 200031, China.
| | - Bai-Bing Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, 19A Yu-quan Road, Beijing 100049, China.
| |
Collapse
|
30
|
Mutation of a serine near the catalytic site of the choline acetyltransferase a gene almost completely abolishes motility of the zebrafish embryo. PLoS One 2018; 13:e0207747. [PMID: 30458023 PMCID: PMC6245786 DOI: 10.1371/journal.pone.0207747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/06/2018] [Indexed: 12/29/2022] Open
Abstract
In zebrafish, the gene choline acetyltransferase a (chata) encodes one of the two ChAT orthologs responsible for the synthesis of acetylcholine. Acetylcholine (ACh) is essential for neuromuscular transmission and its impaired synthesis by ChAT can lead to neuromuscular junction disorders such as congenital myasthenic syndromes in humans. We have identified a novel mutation in the chata gene of zebrafish, chatatk64, in a collection of uncharacterised ENU-induced mutants. This mutant carries a missense mutation in the codon of a highly conserved serine changing it to an arginine (S102R). This serine is conserved among ChATs from zebrafish, rat, mice and chicken to humans. It resides within the catalytic domain and in the vicinity of the active site of the enzyme. However, it has not been reported so far to be required for enzymatic activity. Modelling of the S102R variant change in the ChAT protein crystal structure suggests that the change affects protein structure and has a direct impact on the catalytic domain of the protein which abolishes embryo motility almost completely.
Collapse
|
31
|
Stednitz SJ, McDermott EM, Ncube D, Tallafuss A, Eisen JS, Washbourne P. Forebrain Control of Behaviorally Driven Social Orienting in Zebrafish. Curr Biol 2018; 28:2445-2451.e3. [PMID: 30057306 DOI: 10.1016/j.cub.2018.06.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/08/2018] [Accepted: 06/11/2018] [Indexed: 01/16/2023]
Abstract
Deficits in social engagement are diagnostic of multiple neurodevelopmental disorders, including autism and schizophrenia [1]. Genetically tractable animal models like zebrafish (Danio rerio) could provide valuable insight into developmental factors underlying these social impairments, but this approach is predicated on the ability to accurately and reliably quantify subtle behavioral changes. Similarly, characterizing local molecular and morphological phenotypes requires knowledge of the neuroanatomical correlates of social behavior. We leveraged behavioral and genetic tools in zebrafish to both refine our understanding of social behavior and identify brain regions important for driving it. We characterized visual social interactions between pairs of adult zebrafish and discovered that they perform a stereotyped orienting behavior that reflects social attention [2]. Furthermore, in pairs of fish, the orienting behavior of one individual is the primary factor driving the same behavior in the other individual. We used manual and genetic lesions to investigate the forebrain contribution to this behavior and identified a population of neurons in the ventral telencephalon whose ablation suppresses social interactions, while sparing other locomotor and visual behaviors. These neurons are cholinergic and express the gene encoding the transcription factor Lhx8a, which is required for development of cholinergic neurons in the mouse forebrain [3]. The neuronal population identified in zebrafish lies in a region homologous to mammalian forebrain regions implicated in social behavior such as the lateral septum [4]. Our data suggest that an evolutionarily conserved population of neurons controls social orienting in zebrafish.
Collapse
Affiliation(s)
- Sarah J Stednitz
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Erin M McDermott
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Denver Ncube
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Alexandra Tallafuss
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Judith S Eisen
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Philip Washbourne
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
32
|
Hjelmervik H, Hausmann M, Craven AR, Hirnstein M, Hugdahl K, Specht K. Sex- and sex hormone-related variations in energy-metabolic frontal brain asymmetries: A magnetic resonance spectroscopy study. Neuroimage 2018; 172:817-825. [DOI: 10.1016/j.neuroimage.2018.01.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/22/2017] [Accepted: 01/17/2018] [Indexed: 12/26/2022] Open
|
33
|
Pandey S, Shekhar K, Regev A, Schier AF. Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq. Curr Biol 2018; 28:1052-1065.e7. [PMID: 29576475 DOI: 10.1016/j.cub.2018.02.040] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/10/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022]
Abstract
The identification of cell types and marker genes is critical for dissecting neural development and function, but the size and complexity of the brain has hindered the comprehensive discovery of cell types. We combined single-cell RNA-seq (scRNA-seq) with anatomical brain registration to create a comprehensive map of the zebrafish habenula, a conserved forebrain hub involved in pain processing and learning. Single-cell transcriptomes of ∼13,000 habenular cells with 4× cellular coverage identified 18 neuronal types and dozens of marker genes. Registration of marker genes onto a reference atlas created a resource for anatomical and functional studies and enabled the mapping of active neurons onto neuronal types following aversive stimuli. Strikingly, despite brain growth and functional maturation, cell types were retained between the larval and adult habenula. This study provides a gene expression atlas to dissect habenular development and function and offers a general framework for the comprehensive characterization of other brain regions.
Collapse
Affiliation(s)
- Shristi Pandey
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Karthik Shekhar
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute and Koch Institute of Integrative Cancer Research Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA; Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Biozentrum, University of Basel, Basel, Switzerland; Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
34
|
Nikaido M, Izumi S, Ohnuki H, Takigawa Y, Yamasu K, Hatta K. Early development of the enteric nervous system visualized by using a new transgenic zebrafish line harboring a regulatory region for choline acetyltransferase a (chata) gene. Gene Expr Patterns 2018; 28:12-21. [PMID: 29413438 DOI: 10.1016/j.gep.2018.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
The enteric nervous system (ENS) is the largest part of the peripheral nervous system in vertebrates. Toward the visualization of the development of the vertebrate ENS, we report our creation of a new transgenic line, Tg(chata:GGFF2) which has a 1.5-kb upstream region of the zebrafish choline acetyltransferase a (chata) gene followed by modified green fluorescent protein (gfp). During development, GFP + cells were detected in the gut by 60 h post-fertilization (hpf). In the gut of 6- and 12-days post-fertilization (dpf) larvae, an average of 92% of the GFP + cells were positive for the neuronal marker HuC/D, suggesting that GFP marks enteric neurons in this transgenic line. We also observed that 66% of the GFP + cells were choline acetyltransferase (ChAT)-immunopositive at 1.5 months. Thus, GFP is expressed at the larval stages at which ChAT protein expression is not yet detected by immunostaining. We studied the spatiotemporal pattern of neural differentiation in the ENS by live-imaging of this transgenic line. We observed that GFP + or gfp + cells initially formed a pair of bilateral rows at 60 hpf or 53 hpf, respectively, in the migrating enteric neural crest cells. Most of the GFP + cells did not migrate, and most of the new GFP + cells were added to fill the space among the previously formed GFP + cells. GFP expression reached the anus by 72 hpf. New GFP + cells then also appeared in the dorsal and ventral sides of the initial GFP + rows, resulting in their distribution on the entire gut by 4 dpf. A small number of new GFP + cells were found to move among older GFP + cells just before the cells stopped migration, suggesting that the moving GFP + cells may represent neural precursor cells searching for a place for the final differentiation. Our data suggest that the Tg(chata:GGFF2) line could serve as a useful tool for studies of enteric neural differentiation and cell behavior.
Collapse
Affiliation(s)
- Masataka Nikaido
- University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Saki Izumi
- University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Honoka Ohnuki
- Saitama University, Shimo-Okubo 255, Saitama City, Saitama 338-8570, Japan
| | - Yuki Takigawa
- University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Kyo Yamasu
- Saitama University, Shimo-Okubo 255, Saitama City, Saitama 338-8570, Japan
| | - Kohei Hatta
- University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
| |
Collapse
|
35
|
Schredelseker T, Driever W. Bsx controls pineal complex development. Development 2018; 145:dev.163477. [DOI: 10.1242/dev.163477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022]
Abstract
Neuroendocrine cells in the pineal gland release melatonin during the night and in teleosts are directly photoreceptive. During development of the pineal complex, a small number of cells migrate leftward away from the pineal anlage to form the parapineal cell cluster, a process which is crucial for asymmetrical development of the bilateral habenular nuclei. Here we show that, throughout zebrafish embryonic development, the brain-specific homeobox (bsx) gene is expressed in all cell types of the pineal complex. We identified Bmp and Noto/Flh as major regulators of bsx expression in the pineal complex. Upon loss of Bsx through the generation of a targeted mutation, embryos fail to form a parapineal organ and develop right-isomerized habenulae. Crucial enzymes in the melatonin biosynthesis pathway are not expressed, suggesting absence of melatonin from the pineal gland of bsx mutants. Several genes involved in rod-like or cone-like phototransduction are also abnormally expressed, indicating that Bsx plays a pivotal role in differentiation of multiple cell types in the zebrafish pineal complex.
Collapse
Affiliation(s)
- Theresa Schredelseker
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Hauptstrasse 1, 79104 Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, Albertstrasse 19, 79104 Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Hauptstrasse 1, 79104 Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, Albertstrasse 19, 79104 Freiburg, Germany
| |
Collapse
|
36
|
Roberson S, Halpern ME. Development and connectivity of the habenular nuclei. Semin Cell Dev Biol 2017; 78:107-115. [PMID: 29107475 PMCID: PMC5920772 DOI: 10.1016/j.semcdb.2017.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/09/2017] [Indexed: 10/17/2022]
Abstract
Accumulating evidence has reinforced that the habenular region of the vertebrate dorsal forebrain is an essential integrating center, and a region strongly implicated in neurological disorders and addiction. Despite the important and diverse neuromodulatory roles the habenular nuclei play, their development has been understudied. The emphasis of this review is on the dorsal habenular nuclei of zebrafish, homologous to the medial nuclei of mammals, as recent work has revealed new information about the signaling pathways that regulate their formation. Additionally, the zebrafish dorsal habenulae have become a valuable model for probing how left-right differences are established in a vertebrate brain. Sonic hedgehog, fibroblast growth factors and Wingless-INT proteins are all involved in the generation of progenitor cells and ultimately, along with Notch signaling, influence habenular neurogenesis and left-right asymmetry. Intriguingly, a genetic network has emerged that leads to the differentiation of dorsal habenular neurons and, through localized chemokine signaling, directs the posterior outgrowth of their newly emerging axons towards their postsynaptic target, the midbrain interpeduncular nucleus.
Collapse
Affiliation(s)
- Sara Roberson
- Carnegie Institution for Science, Department of Embryology, 3520 San Martin Drive Baltimore, MD 21218, USA; Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Marnie E Halpern
- Carnegie Institution for Science, Department of Embryology, 3520 San Martin Drive Baltimore, MD 21218, USA; Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
37
|
Mohamed GA, Cheng RK, Ho J, Krishnan S, Mohammad F, Claridge-Chang A, Jesuthasan S. Optical inhibition of larval zebrafish behaviour with anion channelrhodopsins. BMC Biol 2017; 15:103. [PMID: 29100505 PMCID: PMC5670698 DOI: 10.1186/s12915-017-0430-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/25/2017] [Indexed: 12/02/2022] Open
Abstract
Background Optical silencing of activity provides a way to test the necessity of neurons in behaviour. Two light-gated anion channels, GtACR1 and GtACR2, have recently been shown to potently inhibit activity in cultured mammalian neurons and in Drosophila. Here, we test the usefulness of these channels in larval zebrafish, using spontaneous coiling behaviour as the assay. Results When the GtACRs were expressed in spinal neurons of embryonic zebrafish and actuated with blue or green light, spontaneous movement was inhibited. In GtACR1-expressing fish, only 3 μW/mm2 of light was sufficient to have an effect; GtACR2, which is poorly trafficked, required slightly stronger illumination. No inhibition was seen in non-expressing siblings. After light offset, the movement of GtACR-expressing fish increased, which suggested that termination of light-induced neural inhibition may lead to activation. Consistent with this, two-photon imaging of spinal neurons showed that blue light inhibited spontaneous activity in spinal neurons of GtACR1-expressing fish, and that the level of intracellular calcium increased following light offset. Conclusions These results show that GtACR1 and GtACR2 can be used to optically inhibit neurons in larval zebrafish with high efficiency. The activity elicited at light offset needs to be taken into consideration in experimental design, although this property can provide insight into the effects of transiently stimulating a circuit. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0430-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gadisti Aisha Mohamed
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Joses Ho
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Seetha Krishnan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | | | - Adam Claridge-Chang
- Institute of Molecular and Cell Biology, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore. .,Institute of Molecular and Cell Biology, Singapore, Singapore. .,Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
38
|
Ancestral Circuits for the Coordinated Modulation of Brain State. Cell 2017; 171:1411-1423.e17. [PMID: 29103613 PMCID: PMC5725395 DOI: 10.1016/j.cell.2017.10.021] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/13/2017] [Accepted: 10/12/2017] [Indexed: 11/21/2022]
Abstract
Internal states of the brain profoundly influence behavior. Fluctuating states such as alertness can be governed by neuromodulation, but the underlying mechanisms and cell types involved are not fully understood. We developed a method to globally screen for cell types involved in behavior by integrating brain-wide activity imaging with high-content molecular phenotyping and volume registration at cellular resolution. We used this method (MultiMAP) to record from 22 neuromodulatory cell types in behaving zebrafish during a reaction-time task that reports alertness. We identified multiple monoaminergic, cholinergic, and peptidergic cell types linked to alertness and found that activity in these cell types was mutually correlated during heightened alertness. We next recorded from and controlled homologous neuromodulatory cells in mice; alertness-related cell-type dynamics exhibited striking evolutionary conservation and modulated behavior similarly. These experiments establish a method for unbiased discovery of cellular elements underlying behavior and reveal an evolutionarily conserved set of diverse neuromodulatory systems that collectively govern internal state.
Collapse
|
39
|
Ballinger EC, Ananth M, Talmage DA, Role LW. Basal Forebrain Cholinergic Circuits and Signaling in Cognition and Cognitive Decline. Neuron 2017; 91:1199-1218. [PMID: 27657448 DOI: 10.1016/j.neuron.2016.09.006] [Citation(s) in RCA: 505] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2016] [Indexed: 02/04/2023]
Abstract
Recent work continues to place cholinergic circuits at center stage for normal executive and mnemonic functioning and provides compelling evidence that the loss of cholinergic signaling and cognitive decline are inextricably linked. This Review focuses on the last few years of studies on the mechanisms by which cholinergic signaling contributes to circuit activity related to cognition. We attempt to identify areas of controversy, as well as consensus, on what is and is not yet known about how cholinergic signaling in the CNS contributes to normal cognitive processes. In addition, we delineate the findings from recent work on the extent to which dysfunction of cholinergic circuits contributes to cognitive decline associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Elizabeth C Ballinger
- Medical Scientist Training Program, Program in Neuroscience, Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Mala Ananth
- Program in Neuroscience, Department of Neurobiology & Behavior, Department of Psychiatry & Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA
| | - David A Talmage
- Department of Pharmacological Sciences, CNS Disorders Center, Center for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lorna W Role
- Department of Neurobiology & Behavior, Neurosciences Institute, CNS Disorders Center, Center for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
40
|
A little rein on addiction. Semin Cell Dev Biol 2017; 78:120-129. [PMID: 28986065 DOI: 10.1016/j.semcdb.2017.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
Abstract
Rewarding and aversive experiences influence emotions, motivate specific behaviors, and modify future action in animals. Multiple conserved vertebrate neural circuits have been discovered that act in a species-specific manner to reinforce behaviors that are rewarding, while attenuating those with an adverse outcome. A growing body of research now suggests that malfunction of the same circuits is an underlying cause for many human disorders and mental ailments. The habenula (Latin for "little rein") complex, an epithalamic structure that regulates midbrain monoaminergic activity has emerged in recent years as one such region in the vertebrate brain that modulates behavior. Its dysfunction, on the other hand, is implicated in a spectrum of psychiatric disorders in humans such as schizophrenia, depression and addiction. Here, I review the progress in identification of potential mechanisms involving the habenula in addiction.
Collapse
|
41
|
The molecular mechanisms controlling morphogenesis and wiring of the habenula. Pharmacol Biochem Behav 2017; 162:29-37. [PMID: 28843424 DOI: 10.1016/j.pbb.2017.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 07/07/2017] [Accepted: 08/21/2017] [Indexed: 11/22/2022]
Abstract
The habenula is an evolutionarily conserved brain region comprising bilaterally paired nuclei that plays a key role in processing reward information and mediating aversive responses to negative stimuli. An important aspect underlying habenula function is relaying information between forebrain and mid- and hindbrain areas. This is mediated by its complex organization into multiple subdomains and corresponding complexity in circuit organization. Additionally, in many species habenular nuclei display left-right differences at the anatomical and functional level. In order to ensure proper functional organization of habenular circuitry, sophisticated molecular programs control the morphogenesis and wiring of the habenula during development. Knowledge of how these mechanisms shape the habenula is crucial for obtaining a complete understanding of this brain region and can provide invaluable tools to study habenula evolution and function. In this review we will discuss how these molecular mechanisms pattern the early embryonic nervous system and control the formation of the habenula, how they shape its asymmetric organization, and how these mechanisms ensure proper wiring of the habenular circuit. Finally, we will address unexplored aspects of habenula development and how these may direct future research.
Collapse
|
42
|
Duan J, Hu H, Zhang Y, Feng L, Shi Y, Miller MR, Sun Z. Multi-organ toxicity induced by fine particulate matter PM 2.5 in zebrafish (Danio rerio) model. CHEMOSPHERE 2017; 180:24-32. [PMID: 28391149 DOI: 10.1016/j.chemosphere.2017.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
The fine particulate matter (PM2.5) in air pollution is a major public health concern and now known to contribute to severe diseases, therefore, a comprehensive understanding of PM2.5-induced adverse effects in living organisms is needed urgently. This study was aimed to evaluate the toxicity of PM2.5 on multi-organ systems in a zebrafish (Danio rerio) model. The embryonic toxicity induced by PM2.5 was demonstrated by an increase in mortality and inhibition of hatching rate, in a dose- and time-dependent manner. PM2.5 caused the pericardial edema, as well as reducing heart rate and cardiac output. The area of sub-intestinal vessels (SIVs) was significant reduced in Tg(fli-1:EGFP) transgenic zebrafish lines. Morphological defects and yolk sac retention were associated with hepatocyte injury. In addition, PM2.5 disrupted the axonal integrity, altering of axon length and pattern in Tg(NBT:EGFP) transgenic lines. Genes involved in cardiac function (spaw, supt6h, cmlc1), angiogenesis (vegfr2a, vegfr2b), and neural function (gabrd, chrna3, npy8br) were markedly down-regulated; while genes linked to hepatic metabolism (cyp1a, cyp1b1, cyp1c1) were significantly up-regulated by PM2.5. In summary, our data showed that PM2.5 induced the cardiovascular toxicity, hepatotoxicity and neurotoxicity in zebrafish, suggested that PM2.5 could cause multi-organ toxicity in aquatic organism.
Collapse
Affiliation(s)
- Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Hejing Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Yannan Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Mark R Miller
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China.
| |
Collapse
|
43
|
Duboué ER, Hong E, Eldred KC, Halpern ME. Left Habenular Activity Attenuates Fear Responses in Larval Zebrafish. Curr Biol 2017; 27:2154-2162.e3. [PMID: 28712566 DOI: 10.1016/j.cub.2017.06.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/03/2017] [Accepted: 06/08/2017] [Indexed: 11/26/2022]
Abstract
Fear responses are defensive states that ensure survival of an organism in the presence of a threat. Perception of an aversive cue causes changes in behavior and physiology, such as freezing and elevated cortisol, followed by a return to the baseline state when the threat is evaded [1]. Neural systems that elicit fear behaviors include the amygdala, hippocampus, and medial prefrontal cortex. However, aside from a few examples, little is known about brain regions that promote recovery from an aversive event [2]. Previous studies had implicated the dorsal habenular nuclei in regulating fear responses and boldness in zebrafish [3-7]. We now show, through perturbation of its inherent left-right (L-R) asymmetry at larval stages, that the dorsal habenulo-interpeduncular (dHb-IPN) pathway expedites the return of locomotor activity following an unexpected negative stimulus, electric shock. Severing habenular efferents to the IPN, or only those from the left dHb, prolongs the freezing behavior that follows shock. Individuals with a symmetric, right-isomerized dHb also exhibit increased freezing. In contrast, larvae that have a symmetric, left-isomerized dHb, or in which just the left dHb-IPN projection is optogenetically activated, rapidly resume swimming post shock. In vivo calcium imaging reveals a neuronal subset, predominantly in the left dHb, whose activation is correlated with resumption of swimming. The results demonstrate functional specialization of the left dHb-IPN pathway in attenuating the response to fear.
Collapse
Affiliation(s)
- Erik R Duboué
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Elim Hong
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Kiara C Eldred
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Marnie E Halpern
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
44
|
Left Habenula Mediates Light-Preference Behavior in Zebrafish via an Asymmetrical Visual Pathway. Neuron 2017; 93:914-928.e4. [PMID: 28190643 DOI: 10.1016/j.neuron.2017.01.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/23/2016] [Accepted: 01/13/2017] [Indexed: 12/21/2022]
Abstract
Habenula (Hb) plays critical roles in emotion-related behaviors through integrating inputs mainly from the limbic system and basal ganglia. However, Hb also receives inputs from multiple sensory modalities. The function and underlying neural circuit of Hb sensory inputs remain unknown. Using larval zebrafish, we found that left dorsal Hb (dHb, a homolog of mammalian medial Hb) mediates light-preference behavior by receiving visual inputs from a specific subset of retinal ganglion cells (RGCs) through eminentia thalami (EmT). Loss- and gain-of-function manipulations showed that left, but not right, dHb activities, which encode environmental illuminance, are necessary and sufficient for light-preference behavior. At circuit level, left dHb neurons receive excitatory monosynaptic inputs from bilateral EmT, and EmT neurons are contacted mainly by sustained ON-type RGCs at the arborization field 4 of retinorecipient brain areas. Our findings discover a previously unidentified asymmetrical visual pathway to left Hb and its function in mediating light-preference behavior. VIDEO ABSTRACT.
Collapse
|
45
|
Duboué ER, Halpern ME. Genetic and Transgenic Approaches to Study Zebrafish Brain Asymmetry and Lateralized Behavior. LATERALIZED BRAIN FUNCTIONS 2017. [DOI: 10.1007/978-1-4939-6725-4_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
46
|
Analysis of Nicotinic Acetylcholine Receptor (nAChR) Gene Expression in Zebrafish (Danio rerio) by In Situ Hybridization and PCR. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-1-4939-3768-4_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
47
|
Turner KJ, Hawkins TA, Yáñez J, Anadón R, Wilson SW, Folgueira M. Afferent Connectivity of the Zebrafish Habenulae. Front Neural Circuits 2016; 10:30. [PMID: 27199671 PMCID: PMC4844923 DOI: 10.3389/fncir.2016.00030] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/04/2016] [Indexed: 11/13/2022] Open
Abstract
The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula. In addition, we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus (vENT), confirming and extending observations of Amo et al. (2014). Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hour post-fertilization (hpf). No afferents to the habenula were observed from the dorsal entopeduncular nucleus (dENT). Consequently, we confirm that the vENT (and not the dENT) should be considered as the entopeduncular nucleus "proper" in zebrafish. Furthermore, comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus, being homologous to the entopeduncular nucleus of mammals (internal segment of the globus pallidus of primates) by both embryonic origin and projections, as previously suggested by Amo et al. (2014).
Collapse
Affiliation(s)
- Katherine J. Turner
- Department of Cell and Developmental Biology, University College London (UCL)London, UK
| | - Thomas A. Hawkins
- Department of Cell and Developmental Biology, University College London (UCL)London, UK
| | - Julián Yáñez
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Cell and Molecular Biology, University of A Coruña (UDC)A Coruña, Spain
| | - Ramón Anadón
- Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de CompostelaSantiago de Compostela, Spain
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, University College London (UCL)London, UK
| | - Mónica Folgueira
- Department of Cell and Developmental Biology, University College London (UCL)London, UK
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Cell and Molecular Biology, University of A Coruña (UDC)A Coruña, Spain
| |
Collapse
|
48
|
Hétu S, Luo Y, Saez I, D'Ardenne K, Lohrenz T, Montague PR. Asymmetry in functional connectivity of the human habenula revealed by high-resolution cardiac-gated resting state imaging. Hum Brain Mapp 2016; 37:2602-15. [PMID: 27038008 PMCID: PMC4905773 DOI: 10.1002/hbm.23194] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/13/2016] [Accepted: 03/16/2016] [Indexed: 02/03/2023] Open
Abstract
The habenula is a hub for cognitive and emotional signals that are relayed to the aminergic centers in the midbrain and, thus, plays an important role in goal‐oriented behaviors. Although it is well described in rodents and non‐human primates, the habenula functional network remains relatively uncharacterized in humans, partly because of the methodological challenges associated with the functional magnetic resonance imaging of small structures in the brain. Using high‐resolution cardiac‐gated resting state imaging in healthy humans and precisely identifying each participants' habenula, we show that the habenula is functionally coupled with the insula, parahippocampus, thalamus, periaqueductal grey, pons, striatum and substantia nigra/ventral tegmental area complex. Furthermore, by separately examining and comparing the functional maps from the left and right habenula, we provide the first evidence of an asymmetry in the functional connectivity of the habenula in humans. Hum Brain Mapp 37:2602–2615, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sébastien Hétu
- Virginia Tech Carilion Research Institute, Riverside Circle, Roanoke, Virginia, 24016
| | - Yi Luo
- Virginia Tech Carilion Research Institute, Riverside Circle, Roanoke, Virginia, 24016
| | - Ignacio Saez
- Virginia Tech Carilion Research Institute, Riverside Circle, Roanoke, Virginia, 24016
| | - Kimberlee D'Ardenne
- Virginia Tech Carilion Research Institute, Riverside Circle, Roanoke, Virginia, 24016
| | - Terry Lohrenz
- Virginia Tech Carilion Research Institute, Riverside Circle, Roanoke, Virginia, 24016
| | - P Read Montague
- Virginia Tech Carilion Research Institute, Riverside Circle, Roanoke, Virginia, 24016.,Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London, WC1N, 3BG, United Kingdom
| |
Collapse
|
49
|
Parker MO, Evans AMD, Brock AJ, Combe FJ, Teh MT, Brennan CH. Moderate alcohol exposure during early brain development increases stimulus-response habits in adulthood. Addict Biol 2016; 21:49-60. [PMID: 25138642 DOI: 10.1111/adb.12176] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Exposure to alcohol during early central nervous system development has been shown variously to affect aspects of physiological and behavioural development. In extreme cases, this can extend to craniofacial defects, severe developmental delay and mental retardation. At more moderate levels, subtle differences in brain morphology and behaviour have been observed. One clear effect of developmental alcohol exposure is an increase in the propensity to develop alcoholism and other addictions. The mechanisms by which this occurs, however, are not currently understood. In this study, we tested the hypothesis that adult zebrafish chronically exposed to moderate levels of ethanol during early brain ontogenesis would show an increase in conditioned place preference for alcohol and an increased propensity towards habit formation, a key component of drug addiction in humans. We found support for both of these hypotheses and found that the exposed fish had changes in mRNA expression patterns for dopamine receptor, nicotinic acetylcholine receptor and μ-opioid receptor encoding genes. Collectively, these data show an explicit link between the increased proclivity for addiction and addiction-related behaviour following exposure to ethanol during early brain development and alterations in the neural circuits underlying habit learning.
Collapse
Affiliation(s)
- Matthew O. Parker
- School of Biological and Chemical Sciences; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; UK
| | - Alexandra M-D. Evans
- School of Biological and Chemical Sciences; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; UK
| | - Alistair J. Brock
- School of Biological and Chemical Sciences; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; UK
| | - Fraser J. Combe
- School of Biological and Chemical Sciences; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; UK
| | - Muy-Teck Teh
- Centre for Clinical and Diagnostic Oral Sciences; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; UK
| | - Caroline H. Brennan
- School of Biological and Chemical Sciences; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; UK
| |
Collapse
|
50
|
Marquart GD, Tabor KM, Brown M, Strykowski JL, Varshney GK, LaFave MC, Mueller T, Burgess SM, Higashijima SI, Burgess HA. A 3D Searchable Database of Transgenic Zebrafish Gal4 and Cre Lines for Functional Neuroanatomy Studies. Front Neural Circuits 2015; 9:78. [PMID: 26635538 PMCID: PMC4656851 DOI: 10.3389/fncir.2015.00078] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/06/2015] [Indexed: 01/08/2023] Open
Abstract
Transgenic methods enable the selective manipulation of neurons for functional mapping of neuronal circuits. Using confocal microscopy, we have imaged the cellular-level expression of 109 transgenic lines in live 6 day post fertilization larvae, including 80 Gal4 enhancer trap lines, 9 Cre enhancer trap lines and 20 transgenic lines that express fluorescent proteins in defined gene-specific patterns. Image stacks were acquired at single micron resolution, together with a broadly expressed neural marker, which we used to align enhancer trap reporter patterns into a common 3-dimensional reference space. To facilitate use of this resource, we have written software that enables searching for transgenic lines that label cells within a selectable 3-dimensional region of interest (ROI) or neuroanatomical area. This software also enables the intersectional expression of transgenes to be predicted, a feature which we validated by detecting cells with co-expression of Cre and Gal4. Many of the imaged enhancer trap lines show intrinsic brain-specific expression. However, to increase the utility of lines that also drive expression in non-neuronal tissue we have designed a novel UAS reporter, that suppresses expression in heart, muscle, and skin through the incorporation of microRNA binding sites in a synthetic 3′ untranslated region. Finally, we mapped the site of transgene integration, thus providing molecular identification of the expression pattern for most lines. Cumulatively, this library of enhancer trap lines provides genetic access to 70% of the larval brain and is therefore a powerful and broadly accessible tool for the dissection of neural circuits in larval zebrafish.
Collapse
Affiliation(s)
- Gregory D Marquart
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA ; Neuroscience and Cognitive Science Program, University of Maryland College Park, MD, USA
| | - Kathryn M Tabor
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Mary Brown
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Jennifer L Strykowski
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Gaurav K Varshney
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, MD, USA
| | - Matthew C LaFave
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, MD, USA
| | - Thomas Mueller
- Division of Biology, Kansas State University Manhattan, KS, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, MD, USA
| | - Shin-Ichi Higashijima
- National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences Aichi, Japan
| | - Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA ; Neuroscience and Cognitive Science Program, University of Maryland College Park, MD, USA
| |
Collapse
|