1
|
Chakravarty S, Varghese M, Fan S, Taylor RT, Chakravarti R, Chattopadhyay S. IRF3 inhibits inflammatory signaling pathways in macrophages to prevent viral pathogenesis. SCIENCE ADVANCES 2024; 10:eadn2858. [PMID: 39121222 PMCID: PMC11313863 DOI: 10.1126/sciadv.adn2858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/05/2024] [Indexed: 08/11/2024]
Abstract
Viral inflammation contributes to pathogenesis and mortality during respiratory virus infections. IRF3, a critical component of innate antiviral immune responses, interacts with pro-inflammatory transcription factor NF-κB, and inhibits its activity. This mechanism helps suppress inflammatory gene expression in virus-infected cells and mice. We evaluated the cells responsible for IRF3-mediated suppression of viral inflammation using newly engineered conditional Irf3Δ/Δ mice. Irf3Δ/Δ mice, upon respiratory virus infection, showed increased susceptibility and mortality. Irf3 deficiency caused enhanced inflammatory gene expression, lung inflammation, immunopathology, and damage, accompanied by increased infiltration of pro-inflammatory macrophages. Deletion of Irf3 in macrophages (Irf3MKO) displayed, similar to Irf3Δ/Δ mice, increased inflammatory responses, macrophage infiltration, lung damage, and lethality, indicating that IRF3 in these cells suppressed lung inflammation. RNA-seq analyses revealed enhanced NF-κB-dependent gene expression along with activation of inflammatory signaling pathways in infected Irf3MKO lungs. Targeted analyses revealed activated MAPK signaling in Irf3MKO lungs. Therefore, IRF3 inhibited inflammatory signaling pathways in macrophages to prevent viral inflammation and pathogenesis.
Collapse
Affiliation(s)
- Sukanya Chakravarty
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Merina Varghese
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Shumin Fan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Roger Travis Taylor
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Ritu Chakravarti
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
2
|
Jiao H, James SJ, Png CW, Cui C, Li H, Li L, Chia WN, Min N, Li W, Claser C, Rénia L, Wang H, Chen MIC, Chu JJH, Tan KSW, Deng Y, Zhang Y. DUSP4 modulates RIG-I- and STING-mediated IRF3-type I IFN response. Cell Death Differ 2024; 31:280-291. [PMID: 38383887 PMCID: PMC10923883 DOI: 10.1038/s41418-024-01269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Detection of cytosolic nucleic acids by pattern recognition receptors, including STING and RIG-I, leads to the activation of multiple signalling pathways that culminate in the production of type I interferons (IFNs) which are vital for host survival during virus infection. In addition to protective immune modulatory functions, type I IFNs are also associated with autoimmune diseases. Hence, it is important to elucidate the mechanisms that govern their expression. In this study, we identified a critical regulatory function of the DUSP4 phosphatase in innate immune signalling. We found that DUSP4 regulates the activation of TBK1 and ERK1/2 in a signalling complex containing DUSP4, TBK1, ERK1/2 and IRF3 to regulate the production of type I IFNs. Mice deficient in DUSP4 were more resistant to infections by both RNA and DNA viruses but more susceptible to malaria parasites. Therefore, our study establishes DUSP4 as a regulator of nucleic acid sensor signalling and sheds light on an important facet of the type I IFN regulatory system.
Collapse
Affiliation(s)
- Huipeng Jiao
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Sharmy J James
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Chin Wen Png
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Chaoyu Cui
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518100, China
| | - Heng Li
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Liang Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wan Ni Chia
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Nyo Min
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Weiyun Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Carla Claser
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Mark I-Cheng Chen
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117597, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Kevin Shyong Wei Tan
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518100, China.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
3
|
Saikh KU, Ranji CM. Cells Stimulated with More Than One Toll-Like Receptor-Ligand in the Presence of a MyD88 Inhibitor Augmented Interferon- β via MyD88-Independent Signaling Pathway. Viral Immunol 2021; 34:646-652. [PMID: 34287077 DOI: 10.1089/vim.2021.0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Host exposure to pathogens engage multiple pathogen recognition receptors (PRRs) including toll-like receptors (TLRs); recruit intracellular signaling adaptor proteins primarily myeloid differentiation primary response protein 88 (MyD88) for activating downstream signaling cascades, which culminate in the production of type I interferons (IFNs), proinflammatory cytokines, and chemokines; and impede pathogen replication and dissemination. However, recent studies highlight that absence of MyD88 increased antiviral type I IFN induction, and MyD88-/- mice showed a higher survival rate compared with the low survival rate of the MyD88+/+ mice, implicating MyD88 limits antiviral type I IFN response. As a single infectious agent may harbor multiple PRR agonists, which trigger different sets of TLR-initiated immune signaling, we examined whether MyD88 inhibition during stimulation of cells with more than one TLR-ligand would augment type I IFN. We stimulated human U87- and TLR3-transfected HEK293-TLR7 cells with TLR-ligands, such as lipopolysaccharides (LPS) (TLR4-ligand) plus poly I:C (TLR3-ligand) or imiquimod (R837, TLR7-ligand) plus poly I:C, in the presence of compound 4210, a previously reported MyD88 inhibitor, and measured IFN-β response using an enzyme-linked immunosorbent assay. Our results showed that when U87- or TLR3-transfected HEK293-TLR7 cells were stimulated with TLR-ligands, such as poly I:C plus LPS or poly I:C plus R837, IFN-β production was significantly increased with MyD88 inhibition in a dose-dependent manner. Collectively, these results indicate that during more than one TLR-ligand-induced immune signaling event, impairment of antiviral type I IFN response was restored by inhibition of MyD88 through MyD88-independent pathway of type I IFN signaling, thus, offer a MyD88-targeted approach for type I IFN induction.
Collapse
Affiliation(s)
- Kamal U Saikh
- Department of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Cyra M Ranji
- Department of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
4
|
Zan J, Xu R, Tang X, Lu M, Xie S, Cai J, Huang Z, Zhang J. RNA helicase DDX5 suppresses IFN-I antiviral innate immune response by interacting with PP2A-Cβ to deactivate IRF3. Exp Cell Res 2020; 396:112332. [PMID: 33065113 DOI: 10.1016/j.yexcr.2020.112332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 12/29/2022]
Abstract
DEAD-box (DDX) helicases are critical for recognizing viral nucleic acids to regulate antiviral innate immunity. Although DDX5 has been reported to participate in various virus infection, whether DDX5 regulates innate immune responses and its underlying mechanisms are still unknown. Here, we report that DDX5 is a negative regulator of type I IFN (IFN-I) production in antiviral responses. DDX5 knockdown significantly promoted DNA or RNA virus infection-induced IFN-I production and IFN-stimulated genes (ISGs) expression, while ectopic expression of DDX5 inhibited IFN-I production and promoted viral replication. Furthermore, we found that DDX5 specifically interacted with serine/threonine-protein phosphatase 2 A catalytic subunit beta (PP2A-Cβ) and viral infection enhanced the interaction between DDX5 and PP2A-Cβ. Besides, PP2A-Cβ interacted with IFN regulatory factor 3 (IRF3), and PP2A-Cβ knockdown promoted viral infection-induced IRF3 phosphorylation and IFN-I production. In addition, DDX5 knockdown rendered the mice more resistant to viral infection and enhanced antiviral innate immunity in vivo. Thus, DDX5 suppresses IFN-I antiviral innate immune response by interacting with PP2A-Cβ to deactivate IRF3. Together, these findings identify a negative role of DDX5 on regulating IFN-I signaling in innate immune responses.
Collapse
Affiliation(s)
- Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China; Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ruixian Xu
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xialin Tang
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Minyi Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shanshan Xie
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Jun Cai
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhi Huang
- Key Laboratory of Endemic and Ethnic Disease, Ministry of Education, Guizhou Medical University, Guiyang, 550002, China; The Infectious Disease Monitoring Laboratory of Guizhou International Travel Heathcare Center, Guiyang, 550002, China.
| | - Jinyang Zhang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
5
|
Saikh KU, Morazzani EM, Piper AE, Bakken RR, Glass PJ. A small molecule inhibitor of MyD88 exhibits broad spectrum antiviral activity by up regulation of type I interferon. Antiviral Res 2020; 181:104854. [PMID: 32621945 DOI: 10.1016/j.antiviral.2020.104854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 01/04/2023]
Abstract
Recent studies highlight that infection with Coxsackievirus B3, Venezuelan equine encephalitis virus (VEEV), Marburg virus, or stimulation using poly I:C (dsRNA), upregulates the signaling adaptor protein MyD88 and impairs the host antiviral type I interferon (IFN) responses. In contrast, MyD88 deficiency (MyD88-/-) increases the type I IFN and survivability of mice implying that MyD88 up regulation limits the type I IFN response. Reasoning that MyD88 inhibition in a virus-like manner may increase type I IFN responses, our studies revealed lipopolysaccharide stimulation of U937 cells or poly I:C stimulation of HEK293-TLR3, THP1 or U87 cells in the presence of a previously reported MyD88 inhibitor (compound 4210) augmented IFN-β and RANTES production. Consistent with these results, overexpression of MyD88 decreased IFN-β, whereas MyD88 inhibition rescued IFN-β production concomitant with increased IRF3 phosphorylation, suggesting IRF-mediated downstream signaling to the IFN-β response. Further, compound 4210 treatment inhibited MyD88 interaction with IRF3/IRF7 indicating that MyD88 restricts type I IFN signaling through sequestration of IRF3/IRF7. In cell based infection assays, compound 4210 treatment suppressed replication of VEEV, Eastern equine encephalitis virus, Ebola virus (EBOV), Rift Valley Fever virus, Lassa virus, and Dengue virus with IC50 values ranging from 11 to 42 μM. Notably, administration of compound 4210 improved survival, weight change, and clinical disease scores in mice following challenge with VEEV TC-83 and EBOV. Collectively, these results provide evidence that viral infections responsive to MyD88 inhibition lead to activation of IRF3/IRF7 and promoted a type I IFN response, thus, raising the prospect of an approach of host-directed antiviral therapy.
Collapse
Affiliation(s)
- Kamal U Saikh
- Department of Bacterial Immunology, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA.
| | - Elaine M Morazzani
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA
| | - Ashley E Piper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA
| | - Russell R Bakken
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA
| | - Pamela J Glass
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA
| |
Collapse
|
6
|
Lang R, Raffi FAM. Dual-Specificity Phosphatases in Immunity and Infection: An Update. Int J Mol Sci 2019; 20:ijms20112710. [PMID: 31159473 PMCID: PMC6600418 DOI: 10.3390/ijms20112710] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022] Open
Abstract
Kinase activation and phosphorylation cascades are key to initiate immune cell activation in response to recognition of antigen and sensing of microbial danger. However, for balanced and controlled immune responses, the intensity and duration of phospho-signaling has to be regulated. The dual-specificity phosphatase (DUSP) gene family has many members that are differentially expressed in resting and activated immune cells. Here, we review the progress made in the field of DUSP gene function in regulation of the immune system during the last decade. Studies in knockout mice have confirmed the essential functions of several DUSP-MAPK phosphatases (DUSP-MKP) in controlling inflammatory and anti-microbial immune responses and support the concept that individual DUSP-MKP shape and determine the outcome of innate immune responses due to context-dependent expression and selective inhibition of different mitogen-activated protein kinases (MAPK). In addition to the canonical DUSP-MKP, several small-size atypical DUSP proteins regulate immune cells and are therefore also reviewed here. Unexpected and complex findings in DUSP knockout mice pose new questions regarding cell type-specific and redundant functions. Another emerging question concerns the interaction of DUSP-MKP with non-MAPK binding partners and substrate proteins. Finally, the pharmacological targeting of DUSPs is desirable to modulate immune and inflammatory responses.
Collapse
Affiliation(s)
- Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Faizal A M Raffi
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
7
|
D'Orazio SEF. Innate and Adaptive Immune Responses during Listeria monocytogenes Infection. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0065-2019. [PMID: 31124430 PMCID: PMC11086964 DOI: 10.1128/microbiolspec.gpp3-0065-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
It could be argued that we understand the immune response to infection with Listeria monocytogenes better than the immunity elicited by any other bacteria. L. monocytogenes are Gram-positive bacteria that are genetically tractable and easy to cultivate in vitro, and the mouse model of intravenous (i.v.) inoculation is highly reproducible. For these reasons, immunologists frequently use the mouse model of systemic listeriosis to dissect the mechanisms used by mammalian hosts to recognize and respond to infection. This article provides an overview of what we have learned over the past few decades and is divided into three sections: "Innate Immunity" describes how the host initially detects the presence of L. monocytogenes and characterizes the soluble and cellular responses that occur during the first few days postinfection; "Adaptive Immunity" discusses the exquisitely specific T cell response that mediates complete clearance of infection and immunological memory; "Use of Attenuated Listeria as a Vaccine Vector" highlights the ways that investigators have exploited our extensive knowledge of anti-Listeria immunity to develop cancer therapeutics.
Collapse
Affiliation(s)
- Sarah E F D'Orazio
- University of Kentucky, Microbiology, Immunology & Molecular Genetics, Lexington, KY 40536-0298
| |
Collapse
|
8
|
Kimura Y, Negishi H, Matsuda A, Endo N, Hangai S, Inoue A, Nishio J, Taniguchi T, Yanai H. Novel chemical compound SINCRO with dual function in STING-type I interferon and tumor cell death pathways. Cancer Sci 2018; 109:2687-2696. [PMID: 29981256 PMCID: PMC6125434 DOI: 10.1111/cas.13726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022] Open
Abstract
Recent years have seen a number of regulatory approvals for immune oncology or immunotherapies based on their ability to enhance antitumor immune responses. Nevertheless, the majority of patients remain refractory to these treatments; hence, new therapies that augment current immunotherapies are required. Innate immune receptors that recognize nucleic acids are potent activators of subsequent T-cell responses and, as a result, can evoke potent antitumor immune responses. Herein, we present a novel compound N-{3-[(1,4'-bipiperidin)-1'-yl]propyl}-6-[4-(4-methylpiperazin-1-yl)phenyl]picolinamide (SINCRO; STING-mediated interferon-inducing and cytotoxic reagent, original) as an anticancer drug that activates the cytosolic DNA-sensing STING (stimulator of interferon genes) signaling pathway leading to the induction of type I interferon (IFN) genes. Indeed, IFN-β gene induction by SINCRO is abolished in STING-deficient cells. In addition to its IFN-inducing activity, SINCRO shows STING-independent cytotoxic activity against cancer cells. SINCRO does not evoke DNA double-strand break or caspase-3 cleavage. Thus, SINCRO induces cell death in a method different from conventional apoptosis-inducing pathways. Finally, we provide evidence that giving SINCRO significantly attenuates in vivo tumor growth by both type I IFN-dependent and independent mechanisms. Thus, SINCRO is an attractive anticancer compound with dual function in that it evokes type I IFN response to promote antitumor immunity as well as inducing tumor cell death. SINCRO may provide a new platform for the development of drugs for effective cancer therapy.
Collapse
Affiliation(s)
- Yoshitaka Kimura
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Hideo Negishi
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Atsushi Matsuda
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Nobuyasu Endo
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Sho Hangai
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.,Center for Integrative Inflammology, Max Planck-The University of Tokyo, Tokyo, Japan
| | - Asuka Inoue
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Junko Nishio
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Tadatsugu Taniguchi
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.,Center for Integrative Inflammology, Max Planck-The University of Tokyo, Tokyo, Japan
| | - Hideyuki Yanai
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.,Center for Integrative Inflammology, Max Planck-The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Chen K, Fu Q, Liang S, Liu Y, Qu W, Wu Y, Wu X, Wei L, Wang Y, Xiong Y, Wang W, Wu M. Stimulator of Interferon Genes Promotes Host Resistance Against Pseudomonas aeruginosa Keratitis. Front Immunol 2018; 9:1225. [PMID: 29922287 PMCID: PMC5996077 DOI: 10.3389/fimmu.2018.01225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is the leading cause of bacterial keratitis, especially in those who wear contact lens and who are immunocompromised. Once the invading pathogens are recognized by pattern recognition receptors expressed on the innate immune cells, the innate immune response is stimulated to exert host defense function, which is the first line to fight against PA infection. As a converging point of cytosolic DNA sense signaling, stimulator of interferon genes (STING) was reported to participate in host–pathogen interaction. However, the role of STING in regulating PA-induced corneal inflammation and bacterial clearance remains unknown. Our data demonstrated that STING was activated in murine model of PA keratitis and in in vitro-cultured macrophages, indicated by Western blot, immunostaining, and flow cytometry. To explore the role of STING in PA keratitis, we used siRNA to silence STING and 2′,3′-cGAMP to activate STING in vivo and in vitro, and the in vivo data found out that STING promoted host resistance against PA infection. To investigate the reason why STING played a protective role in PA keratitis, the inflammatory cytokine secretion and bacterial load were measured by using real-time PCR and bacterial plate count, respectively. Our data demonstrated that STING suppressed the production of inflammatory cytokines and enhanced bacterial elimination in murine model of PA keratitis and in PA-infected macrophages. To further investigate the mechanism beneath, the phosphorylation of mitogen-activated protein kinase, the nuclear translocation of nuclear factor-κB (NF-κB) and the bactericidal mechanism were measured by western-blot, immunofluorescence, and real-time PCR, respectively. Our data indicated that STING suppressed inflammatory cytokine expressing via restraining NF-κB activity and enhanced inducible NO synthase expression, an oxygen-dependent bactericidal mechanism. In conclusion, this study demonstrated that STING promoted host resistance against PA keratitis and played a protective role in PA-infected corneal disease, via inhibiting corneal inflammation and enhancing bacterial killing.
Collapse
Affiliation(s)
- Kang Chen
- Department of Laboratory Medicine, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Qiang Fu
- Department of Laboratory Medicine, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Siping Liang
- Program of Pathobiology and Immunology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, China
| | - Yiting Liu
- Program of Pathobiology and Immunology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, China
| | - Wenting Qu
- Program of Pathobiology and Immunology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, China
| | - Yongjian Wu
- Program of Pathobiology and Immunology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, China
| | - Xinger Wu
- Department of Laboratory Medicine, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Lei Wei
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujuan Xiong
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weijia Wang
- Department of Laboratory Medicine, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Minhao Wu
- Program of Pathobiology and Immunology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Coccia EM, Battistini A. Early IFN type I response: Learning from microbial evasion strategies. Semin Immunol 2015; 27:85-101. [PMID: 25869307 PMCID: PMC7129383 DOI: 10.1016/j.smim.2015.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/10/2015] [Indexed: 12/12/2022]
Abstract
Type I interferon (IFN) comprises a class of cytokines first discovered more than 50 years ago and initially characterized for their ability to interfere with viral replication and restrict locally viral propagation. As such, their induction downstream of germ-line encoded pattern recognition receptors (PRRs) upon recognition of pathogen-associated molecular patterns (PAMPs) is a hallmark of the host antiviral response. The acknowledgment that several PAMPs, not just of viral origin, may induce IFN, pinpoints at these molecules as a first line of host defense against a number of invading pathogens. Acting in both autocrine and paracrine manner, IFN interferes with viral replication by inducing hundreds of different IFN-stimulated genes with both direct anti-pathogenic as well as immunomodulatory activities, therefore functioning as a bridge between innate and adaptive immunity. On the other hand an inverse interference to escape the IFN system is largely exploited by pathogens through a number of tactics and tricks aimed at evading, inhibiting or manipulating the IFN pathway, that result in progression of infection or establishment of chronic disease. In this review we discuss the interplay between the IFN system and some selected clinically important and challenging viruses and bacteria, highlighting the wide array of pathogen-triggered molecular mechanisms involved in evasion strategies.
Collapse
Affiliation(s)
- Eliana M Coccia
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy
| | - Angela Battistini
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy.
| |
Collapse
|
11
|
Du M, Liu J, Chen X, Xie Y, Yuan C, Xiang Y, Sun B, Lan K, Chen M, James SJ, Zhang Y, Zhong J, Xiao H. Casein kinase II controls TBK1/IRF3 activation in IFN response against viral infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:4477-88. [PMID: 25810395 DOI: 10.4049/jimmunol.1402777] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/19/2015] [Indexed: 01/12/2023]
Abstract
By sensing viral nucleic acids, host innate receptors elicit signaling pathways converging on TBK1-IFN regulatory factor (IRF)3 axis in mediating IFN-αβ induction and defense mechanisms. In contrast, viruses have evolved with diverse immune evasion/interference mechanisms to undermine innate receptor signaling and IFN response. In this regard, approaches enabling host to overcome such immune evasion/interference mechanisms are urgently needed to combat infections by epidemic/pandemic viruses. In this study, we report that protein kinase CK2 serves as a key component controlling TBK1 and IRF3 activation in IFN-inducing TLR, RIG-I-like receptors, and cGAS/STING signaling pathways. Accordingly, knocking down of CK2 expression or genetic ablation of its kinase activity resulted in elevated IFN-αβ response in response to infection by DNA and RNA viruses. Moreover, PP2A was identified as one of the intermediate phosphatases responsible for CK2-regulated IFN response, suggesting that CK2 may regulate TBK1 and IRF3 activation indirectly. Importantly, blockade of CK2 activity by small molecule inhibitor was able to activate TBK1, whereby eliciting effective host defense mechanisms against hepatitis C virus infection. Taken together, our results identify CK2 as a novel regulator of TBK1 and IRF3 and suggest that targeting CK2 by small molecular inhibitor may be a viable approach to prevent and treat viral infections.
Collapse
Affiliation(s)
- Min Du
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinghua Liu
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xia Chen
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yadong Xie
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chuanping Yuan
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Xiang
- Unit of Viral Hepatitis, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Sun
- Unit of Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Lan
- Unit of Tumor Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Sharmy J James
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597; Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117597; and
| | - Yongliang Zhang
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597; Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117597; and
| | - Jin Zhong
- Unit of Viral Hepatitis, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Xiao
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; Vaccine Center, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
12
|
Chiba S, Ikushima H, Ueki H, Yanai H, Kimura Y, Hangai S, Nishio J, Negishi H, Tamura T, Saijo S, Iwakura Y, Taniguchi T. Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. eLife 2014; 3:e04177. [PMID: 25149452 PMCID: PMC4161974 DOI: 10.7554/elife.04177] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/21/2014] [Indexed: 12/28/2022] Open
Abstract
The eradication of tumor cells requires communication to and signaling by cells of the immune system. Natural killer (NK) cells are essential tumor-killing effector cells of the innate immune system; however, little is known about whether or how other immune cells recognize tumor cells to assist NK cells. Here, we show that the innate immune receptor Dectin-1 expressed on dendritic cells and macrophages is critical to NK-mediated killing of tumor cells that express N-glycan structures at high levels. Receptor recognition of these tumor cells causes the activation of the IRF5 transcription factor and downstream gene induction for the full-blown tumoricidal activity of NK cells. Consistent with this, we show exacerbated in vivo tumor growth in mice genetically deficient in either Dectin-1 or IRF5. The critical contribution of Dectin-1 in the recognition of and signaling by tumor cells may offer new insight into the anti-tumor immune system with therapeutic implications. DOI:http://dx.doi.org/10.7554/eLife.04177.001 When cells in the body grow and divide uncontrollably, cancerous tumors can form. An individual's likelihood of recovering from cancer is highly variable and often depends on the type of cancer and the extent of the disease at the start of treatment. Researchers are therefore interested in discovering how the body responds against cancerous cells. The first line of defense against infection and disease is the body's innate immune system, which includes a suite of immune cells known as white blood cells. These cells patrol the body's organs and tissues in an effort to immediately respond to pathogens and damaged, stressed or otherwise abnormal host cells. Among white blood cells, natural killer cells are involved in identifying and destroying tumor cells. However, it was unclear whether or how other immune cells might help natural killer cells to destroy tumors. In addition, although immune cells detect pathogens and injured cells by producing proteins called pattern recognition receptors, it was unknown whether these receptors also detect tumor cells. Here, Chiba et al. reveal that two other types of immune cell—dendritic cells and macrophages—play essential roles in helping natural killer cells to prevent tumors from growing in mice. The dendritic cells and macrophages produce a pattern recognition receptor called Dectin-1 that recognizes a molecule found on the surface of some—but not all—types of tumor cell. In doing so, Dectin-1 activates a critical signaling pathway and directs the activity of the natural killer cells so that they can effectively kill tumor cells. Chiba et al. found that these tumors grew faster in mice that lack the Dectin-1 protein. The findings of Chiba et al. may also help to explain the effectiveness of certain antibodies—proteins that recognize and neutralize foreign objects such as bacteria and viruses—in cancer therapy. In addition, the Dectin-1 pathway presents a new avenue of research that may offer new cancer treatments. DOI:http://dx.doi.org/10.7554/eLife.04177.002
Collapse
Affiliation(s)
- Shiho Chiba
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Ikushima
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Ueki
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Hideyuki Yanai
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Kimura
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Sho Hangai
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Junko Nishio
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Hideo Negishi
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shinobu Saijo
- Department of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Tadatsugu Taniguchi
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Spanier J, Lienenklaus S, Paijo J, Kessler A, Borst K, Heindorf S, Baker DP, Kröger A, Weiss S, Detje CN, Staeheli P, Kalinke U. Concomitant TLR/RLH signaling of radioresistant and radiosensitive cells is essential for protection against vesicular stomatitis virus infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:3045-54. [PMID: 25127863 DOI: 10.4049/jimmunol.1400959] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several studies indicated that TLR as well as retinoic acid-inducible gene I-like helicase (RLH) signaling contribute to vesicular stomatitis virus (VSV)-mediated triggering of type I IFN (IFN-I) responses. Nevertheless, TLR-deficient MyD88(-/-)Trif(-/-) mice and RLH-deficient caspase activation and recruitment domain adaptor inducing IFN-β (Cardif)(-/-) mice showed only marginally enhanced susceptibility to lethal VSV i.v. infection. Therefore, we addressed whether concomitant TLR and RLH signaling, or some other additional mechanism, played a role. To this end, we generated MyD88(-/-)Trif(-/-)Cardif(-/-) (MyTrCa(-/-)) mice that succumbed to low-dose i.v. VSV infection with similar kinetics as IFN-I receptor-deficient mice. Three independent approaches (i.e., analysis of IFN-α/β serum levels, experiments with IFN-β reporter mice, and investigation of local IFN-stimulated gene induction) revealed that MyTrCa(-/-) mice did not mount IFN-I responses following VSV infection. Of note, treatment with rIFN-α protected the animals, qualifying MyTrCa(-/-) mice as a model to study the contribution of different immune cell subsets to the production of antiviral IFN-I. Upon adoptive transfer of wild-type plasmacytoid dendritic cells and subsequent VSV infection, MyTrCa(-/-) mice displayed significantly reduced viral loads in peripheral organs and showed prolonged survival. On the contrary, adoptive transfer of wild-type myeloid dendritic cells did not have such effects. Analysis of bone marrow chimeric mice revealed that TLR and RLH signaling of radioresistant and radiosensitive cells was required for efficient protection. Thus, upon VSV infection, plasmacytoid dendritic cell-derived IFN-I primarily protects peripheral organs, whereas concomitant TLR and RLH signaling of radioresistant stroma cells as well as of radiosensitive immune cells is needed to effectively protect against lethal disease.
Collapse
Affiliation(s)
- Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Lienenklaus
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jennifer Paijo
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School, 30625 Hannover, Germany
| | - Annett Kessler
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School, 30625 Hannover, Germany
| | - Katharina Borst
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School, 30625 Hannover, Germany
| | - Sabrina Heindorf
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School, 30625 Hannover, Germany
| | | | - Andrea Kröger
- Research Group on Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Claudia N Detje
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School, 30625 Hannover, Germany
| | - Peter Staeheli
- Department of Virology, Institute for Medical Microbiology and Hygiene, Albert-Ludwigs-Universität, 79104 Freiburg, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
14
|
Tracing innate immune defences along the path of Listeria monocytogenes infection. Immunol Cell Biol 2014; 92:563-9. [PMID: 24732075 DOI: 10.1038/icb.2014.27] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/10/2014] [Accepted: 03/13/2014] [Indexed: 12/21/2022]
Abstract
The pathogenic gram-positive bacteria, Listeria monocytogenes is a facultative infectious intracellular pathogen that causes listeriosis. Effective elimination of infection is dependent upon a functioning innate immune system and activation of inflammatory responses by pathogen recognition receptors (PRRs). In this review, we trace the route of L. monocytogenes invasion as it disseminates from the intestinal epithelium, through the bloodstream of the host, to the liver and spleen. Along this route, we highlight the diverse, region specific, innate defences in place throughout the course of infection. We provide an overview of recent advances in our knowledge of key innate immune defences against L. monocytogenes, focusing on the PRRs in various cell types known to be critical in the detection of this pathogen.
Collapse
|