1
|
Yakubov R, Kaloti R, Persaud P, McCracken A, Zadeh G, Bunda S. It's all downstream from here: RTK/Raf/MEK/ERK pathway resistance mechanisms in glioblastoma. J Neurooncol 2025; 172:327-345. [PMID: 39821893 PMCID: PMC11937199 DOI: 10.1007/s11060-024-04930-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND The receptor tyrosine kinase (RTK)/Ras/Raf/MEK/ERK signaling pathway is one of the most tumorigenic pathways in cancer, with its hyperactivation strongly linked to the aggressive nature of glioblastoma (GBM). Although extensive research has focused on developing therapeutics targeting this pathway, clinical success remains elusive due to the emergence of resistance mechanisms. OBJECTIVE This review investigates how inhibition of the RTK/Ras/Raf/MEK/ERK pathway alters transcription factors, contributing to acquired resistance mechanisms in GBM. It also highlights the critical role of transcription factor dysregulation in therapeutic resistance. METHODS & RESULTS Findings from key studies on the RTK/Ras/Raf/MEK/ERK pathway in GBM were synthesized to explore the role of transcription factor dysregulation in resistance to targeted therapies, radiation, and chemotherapy. The review highlights that transcription factors undergo significant dysregulation following RTK/Ras/Raf/MEK/ERK pathway inhibition, contributing to therapeutic resistance. CONCLUSION Transcription factors are promising targets for overcoming treatment resistance in GBM, with cotreatment strategies combining RTK/Ras/Raf/MEK/ERK pathway inhibitors and transcription factor-targeted therapies presenting a novel approach. Despite the challenges of targeting complex structures and interactions, advancements in drug development and precision technologies hold great potential. Continued research is essential to refine these strategies and improve outcomes for GBM and other aggressive cancers.
Collapse
Affiliation(s)
- Rebeca Yakubov
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ramneet Kaloti
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Phooja Persaud
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Anna McCracken
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Gelareh Zadeh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| | - Severa Bunda
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
2
|
Zhan L, Zeng F, Zheng J, Chen S, Zhang Z, Ju D. Exploring the regulatory role of CNPY3 as a prognostic biomarker on human glioma cell migration, invasion and immune infiltration. Cancer Biomark 2025; 42:18758592251328162. [PMID: 40171811 DOI: 10.1177/18758592251328162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
BackgroundCanopy FGF signalling regulator 3 (CNPY3) is involved in immune regulation, tumorigenesis and development, nevertheless, its role in glioma remains largely unexplored. Our study aimed to explore the regulatory role of CNPY3 as a prognostic biomarker in human glioma cell migration, invasion and immune infiltration.MethodsBioinformatics analysis of CNPY3 and clinical relevance of glioma in public databases was performed. COX regression analysis was performed to assess the relationship between CNPY3 and glioma prognosis. GO and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to predict the signaling pathways of CNPY3 in gliomas. Tumor immune infiltration was explored using TIMER, CIBERSORT, and Pearson correlation analysis. GSVA analysis and single-cell sequencing data were employed for further validation. The effects of CNPY3 on the migration and invasion of glioma cells were investigated through cell scratch assay and transwell assay.ResultsCNPY3 was positively correlated with IDH mutation status, 1p/19q status, histopathologic grade, and MGMT promoter methylation status, but negatively with the overall survival of glioma patients (P < 0.05). CNPY3 was significantly associated with tumor immune response, inflammatory response, and lipopolysaccharide-mediated signaling pathway. CNPY3 influenced different types of immune cells which affected the immune microenvironment of glioma. CNPY3 promoted the increase of M2 macrophage and was negatively correlated with the positive regulation of macrophages apoptotic process. In vitro data suggested the promotion of CNPY3 in U87MG cells was associated with an increased capacity for cell migration and invasion (P < 0.05). Tumor drug sensitivity analysis showed more sensitivity towards temozolomide, irinotecan, and cisplatin among high CNPY3 expression patients (P < 0.05).ConclusionIncreased CNPY3 expression impacts the immune microenvironment of glioma and enhances the migration and invasion of glioma. CNPY3 is recommended as a prognostic biomarker for glioma patients.
Collapse
Affiliation(s)
- Lu Zhan
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fanyue Zeng
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jie Zheng
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Sijing Chen
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhiyun Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Donghui Ju
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Bumbaca B, Huggins JR, Birtwistle MR, Gallo JM. Network analyses of brain tumor multiomic data reveal pharmacological opportunities to alter cell state transitions. NPJ Syst Biol Appl 2025; 11:14. [PMID: 39893170 PMCID: PMC11787326 DOI: 10.1038/s41540-025-00493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
Glioblastoma Multiforme (GBM) remains a particularly difficult cancer to treat, and survival outcomes remain poor. In addition to the lack of dedicated drug discovery programs for GBM, extensive intratumor heterogeneity and epigenetic plasticity related to cell-state transitions are major roadblocks to successful drug therapy in GBM. To study these phenomenon, publicly available snRNAseq and bulk RNAseq data from patient samples were used to categorize cells from patients into four cell states (i.e., phenotypes), namely: (i) neural progenitor-like (NPC-like), (ii) oligodendrocyte progenitor-like (OPC-like), (iii) astrocyte-like (AC-like), and (iv) mesenchymal-like (MES-like). Patients were subsequently grouped into subpopulations based on which cell-state was the most dominant in their respective tumor. By incorporating phosphoproteomic measurements from the same patients, a protein-protein interaction network (PPIN) was constructed for each cell state. These four-cell state PPINs were pooled to form a single Boolean network that was used for in silico protein knockout simulations to investigate mechanisms that either promote or prevent cell state transitions. Simulation results were input into a boosted tree machine learning model which predicted the cell states or phenotypes of GBM patients from an independent public data source, the Glioma Longitudinal Analysis (GLASS) Consortium. Combining the simulation results and the machine learning predictions, we generated hypotheses for clinically relevant causal mechanisms of cell state transitions. For example, the transcription factor TFAP2A can be seen to promote a transition from the NPC-like to the MES-like state. Such protein nodes and the associated signaling pathways provide potential drug targets that can be further tested in vitro and support cell state-directed (CSD) therapy.
Collapse
Affiliation(s)
- Brandon Bumbaca
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Jonah R Huggins
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Marc R Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - James M Gallo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
4
|
Spring BQ, Watanabe K, Ichikawa M, Mallidi S, Matsudaira T, Timerman D, Swain JWR, Mai Z, Wakimoto H, Hasan T. Red light-activated depletion of drug-refractory glioblastoma stem cells and chemosensitization of an acquired-resistant mesenchymal phenotype. Photochem Photobiol 2025; 101:215-229. [PMID: 38922889 PMCID: PMC11664018 DOI: 10.1111/php.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma stem cells (GSCs) are potent tumor initiators resistant to radiochemotherapy, and this subpopulation is hypothesized to re-populate the tumor milieu due to selection following conventional therapies. Here, we show that 5-aminolevulinic acid (ALA) treatment-a pro-fluorophore used for fluorescence-guided cancer surgery-leads to elevated levels of fluorophore conversion in patient-derived GSC cultures, and subsequent red light-activation induces apoptosis in both intrinsically temozolomide chemotherapy-sensitive and -resistant GSC phenotypes. Red light irradiation of ALA-treated cultures also exhibits the ability to target mesenchymal GSCs (Mes-GSCs) with induced temozolomide resistance. Furthermore, sub-lethal light doses restore Mes-GSC sensitivity to temozolomide, abrogating GSC-acquired chemoresistance. These results suggest that ALA is not only useful for fluorescence-guided glioblastoma tumor resection, but that it also facilitates a GSC drug-resistance agnostic, red light-activated modality to mop up the surgical margins and prime subsequent chemotherapy.
Collapse
Affiliation(s)
- Bryan Q. Spring
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Kohei Watanabe
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Healthcare Optics Research Laboratory, Canon USA, Inc., Cambridge MA 02139, USA
| | - Megumi Ichikawa
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Tatsuyuki Matsudaira
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dmitriy Timerman
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Joseph W. R. Swain
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Zhiming Mai
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hiroaki Wakimoto
- Brain Tumor Research Center and Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Liao C, Chen Y, Peng D, Li S, Liu L, Li Q, Huang R, Huang L, Jiang T, Hu H, Li Y. Neuron-like lineage differentiation induced by exogenous Neurexin-1 as a potential therapeutic strategy for glioma. Cancer Lett 2024; 611:217387. [PMID: 39657829 DOI: 10.1016/j.canlet.2024.217387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/11/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Strategically altering tumor cell fate is a promising treatment for suppressing the malignant phenotype and improving glioma prognosis. This study reveals the favorable impact of the enrichment of neuronal differentiation-related genes on glioma prognosis. A substantial negative correlation was observed between neuronal and mesenchyme-related biological features within gliomas. Neuron-like tumor cells exhibited relatively low treatment resistance and were prevalent in samples with favorable prognostic scores. By reconstructing the glioblastoma multiforme (GBM) hierarchy, we identified astrocyte-like tumor cells with the highest differentiation potential that play a pivotal role in tumor lineage transition. Subsequent analysis of cell interactions revealed that neuron-like tumor cells engage mainly in the tumor cell network through the neurexin (NRXN) pathway, with astrocyte-like tumor cells being the primary receiver of the pathway. Further in vitro and in vivo experiments demonstrated that exogenous neurexin-1 (NRXN1) has the capacity to regulate the fate of tumor cells, counteract the malignant phenotype, and improve the prognosis of GBM. Furthermore, NRXN1 addition resulted in the downregulation of genes in the activating protein 1 complex. In conclusion, our study revealed that the enrichment of neuronal differentiation-related genes improves glioma prognosis and clarified the role of NRXN1 in regulating tumor cell fate toward the neuronal lineage, suppressing malignant phenotypes, and improving GBM prognosis.
Collapse
Affiliation(s)
- Chihyi Liao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yankun Chen
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Dazhao Peng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shuhan Li
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Lingyu Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiuling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruoyu Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lijie Huang
- Department of Pathophysiology, Beijing Neurosurgical Institute, Capital Medical University, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Yangfang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Center of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Kholodenko IV, Lupatov AY, Kim YS, Saryglar RY, Kholodenko RV, Yarygin KN. Mesenchymal Properties of Glioma Cell Lines. Bull Exp Biol Med 2024:10.1007/s10517-024-06294-7. [PMID: 39585593 DOI: 10.1007/s10517-024-06294-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Indexed: 11/26/2024]
Abstract
Screening of cell surface markers of three glioma cell lines (astrocytoma 1321N1, glioblastoma T98g, and glioblastoma astrocytoma U373 MG) was performed. Glioma cells expressed common mesenchymal cell markers, although the expression levels varied between the cell lines. The expression of proneural markers and glioma cancer stem cell markers was very low and also varied. Induction of differentiation towards the mesodermal cell lineages showed effective adipogenic and osteogenic differentiation for only the U373 MG cell line, while the 1321N1 and T98g lines demonstrated weak adipogenic potential and failed to undergo osteogenic differentiation. The obtained results point to the intratumor phenotypical heterogeneity of cells in gliomas and to the differences between the three studied types of gliomas with regard to the content of cells with mesenchymal phenotype.
Collapse
Affiliation(s)
| | - A Y Lupatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Y S Kim
- Institute of Biomedical Chemistry, Moscow, Russia
| | - R Y Saryglar
- Institute of Biomedical Chemistry, Moscow, Russia
| | - R V Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - K N Yarygin
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
7
|
Read RD, Tapp ZM, Rajappa P, Hambardzumyan D. Glioblastoma microenvironment-from biology to therapy. Genes Dev 2024; 38:360-379. [PMID: 38811170 PMCID: PMC11216181 DOI: 10.1101/gad.351427.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain cancer. These tumors exhibit high intertumoral and intratumoral heterogeneity in neoplastic and nonneoplastic compartments, low lymphocyte infiltration, and high abundance of myeloid subsets that together create a highly protumorigenic immunosuppressive microenvironment. Moreover, heterogeneous GBM cells infiltrate adjacent brain tissue, remodeling the neural microenvironment to foster tumor electrochemical coupling with neurons and metabolic coupling with nonneoplastic astrocytes, thereby driving growth. Here, we review heterogeneity in the GBM microenvironment and its role in low-to-high-grade glioma transition, concluding with a discussion of the challenges of therapeutically targeting the tumor microenvironment and outlining future research opportunities.
Collapse
Affiliation(s)
- Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Zoe M Tapp
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA;
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43215, USA
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio 43215, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA;
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
8
|
Park JH, Hothi P, de Lomana ALG, Pan M, Calder R, Turkarslan S, Wu WJ, Lee H, Patel AP, Cobbs C, Huang S, Baliga NS. Gene regulatory network topology governs resistance and treatment escape in glioma stem-like cells. SCIENCE ADVANCES 2024; 10:eadj7706. [PMID: 38848360 PMCID: PMC11160475 DOI: 10.1126/sciadv.adj7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell-state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing nongenetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupt acquired resistance in GBM.
Collapse
Affiliation(s)
| | - Parvinder Hothi
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | | | - Min Pan
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA, USA
| | - Hwahyung Lee
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Anoop P. Patel
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Charles Cobbs
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA, USA
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, WA, USA
- Departments of Microbiology, Biology, and Molecular Engineering Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Wu Q, Berglund AE, Macaulay RJ, Etame AB. The Role of Mesenchymal Reprogramming in Malignant Clonal Evolution and Intra-Tumoral Heterogeneity in Glioblastoma. Cells 2024; 13:942. [PMID: 38891074 PMCID: PMC11171993 DOI: 10.3390/cells13110942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma (GBM) is the most common yet uniformly fatal adult brain cancer. Intra-tumoral molecular and cellular heterogeneities are major contributory factors to therapeutic refractoriness and futility in GBM. Molecular heterogeneity is represented through molecular subtype clusters whereby the proneural (PN) subtype is associated with significantly increased long-term survival compared to the highly resistant mesenchymal (MES) subtype. Furthermore, it is universally recognized that a small subset of GBM cells known as GBM stem cells (GSCs) serve as reservoirs for tumor recurrence and progression. The clonal evolution of GSC molecular subtypes in response to therapy drives intra-tumoral heterogeneity and remains a critical determinant of GBM outcomes. In particular, the intra-tumoral MES reprogramming of GSCs using current GBM therapies has emerged as a leading hypothesis for therapeutic refractoriness. Preventing the intra-tumoral divergent evolution of GBM toward the MES subtype via new treatments would dramatically improve long-term survival for GBM patients and have a significant impact on GBM outcomes. In this review, we examine the challenges of the role of MES reprogramming in the malignant clonal evolution of glioblastoma and provide future perspectives for addressing the unmet therapeutic need to overcome resistance in GBM.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Robert J. Macaulay
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Arnold B. Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
10
|
Cheng YL, Banu MA, Zhao W, Rosenfeld SS, Canoll P, Sims PA. Multiplexed single-cell lineage tracing of mitotic kinesin inhibitor resistance in glioblastoma. Cell Rep 2024; 43:114139. [PMID: 38652658 PMCID: PMC11199018 DOI: 10.1016/j.celrep.2024.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/01/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Glioblastoma (GBM) is a deadly brain tumor, and the kinesin motor KIF11 is an attractive therapeutic target with roles in proliferation and invasion. Resistance to KIF11 inhibitors, which has mainly been studied in animal models, presents significant challenges. We use lineage-tracing barcodes and single-cell RNA sequencing to analyze resistance in patient-derived GBM neurospheres treated with ispinesib, a potent KIF11 inhibitor. Similar to GBM progression in patients, untreated cells lose their neural lineage identity and become mesenchymal, which is associated with poor prognosis. Conversely, cells subjected to long-term ispinesib treatment exhibit a proneural phenotype. We generate patient-derived xenografts and show that ispinesib-resistant cells form less aggressive tumors in vivo, even in the absence of drug. Moreover, treatment of human ex vivo GBM slices with ispinesib demonstrates phenotypic alignment with in vitro responses, underscoring the clinical relevance of our findings. Finally, using retrospective lineage tracing, we identify drugs that are synergistic with ispinesib.
Collapse
Affiliation(s)
- Yim Ling Cheng
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matei A Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wenting Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
11
|
Dong M, Zhang X, Peng P, Chen Z, Zhang Y, Wan L, Xiang W, Liu G, Guo Y, Xiao Q, Wang B, Guo D, Zhu M, Yu X, Wan F. Hypoxia-induced TREM1 promotes mesenchymal-like states of glioma stem cells via alternatively activating tumor-associated macrophages. Cancer Lett 2024; 590:216801. [PMID: 38479552 DOI: 10.1016/j.canlet.2024.216801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/19/2024]
Abstract
The mesenchymal subtype of glioblastoma (GBM) cells characterized by aggressive invasion and therapeutic resistance is thought to be dependent on cell-intrinsic alteration and extrinsic cellular crosstalk. Tumor-associated macrophages (TAMs) are pivotal in tumor progression, chemo-resistance, angiogenesis, and stemness maintenance. However, the impact of TAMs on the shifts in glioma stem cells (GSCs) states remains largely uncovered. Herein, we showed that the triggering receptor expressed on myeloid cells-1 (TREM1) preferentially expressed by M2-like TAMs and induced GSCs into mesenchymal-like states by modulating the secretion of TGFβ2, which activated the TGFβR/SMAD2/3 signaling in GSCs. Furthermore, we demonstrated that TREM1 was transcriptionally regulated by HIF1a under the hypoxic environment and thus promoted an immunosuppressive type of TAMs via activating the TLR2/AKT/mTOR/c-MYC axis. Collectively, this study reveals that cellular communication between TAMs and GSCs through the TREM1-mediated TGFβ2/TGFβR axis is involved in the mesenchymal-like transitions of GSCs. Our study provides valuable insights into the regulatory mechanisms between the tumor immune microenvironment and the malignant characteristics of GBM, which can lead to potential novel strategies targeting TAMs for tumor control.
Collapse
Affiliation(s)
- Minhai Dong
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaolin Zhang
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Peng Peng
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital to Hubei University of Arts and Science, Xiangyang, 441021, China
| | - Zirong Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Zhang
- Department of Histology and Embryology, College of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lijun Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wang Xiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guohao Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qungen Xiao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Zhu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xingjiang Yu
- Department of Histology and Embryology, College of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Feng Wan
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
12
|
Bumbaca B, Birtwistle MR, Gallo JM. Network Analyses of Brain Tumor Patients' Multiomic Data Reveals Pharmacological Opportunities to Alter Cell State Transitions. RESEARCH SQUARE 2024:rs.3.rs-4391296. [PMID: 38826227 PMCID: PMC11142360 DOI: 10.21203/rs.3.rs-4391296/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Glioblastoma Multiforme (GBM) remains a particularly difficult cancer to treat, and survival outcomes remain poor. In addition to the lack of dedicated drug discovery programs for GBM, extensive intratumor heterogeneity and epigenetic plasticity related to cell-state transitions are major roadblocks to successful drug therapy in GBM. To study these phenomenon, publicly available snRNAseq and bulk RNAseq data from patient samples were used to categorize cells from patients into four cell states (i.e. phenotypes), namely: (i) neural progenitor-like (NPC-like), (ii) oligodendrocyte progenitor-like (OPC-like), (iii) astrocyte- like (AC-like), and (iv) mesenchymal-like (MES-like). Patients were subsequently grouped into subpopulations based on which cell-state was the most dominant in their respective tumor. By incorporating phosphoproteomic measurements from the same patients, a protein-protein interaction network (PPIN) was constructed for each cell state. These four-cell state PPINs were pooled to form a single Boolean network that was used for in silico protein knockout simulations to investigate mechanisms that either promote or prevent cell state transitions. Simulation results were input into a boosted tree machine learning model which predicted the cell states or phenotypes of GBM patients from an independent public data source, the Glioma Longitudinal Analysis (GLASS) Consortium. Combining the simulation results and the machine learning predictions, we generated hypotheses for clinically relevant causal mechanisms of cell state transitions. For example, the transcription factor TFAP2A can be seen to promote a transition from the NPC-like to the MES-like state. Such protein nodes and the associated signaling pathways provide potential drug targets that can be further tested in vitro and support cell state-directed (CSD) therapy.
Collapse
Affiliation(s)
- Brandon Bumbaca
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo NY, USA
| | - Marc R Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson SC, USA
- Department of Bioengineering, Clemson University, Clemson SC, USA
| | - James M Gallo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo NY, USA
| |
Collapse
|
13
|
Bumbaca B, Birtwistle MR, Gallo JM. Network Analyses of Brain Tumor Patients' Multiomic Data Reveals Pharmacological Opportunities to Alter Cell State Transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593202. [PMID: 38766170 PMCID: PMC11100715 DOI: 10.1101/2024.05.08.593202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Glioblastoma Multiforme (GBM) remains a particularly difficult cancer to treat, and survival outcomes remain poor. In addition to the lack of dedicated drug discovery programs for GBM, extensive intratumor heterogeneity and epigenetic plasticity related to cell-state transitions are major roadblocks to successful drug therapy in GBM. To study these phenomenon, publicly available snRNAseq and bulk RNAseq data from patient samples were used to categorize cells from patients into four cell states (i.e. phenotypes), namely: (i) neural progenitor-like (NPC-like), (ii) oligodendrocyte progenitor-like (OPC-like), (iii) astrocyte-like (AC-like), and (iv) mesenchymal-like (MES-like). Patients were subsequently grouped into subpopulations based on which cell-state was the most dominant in their respective tumor. By incorporating phosphoproteomic measurements from the same patients, a protein-protein interaction network (PPIN) was constructed for each cell state. These four-cell state PPINs were pooled to form a single Boolean network that was used for in silico protein knockout simulations to investigate mechanisms that either promote or prevent cell state transitions. Simulation results were input into a boosted tree machine learning model which predicted the cell states or phenotypes of GBM patients from an independent public data source, the Glioma Longitudinal Analysis (GLASS) Consortium. Combining the simulation results and the machine learning predictions, we generated hypotheses for clinically relevant causal mechanisms of cell state transitions. For example, the transcription factor TFAP2A can be seen to promote a transition from the NPC-like to the MES-like state. Such protein nodes and the associated signaling pathways provide potential drug targets that can be further tested in vitro and support cell state-directed (CSD) therapy.
Collapse
Affiliation(s)
- Brandon Bumbaca
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo NY, USA
| | - Marc R Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson SC, USA
- Department of Bioengineering, Clemson University, Clemson SC, USA
| | - James M Gallo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo NY, USA
| |
Collapse
|
14
|
Xu C, Hou P, Li X, Xiao M, Zhang Z, Li Z, Xu J, Liu G, Tan Y, Fang C. Comprehensive understanding of glioblastoma molecular phenotypes: classification, characteristics, and transition. Cancer Biol Med 2024; 21:j.issn.2095-3941.2023.0510. [PMID: 38712813 PMCID: PMC11131044 DOI: 10.20892/j.issn.2095-3941.2023.0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Among central nervous system-associated malignancies, glioblastoma (GBM) is the most common and has the highest mortality rate. The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently lead to tumor recurrence and sudden relapse in patients treated with temozolomide. In precision medicine, research on GBM treatment is increasingly focusing on molecular subtyping to precisely characterize the cellular and molecular heterogeneity, as well as the refractory nature of GBM toward therapy. Deep understanding of the different molecular expression patterns of GBM subtypes is critical. Researchers have recently proposed tetra fractional or tripartite methods for detecting GBM molecular subtypes. The various molecular subtypes of GBM show significant differences in gene expression patterns and biological behaviors. These subtypes also exhibit high plasticity in their regulatory pathways, oncogene expression, tumor microenvironment alterations, and differential responses to standard therapy. Herein, we summarize the current molecular typing scheme of GBM and the major molecular/genetic characteristics of each subtype. Furthermore, we review the mesenchymal transition mechanisms of GBM under various regulators.
Collapse
Affiliation(s)
- Can Xu
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Pengyu Hou
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
- School of Basic Medical Sciences, Hebei University, Baoding 07100, China
| | - Xiang Li
- School of Basic Medical Sciences, Hebei University, Baoding 07100, China
| | - Menglin Xiao
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Ziqi Zhang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Ziru Li
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
- School of Basic Medical Sciences, Hebei University, Baoding 07100, China
| | - Jianglong Xu
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Guoming Liu
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Yanli Tan
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
- School of Basic Medical Sciences, Hebei University, Baoding 07100, China
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding 07100, China
| | - Chuan Fang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| |
Collapse
|
15
|
Zhao J, Cui X, Zhan Q, Zhang K, Su D, Yang S, Hong B, Wang Q, Ju J, Cheng C, Li C, Wan C, Wang Y, Zhou J, Kang C. CRISPR-Cas9 library screening combined with an exosome-targeted delivery system addresses tumorigenesis/TMZ resistance in the mesenchymal subtype of glioblastoma. Theranostics 2024; 14:2835-2855. [PMID: 38773970 PMCID: PMC11103500 DOI: 10.7150/thno.92703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/20/2024] [Indexed: 05/24/2024] Open
Abstract
Rationale: The large-scale genomic analysis classifies glioblastoma (GBM) into three major subtypes, including classical (CL), proneural (PN), and mesenchymal (MES) subtypes. Each of these subtypes exhibits a varying degree of sensitivity to the temozolomide (TMZ) treatment, while the prognosis corresponds to the molecular and genetic characteristics of the tumor cell type. Tumors with MES features are predominantly characterized by the NF1 deletion/alteration, leading to sustained activation of the RAS and PI3K-AKT signaling pathways in GBM and tend to acquire drug resistance, resulting in the worst prognosis compared to other subtypes (PN and CL). Here, we used the CRISPR/Cas9 library screening technique to detect TMZ-related gene targets that might play roles in acquiring drug resistance, using overexpressed KRAS-G12C mutant GBM cell lines. The study identified a key therapeutic strategy to address the chemoresistance against the MES subtype of GBM. Methods: The CRISPR-Cas9 library screening was used to discover genes associated with TMZ resistance in the U87-KRAS (U87-MG which is overexpressed KRAS-G12C mutant) cells. The patient-derived GBM primary cell line TBD0220 was used for experimental validations in vivo and in vitro. Chromatin isolation by RNA purification (ChIRP) and chromatin immunoprecipitation (ChIP) assays were used to elucidate the silencing mechanism of tumor suppressor genes in the MES-GBM subtype. The small-molecule inhibitor EPIC-0412 was obtained through high-throughput screening. Transmission electron microscopy (TEM) was used to characterize the exosomes (Exos) secreted by GBM cells after TMZ treatment. Blood-derived Exos-based targeted delivery of siRNA, TMZ, and EPIC-0412 was optimized to tailor personalized therapy in vivo. Results: Using the genome-wide CRISPR-Cas9 library screening, we found that the ERBIN gene could be epigenetically regulated in the U87-KRAS cells. ERBIN overexpression inhibited the RAS signaling and downstream proliferation and invasion effects of GBM tumor cells. EPIC-0412 treatment inhibited tumor proliferation and EMT progression by upregulating the ERBIN expression both in vitro and in vivo. Genome-wide CRISPR-Cas9 screening also identified RASGRP1(Ras guanine nucleotide-releasing protein 1) and VPS28(Vacuolar protein sorting-associated protein 28) genes as synthetically lethal in response to TMZ treatment in the U87-KRAS cells. We found that RASGRP1 activated the RAS-mediated DDR pathway by promoting the RAS-GTP transformation. VPS28 promoted the Exos secretion and decreased intracellular TMZ concentration in GBM cells. The targeted Exos delivery system encapsulating drugs and siRNAs together showed a powerful therapeutic effect against GBM in vivo. Conclusions: We demonstrate a new mechanism by which ERBIN is epigenetically silenced by the RAS signaling in the MES subtype of GBM. Restoration of the ERBIN expression with EPIC-0412 significantly inhibits the RAS signaling downstream. RASGRP1 and VPS28 genes are associated with the promotion of TMZ resistance through RAS-GDP to RAS-GTP transformation and TMZ efflux, as well. A quadruple combination therapy based on a targeted Exos delivery system demonstrated significantly reduced tumor burden in vivo. Therefore, our study provides new insights and therapeutic approaches for regulating tumor progression and TMZ resistance in the MES-GBM subtype.
Collapse
Affiliation(s)
- Jixing Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Xiaoteng Cui
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Qi Zhan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Kailiang Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
| | - Dongyuan Su
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Shixue Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Biao Hong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Jiasheng Ju
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Chunchao Cheng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Chen Li
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunxiao Wan
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Yunfei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Junhu Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| |
Collapse
|
16
|
Park JH, Hothi P, Lopez Garcia de Lomana A, Pan M, Calder R, Turkarslan S, Wu WJ, Lee H, Patel AP, Cobbs C, Huang S, Baliga NS. Gene regulatory network topology governs resistance and treatment escape in glioma stem-like cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578510. [PMID: 38370784 PMCID: PMC10871280 DOI: 10.1101/2024.02.02.578510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing non-genetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupts acquired resistance in GBM.
Collapse
Affiliation(s)
| | - Parvinder Hothi
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | | | - Min Pan
- Institute for Systems Biology, Seattle, WA
| | | | | | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA
| | - Hwahyung Lee
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | - Anoop P Patel
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC
- Center for Advanced Genomic Technologies, Duke University, Durham, NC
| | - Charles Cobbs
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA
- Departments of Microbiology, Biology, and Molecular Engineering Sciences, University of Washington, Seattle, WA
| |
Collapse
|
17
|
Jacob JR, Singh R, Okamoto M, Chakravarti A, Palanichamy K. miRNA-194-3p represses NF-κB in gliomas to attenuate iPSC genes and proneural to mesenchymal transition. iScience 2024; 27:108650. [PMID: 38226170 PMCID: PMC10788216 DOI: 10.1016/j.isci.2023.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/01/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024] Open
Abstract
Severe tumor heterogeneity drives the aggressive and treatment refractory nature of glioblastomas (GBMs). While limiting GBM heterogeneity offers promising therapeutic potential, the underlying mechanisms that regulate GBM plasticity remain poorly understood. We utilized 14 patient-derived and four commercially available cell lines to uncover miR-194-3p as a key epigenetic determinant of stemness and transcriptional subtype in GBM. We demonstrate that miR-194-3p degrades TAB2, an important mediator of NF-κB activity, decreasing NF-κB transcriptional activity. The loss in NF-κB activity following miR-194-3p overexpression or TAB2 silencing decreased expression of induced pluripotent stem cell (iPSC) genes, inhibited the oncogenic IL-6/STAT3 signaling axis, suppressed the mesenchymal transcriptional subtype in relation to the proneural subtype, and induced differentiation from the glioma stem cell (GSC) to monolayer (ML) phenotype. miR-194-3p/TAB2/NF-κB signaling axis acts as an epigenetic switch that regulates GBM plasticity and targeting this signaling axis represents a potential strategy to limit transcriptional heterogeneity in GBMs.
Collapse
Affiliation(s)
- John Ryan Jacob
- Department of Radiation Oncology, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Rajbir Singh
- Department of Radiation Oncology, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Masa Okamoto
- Department of Radiation Oncology, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, OH 43210, USA
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Kamalakannan Palanichamy
- Department of Radiation Oncology, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Kang I, Kim Y, Lee HK. γδ T cells as a potential therapeutic agent for glioblastoma. Front Immunol 2023; 14:1273986. [PMID: 37928546 PMCID: PMC10623054 DOI: 10.3389/fimmu.2023.1273986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Although γδ T cells comprise a small population of T cells, they perform important roles in protecting against infection and suppressing tumors. With their distinct tissue-localizing properties, combined with their various target recognition mechanisms, γδ T cells have the potential to become an effective solution for tumors that do not respond to current therapeutic procedures. One such tumor, glioblastoma (GBM), is a malignant brain tumor with the highest World Health Organization grade and therefore the worst prognosis. The immune-suppressive tumor microenvironment (TME) and immune-evasive glioma stem cells are major factors in GBM immunotherapy failure. Currently, encouraged by the strong anti-tumoral function of γδ T cells revealed at the preclinical and clinical levels, several research groups have shown progression of γδ T cell-based GBM treatment. However, several limitations still exist that block effective GBM treatment using γδ T cells. Therefore, understanding the distinct roles of γδ T cells in anti-tumor immune responses and the suppression mechanism of the GBM TME are critical for successful γδ T cell-mediated GBM therapy. In this review, we summarize the effector functions of γδ T cells in tumor immunity and discuss current advances and limitations of γδ T cell-based GBM immunotherapy. Additionally, we suggest future directions to overcome the limitations of γδ T cell-based GBM immunotherapy to achieve successful treatment of GBM.
Collapse
Affiliation(s)
- In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
19
|
Zeng J, Zeng XX. Systems Medicine for Precise Targeting of Glioblastoma. Mol Biotechnol 2023; 65:1565-1584. [PMID: 36859639 PMCID: PMC9977103 DOI: 10.1007/s12033-023-00699-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Glioblastoma (GBM) is a malignant cancer that is fatal even after standard therapy and the effects of current available therapeutics are not promising due its complex and evolving epigenetic and genetic profile. The mysteries that lead to GBM intratumoral heterogeneity and subtype transitions are not entirely clear. Systems medicine is an approach to view the patient in a whole picture integrating systems biology and synthetic biology along with computational techniques. Since the GBM oncogenesis involves genetic mutations, various therapies including gene therapeutics based on CRISPR-Cas technique, MicroRNAs, and implanted synthetic cells endowed with synthetic circuits against GBM with neural stem cells and mesenchymal stem cells acting as potential vehicles carrying therapeutics via the intranasal route, avoiding the risks of invasive methods in order to reach the GBM cells in the brain are discussed and proposed in this review. Systems medicine approach is a rather novel strategy, and since the GBM of a patient is complex and unique, thus to devise an individualized treatment strategy to tailor personalized multimodal treatments for the individual patient taking into account the phenotype of the GBM, the unique body health profile of the patient and individual responses according to the systems medicine concept might show potential to achieve optimum effects.
Collapse
Affiliation(s)
- Jie Zeng
- Benjoe Institute of Systems Bio-Engineering, High Technology Park, Xinbei District, Changzhou, 213022 Jiangsu People’s Republic of China
| | - Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, No. 28, Desheng Road Section, Liguan Road, Lishui Town, Nanhai District, Foshan, 528000 Guangdong People’s Republic of China
| |
Collapse
|
20
|
Yu S, Lv L, Li Y, Ning Q, Liu T, Hu T. PLK3 promotes the proneural-mesenchymal transition in glioblastoma via transcriptional regulation of C5AR1. Mol Biol Rep 2023; 50:8249-8258. [PMID: 37568042 DOI: 10.1007/s11033-023-08716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Accumulating evidence suggests that polo-like kinase 3 (PLK3) plays an essential role in tumor cells and induces cell proliferation and may have implications for the prognosis of various cancers. We sought to define the role of PLK3-dependent proneural-mesenchymal transition (PMT) in the glioblastoma (GBM) therapy. METHODS AND RESULTS We analyzed the expression data for PLK3 by using the TCGA database. PLK3 expression in GBM cell lines was determined by qRT-PCR and Western blotting. PLK3 levels were modulated using Lentivirus infection, and the effects on symptoms, tumor volume, and survival in mice intracranial xenograft models were determined. Irradiation (IR) was performed to induce PMT. PLK3 expression was significantly elevated in mesenchymal subtype GBM and promoted tumor proliferation in GBM. Additionally enriched PLK3 expression could be associated with poor prognosis in GBM patients compared with those who have lower PLK3 expression. Mechanically, PLK3-dependent PMT induced radioresistance in GBM cells via transcriptional regulation of complement C5a receptor 1 (C5AR1). In therapeutic experiments conducted in vitro, targeting PLK3 by using small molecule inhibitor decreased tumor growth and radioresistance of GBM cells both in vitro and in vivo. CONCLUSIONS PLK3-C5AR1 axis induced PMT thus enhanced radioresistance in GBM and could become a novel potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Shuo Yu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710000, Shaanxi, China
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Lin Lv
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710000, Shaanxi, China
| | - Yang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710000, Shaanxi, China
| | - Qian Ning
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710000, Shaanxi, China
| | - Tingting Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710000, Shaanxi, China
| | - Tinghua Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
21
|
Li C, Li Z, Zhang M, Dai J, Wang Y, Zhang Z. An overview of Twist1 in glioma progression and recurrence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:285-301. [PMID: 37833014 DOI: 10.1016/bs.irn.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Glioma cells are characterized by high migration ability, resulting in the aggressive growth of the tumors and poor prognosis of patients. Epithelial-to-mesenchymal transition (EMT) is one of the most important steps for tumor migration and metastasis and be elevated during glioma progression and recurrence. Twist1 is a basic helix-loop-helix transcription factor and a key transcription factor involved in the process of EMT. Twist1 is related to glioma mesenchymal change, invasion, heterogeneity, self-renewal of tumor stem cells, angiogenesis, etc., and may be used as a prognostic indicator and therapeutic target for glioma patients. This paper mainly reviews the structural characteristics, regulatory mechanisms, and apparent regulation of Twist1, as well as the roles of Twist1 during glioma progression and recurrence, providing new revelations for its use as a potential drug target and glioma treatment research.
Collapse
Affiliation(s)
- Cong Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Zixuan Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Mengyi Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Jiaxuan Dai
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Yunmin Wang
- The Jining City Center Blood Station, Jining, Shandong Province, P.R. China.
| | - Zhiqiang Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China.
| |
Collapse
|
22
|
Rabah N, Ait Mohand FE, Kravchenko-Balasha N. Understanding Glioblastoma Signaling, Heterogeneity, Invasiveness, and Drug Delivery Barriers. Int J Mol Sci 2023; 24:14256. [PMID: 37762559 PMCID: PMC10532387 DOI: 10.3390/ijms241814256] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The most prevalent and aggressive type of brain cancer, namely, glioblastoma (GBM), is characterized by intra- and inter-tumor heterogeneity and strong spreading capacity, which makes treatment ineffective. A true therapeutic answer is still in its infancy despite various studies that have made significant progress toward understanding the mechanisms behind GBM recurrence and its resistance. The primary causes of GBM recurrence are attributed to the heterogeneity and diffusive nature; therefore, monitoring the tumor's heterogeneity and spreading may offer a set of therapeutic targets that could improve the clinical management of GBM and prevent tumor relapse. Additionally, the blood-brain barrier (BBB)-related poor drug delivery that prevents effective drug concentrations within the tumor is discussed. With a primary emphasis on signaling heterogeneity, tumor infiltration, and computational modeling of GBM, this review covers typical therapeutic difficulties and factors contributing to drug resistance development and discusses potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (N.R.); (F.-E.A.M.)
| |
Collapse
|
23
|
Cheng YL, Banu MA, Zhao W, Rosenfeld SS, Canoll P, Sims PA. Multiplexed single-cell lineage tracing of mitotic kinesin inhibitor resistance in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.09.557001. [PMID: 37745469 PMCID: PMC10515771 DOI: 10.1101/2023.09.09.557001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Glioblastoma (GBM) is a deadly brain tumor, and the kinesin motor KIF11 is an attractive therapeutic target because of its dual roles in proliferation and invasion. The clinical utility of KIF11 inhibitors has been limited by drug resistance, which has mainly been studied in animal models. We used multiplexed lineage tracing barcodes and scRNA-seq to analyze drug resistance time courses for patient-derived GBM neurospheres treated with ispinesib, a potent KIF11 inhibitor. Similar to GBM progression in patients, untreated cells lost their neural lineage identity and transitioned to a mesenchymal phenotype, which is associated with poor prognosis. In contrast, cells subjected to long-term ispinesib treatment exhibited a proneural phenotype. We generated patient-derived xenografts to show that ispinesib-resistant cells form less aggressive tumors in vivo, even in the absence of drug. Finally, we used lineage barcodes to nominate drug combination targets by retrospective analysis of ispinesib-resistant clones in the drug-naïve setting and identified drugs that are synergistic with ispinesib.
Collapse
Affiliation(s)
- Yim Ling Cheng
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matei A. Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Wenting Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
24
|
Jeon HM, Kim JY, Cho HJ, Lee WJ, Nguyen D, Kim SS, Oh YT, Kim HJ, Jung CW, Pinero G, Joshi T, Hambardzumyan D, Sakaguchi T, Hubert CG, McIntyre TM, Fine HA, Gladson CL, Wang B, Purow BW, Park JB, Park MJ, Nam DH, Lee J. Tissue factor is a critical regulator of radiation therapy-induced glioblastoma remodeling. Cancer Cell 2023; 41:1480-1497.e9. [PMID: 37451272 PMCID: PMC10530238 DOI: 10.1016/j.ccell.2023.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/28/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Radiation therapy (RT) provides therapeutic benefits for patients with glioblastoma (GBM), but inevitably induces poorly understood global changes in GBM and its microenvironment (TME) that promote radio-resistance and recurrence. Through a cell surface marker screen, we identified that CD142 (tissue factor or F3) is robustly induced in the senescence-associated β-galactosidase (SA-βGal)-positive GBM cells after irradiation. F3 promotes clonal expansion of irradiated SA-βGal+ GBM cells and orchestrates oncogenic TME remodeling by activating both tumor-autonomous signaling and extrinsic coagulation pathways. Intratumoral F3 signaling induces a mesenchymal-like cell state transition and elevated chemokine secretion. Simultaneously, F3-mediated focal hypercoagulation states lead to activation of tumor-associated macrophages (TAMs) and extracellular matrix (ECM) remodeling. A newly developed F3-targeting agent potently inhibits the aforementioned oncogenic events and impedes tumor relapse in vivo. These findings support F3 as a critical regulator for therapeutic resistance and oncogenic senescence in GBM, opening potential therapeutic avenues.
Collapse
Affiliation(s)
- Hye-Min Jeon
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeong-Yub Kim
- Divisions of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Hee Jin Cho
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, Korea
| | - Won Jun Lee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dayna Nguyen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sung Soo Kim
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Young Taek Oh
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Hee-Jin Kim
- Divisions of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Chan-Woong Jung
- Divisions of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Gonzalo Pinero
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tanvi Joshi
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Takuya Sakaguchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher G Hubert
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas M McIntyre
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Howard A Fine
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Candece L Gladson
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bingcheng Wang
- Department of Medicine, MetroHealth Campus, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin W Purow
- Department of Neurology, UVA Cancer Center, University of Virginia Health System, Charlottesville, VA, USA
| | - Jong Bae Park
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Myung Jin Park
- Divisions of Radiation Cancer Research, Research Center for Radio-Senescence, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Department of Neurosurgery Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeongwu Lee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
25
|
Doualle C, Gouju J, Nouari Y, Wery M, Guittonneau C, Codron P, Rousseau A, Saulnier P, Eyer J, Letournel F. Dedifferentiated cells obtained from glioblastoma cell lines are an easy and robust model for mesenchymal glioblastoma stem cells studies. Am J Cancer Res 2023; 13:1425-1442. [PMID: 37168329 PMCID: PMC10164819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/12/2023] [Indexed: 05/13/2023] Open
Abstract
Glioblastoma is an aggressive brain tumor with a poor prognosis. Glioblastoma Stem Cells (GSC) are involved in glioblastoma resistance and relapse. Effective glioblastoma treatment must include GSC targeting strategy. Robust and well defined in vitroGSC models are required for new therapies evaluation. In this study, we extensively characterized 4 GSC models obtained by dedifferentiation of commercially available glioblastoma cell lines and compared them to 2 established patient derived GSC lines (Brain Tumor Initiating Cells). Dedifferentiated cells formed gliospheres, typical for GSC, with self-renewal ability. Gene expression and protein analysis revealed an increased expression of several stemness associated markers such as A2B5, integrin α6, Nestin, SOX2 and NANOG. Cells were oriented toward a mesenchymal GSC phenotype as shown by elevated levels of mesenchymal and EMT related markers (CD44, FN1, integrin α5). Dedifferentiated GSC were similar to BTIC in terms of size and heterogeneity. The characterization study also revealed that CXCR4 pathway was activated by dedifferentiation, emphasizing its role as a potential therapeutic target. The expression of resistance-associated markers and the phenotypic diversity of the 4 GSC models obtained by dedifferentiation make them relevant to challenge future GSC targeting therapies.
Collapse
Affiliation(s)
- Cécile Doualle
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
| | - Julien Gouju
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
- Département de Pathologie, CHU AngersF-49000 Angers, France
| | - Yousra Nouari
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
| | | | - Clélia Guittonneau
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
| | - Philippe Codron
- Département de Pathologie, CHU AngersF-49000 Angers, France
- Univ Angers, CHU Angers, Inserm, CNRS, MITOVASC, SFR ICATF-49000 Angers, France
| | - Audrey Rousseau
- Département de Pathologie, CHU AngersF-49000 Angers, France
- Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, CRCI2NA, SFR ICATF-49000 Angers, France
| | - Patrick Saulnier
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
| | - Joël Eyer
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
| | - Franck Letournel
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
- Département de Pathologie, CHU AngersF-49000 Angers, France
| |
Collapse
|
26
|
Chen Z, Soni N, Pinero G, Giotti B, Eddins DJ, Lindblad KE, Ross JL, Puigdelloses Vallcorba M, Joshi T, Angione A, Thomason W, Keane A, Tsankova NM, Gutmann DH, Lira SA, Lujambio A, Ghosn EEB, Tsankov AM, Hambardzumyan D. Monocyte depletion enhances neutrophil influx and proneural to mesenchymal transition in glioblastoma. Nat Commun 2023; 14:1839. [PMID: 37012245 PMCID: PMC10070461 DOI: 10.1038/s41467-023-37361-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
Myeloid cells comprise the majority of immune cells in tumors, contributing to tumor growth and therapeutic resistance. Incomplete understanding of myeloid cells response to tumor driver mutation and therapeutic intervention impedes effective therapeutic design. Here, by leveraging CRISPR/Cas9-based genome editing, we generate a mouse model that is deficient of all monocyte chemoattractant proteins. Using this strain, we effectively abolish monocyte infiltration in genetically engineered murine models of de novo glioblastoma (GBM) and hepatocellular carcinoma (HCC), which show differential enrichment patterns for monocytes and neutrophils. Eliminating monocyte chemoattraction in monocyte enriched PDGFB-driven GBM invokes a compensatory neutrophil influx, while having no effect on Nf1-silenced GBM model. Single-cell RNA sequencing reveals that intratumoral neutrophils promote proneural-to-mesenchymal transition and increase hypoxia in PDGFB-driven GBM. We further demonstrate neutrophil-derived TNF-a directly drives mesenchymal transition in PDGFB-driven primary GBM cells. Genetic or pharmacological inhibiting neutrophils in HCC or monocyte-deficient PDGFB-driven and Nf1-silenced GBM models extend the survival of tumor-bearing mice. Our findings demonstrate tumor-type and genotype dependent infiltration and function of monocytes and neutrophils and highlight the importance of targeting them simultaneously for cancer treatments.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Nishant Soni
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gonzalo Pinero
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bruno Giotti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Devon J Eddins
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Medicine, Lowance Center for Human Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Katherine E Lindblad
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - James L Ross
- Emory University Department of Microbiology and Immunology, Emory Vaccine Center, Atlanta, GA, 30322, USA
| | | | - Tanvi Joshi
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Angelo Angione
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wes Thomason
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aislinn Keane
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nadejda M Tsankova
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sergio A Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eliver E B Ghosn
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Medicine, Lowance Center for Human Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Alexander M Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
27
|
Li PJ, Lai SZ, Jin T, Ying HJ, Chen YM, Zhang P, Hang QQ, Deng H, Wang L, Feng JG, Chen XZ, Guo P, Chen M, Tian Y, Chen YY. Radiotherapy opens the blood-brain barrier and synergizes with anlotinib in treating glioblastoma. Radiother Oncol 2023; 183:109633. [PMID: 36963438 DOI: 10.1016/j.radonc.2023.109633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/01/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND Glioblastoma (GBM) has a poor prognosis and lacks effective treatment. Anlotinib is a multitargeted receptor tyrosine kinase inhibitor (TKI) that may have anti-tumor activity in the central nervous system (CNS). This study aimed to determine the therapeutic value of radiotherapy combined with anlotinib in GBM via preclinical research. METHODS HPLC-MS/MS was used to assess the concentration of anlotinib in blood and brain samples. Cell proliferation assays, flow cytometry, and colony formation assays were performed in vitro. The potential value of anlotinib or in combination with radiotherapy for GBM treatment was estimated in vivo. Western blotting, immunohistochemistry, and immunofluorescent staining were performed to determine the underlying mechanism. RESULTS Anlotinib effectively inactivated the JAK3/STAT3 pathway to inhibit growth and induce apoptosis in malignant glioma cells (MGCs) independent of MGMT expression. Meanwhile, anlotinib induces MGCs G2/M arrest and sensitizes MGCs to radiation. Radiation down-regulates claudin-5 and weakens the blood-brain barrier (BBB), which contributes to the increased distribution of anlotinib in the CNS by 1.0-2.9 times. Anlotinib restrains tumor growth (PCNA), inhibits tumor microvascular proliferation (CD31), and alleviated intratumor hypoxia (HIF 1α) in vivo. Anlotinib alone or in combination with radiation is effective and safe in vivo evaluation. CONCLUSIONS We discovered that anlotinib, the original small molecule antiangiogenesis TKI, down-regulates JAK3/STAT3 axis with anti-cancer activity alone or in combination with radiation. Anlotinib combined with radiotherapy might be a promising treatment for newly diagnosed GBM in the clinic.
Collapse
Affiliation(s)
- Pei-Jing Li
- Department of Radiation Oncology & Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital & Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China; Department of Radiotherapy & Oncology, Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou Key Laboratory for Radiation Oncology, Suzhou, China
| | - Shu-Zhen Lai
- Department of Radiation Oncology, Yuebei People's Hospital, Shantou University, Shaoguan, China
| | - Ting Jin
- Department of Radiation Oncology & Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital & Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Hang-Jie Ying
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Institute of Cancer Research and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Ya-Mei Chen
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Institute of Cancer Research and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Peng Zhang
- Department of Radiation Oncology & Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital & Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Qing-Qing Hang
- Department of Radiation Oncology & Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital & Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Huan Deng
- Department of Radiation Oncology & Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital & Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Lei Wang
- Department of Radiation Oncology & Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital & Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jian-Guo Feng
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Institute of Cancer Research and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Xiao-Zhong Chen
- Department of Radiation Oncology & Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital & Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Peng Guo
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Ming Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China.
| | - Ye Tian
- Department of Radiotherapy & Oncology, Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou Key Laboratory for Radiation Oncology, Suzhou, China.
| | - Yuan-Yuan Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
28
|
Awada H, Paris F, Pecqueur C. Exploiting radiation immunostimulatory effects to improve glioblastoma outcome. Neuro Oncol 2023; 25:433-446. [PMID: 36239313 PMCID: PMC10013704 DOI: 10.1093/neuonc/noac239] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/14/2022] Open
Abstract
Cancer treatment protocols depend on tumor type, localization, grade, and patient. Despite aggressive treatments, median survival of patients with Glioblastoma (GBM), the most common primary brain tumor in adults, does not exceed 18 months, and all patients eventually relapse. Thus, novel therapeutic approaches are urgently needed. Radiotherapy (RT) induces a multitude of alterations within the tumor ecosystem, ultimately modifying the degree of tumor immunogenicity at GBM relapse. The present manuscript reviews the diverse effects of RT radiotherapy on tumors, with a special focus on its immunomodulatory impact to finally discuss how RT could be exploited in GBM treatment through immunotherapy targeting. Indeed, while further experimental and clinical studies are definitively required to successfully translate preclinical results in clinical trials, current studies highlight the therapeutic potential of immunotherapy to uncover novel avenues to fight GBM.
Collapse
Affiliation(s)
- Hala Awada
- Nantes Université, CRCI2NA, INSERM, CNRS, F-44000 Nantes, France.,Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - François Paris
- Nantes Université, CRCI2NA, INSERM, CNRS, F-44000 Nantes, France.,Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Claire Pecqueur
- Nantes Université, CRCI2NA, INSERM, CNRS, F-44000 Nantes, France
| |
Collapse
|
29
|
Targeting Transcription Factors ATF5, CEBPB and CEBPD with Cell-Penetrating Peptides to Treat Brain and Other Cancers. Cells 2023; 12:cells12040581. [PMID: 36831248 PMCID: PMC9954556 DOI: 10.3390/cells12040581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Developing novel therapeutics often follows three steps: target identification, design of strategies to suppress target activity and drug development to implement the strategies. In this review, we recount the evidence identifying the basic leucine zipper transcription factors ATF5, CEBPB, and CEBPD as targets for brain and other malignancies. We describe strategies that exploit the structures of the three factors to create inhibitory dominant-negative (DN) mutant forms that selectively suppress growth and survival of cancer cells. We then discuss and compare four peptides (CP-DN-ATF5, Dpep, Bpep and ST101) in which DN sequences are joined with cell-penetrating domains to create drugs that pass through tissue barriers and into cells. The peptide drugs show both efficacy and safety in suppressing growth and in the survival of brain and other cancers in vivo, and ST101 is currently in clinical trials for solid tumors, including GBM. We further consider known mechanisms by which the peptides act and how these have been exploited in rationally designed combination therapies. We additionally discuss lacunae in our knowledge about the peptides that merit further research. Finally, we suggest both short- and long-term directions for creating new generations of drugs targeting ATF5, CEBPB, CEBPD, and other transcription factors for treating brain and other malignancies.
Collapse
|
30
|
Babačić H, Galardi S, Umer HM, Hellström M, Uhrbom L, Maturi N, Cardinali D, Pellegatta S, Michienzi A, Trevisi G, Mangiola A, Lehtiö J, Ciafrè SA, Pernemalm M. Glioblastoma stem cells express non-canonical proteins and exclusive mesenchymal-like or non-mesenchymal-like protein signatures. Mol Oncol 2023; 17:238-260. [PMID: 36495079 PMCID: PMC9892829 DOI: 10.1002/1878-0261.13355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) cancer stem cells (GSCs) contribute to GBM's origin, recurrence, and resistance to treatment. However, the understanding of how mRNA expression patterns of GBM subtypes are reflected at global proteome level in GSCs is limited. To characterize protein expression in GSCs, we performed in-depth proteogenomic analysis of patient-derived GSCs by RNA-sequencing and mass-spectrometry. We quantified > 10 000 proteins in two independent GSC panels and propose a GSC-associated proteomic signature characterizing two distinct phenotypic conditions; one defined by proteins upregulated in proneural and classical GSCs (GPC-like), and another by proteins upregulated in mesenchymal GSCs (GM-like). The GM-like protein set in GBM tissue was associated with necrosis, recurrence, and worse overall survival. Through proteogenomics, we discovered 252 non-canonical peptides in the GSCs, i.e., protein sequences that are variant or derive from genome regions previously considered non-protein-coding, including variants of the heterogeneous ribonucleoproteins implicated in RNA splicing. In summary, GSCs express two protein sets that have an inverse association with clinical outcomes in GBM. The discovery of non-canonical protein sequences questions existing gene models and pinpoints new protein targets for research in GBM.
Collapse
Affiliation(s)
- Haris Babačić
- Department of Oncology and PathologyKarolinska Institute, Science for Life LaboratoryStockholmSweden
| | - Silvia Galardi
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataItaly
| | - Husen M. Umer
- Department of Oncology and PathologyKarolinska Institute, Science for Life LaboratoryStockholmSweden
| | - Mats Hellström
- Department of Immunology, Genetics and PathologyUppsala UniversitySweden
| | - Lene Uhrbom
- Department of Immunology, Genetics and PathologyUppsala UniversitySweden
| | | | - Deborah Cardinali
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataItaly
| | - Serena Pellegatta
- Unit of Immunotherapy of Brain Tumors, Department of Molecular Neuro‐Oncology, Foundation IRCCSInstitute for Neurology Carlo BestaMilanItaly
| | | | - Gianluca Trevisi
- Neurosurgical UnitHospital Spirito Santo, Pescara, “G. D'Annunzio” UniversityChietiItaly
| | - Annunziato Mangiola
- Neurosurgical UnitHospital Spirito Santo, Pescara, “G. D'Annunzio” UniversityChietiItaly
| | - Janne Lehtiö
- Department of Oncology and PathologyKarolinska Institute, Science for Life LaboratoryStockholmSweden
| | - Silvia Anna Ciafrè
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataItaly
| | - Maria Pernemalm
- Department of Oncology and PathologyKarolinska Institute, Science for Life LaboratoryStockholmSweden
| |
Collapse
|
31
|
Friedmann-Morvinski D, Hambardzumyan D. Monocyte-neutrophil entanglement in glioblastoma. J Clin Invest 2023; 133:163451. [PMID: 36594465 PMCID: PMC9797336 DOI: 10.1172/jci163451] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma (GBM) is the most belligerent and frequent brain tumor in adults. Research over the past two decades has provided increased knowledge of the genomic and molecular landscape of GBM and highlighted the presence of a high degree of inter- and intratumor heterogeneity within the neoplastic compartment. It is now appreciated that GBMs are composed of multiple distinct and impressionable neoplastic and non-neoplastic cell types that form the unique brain tumor microenvironment (TME). Non-neoplastic cells in the TME form reciprocal interactions with neoplastic cells to promote tumor growth and invasion, and together they influence the tumor response to standard-of-care therapies as well as emerging immunotherapies. One of the most prevalent non-neoplastic cell types in the GBM TME are myeloid cells, the most abundant of which are of hematopoietic origin, including monocytes/monocyte-derived macrophages. Less abundant, although still a notable presence, are neutrophils of hematopoietic origin and intrinsic brain-resident microglia. In this Review we focus on neutrophils and monocytes that infiltrate tumors from the blood circulation, their heterogeneity, and their interactions with neoplastic cells and other non-neoplastic cells in the TME. We conclude with an overview of challenges in targeting these cells and discuss avenues for therapeutic exploitation to improve the dismal outcomes of patients with GBM.
Collapse
Affiliation(s)
- Dinorah Friedmann-Morvinski
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, and,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, Tisch Cancer Institute, and,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
32
|
Haltom AR, Hassen WE, Hensel J, Kim J, Sugimoto H, Li B, McAndrews KM, Conner MR, Kirtley ML, Luo X, Xie B, Volpert OV, Olalekan S, Maltsev N, Basu A, LeBleu VS, Kalluri R. Engineered exosomes targeting MYC reverse the proneural-mesenchymal transition and extend survival of glioblastoma. EXTRACELLULAR VESICLE 2022; 1:100014. [PMID: 37503329 PMCID: PMC10373511 DOI: 10.1016/j.vesic.2022.100014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Dysregulated Myc signaling is a key oncogenic pathway in glioblastoma multiforme (GBM). Yet, effective therapeutic targeting of Myc continues to be challenging. Here, we demonstrate that exosomes generated from human bone marrow mesenchymal stem cells (MSCs) engineered to encapsulate siRNAs targeting Myc (iExo-Myc) localize to orthotopic GBM tumors in mice. Treatment of late stage GBM tumors with iExo-Myc inhibits proliferation and angiogenesis, suppresses tumor growth, and extends survival. Transcriptional profiling of tumors reveals that the mesenchymal transition and estrogen receptor signaling pathways are impacted by Myc inhibition. Single nuclei RNA sequencing (snRNA-seq) shows that iExo-Myc treatment induces transcriptional repression of multiple growth factor and interleukin signaling pathways, triggering a mesenchymal to proneural transition and shifting the cellular landscape of the tumor. These data confirm that Myc is an effective anti-glioma target and that iExo-Myc offers a feasible, readily translational strategy to inhibit challenging oncogene targets for the treatment of brain tumors.
Collapse
Affiliation(s)
- Amanda R. Haltom
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wafa E. Hassen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Janine Hensel
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jiha Kim
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bingrui Li
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kathleen M. McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Meagan R. Conner
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michelle L. Kirtley
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xin Luo
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Bioengineering, Rice University, Houston, TX
| | - Bingqing Xie
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL
| | - Olga V. Volpert
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Susan Olalekan
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL
| | - Natalia Maltsev
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL
| | - Anindita Basu
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL
| | - Valerie S. LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
- Feinberg School of Medicine & Kellogg School of Management, Northwestern University, Chicago, IL
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
- James P. Allison Institute at MD Anderson, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Department of Bioengineering, Rice University, Houston, TX
| |
Collapse
|
33
|
Wang L, Jung J, Babikir H, Shamardani K, Jain S, Feng X, Gupta N, Rosi S, Chang S, Raleigh D, Solomon D, Phillips JJ, Diaz AA. A single-cell atlas of glioblastoma evolution under therapy reveals cell-intrinsic and cell-extrinsic therapeutic targets. NATURE CANCER 2022; 3:1534-1552. [PMID: 36539501 PMCID: PMC9767870 DOI: 10.1038/s43018-022-00475-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/02/2022] [Indexed: 12/24/2022]
Abstract
Recent longitudinal studies of glioblastoma (GBM) have demonstrated a lack of apparent selection pressure for specific DNA mutations in recurrent disease. Single-cell lineage tracing has shown that GBM cells possess a high degree of plasticity. Together this suggests that phenotype switching, as opposed to genetic evolution, may be the escape mechanism that explains the failure of precision therapies to date. We profiled 86 primary-recurrent patient-matched paired GBM specimens with single-nucleus RNA, single-cell open-chromatin, DNA and spatial transcriptomic/proteomic assays. We found that recurrent GBMs are characterized by a shift to a mesenchymal phenotype. We show that the mesenchymal state is mediated by activator protein 1. Increased T-cell abundance at recurrence was prognostic and correlated with hypermutation status. We identified tumor-supportive networks of paracrine and autocrine signals between GBM cells, nonmalignant neuroglia and immune cells. We present cell-intrinsic and cell-extrinsic targets and a single-cell multiomics atlas of GBM under therapy.
Collapse
Affiliation(s)
- Lin Wang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jangham Jung
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Husam Babikir
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Karin Shamardani
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Saket Jain
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Xi Feng
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Susanna Rosi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Susan Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - David Raleigh
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - David Solomon
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron A Diaz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
34
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
35
|
Brooks LJ, Simpson Ragdale H, Hill CS, Clements M, Parrinello S. Injury programs shape glioblastoma. Trends Neurosci 2022; 45:865-876. [PMID: 36089406 DOI: 10.1016/j.tins.2022.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/30/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022]
Abstract
Glioblastoma is the most common and aggressive primary brain cancer in adults and is almost universally fatal due to its stark therapeutic resistance. During the past decade, although survival has not substantially improved, major advances have been made in our understanding of the underlying biology. It has become clear that these devastating tumors recapitulate features of neurodevelopmental hierarchies which are influenced by the microenvironment. Emerging evidence also highlights a prominent role for injury responses in steering cellular phenotypes and contributing to tumor heterogeneity. This review highlights how the interplay between injury and neurodevelopmental programs impacts on tumor growth, invasion, and treatment resistance, and discusses potential therapeutic considerations in view of these findings.
Collapse
Affiliation(s)
- Lucy J Brooks
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK.
| | - Holly Simpson Ragdale
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK
| | - Ciaran Scott Hill
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK; Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust (UCLH), London, UK
| | - Melanie Clements
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK.
| |
Collapse
|
36
|
Berg TJ, Pietras A. Radiotherapy-induced remodeling of the tumor microenvironment by stromal cells. Semin Cancer Biol 2022; 86:846-856. [PMID: 35143991 DOI: 10.1016/j.semcancer.2022.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/08/2023]
Abstract
Cancer cells reside amongst a complex milieu of stromal cells and structural features known as the tumor microenvironment. Often cancer cells divert and co-opt functions of stromal cells of the microenvironment to support tumor progression and treatment resistance. During therapy targeting cancer cells, the stromal cells of the microenvironment receive therapy to the same extent as cancer cells. Stromal cells therefore activate a variety of responses to the damage induced by these therapies, and some of those responses may support tumor progression and resistance. We review here the response of stromal cells to cancer therapy with a focus on radiotherapy in glioblastoma. We highlight the response of endothelial cells and the vasculature, macrophages and microglia, and astrocytes, as well as describing resulting changes in the extracellular matrix. We emphasize the complex interplay of these cellular factors in their dynamic responses. Finally, we discuss their resulting support of cancer cells in tumor progression and therapy resistance. Understanding the stromal cell response to therapy provides insight into complementary therapeutic targets to enhance tumor response to existing treatment options.
Collapse
Affiliation(s)
- Tracy J Berg
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alexander Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
37
|
Yang J, Wu X, Wang J, Guo X, Chen J, Yang X, Zhong J, Li X, Deng Z. Feedforward loop between IMP1 and YAP/TAZ promotes tumorigenesis and malignant progression in glioblastoma. Cancer Sci 2022; 114:2053-2062. [PMID: 36308276 PMCID: PMC10154852 DOI: 10.1111/cas.15636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Abstract
YAP/TAZ have been identified as master regulators in malignant phenotypes of glioblastoma (GBM); however, YAP/TAZ transcriptional disruptor in GBM treatment remains ineffective. Whether post-transcriptional dysregulation of YAP/TAZ improves GBM outcome is currently unknown. Here, we report that insulin-like growth factor 2 (IGF2) mRNA-binding protein 1 (IGF2BP1 or IMP1) is upregulated in mesenchymal GBM compared with proneural GBM and correlates with worse patient outcome. Overexpression of IMP1 in proneural glioma stem-like cells (GSCs) promotes while IMP1 knockdown in mesenchymal GSCs attenuates tumorigenesis and mesenchymal signatures. IMP1 binds to and stabilizes m6A-YAP mRNA, leading to activation of YAP/TAZ signaling, depending on its m6A recognition and binding domain. On the other hand, TAZ functions as enhancer for IMP1 expression. Collectively, our data reveal a feedforward loop between IMP1 and YAP/TAZ maintaining GBM/GSC tumorigenesis and malignant progression and a promising molecular target in GBM.
Collapse
Affiliation(s)
- Jia Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Xujia Wu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xing Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Junju Chen
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Xuesong Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Jian Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Xixi Li
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Zhong Deng
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| |
Collapse
|
38
|
Chen HM, Nikolic A, Singhal D, Gallo M. Roles of Chromatin Remodelling and Molecular Heterogeneity in Therapy Resistance in Glioblastoma. Cancers (Basel) 2022; 14:4942. [PMID: 36230865 PMCID: PMC9563350 DOI: 10.3390/cancers14194942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer stem cells (CSCs) represent a therapy-resistant reservoir in glioblastoma (GBM). It is now becoming clear that epigenetic and chromatin remodelling programs link the stemlike behaviour of CSCs to their treatment resistance. New evidence indicates that the epigenome of GBM cells is shaped by intrinsic and extrinsic factors, including their genetic makeup, their interactions and communication with other neoplastic and non-neoplastic cells, including immune cells, and their metabolic niche. In this review, we explore how all these factors contribute to epigenomic heterogeneity in a tumour and the selection of therapy-resistant cells. Lastly, we discuss current and emerging experimental platforms aimed at precisely understanding the epigenetic mechanisms of therapy resistance that ultimately lead to tumour relapse. Given the growing arsenal of drugs that target epigenetic enzymes, our review addresses promising preclinical and clinical applications of epidrugs to treat GBM, and possible mechanisms of resistance that need to be overcome.
Collapse
Affiliation(s)
- Huey-Miin Chen
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ana Nikolic
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Divya Singhal
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Marco Gallo
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
39
|
Xu Z, Murad N, Malawsky D, Tao R, Rivero-Hinojosa S, Holdhof D, Schüller U, Zhang P, Lazarski C, Rood BR, Packer R, Gershon T, Pei Y. OLIG2 Is a Determinant for the Relapse of MYC-Amplified Medulloblastoma. Clin Cancer Res 2022; 28:4278-4291. [PMID: 35736214 PMCID: PMC9529814 DOI: 10.1158/1078-0432.ccr-22-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/10/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Patients with MYC-amplified medulloblastoma (MB) have poor prognosis and frequently develop recurrence, thus new therapeutic approaches to prevent recurrence are needed. EXPERIMENTAL DESIGN We evaluated OLIG2 expression in a panel of mouse Myc-driven MB tumors, patient MB samples, and patient-derived xenograft (PDX) tumors and analyzed radiation sensitivity in OLIG2-high and OLIG2-low tumors in PDX lines. We assessed the effect of inhibition of OLIG2 by OLIG2-CRISPR or the small molecule inhibitor CT-179 combined with radiotherapy on tumor progression in PDX models. RESULTS We found that MYC-associated MB can be stratified into OLIG2-high and OLIG2-low tumors based on OLIG2 protein expression. In MYC-amplified MB PDX models, OLIG2-low tumors were sensitive to radiation and rarely relapsed, whereas OLIG2-high tumors were resistant to radiation and consistently developed recurrence. In OLIG2-high tumors, irradiation eliminated the bulk of tumor cells; however, a small number of tumor cells comprising OLIG2- tumor cells and rare OLIG2+ tumor cells remained in the cerebellar tumor bed when examined immediately post-irradiation. All animals harboring residual-resistant tumor cells developed relapse. The relapsed tumors mirrored the cellular composition of the primary tumors with enriched OLIG2 expression. Further studies demonstrated that OLIG2 was essential for recurrence, as OLIG2 disruption with CRISPR-mediated deletion or with the small molecule inhibitor CT-179 prevented recurrence from the residual radioresistant tumor cells. CONCLUSIONS Our studies reveal that OLIG2 is a biomarker and an effective therapeutic target in a high-risk subset of MYC-amplified MB, and OLIG2 inhibitor combined with radiotherapy represents a novel effective approach for treating this devastating disease.
Collapse
Affiliation(s)
- Zhenhua Xu
- Center for Cancer and Immunology, Brain Tumor Institute, Children’s National Health System, Washington, DC 20010, USA
| | - Najiba Murad
- Center for Cancer and Immunology, Brain Tumor Institute, Children’s National Health System, Washington, DC 20010, USA
| | - Daniel Malawsky
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ran Tao
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Samuel Rivero-Hinojosa
- Center for Cancer and Immunology, Brain Tumor Institute, Children’s National Health System, Washington, DC 20010, USA
| | - Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
- Research Institute Children’s Cancer Center, Martinistraße 52, Hamburg 20251, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
- Research Institute Children’s Cancer Center, Martinistraße 52, Hamburg 20251, Germany
- Institute for Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
| | - Peng Zhang
- Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100069, China
| | - Christopher Lazarski
- Center for Cancer and Immunology, Brain Tumor Institute, Children’s National Health System, Washington, DC 20010, USA
| | - Brian R. Rood
- Center for Cancer and Immunology, Brain Tumor Institute, Children’s National Health System, Washington, DC 20010, USA
| | - Roger Packer
- Center for Cancer and Immunology, Brain Tumor Institute, Children’s National Health System, Washington, DC 20010, USA
| | - Timothy Gershon
- Department of Neurology, University North Carolina, School of Medicine, Chapel Hill, NC 27516, USA
| | - Yanxin Pei
- Center for Cancer and Immunology, Brain Tumor Institute, Children’s National Health System, Washington, DC 20010, USA
- Lead contact
| |
Collapse
|
40
|
Chanoch-Myers R, Wider A, Suva ML, Tirosh I. Elucidating the diversity of malignant mesenchymal states in glioblastoma by integrative analysis. Genome Med 2022; 14:106. [PMID: 36123598 PMCID: PMC9484143 DOI: 10.1186/s13073-022-01109-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
Background Multiple glioblastoma studies have described a mesenchymal (MES) state, with each study defining the MES program by distinct sets of genes and highlighting distinct functional associations, including both immune activation and suppression. These variable descriptions complicate our understanding of the MES state and its implications. Here, we hypothesize that there is a range of glioma MES states, possibly reflecting distinct prior states in which a MES program can be induced, and/or distinct mechanisms that induce the MES states in those cells. Methods We integrated multiple published single-cell and bulk RNA sequencing datasets and MES signatures to define a core MES program that recurs across studies, as well as multiple function-specific MES signatures that vary across MES cells. We then examined the co-occurrence of these signatures and their associations with genetic and microenvironmental features. Results Based on co-occurrence of MES signatures, we found three main variants of MES states: hypoxia-related (MES-Hyp), astrocyte-related (MES-Ast), and an intermediate state. Notably, the MES states are differentially associated with genetic and microenvironmental features. MES-Hyp is preferentially associated with NF1 deletion, overall macrophage abundance, a high macrophage/microglia ratio, and M2-related macrophages, consistent with previous studies that associated MES with immune suppression. In contrast, MES-Ast is associated with T cell abundance and cytotoxicity, consistent with immune activation through expression of MHC-I/II. Conclusions Diverse MES states occur in glioblastoma. These states share a subset of core genes but differ primarily in their association with hypoxia vs. astrocytic expression programs, and with immune suppression vs. activation, respectively. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01109-8.
Collapse
Affiliation(s)
- Rony Chanoch-Myers
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Wider
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Mario L Suva
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
41
|
Benedetti V, Banfi F, Zaghi M, Moll-Diaz R, Massimino L, Argelich L, Bellini E, Bido S, Muggeo S, Ordazzo G, Mastrototaro G, Moneta M, Sessa A, Broccoli V. A SOX2-engineered epigenetic silencer factor represses the glioblastoma genetic program and restrains tumor development. SCIENCE ADVANCES 2022; 8:eabn3986. [PMID: 35921410 PMCID: PMC9348799 DOI: 10.1126/sciadv.abn3986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Current therapies remain unsatisfactory in preventing the recurrence of glioblastoma multiforme (GBM), which leads to poor patient survival. By rational engineering of the transcription factor SOX2, a key promoter of GBM malignancy, together with the Kruppel-associated box and DNA methyltransferase3A/L catalytic domains, we generated a synthetic repressor named SOX2 epigenetic silencer (SES), which induces the transcriptional silencing of its original targets. By doing so, SES kills both glioma cell lines and patient-derived cancer stem cells in vitro and in vivo. SES expression, through local viral delivery in mouse xenografts, induces strong regression of human tumors and survival rescue. Conversely, SES is not harmful to neurons and glia, also thanks to a minimal promoter that restricts its expression in mitotically active cells, rarely present in the brain parenchyma. Collectively, SES produces a significant silencing of a large fraction of the SOX2 transcriptional network, achieving high levels of efficacy in repressing aggressive brain tumors.
Collapse
Affiliation(s)
- Valerio Benedetti
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federica Banfi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20129 Milan, Italy
| | - Mattia Zaghi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Raquel Moll-Diaz
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Massimino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Argelich
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Edoardo Bellini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simone Bido
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sharon Muggeo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gabriele Ordazzo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuseppina Mastrototaro
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Matteo Moneta
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20129 Milan, Italy
| |
Collapse
|
42
|
Mousavi SM, Derakhshan M, Baharloii F, Dashti F, Mirazimi SMA, Mahjoubin-Tehran M, Hosseindoost S, Goleij P, Rahimian N, Hamblin MR, Mirzaei H. Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Mol Ther Oncolytics 2022; 24:262-287. [PMID: 35071748 PMCID: PMC8762369 DOI: 10.1016/j.omto.2021.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioma, also known as glioblastoma multiforme (GBM), is the most prevalent and most lethal primary brain tumor in adults. Gliomas are highly invasive tumors with the highest death rate among all primary brain malignancies. Metastasis occurs as the tumor cells spread from the site of origin to another site in the brain. Metastasis is a multifactorial process, which depends on alterations in metabolism, genetic mutations, and the cancer microenvironment. During recent years, the scientific study of non-coding RNAs (ncRNAs) has led to new insight into the molecular mechanisms involved in glioma. Many studies have reported that ncRNAs play major roles in many biological procedures connected with the development and progression of glioma. Long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are all types of ncRNAs, which are commonly dysregulated in GBM. Dysregulation of ncRNAs can facilitate the invasion and metastasis of glioma. The present review highlights some ncRNAs that have been associated with metastasis in GBM. miRNAs, circRNAs, and lncRNAs are discussed in detail with respect to their relevant signaling pathways involved in metastasis.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatereh Baharloii
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
43
|
Uribe D, Niechi I, Rackov G, Erices JI, San Martín R, Quezada C. Adapt to Persist: Glioblastoma Microenvironment and Epigenetic Regulation on Cell Plasticity. BIOLOGY 2022; 11:313. [PMID: 35205179 PMCID: PMC8869716 DOI: 10.3390/biology11020313] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most frequent and aggressive brain tumor, characterized by great resistance to treatments, as well as inter- and intra-tumoral heterogeneity. GBM exhibits infiltration, vascularization and hypoxia-associated necrosis, characteristics that shape a unique microenvironment in which diverse cell types are integrated. A subpopulation of cells denominated GBM stem-like cells (GSCs) exhibits multipotency and self-renewal capacity. GSCs are considered the conductors of tumor progression due to their high tumorigenic capacity, enhanced proliferation, invasion and therapeutic resistance compared to non-GSCs cells. GSCs have been classified into two molecular subtypes: proneural and mesenchymal, the latter showing a more aggressive phenotype. Tumor microenvironment and therapy can induce a proneural-to-mesenchymal transition, as a mechanism of adaptation and resistance to treatments. In addition, GSCs can transition between quiescent and proliferative substates, allowing them to persist in different niches and adapt to different stages of tumor progression. Three niches have been described for GSCs: hypoxic/necrotic, invasive and perivascular, enhancing metabolic changes and cellular interactions shaping GSCs phenotype through metabolic changes and cellular interactions that favor their stemness. The phenotypic flexibility of GSCs to adapt to each niche is modulated by dynamic epigenetic modifications. Methylases, demethylases and histone deacetylase are deregulated in GSCs, allowing them to unlock transcriptional programs that are necessary for cell survival and plasticity. In this review, we described the effects of GSCs plasticity on GBM progression, discussing the role of GSCs niches on modulating their phenotype. Finally, we described epigenetic alterations in GSCs that are important for stemness, cell fate and therapeutic resistance.
Collapse
Affiliation(s)
- Daniel Uribe
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Ignacio Niechi
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Gorjana Rackov
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain;
| | - José I. Erices
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Rody San Martín
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Claudia Quezada
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
44
|
Heffernan JM, McNamara JB, Vernon BL, Mehta S, Sirianni RW. PNJ scaffolds promote microenvironmental regulation of glioblastoma stem-like cell enrichment and radioresistance. Biomater Sci 2022; 10:819-833. [PMID: 34994746 PMCID: PMC8939461 DOI: 10.1039/d0bm01169j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glioblastoma (GBM) brain tumors contain a subpopulation of self-renewing multipotent Glioblastoma stem-like cells (GSCs) that are believed to drive the near inevitable recurrence of GBM. We previously engineered temperature responsive scaffolds based on the polymer poly(N-isopropylacrylamide-co-Jeffamine M-1000 acrylamide) (PNJ) for the purpose of enriching GSCs in vitro from patient-derived samples. Here, we used PNJ scaffolds to study microenvironmental regulation of self-renewal and radiation response in patient-derived GSCs representing classical and proneural subtypes. GSC self-renewal was regulated by the composition of PNJ scaffolds and varied with cell type. PNJ scaffolds protected against radiation-induced cell death, particularly in conditions that also promoted GSC self-renewal. Additionally, cells cultured in PNJ scaffolds exhibited increased expression of the transcription factor HIF2α, which was not observed in neurosphere culture, providing a potential mechanistic basis for differences in radio-resistance. Differences in PNJ regulation of HIF2α in irradiated and untreated conditions also offered evidence of stem plasticity. These data show PNJ scaffolds provide a unique biomaterial for evaluating dynamic microenvironmental regulation of GSC self-renewal, radioresistance, and stem plasticity.
Collapse
Affiliation(s)
- John M. Heffernan
- Ivy Brain Tumor Center, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA, School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287, USA, Sonoran Biosciences, 1048 E Knight Ln, Tempe, AZ, USA
| | - James B. McNamara
- Ivy Brain Tumor Center, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA, Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, USA
| | - Brent L. Vernon
- School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287, USA
| | - Shwetal Mehta
- Ivy Brain Tumor Center, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA
| | - Rachael W. Sirianni
- Ivy Brain Tumor Center, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA, School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287, USA, Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
45
|
Yoo K, Kang J, Choi M, Suh Y, Zhao Y, Kim M, Chang JH, Shim J, Yoon S, Kang S, Lee S. Soluble ICAM-1 a Pivotal Communicator between Tumors and Macrophages, Promotes Mesenchymal Shift of Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102768. [PMID: 34813169 PMCID: PMC8805565 DOI: 10.1002/advs.202102768] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Despite aggressive clinical treatment, recurrence of glioblastoma multiforme (GBM) is unavoidable, and the clinical outcome is still poor. A convincing explanation is the phenotypic transition of GBM cells upon aggressive treatment such as radiotherapy. However, the microenvironmental factors contributing to GBM recurrence after treatment remain unexplored. Here, it is shown that radiation-treated GBM cells produce soluble intercellular adhesion molecule-1 (sICAM-1) which stimulates the infiltration of macrophages, consequently enriching the tumor microenvironment with inflammatory macrophages. Acting as a paracrine factor, tumor-derived sICAM-1 induces macrophages to secrete wingless-type MMTV integration site family, member 3A (WNT3A), which promotes a mesenchymal shift of GBM cells. In addition, blockade of either sICAM-1 or WNT3A diminishes the harmful effect of radiation on tumor progression. Collectively, the findings indicate that cellular crosstalk between GBM and macrophage through sICAM-1-WNT3A oncogenic route is involved in the mesenchymal shift of GBM cells after radiation, and suggest that radiotherapy combined with sICAM-1 targeted inhibition would improve the clinical outcome of GBM patients.
Collapse
Affiliation(s)
- Ki‐Chun Yoo
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
- Department of Lymphoma and MyelomaDivision of Cancer MedicineCenter for Cancer Immunology ResearchThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Jae‐Hyeok Kang
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
| | - Mi‐Young Choi
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
| | - Yongjoon Suh
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
| | - Yi Zhao
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
| | - Min‐Jung Kim
- Laboratory of Radiation Exposure & TherapeuticsNational Radiation Emergency Medical CenterKorea Institute of Radiological and Medical SciencesSeoul01812Korea
| | - Jong Hee Chang
- Department of NeurosurgeryBrain Tumor CenterSeverance HospitalYonsei University College of MedicineSeoul03722Korea
| | - Jin‐Kyoung Shim
- Department of NeurosurgeryBrain Tumor CenterSeverance HospitalYonsei University College of MedicineSeoul03722Korea
| | - Seon‐Jin Yoon
- Department of NeurosurgeryBrain Tumor CenterSeverance HospitalYonsei University College of MedicineSeoul03722Korea
| | - Seok‐Gu Kang
- Department of NeurosurgeryBrain Tumor CenterSeverance HospitalYonsei University College of MedicineSeoul03722Korea
| | - Su‐Jae Lee
- Department of Life ScienceResearch Institute for Natural SciencesHanyang UniversitySeoul04763Korea
| |
Collapse
|
46
|
Stevanovic M, Kovacevic-Grujicic N, Mojsin M, Milivojevic M, Drakulic D. SOX transcription factors and glioma stem cells: Choosing between stemness and differentiation. World J Stem Cells 2021; 13:1417-1445. [PMID: 34786152 PMCID: PMC8567447 DOI: 10.4252/wjsc.v13.i10.1417] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common, most aggressive and deadliest brain tumor. Recently, remarkable progress has been made towards understanding the cellular and molecular biology of gliomas. GBM tumor initiation, progression and relapse as well as resistance to treatments are associated with glioma stem cells (GSCs). GSCs exhibit a high proliferation rate and self-renewal capacity and the ability to differentiate into diverse cell types, generating a range of distinct cell types within the tumor, leading to cellular heterogeneity. GBM tumors may contain different subsets of GSCs, and some of them may adopt a quiescent state that protects them against chemotherapy and radiotherapy. GSCs enriched in recurrent gliomas acquire more aggressive and therapy-resistant properties, making them more malignant, able to rapidly spread. The impact of SOX transcription factors (TFs) on brain tumors has been extensively studied in the last decade. Almost all SOX genes are expressed in GBM, and their expression levels are associated with patient prognosis and survival. Numerous SOX TFs are involved in the maintenance of the stemness of GSCs or play a role in the initiation of GSC differentiation. The fine-tuning of SOX gene expression levels controls the balance between cell stemness and differentiation. Therefore, innovative therapies targeting SOX TFs are emerging as promising tools for combatting GBM. Combatting GBM has been a demanding and challenging goal for decades. The current therapeutic strategies have not yet provided a cure for GBM and have only resulted in a slight improvement in patient survival. Novel approaches will require the fine adjustment of multimodal therapeutic strategies that simultaneously target numerous hallmarks of cancer cells to win the battle against GBM.
Collapse
Affiliation(s)
- Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
- Chair Biochemistry and Molecular Biology, Faculty of Biology, University of Belgrade, Belgrade 11158, Serbia
- Department of Chemical and Biological Sciences, Serbian Academy of Sciences and Arts, Belgrade 11000, Serbia.
| | - Natasa Kovacevic-Grujicic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Milena Milivojevic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| |
Collapse
|
47
|
Marques C, Unterkircher T, Kroon P, Oldrini B, Izzo A, Dramaretska Y, Ferrarese R, Kling E, Schnell O, Nelander S, Wagner EF, Bakiri L, Gargiulo G, Carro MS, Squatrito M. NF1 regulates mesenchymal glioblastoma plasticity and aggressiveness through the AP-1 transcription factor FOSL1. eLife 2021; 10:e64846. [PMID: 34399888 PMCID: PMC8370767 DOI: 10.7554/elife.64846] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/18/2021] [Indexed: 12/22/2022] Open
Abstract
The molecular basis underlying glioblastoma (GBM) heterogeneity and plasticity is not fully understood. Using transcriptomic data of human patient-derived brain tumor stem cell lines (BTSCs), classified based on GBM-intrinsic signatures, we identify the AP-1 transcription factor FOSL1 as a key regulator of the mesenchymal (MES) subtype. We provide a mechanistic basis to the role of the neurofibromatosis type 1 gene (NF1), a negative regulator of the RAS/MAPK pathway, in GBM mesenchymal transformation through the modulation of FOSL1 expression. Depletion of FOSL1 in NF1-mutant human BTSCs and Kras-mutant mouse neural stem cells results in loss of the mesenchymal gene signature and reduction in stem cell properties and in vivo tumorigenic potential. Our data demonstrate that FOSL1 controls GBM plasticity and aggressiveness in response to NF1 alterations.
Collapse
Affiliation(s)
- Carolina Marques
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research CentreMadridSpain
| | | | - Paula Kroon
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research CentreMadridSpain
| | - Barbara Oldrini
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research CentreMadridSpain
| | - Annalisa Izzo
- Department of Neurosurgery, Faculty of Medicine FreiburgFreiburgGermany
| | - Yuliia Dramaretska
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Roberto Ferrarese
- Department of Neurosurgery, Faculty of Medicine FreiburgFreiburgGermany
| | - Eva Kling
- Department of Neurosurgery, Faculty of Medicine FreiburgFreiburgGermany
| | - Oliver Schnell
- Department of Neurosurgery, Faculty of Medicine FreiburgFreiburgGermany
| | - Sven Nelander
- Dept of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, RudbecklaboratorietUppsalaSweden
- Science for Life Laboratory, Uppsala University, RudbecklaboratorietUppsalaSweden
| | - Erwin F Wagner
- Genes, Development, and Disease Group, Spanish National Cancer Research CentreMadridSpain
- Laboratory Medicine Department, Medical University of ViennaViennaAustria
- Dermatology Department, Medical University of ViennaViennaAustria
| | - Latifa Bakiri
- Genes, Development, and Disease Group, Spanish National Cancer Research CentreMadridSpain
- Laboratory Medicine Department, Medical University of ViennaViennaAustria
| | - Gaetano Gargiulo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | | | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research CentreMadridSpain
| |
Collapse
|
48
|
Glioblastomas within the Subventricular Zone Are Region-Specific Enriched for Mesenchymal Transition Markers: An Intratumoral Gene Expression Analysis. Cancers (Basel) 2021; 13:cancers13153764. [PMID: 34359668 PMCID: PMC8345101 DOI: 10.3390/cancers13153764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary Involvement of the subventricular zone (SVZ) in glioblastoma is associated with poor prognosis and is associated with specific tumor-biological characteristics. In this study, we demonstrate that patient-derived glioblastoma samples from within the SVZ region show increased (epithelial-)mesenchymal transition and angiogenesis/hypoxia signaling as compared to glioblastoma samples from the same patient from outside the SVZ. These results suggest that intratumoral alterations in oncogenic signaling could be mediated by the SVZ microenvironment. Our findings offer rationale for specific targeting of the SVZ in the development of glioblastoma therapy. Abstract Background: Involvement of the subventricular zone (SVZ) in glioblastoma is associated with poor prognosis and is associated with specific tumor-biological characteristics. The SVZ microenvironment can influence gene expression in glioblastoma cells in preclinical models. We aimed to investigate whether the SVZ microenvironment has any influence on intratumoral gene expression patterns in glioblastoma patients. Methods: The publicly available Ivy Glioblastoma database contains clinical, radiological and whole exome sequencing data from multiple regions from resected glioblastomas. SVZ involvement of the various tissue samples was evaluated on MRI scans. In tumors that contacted the SVZ, we performed gene expression analyses and gene set enrichment analyses to compare gene (set) expression in tumor regions within the SVZ to tumor regions outside the SVZ. We also compared these samples to glioblastomas that did not contact the SVZ. Results: Within glioblastomas that contacted the SVZ, tissue samples within the SVZ showed enrichment of gene sets involved in (epithelial-)mesenchymal transition, NF-κB and STAT3 signaling, angiogenesis and hypoxia, compared to the samples outside of the SVZ region from the same tumors (p < 0.05, FDR < 0.25). Comparison of glioblastoma samples within the SVZ region to samples from tumors that did not contact the SVZ yielded similar results. In contrast, we observed no differences when comparing the samples outside of the SVZ from SVZ-contacting glioblastomas with samples from glioblastomas that did not contact the SVZ at all. Conclusion: Glioblastoma samples in the SVZ region are enriched for increased (epithelial-)mesenchymal transition and angiogenesis/hypoxia signaling, possibly mediated by the SVZ microenvironment.
Collapse
|
49
|
Akkari L, Bowman RL, Tessier J, Klemm F, Handgraaf SM, de Groot M, Quail DF, Tillard L, Gadiot J, Huse JT, Brandsma D, Westerga J, Watts C, Joyce JA. Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci Transl Med 2021; 12:12/552/eaaw7843. [PMID: 32669424 DOI: 10.1126/scitranslmed.aaw7843] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 01/31/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAMs) and microglia (MG) are potent regulators of glioma development and progression. However, the dynamic alterations of distinct TAM populations during the course of therapeutic intervention, response, and recurrence have not yet been fully explored. Here, we investigated how radiotherapy changes the relative abundance and phenotypes of brain-resident MG and peripherally recruited monocyte-derived macrophages (MDMs) in glioblastoma. We identified radiation-specific, stage-dependent MG and MDM gene expression signatures in murine gliomas and confirmed altered expression of several genes and proteins in recurrent human glioblastoma. We found that targeting these TAM populations using a colony-stimulating factor-1 receptor (CSF-1R) inhibitor combined with radiotherapy substantially enhanced survival in preclinical models. Our findings reveal the dynamics and plasticity of distinct macrophage populations in the irradiated tumor microenvironment, which has translational relevance for enhancing the efficacy of standard-of-care treatment in gliomas.
Collapse
Affiliation(s)
- Leila Akkari
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland. .,Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland.,Tumor Biology and Immunology Division, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, Netherlands
| | - Robert L Bowman
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jeremy Tessier
- Tumor Biology and Immunology Division, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, Netherlands
| | - Florian Klemm
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland.,Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland
| | - Shanna M Handgraaf
- Tumor Biology and Immunology Division, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, Netherlands
| | - Marnix de Groot
- Tumor Biology and Immunology Division, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, Netherlands
| | - Daniela F Quail
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lucie Tillard
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland.,Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland
| | - Jules Gadiot
- Tumor Biology and Immunology Division, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, Netherlands
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dieta Brandsma
- Departments of Neuro-Oncology and Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam 1066CX, Netherlands
| | - Johan Westerga
- Departments of Neuro-Oncology and Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam 1066CX, Netherlands
| | - Colin Watts
- Birmingham Brain Cancer Program, Institute of Cancer Genome Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland. .,Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland
| |
Collapse
|
50
|
O’Connor SA, Feldman HM, Arora S, Hoellerbauer P, Toledo CM, Corrin P, Carter L, Kufeld M, Bolouri H, Basom R, Delrow J, McFaline‐Figueroa JL, Trapnell C, Pollard SM, Patel A, Paddison PJ, Plaisier CL. Neural G0: a quiescent-like state found in neuroepithelial-derived cells and glioma. Mol Syst Biol 2021; 17:e9522. [PMID: 34101353 PMCID: PMC8186478 DOI: 10.15252/msb.20209522] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Single-cell RNA sequencing has emerged as a powerful tool for resolving cellular states associated with normal and maligned developmental processes. Here, we used scRNA-seq to examine the cell cycle states of expanding human neural stem cells (hNSCs). From these data, we constructed a cell cycle classifier that identifies traditional cell cycle phases and a putative quiescent-like state in neuroepithelial-derived cell types during mammalian neurogenesis and in gliomas. The Neural G0 markers are enriched with quiescent NSC genes and other neurodevelopmental markers found in non-dividing neural progenitors. Putative glioblastoma stem-like cells were significantly enriched in the Neural G0 cell population. Neural G0 cell populations and gene expression are significantly associated with less aggressive tumors and extended patient survival for gliomas. Genetic screens to identify modulators of Neural G0 revealed that knockout of genes associated with the Hippo/Yap and p53 pathways diminished Neural G0 in vitro, resulting in faster G1 transit, down-regulation of quiescence-associated markers, and loss of Neural G0 gene expression. Thus, Neural G0 represents a dynamic quiescent-like state found in neuroepithelial-derived cells and gliomas.
Collapse
Affiliation(s)
- Samantha A O’Connor
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZUSA
| | - Heather M Feldman
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Sonali Arora
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Pia Hoellerbauer
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleWAUSA
| | - Chad M Toledo
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleWAUSA
| | - Philip Corrin
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Lucas Carter
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Megan Kufeld
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Hamid Bolouri
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Ryan Basom
- Genomics and Bioinformatics Shared ResourcesFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Jeffrey Delrow
- Genomics and Bioinformatics Shared ResourcesFred Hutchinson Cancer Research CenterSeattleWAUSA
| | | | - Cole Trapnell
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
| | - Steven M Pollard
- Edinburgh CRUK Cancer Research CentreMRC Centre for Regenerative MedicineThe University of EdinburghEdinburghUK
| | - Anoop Patel
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Department of NeurosurgeryUniversity of WashingtonSeattleWAUSA
| | - Patrick J Paddison
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleWAUSA
| | | |
Collapse
|