1
|
Liu Y, Cheng YY, Thompson J, Zhou Z, Vivas EI, Warren MF, DuClos JM, Anantharaman K, Rey FE, Venturelli OS. Decoding the role of the arginine dihydrolase pathway in shaping human gut community assembly and health-relevant metabolites. Cell Syst 2025; 16:101292. [PMID: 40339579 DOI: 10.1016/j.cels.2025.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/10/2024] [Accepted: 04/11/2025] [Indexed: 05/10/2025]
Abstract
The arginine dihydrolase pathway (arc operon) provides a metabolic niche by transforming arginine into metabolic byproducts. We investigate the role of the arc operon in probiotic Escherichia coli Nissle 1917 on human gut community assembly and health-relevant metabolite profiles. By stabilizing environmental pH, the arc operon reduces variability in community composition in response to pH perturbations and frequently enhances butyrate production in synthetic communities. We use a tailored machine learning model for microbiomes to predict community assembly in response to variation in initial media pH and arc operon activity. This model uncovers the pH- and arc operon-dependent interactions shaping community assembly. Human gut species display altered colonization dynamics in response to the arc operon in the murine gut. In sum, our framework to quantify the contribution of a specific pathway to microbial community assembly and metabolite production can reveal new engineering strategies. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Yiyi Liu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yu-Yu Cheng
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jaron Thompson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eugenio I Vivas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Gnotobiotic Animal Core Facility, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matthew F Warren
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Julie M DuClos
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ophelia S Venturelli
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
2
|
Liu M, Yang W, Zhu W, Yu D. Innovative applications and research advances of bacterial biosensors in medicine. Front Microbiol 2025; 16:1507491. [PMID: 40336836 PMCID: PMC12055861 DOI: 10.3389/fmicb.2025.1507491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/24/2025] [Indexed: 05/09/2025] Open
Abstract
The demand for early disease detection, treatment monitoring, and personalized medicine is increasing, making it more imperative than ever to create effective, accurate, portable, intelligent, multifunctional diagnostic equipment. Bacteria possess a remarkable perception of their surroundings and have the capacity to adapt by altering the expression of specific genes. Bacteria interact with target substances and produce detectable signals in response to their presence or concentration. This unique property has been harnessed in the development of bacterial biosensors. Due to groundbreaking advancements in synthetic biology, genetic engineering now enables the creation of bacteria tailored with exceptional detecting traits. In addition to meeting a wide range of application needs, this allows quick and precise detection in intricate settings and offers a strong technological basis for early disease diagnosis and treatment monitoring. This article reviews the applications and recent advancements of bacterial biosensors in the medical field and discusses the challenges and obstacles that remain in their research and application.
Collapse
Affiliation(s)
- Mengting Liu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University (Hangzhou First People’s Hospital), Hangzhou, China
- Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Wenjie Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University (Hangzhou First People’s Hospital), Hangzhou, China
- Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Wenqi Zhu
- Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Daojun Yu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University (Hangzhou First People’s Hospital), Hangzhou, China
- Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Chen H, Li Y, Li Z, Sun Y, Gu W, Chen C, Cheng Y. Bacterial Autonomous Intelligent Microrobots for Biomedical Applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70011. [PMID: 40235203 DOI: 10.1002/wnan.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/05/2025] [Accepted: 04/02/2025] [Indexed: 04/17/2025]
Abstract
Micro/nanorobots are being increasingly utilized as new diagnostic and therapeutic platforms in the biomedical field, enabling remote navigation to hard-to-reach tissues and the execution of various medical procedures. Although significant progress has been made in the development of biomedical micro/nanorobots, how to achieve closed-loop control of them from sensing, memory, and precise trajectory planning to feedback to carry out biomedical tasks remains a challenge. Bacteria with self-propulsion and autonomous intelligence properties are well suited to be engineered as microrobots to achieve closed-loop control for biomedical applications. By virtue of synthetic biology, bacterial microrobots possess an expanded genetic toolbox, allowing them to load input sensors to respond or remember external signals. To achieve accurate control in the complex physiological environment, the development of bacterial microrobots should be matched with the corresponding control system design. In this review, a detailed summary of the sensing and control mechanisms of bacterial microrobots is presented. The engineering and applications of bacterial microrobots in the biomedical field are highlighted. Their future directions of bacterial autonomous intelligent microrobots for precision medicine are forecasted.
Collapse
Affiliation(s)
- Haotian Chen
- Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingze Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenguang Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuantai Sun
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weicheng Gu
- Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Cheng
- Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Zhang P, Du Q, Wang Y, Wei L, Wang X. Systematic representation and optimization enable the inverse design of cross-species regulatory sequences in bacteria. Nat Commun 2025; 16:1763. [PMID: 39971994 PMCID: PMC11840067 DOI: 10.1038/s41467-025-57031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/03/2025] [Indexed: 02/21/2025] Open
Abstract
Regulatory sequences encode crucial gene expression signals, yet the sequence characteristics that determine their functionality across species remain obscure. Deep generative models have demonstrated considerable potential in various inverse design applications, especially in engineering genetic elements. Here, we introduce DeepCROSS, a generative artificial intelligence framework for the inverse design of cross-species and species-preferred 5' regulatory sequences in bacteria. DeepCROSS constructs a meta-representation using 1.8 million regulatory sequences from thousands of bacterial genomes to depict the general constraints of regulatory sequences, employs artificial intelligence-guided massively parallel reporter assay experiments in E. coli and P. aeruginosa to explore the potential sequence space, and performs multi-task optimization to obtain de novo regulatory sequences. The optimized regulatory sequences achieve similar or better performance to functional natural regulatory sequences, with high success rates and low sequence similarities with the natural genome. Collectively, DeepCROSS efficiently navigates the sequence-function landscape and enables the inverse design of cross-species and species-preferred 5' regulatory sequences.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bio-informatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Qixiu Du
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bio-informatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Ye Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bio-informatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Lei Wei
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bio-informatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bio-informatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Padmakumar JP, Sun JJ, Cho W, Zhou Y, Krenz C, Han WZ, Densmore D, Sontag ED, Voigt CA. Partitioning of a 2-bit hash function across 66 communicating cells. Nat Chem Biol 2025; 21:268-279. [PMID: 39317847 DOI: 10.1038/s41589-024-01730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
Powerful distributed computing can be achieved by communicating cells that individually perform simple operations. Here, we report design software to divide a large genetic circuit across cells as well as the genetic parts to implement the subcircuits in their genomes. These tools were demonstrated using a 2-bit version of the MD5 hashing algorithm, which is an early predecessor to the cryptographic functions underlying cryptocurrency. One iteration requires 110 logic gates, which were partitioned across 66 Escherichia coli strains, requiring the introduction of a total of 1.1 Mb of recombinant DNA into their genomes. The strains were individually experimentally verified to integrate their assigned input signals, process this information correctly and propagate the result to the cell in the next layer. This work demonstrates the potential to obtain programable control of multicellular biological processes.
Collapse
Affiliation(s)
- Jai P Padmakumar
- MIT Microbiology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jessica J Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William Cho
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Yangruirui Zhou
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Christopher Krenz
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Woo Zhong Han
- Department of Computer Science, Boston University, Boston, MA, USA
| | - Douglas Densmore
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Eduardo D Sontag
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - Christopher A Voigt
- MIT Microbiology Program, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Lee D, Muir P, Lundberg S, Lundholm A, Sandegren L, Koskiniemi S. A CRISPR-Cas9 system protecting E. coli against acquisition of antibiotic resistance genes. Sci Rep 2025; 15:1545. [PMID: 39789078 PMCID: PMC11718013 DOI: 10.1038/s41598-025-85334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
Antimicrobial resistance (AMR) is an increasing problem worldwide, and new treatment options for bacterial infections are direly needed. Engineered probiotics show strong potential in treating or preventing bacterial infections. However, one concern with the use of live bacteria is the risk of the bacteria acquiring genes encoding for AMR or virulence factors through horizontal gene transfer (HGT), and the transformation of the probiotic into a superbug. Therefore, we developed an engineered CRISPR-Cas9 system that protects bacteria from horizontal gene transfer. We synthesized a CRISPR locus targeting eight AMR genes and cloned this with the Cas9 and transacting tracrRNA on a medium copy plasmid. We next evaluated the efficiency of the system to block HGT through transformation, transduction, and conjugation. Our results show that expression of the CRISPR-Cas9 system successfully protects E. coli MG1655 from acquiring the targeted resistance genes by transformation or transduction with 2-3 logs of protection depending on the system for transfer and the target gene. Furthermore, we show that the system blocks conjugation of a set of clinical plasmids, and that the system is also able to protect the probiotic bacterium E. coli Nissle 1917 from acquiring AMR genes.
Collapse
Affiliation(s)
- Danna Lee
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Petra Muir
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sara Lundberg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - August Lundholm
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Linus Sandegren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Sanna Koskiniemi
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Jin K, Huang Y, Che H, Wu Y. Engineered Bacteria for Disease Diagnosis and Treatment Using Synthetic Biology. Microb Biotechnol 2025; 18:e70080. [PMID: 39801378 PMCID: PMC11725985 DOI: 10.1111/1751-7915.70080] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025] Open
Abstract
Using synthetic biology techniques, bacteria have been engineered to serve as microrobots for diagnosing diseases and delivering treatments. These engineered bacteria can be used individually or in combination as microbial consortia. The components within these consortia complement each other, enhancing diagnostic accuracy and providing synergistic effects that improve treatment efficacy. The application of microbial therapies in cancer, intestinal diseases, and metabolic disorders underscores their significant potential. The impact of these therapies on the host's native microbiota is crucial, as engineered microbes can modulate and interact with the host's microbial environment, influencing treatment outcomes and overall health. Despite numerous advancements, challenges remain. These include ensuring the long-term survival and safety of bacteria, developing new chassis microbes and gene editing techniques for non-model strains, minimising potential toxicity, and understanding bacterial interactions with the host microbiota. This mini-review examines the current state of engineered bacteria and microbial consortia in disease diagnosis and treatment, highlighting advancements, challenges, and future directions in this promising field.
Collapse
Affiliation(s)
- Kai Jin
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Yi Huang
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Hailong Che
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Yihan Wu
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| |
Collapse
|
8
|
Liu W, Pan Y, Zhang Y, Dong C, Huang L, Lian J. Intracellularly synthesized ssDNA for continuous genome engineering. Trends Biotechnol 2024:S0167-7799(24)00293-2. [PMID: 39537537 DOI: 10.1016/j.tibtech.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Despite the prevalence of genome editing tools, there are still some limitations in dynamic and continuous genome editing. In vivo single-stranded DNA (ssDNA)-mediated genome mutation has emerged as a valuable and promising approach for continuous genome editing. In this review, we summarize the various types of intracellular ssDNA production systems and notable achievements in genome engineering in both prokaryotic and eukaryotic cells. We also review progress in the development of applications based on retron-based systems, which have demonstrated significant potential in molecular recording, multiplex genome editing, high-throughput functional variant screening, and gene-specific continuous in vivo evolution. Furthermore, we discuss the major challenges of ssDNA-mediated continuous genome editing and its prospects for future applications.
Collapse
Affiliation(s)
- Wenqian Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; BGI Research, Hangzhou 310030, China
| | - Yingjia Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Yu Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; BGI Research, Hangzhou 310030, China
| | - Chang Dong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
9
|
Zhao M, Kim J, Jiao J, Lim Y, Shi X, Guo S, Kim J. Construction of multilayered gene circuits using de-novo-designed synthetic transcriptional regulators in cell-free systems. J Biol Eng 2024; 18:64. [PMID: 39501344 PMCID: PMC11539451 DOI: 10.1186/s13036-024-00459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND De-novo-designed synthetic transcriptional regulators have great potential as the genetic parts for constructing complex multilayered gene circuits. The design flexibility afforded by advanced nucleic acid sequence design tools vastly expands the repertoire of regulatory elements for circuit design. In principle, the design space of synthetic regulators should allow for the construction of regulatory circuits of arbitrary complexity; still, the orthogonality and robustness of such components have not been fully elucidated, thereby limiting the depth and width of synthetic circuits. RESULTS In this work, we systematically explored the design strategy of synthetic transcriptional regulators, termed switchable transcription terminators. Specifically, by redesigning key sequence domains, we created a high-performance switchable transcription terminator with a maximum fold change of 283.11 upon activation by its cognate input RNA. Further, an automated design algorithm was developed for these elements to improve orthogonality for a complex multi-layered circuit construction. The resulting orthogonal switchable transcription terminators could be used to construct a three-layer cascade circuit and a two-input three-layer OR gate. CONCLUSIONS We demonstrated a practical strategy for designing standardized regulatory elements and assembling modular gene circuits, ultimately laying the foundation for the streamlined construction of complex synthetic gene circuits.
Collapse
Affiliation(s)
- Mingming Zhao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jeongwon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Jiayan Jiao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yelin Lim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
- International Joint Laboratory of Intelligent Health Care, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shaobin Guo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian, 350108, China.
- International Joint Laboratory of Intelligent Health Care, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea.
| |
Collapse
|
10
|
Hayakawa T, Suzuki H, Yamamoto H, Mitsuda N. Synthetic biology in plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:173-193. [PMID: 40115764 PMCID: PMC11921130 DOI: 10.5511/plantbiotechnology.24.0630b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/30/2024] [Indexed: 03/23/2025]
Abstract
Synthetic biology, an interdisciplinary field at the intersection of engineering and biology, has garnered considerable attention for its potential applications in plant science. By exploiting engineering principles, synthetic biology enables the redesign and construction of biological systems to manipulate plant traits, metabolic pathways, and responses to environmental stressors. This review explores the evolution and current state of synthetic biology in plants, highlighting key achievements and emerging trends. Synthetic biology offers innovative solutions to longstanding challenges in agriculture and biotechnology for improvement of nutrition and photosynthetic efficiency, useful secondary metabolite production, engineering biosensors, and conferring stress tolerance. Recent advances, such as genome editing technologies, have facilitated precise manipulation of plant genomes, creating new possibilities for crop improvement and sustainable agriculture. Despite its transformative potential, ethical and biosafety considerations underscore the need for responsible deployment of synthetic biology tools in plant research and development. This review provides insights into the burgeoning field of plant synthetic biology, offering a glimpse into its future implications for food security, environmental sustainability, and human health.
Collapse
Affiliation(s)
- Takahiko Hayakawa
- Mitsubishi Chemical Research Corporation, 16-1 Samon-cho, Sinjuku-ku, Tokyo 106-0017, Japan
| | - Hayato Suzuki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukisamu Higashi 2-17-2-1, Toyohira, Sapporo, Hokkaido 062-8517, Japan
| | - Hiroshi Yamamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukisamu Higashi 2-17-2-1, Toyohira, Sapporo, Hokkaido 062-8517, Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
11
|
Xu M, Feng G, Fang J. Microcapsules based on biological macromolecules for intestinal health: A review. Int J Biol Macromol 2024; 276:133956. [PMID: 39029830 DOI: 10.1016/j.ijbiomac.2024.133956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Intestinal dysfunction is becoming increasingly associated with neurological and endocrine issues, raising concerns about its impact on world health. With the introduction of several breakthrough technologies for detecting and treating intestinal illnesses, significant progress has been made in the previous few years. On the other hand, traditional intrusive diagnostic techniques are expensive and time-consuming. Furthermore, the efficacy of conventional drugs (not capsules) is reduced since they are more likely to degrade before reaching their target. In this context, microcapsules based on different types of biological macromolecules have been used to encapsulate active drugs and sensors to track intestinal ailments and address these issues. Several biomacromolecules/biomaterials (natural protein, alginate, chitosan, cellulose and RNA etc.) are widely used for make microcapsules for intestinal diseases, and can significantly improve the therapeutic effect and reduce adverse reactions. This article systematically summarizes microencapsulated based on biomacromolecules material for intestinal health control and efficacy enhancement. It also discusses the application and mechanism research of microencapsulated biomacromolecules drugs in reducing intestinal inflammation, in addition to covering the preparation techniques of microencapsulated drug delivery systems used for intestinal health. Microcapsule delivery systems' limits and potential applications for intestinal disease diagnosis, treatment, and surveillance were highlighted.
Collapse
Affiliation(s)
- Minhui Xu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China
| |
Collapse
|
12
|
Joshi SHN, Jenkins C, Ulaeto D, Gorochowski TE. Accelerating Genetic Sensor Development, Scale-up, and Deployment Using Synthetic Biology. BIODESIGN RESEARCH 2024; 6:0037. [PMID: 38919711 PMCID: PMC11197468 DOI: 10.34133/bdr.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Living cells are exquisitely tuned to sense and respond to changes in their environment. Repurposing these systems to create engineered biosensors has seen growing interest in the field of synthetic biology and provides a foundation for many innovative applications spanning environmental monitoring to improved biobased production. In this review, we present a detailed overview of currently available biosensors and the methods that have supported their development, scale-up, and deployment. We focus on genetic sensors in living cells whose outputs affect gene expression. We find that emerging high-throughput experimental assays and evolutionary approaches combined with advanced bioinformatics and machine learning are establishing pipelines to produce genetic sensors for virtually any small molecule, protein, or nucleic acid. However, more complex sensing tasks based on classifying compositions of many stimuli and the reliable deployment of these systems into real-world settings remain challenges. We suggest that recent advances in our ability to precisely modify nonmodel organisms and the integration of proven control engineering principles (e.g., feedback) into the broader design of genetic sensing systems will be necessary to overcome these hurdles and realize the immense potential of the field.
Collapse
Affiliation(s)
| | - Christopher Jenkins
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - David Ulaeto
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - Thomas E. Gorochowski
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- BrisEngBio,
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
13
|
Amoura A, Pistien C, Chaligné C, Dion S, Magnan M, Bridier-Nahmias A, Baron A, Chau F, Bourgogne E, Le M, Denamur E, Ingersoll MA, Fantin B, Lefort A, El Meouche I. Variability in cell division among anatomical sites shapes Escherichia coli antibiotic survival in a urinary tract infection mouse model. Cell Host Microbe 2024; 32:900-912.e4. [PMID: 38759643 DOI: 10.1016/j.chom.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/06/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Urinary tract infection (UTI), mainly caused by Escherichia coli, are frequent and have a recurrent nature even after antibiotic treatment. Potential bacterial escape mechanisms include growth defects, but probing bacterial division in vivo and establishing its relation to the antibiotic response remain challenging. Using a synthetic reporter of cell division, we follow the temporal dynamics of cell division for different E. coli clinical strains in a UTI mouse model with and without antibiotics. We show that more bacteria are actively dividing in the kidneys and urine compared with the bladder. Bacteria that survive antibiotic treatment are consistently non-dividing in three sites of infection. Additionally, we demonstrate how both the strain in vitro persistence profile and the microenvironment impact infection and treatment dynamics. Understanding the relative contribution of the host environment, growth heterogeneity, non-dividing bacteria, and antibiotic persistence is crucial to improve therapies for recurrent infections.
Collapse
Affiliation(s)
- Ariane Amoura
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Claire Pistien
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Camille Chaligné
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Sara Dion
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Mélanie Magnan
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | | | - Alexandra Baron
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Françoise Chau
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Emmanuel Bourgogne
- AP-HP, Hôpital Bichat, Laboratoire de Toxicologie Pharmacocinétique, 75018 Paris, France; Université Paris Cité, Faculté de Santé, Pharmacie, Laboratoire de Toxicologie, 75018 Paris, France
| | - Minh Le
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France; AP-HP, Hôpital Bichat, Laboratoire de Toxicologie Pharmacocinétique, 75018 Paris, France
| | - Erick Denamur
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France; AP-HP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, 75018 Paris, France
| | - Molly A Ingersoll
- Université Paris Cité, CNRS, Inserm, Institut Cochin, 75014 Paris, France; Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Bruno Fantin
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
| | - Agnès Lefort
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France; AP-HP, Hôpital Beaujon, Service de Médecine Interne, 92110 Clichy, France
| | - Imane El Meouche
- Université Paris Cité, Université Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France.
| |
Collapse
|
14
|
Kalvapalle PB, Sridhar S, Silberg JJ, Stadler LB. Long-duration environmental biosensing by recording analyte detection in DNA using recombinase memory. Appl Environ Microbiol 2024; 90:e0236323. [PMID: 38551351 PMCID: PMC11022584 DOI: 10.1128/aem.02363-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 04/18/2024] Open
Abstract
Microbial biosensors that convert environmental information into real-time visual outputs are limited in their sensing abilities in complex environments, such as soil and wastewater, due to optical inaccessibility. Biosensors that could record transient exposure to analytes within a large time window for later retrieval represent a promising approach to solve the accessibility problem. Here, we test the performance of recombinase-memory biosensors that sense a sugar (arabinose) and a microbial communication molecule (3-oxo-C12-L-homoserine lactone) over 8 days (~70 generations) following analyte exposure. These biosensors sense the analyte and trigger the expression of a recombinase enzyme which flips a segment of DNA, creating a genetic memory, and initiates fluorescent protein expression. The initial designs failed over time due to unintended DNA flipping in the absence of the analyte and loss of the flipped state after exposure to the analyte. Biosensor performance was improved by decreasing recombinase expression, removing the fluorescent protein output, and using quantitative PCR to read out stored information. Application of memory biosensors in wastewater isolates achieved memory of analyte exposure in an uncharacterized Pseudomonas isolate. By returning these engineered isolates to their native environments, recombinase-memory systems are expected to enable longer duration and in situ investigation of microbial signaling, cross-feeding, community shifts, and gene transfer beyond the reach of traditional environmental biosensors.IMPORTANCEMicrobes mediate ecological processes over timescales that can far exceed the half-lives of transient metabolites and signals that drive their collective behaviors. We investigated strategies for engineering microbes to stably record their transient exposure to a chemical over many generations through DNA rearrangements. We identify genetic architectures that improve memory biosensor performance and characterize these in wastewater isolates. Memory biosensors are expected to be useful for monitoring cell-cell signals in biofilms, detecting transient exposure to chemical pollutants, and observing microbial cross-feeding through short-lived metabolites within cryptic methane, nitrogen, and sulfur cycling processes. They will also enable in situ studies of microbial responses to ephemeral environmental changes, or other ecological processes that are currently challenging to monitor non-destructively using real-time biosensors and analytical instruments.
Collapse
Affiliation(s)
| | - Swetha Sridhar
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, Texas, USA
| | - Jonathan J. Silberg
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Lauren B. Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
15
|
Mahdizade Ari M, Dadgar L, Elahi Z, Ghanavati R, Taheri B. Genetically Engineered Microorganisms and Their Impact on Human Health. Int J Clin Pract 2024; 2024:6638269. [PMID: 38495751 PMCID: PMC10944348 DOI: 10.1155/2024/6638269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The emergence of antibiotic-resistant strains, the decreased effectiveness of conventional therapies, and the side effects have led researchers to seek a safer, more cost-effective, patient-friendly, and effective method that does not develop antibiotic resistance. With progress in synthetic biology and genetic engineering, genetically engineered microorganisms effective in treatment, prophylaxis, drug delivery, and diagnosis have been developed. The present study reviews the types of genetically engineered bacteria and phages, their impacts on diseases, cancer, and metabolic and inflammatory disorders, the biosynthesis of these modified strains, the route of administration, and their effects on the environment. We conclude that genetically engineered microorganisms can be considered promising candidates for adjunctive treatment of diseases and cancers.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | - Behrouz Taheri
- Department of Biotechnology, School of Medicine, Ahvaz Jundishapour University of medical Sciences, Ahvaz, Iran
| |
Collapse
|
16
|
Chhun A, Moriano-Gutierrez S, Zoppi F, Cabirol A, Engel P, Schaerli Y. An engineered bacterial symbiont allows noninvasive biosensing of the honey bee gut environment. PLoS Biol 2024; 22:e3002523. [PMID: 38442124 PMCID: PMC10914260 DOI: 10.1371/journal.pbio.3002523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024] Open
Abstract
The honey bee is a powerful model system to probe host-gut microbiota interactions, and an important pollinator species for natural ecosystems and for agriculture. While bacterial biosensors can provide critical insight into the complex interplay occurring between a host and its associated microbiota, the lack of methods to noninvasively sample the gut content, and the limited genetic tools to engineer symbionts, have so far hindered their development in honey bees. Here, we built a versatile molecular tool kit to genetically modify symbionts and reported for the first time in the honey bee a technique to sample their feces. We reprogrammed the native bee gut bacterium Snodgrassella alvi as a biosensor for IPTG, with engineered cells that stably colonize the gut of honey bees and report exposure to the molecules in a dose-dependent manner through the expression of a fluorescent protein. We showed that fluorescence readout can be measured in the gut tissues or noninvasively in the feces. These tools and techniques will enable rapid building of engineered bacteria to answer fundamental questions in host-gut microbiota research.
Collapse
Affiliation(s)
- Audam Chhun
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Florian Zoppi
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Amélie Cabirol
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Asensio‐Calavia A, Ceballos‐Munuera Á, Méndez‐Pérez A, Álvarez B, Fernández LÁ. A tuneable genetic switch for tight control of tac promoters in Escherichia coli boosts expression of synthetic injectisomes. Microb Biotechnol 2024; 17:e14328. [PMID: 37608576 PMCID: PMC10832536 DOI: 10.1111/1751-7915.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Biosafety of engineered bacteria as living therapeutics requires a tight regulation to control the specific delivery of protein effectors, maintaining minimum leakiness in the uninduced (OFF) state and efficient expression in the induced (ON) state. Here, we report a three repressors (3R) genetic circuit that tightly regulates the expression of multiple tac promoters (Ptac) integrated in the chromosome of E. coli and drives the expression of a complex type III secretion system injectisome for therapeutic protein delivery. The 3R genetic switch is based on the tetracycline repressor (TetR), the non-inducible lambda repressor cI (ind-) and a mutant lac repressor (LacIW220F ) with higher activity. The 3R switch was optimized with different protein translation and degradation signals that control the levels of LacIW220F . We demonstrate the ability of an optimized switch to fully repress the strong leakiness of the Ptac promoters in the OFF state while triggering their efficient activation in the ON state with anhydrotetracycline (aTc), an inducer suitable for in vivo use. The implementation of the optimized 3R switch in the engineered synthetic injector E. coli (SIEC) strain boosts expression of injectisomes upon aTc induction, while maintaining a silent OFF state that preserves normal growth in the absence of the inducer. Since Ptac is a commonly used promoter, the 3R switch may have multiple applications for tight control of protein expression in E. coli. In addition, the modularity of the 3R switch may enable its tuning for the control of Ptac promoters with different inducers.
Collapse
Affiliation(s)
- Alejandro Asensio‐Calavia
- Department of Microbial Biotechnology, Centro Nacional de BiotecnologíaConsejo Superior de Investigaciones Científicas (CNB‐CSIC)MadridSpain
| | - Álvaro Ceballos‐Munuera
- Department of Microbial Biotechnology, Centro Nacional de BiotecnologíaConsejo Superior de Investigaciones Científicas (CNB‐CSIC)MadridSpain
- Programa de Doctorado en Biociencias MolecularesUniversidad Autónoma de Madrid (UAM)MadridSpain
| | - Almudena Méndez‐Pérez
- Department of Microbial Biotechnology, Centro Nacional de BiotecnologíaConsejo Superior de Investigaciones Científicas (CNB‐CSIC)MadridSpain
- Programa de Doctorado en Biociencias MolecularesUniversidad Autónoma de Madrid (UAM)MadridSpain
| | - Beatriz Álvarez
- Department of Microbial Biotechnology, Centro Nacional de BiotecnologíaConsejo Superior de Investigaciones Científicas (CNB‐CSIC)MadridSpain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de BiotecnologíaConsejo Superior de Investigaciones Científicas (CNB‐CSIC)MadridSpain
| |
Collapse
|
18
|
Burz SD, Causevic S, Dal Co A, Dmitrijeva M, Engel P, Garrido-Sanz D, Greub G, Hapfelmeier S, Hardt WD, Hatzimanikatis V, Heiman CM, Herzog MKM, Hockenberry A, Keel C, Keppler A, Lee SJ, Luneau J, Malfertheiner L, Mitri S, Ngyuen B, Oftadeh O, Pacheco AR, Peaudecerf F, Resch G, Ruscheweyh HJ, Sahin A, Sanders IR, Slack E, Sunagawa S, Tackmann J, Tecon R, Ugolini GS, Vacheron J, van der Meer JR, Vayena E, Vonaesch P, Vorholt JA. From microbiome composition to functional engineering, one step at a time. Microbiol Mol Biol Rev 2023; 87:e0006323. [PMID: 37947420 PMCID: PMC10732080 DOI: 10.1128/mmbr.00063-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
SUMMARYCommunities of microorganisms (microbiota) are present in all habitats on Earth and are relevant for agriculture, health, and climate. Deciphering the mechanisms that determine microbiota dynamics and functioning within the context of their respective environments or hosts (the microbiomes) is crucially important. However, the sheer taxonomic, metabolic, functional, and spatial complexity of most microbiomes poses substantial challenges to advancing our knowledge of these mechanisms. While nucleic acid sequencing technologies can chart microbiota composition with high precision, we mostly lack information about the functional roles and interactions of each strain present in a given microbiome. This limits our ability to predict microbiome function in natural habitats and, in the case of dysfunction or dysbiosis, to redirect microbiomes onto stable paths. Here, we will discuss a systematic approach (dubbed the N+1/N-1 concept) to enable step-by-step dissection of microbiome assembly and functioning, as well as intervention procedures to introduce or eliminate one particular microbial strain at a time. The N+1/N-1 concept is informed by natural invasion events and selects culturable, genetically accessible microbes with well-annotated genomes to chart their proliferation or decline within defined synthetic and/or complex natural microbiota. This approach enables harnessing classical microbiological and diversity approaches, as well as omics tools and mathematical modeling to decipher the mechanisms underlying N+1/N-1 microbiota outcomes. Application of this concept further provides stepping stones and benchmarks for microbiome structure and function analyses and more complex microbiome intervention strategies.
Collapse
Affiliation(s)
- Sebastian Dan Burz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Senka Causevic
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Alma Dal Co
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Marija Dmitrijeva
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Daniel Garrido-Sanz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institut de microbiologie, CHUV University Hospital Lausanne, Lausanne, Switzerland
| | | | | | | | - Clara Margot Heiman
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | | | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Soon-Jae Lee
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Julien Luneau
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Lukas Malfertheiner
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Sara Mitri
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Bidong Ngyuen
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Omid Oftadeh
- Laboratory of Computational Systems Biotechnology, EPF Lausanne, Lausanne, Switzerland
| | | | | | - Grégory Resch
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, CHUV University Hospital Lausanne, Lausanne, Switzerland
| | | | - Asli Sahin
- Laboratory of Computational Systems Biotechnology, EPF Lausanne, Lausanne, Switzerland
| | - Ian R. Sanders
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Emma Slack
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | | | - Janko Tackmann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Robin Tecon
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Evangelia Vayena
- Laboratory of Computational Systems Biotechnology, EPF Lausanne, Lausanne, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
19
|
Amrofell MB, Rengarajan S, Vo ST, Ramirez Tovar ES, LoBello L, Dantas G, Moon TS. Engineering E. coli strains using antibiotic-resistance-gene-free plasmids. CELL REPORTS METHODS 2023; 3:100669. [PMID: 38086386 PMCID: PMC10753387 DOI: 10.1016/j.crmeth.2023.100669] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/29/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
We created a generalizable pipeline for antibiotic-resistance-gene-free plasmid (ARGFP)-based cloning using a dual auxotrophic- and essential-gene-based selection strategy. We use auxotrophic selection to construct plasmids in engineered E. coli DH10B cloning strains and both auxotrophic- and essential-gene-based selection to (1) select for recombinant strains and (2) maintain a plasmid in E. coli Nissle 1917, a common chassis for engineered probiotic applications, and E. coli MG1655, the laboratory "wild-type" E. coli strain. We show that our approach has comparable efficiency to that of antibiotic-resistance-gene-based cloning. We also show that the double-knockout Nissle and MG1655 strains are simple to transform with plasmids of interest. Notably, we show that the engineered Nissle strains are amenable to long-term plasmid maintenance in repeated culturing as well as in the mouse gut, demonstrating the potential for broad applications while minimizing the risk of antibiotic resistance spread via horizontal gene transfer.
Collapse
Affiliation(s)
- Matthew B Amrofell
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sunaina Rengarajan
- Department of Medicine, Division of Dermatology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven T Vo
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Erick S Ramirez Tovar
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Larissa LoBello
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gautam Dantas
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
20
|
Chiang AJ, Hasty J. Design of synthetic bacterial biosensors. Curr Opin Microbiol 2023; 76:102380. [PMID: 37703812 DOI: 10.1016/j.mib.2023.102380] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/19/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023]
Abstract
Novel whole-cell bacterial biosensor designs require an emphasis on moving toward field deployment. Many current sensors are characterized under specified laboratory conditions, which frequently do not represent actual deployment conditions. To this end, recent developments such as toolkits for probing new host chassis that are more robust to environments of interest, have paved the way for improved designs. Strategies for rational tuning of genetic components or tools such as genetic amplifiers or designs that allow post hoc tuning are essential in optimizing existing biosensors for practical application. Furthermore, recent work has seen a rise in directed evolution techniques, which can be immensely valuable in both tuning existing sensors and developing sensors for new analytes that lack characterized sensors. Combined with advancements in bioinformatics and capabilities in rewiring two-component systems, many new sensors can be established, broadening biosensor use cases. Last, recent work in CRISPR-based dynamic regulation and memory mechanisms, as well as kill-switches for biosafety and innovative output integration concepts, represents promising steps toward designing bacterial biosensors for deployment in dynamic and heterogeneous conditions.
Collapse
Affiliation(s)
- Alyssa J Chiang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| | - Jeff Hasty
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA; Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA; Synthetic Biology Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
21
|
Tanniche I, Behkam B. Engineered live bacteria as disease detection and diagnosis tools. J Biol Eng 2023; 17:65. [PMID: 37875910 PMCID: PMC10598922 DOI: 10.1186/s13036-023-00379-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
Sensitive and minimally invasive medical diagnostics are essential to the early detection of diseases, monitoring their progression and response to treatment. Engineered bacteria as live sensors are being developed as a new class of biosensors for sensitive, robust, noninvasive, and in situ detection of disease onset at low cost. Akin to microrobotic systems, a combination of simple genetic rules, basic logic gates, and complex synthetic bioengineering principles are used to program bacterial vectors as living machines for detecting biomarkers of diseases, some of which cannot be detected with other sensing technologies. Bacterial whole-cell biosensors (BWCBs) can have wide-ranging functions from detection only, to detection and recording, to closed-loop detection-regulated treatment. In this review article, we first summarize the unique benefits of bacteria as living sensors. We then describe the different bacteria-based diagnosis approaches and provide examples of diagnosing various diseases and disorders. We also discuss the use of bacteria as imaging vectors for disease detection and image-guided surgery. We conclude by highlighting current challenges and opportunities for further exploration toward clinical translation of these bacteria-based systems.
Collapse
Affiliation(s)
- Imen Tanniche
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
- School of Biomedical Engineered and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
- Center for Engineered Health, Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
22
|
Arboleda-García A, Alarcon-Ruiz I, Boada-Acosta L, Boada Y, Vignoni A, Jantus-Lewintre E. Advancements in synthetic biology-based bacterial cancer therapy: A modular design approach. Crit Rev Oncol Hematol 2023; 190:104088. [PMID: 37541537 DOI: 10.1016/j.critrevonc.2023.104088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Synthetic biology aims to program living bacteria cells with artificial genetic circuits for user-defined functions, transforming them into powerful tools with numerous applications in various fields, including oncology. Cancer treatments have serious side effects on patients due to the systemic action of the drugs involved. To address this, new systems that provide localized antitumoral action while minimizing damage to healthy tissues are required. Bacteria, often considered pathogenic agents, have been used as cancer treatments since the early 20th century. Advances in genetic engineering, synthetic biology, microbiology, and oncology have improved bacterial therapies, making them safer and more effective. Here we propose six modules for a successful synthetic biology-based bacterial cancer therapy, the modules include Payload, Release, Tumor-targeting, Biocontainment, Memory, and Genetic Circuit Stability Module. These will ensure antitumor activity, safety for the environment and patient, prevent bacterial colonization, maintain cell stability, and prevent loss or defunctionalization of the genetic circuit.
Collapse
Affiliation(s)
- Andrés Arboleda-García
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain
| | - Ivan Alarcon-Ruiz
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lissette Boada-Acosta
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Molecular Oncology Laboratory, Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain
| | - Yadira Boada
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain
| | - Alejandro Vignoni
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain.
| | - Eloisa Jantus-Lewintre
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Molecular Oncology Laboratory, Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
23
|
Marsh JW, Kirk C, Ley RE. Toward Microbiome Engineering: Expanding the Repertoire of Genetically Tractable Members of the Human Gut Microbiome. Annu Rev Microbiol 2023; 77:427-449. [PMID: 37339736 DOI: 10.1146/annurev-micro-032421-112304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Genetic manipulation is necessary to interrogate the functions of microbes in their environments, such as the human gut microbiome. Yet, the vast majority of human gut microbiome species are not genetically tractable. Here, we review the hurdles to seizing genetic control of more species. We address the barriers preventing the application of genetic techniques to gut microbes and report on genetic systems currently under development. While methods aimed at genetically transforming many species simultaneously in situ show promise, they are unable to overcome many of the same challenges that exist for individual microbes. Unless a major conceptual breakthrough emerges, the genetic tractability of the microbiome will remain an arduous task. Increasing the list of genetically tractable organisms from the human gut remains one of the highest priorities for microbiome research and will provide the foundation for microbiome engineering.
Collapse
Affiliation(s)
- James W Marsh
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| | - Christian Kirk
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| |
Collapse
|
24
|
Lebovich M, Zeng M, Andrews LB. Algorithmic Programming of Sequential Logic and Genetic Circuits for Recording Biochemical Concentration in a Probiotic Bacterium. ACS Synth Biol 2023; 12:2632-2649. [PMID: 37581922 PMCID: PMC10510703 DOI: 10.1021/acssynbio.3c00232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 08/16/2023]
Abstract
Through the implementation of designable genetic circuits, engineered probiotic microorganisms could be used as noninvasive diagnostic tools for the gastrointestinal tract. For these living cells to report detected biomarkers or signals after exiting the gut, the genetic circuits must be able to record these signals by using genetically encoded memory. Complex memory register circuits could enable multiplex interrogation of biomarkers and signals. A theory-based approach to create genetic circuits containing memory, known as sequential logic circuits, was previously established for a model laboratory strain of Escherichia coli, yet how circuit component performance varies for nonmodel and clinically relevant bacterial strains is poorly understood. Here, we develop a scalable computational approach to design robust sequential logic circuits in probiotic strain Escherichia coli Nissle 1917 (EcN). In this work, we used TetR-family transcriptional repressors to build genetic logic gates that can be composed into sequential logic circuits, along with a set of engineered sensors relevant for use in the gut environment. Using standard methods, 16 genetic NOT gates and nine sensors were experimentally characterized in EcN. These data were used to design and predict the performance of circuit designs. We present a set of genetic circuits encoding both combinational logic and sequential logic and show that the circuit outputs are in close agreement with our quantitative predictions from the design algorithm. Furthermore, we demonstrate an analog-like concentration recording circuit that detects and reports three input concentration ranges of a biochemical signal using sequential logic.
Collapse
Affiliation(s)
- Matthew Lebovich
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology
Training Program, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Min Zeng
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Lauren B. Andrews
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology
Training Program, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Molecular
and Cellular Biology Graduate Program, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
25
|
Goodson M. ACS Biomaterials Science and Engineering Special Issue Editorial: Design and Evaluation of Engineered Probiotics. ACS Biomater Sci Eng 2023; 9:5098-5100. [PMID: 37691547 DOI: 10.1021/acsbiomaterials.3c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
|
26
|
Cooper RM, Wright JA, Ng JQ, Goyne JM, Suzuki N, Lee YK, Ichinose M, Radford G, Ryan FJ, Kumar S, Thomas EM, Vrbanac L, Knight R, Woods SL, Worthley DL, Hasty J. Engineered bacteria detect tumor DNA. Science 2023; 381:682-686. [PMID: 37561843 PMCID: PMC10852993 DOI: 10.1126/science.adf3974] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/21/2023] [Indexed: 08/12/2023]
Abstract
Synthetic biology has developed sophisticated cellular biosensors to detect and respond to human disease. However, biosensors have not yet been engineered to detect specific extracellular DNA sequences and mutations. Here, we engineered naturally competent Acinetobacter baylyi to detect donor DNA from the genomes of colorectal cancer (CRC) cells, organoids, and tumors. We characterized the functionality of the biosensors in vitro with coculture assays and then validated them in vivo with sensor bacteria delivered to mice harboring colorectal tumors. We observed horizontal gene transfer from the tumor to the sensor bacteria in our mouse model of CRC. This cellular assay for targeted, CRISPR-discriminated horizontal gene transfer (CATCH) enables the biodetection of specific cell-free DNA.
Collapse
Affiliation(s)
- Robert M. Cooper
- Synthetic Biology Institute, University of California, San Diego, La Jolla, CA, USA, 92093
| | - Josephine A. Wright
- Precision Cancer Medicine Theme, South Australia Health and Medical Research Institute, Adelaide, SA, Australia, 5000
| | - Jia Q. Ng
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia, 5000
| | - Jarrad M. Goyne
- Precision Cancer Medicine Theme, South Australia Health and Medical Research Institute, Adelaide, SA, Australia, 5000
| | - Nobumi Suzuki
- Precision Cancer Medicine Theme, South Australia Health and Medical Research Institute, Adelaide, SA, Australia, 5000
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia, 5000
| | - Young K. Lee
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia, 5000
| | - Mari Ichinose
- Precision Cancer Medicine Theme, South Australia Health and Medical Research Institute, Adelaide, SA, Australia, 5000
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia, 5000
| | - Georgette Radford
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia, 5000
| | - Feargal J. Ryan
- Precision Cancer Medicine Theme, South Australia Health and Medical Research Institute, Adelaide, SA, Australia, 5000
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia, 5042
| | - Shalni Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093
| | - Elaine M. Thomas
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia, 5000
| | - Laura Vrbanac
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia, 5000
| | - Rob Knight
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA, 92093
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, 92093
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093
| | - Susan L. Woods
- Precision Cancer Medicine Theme, South Australia Health and Medical Research Institute, Adelaide, SA, Australia, 5000
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia, 5000
| | - Daniel L. Worthley
- Precision Cancer Medicine Theme, South Australia Health and Medical Research Institute, Adelaide, SA, Australia, 5000
- Colonoscopy Clinic, Brisbane, QLD, Australia, 4000
| | - Jeff Hasty
- Synthetic Biology Institute, University of California, San Diego, La Jolla, CA, USA, 92093
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA, 92093
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
27
|
Ibarra‐Chávez R, Reboud J, Penadés JR, Cooper JM. Phage-Inducible Chromosomal Islands as a Diagnostic Platform to Capture and Detect Bacterial Pathogens. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301643. [PMID: 37358000 PMCID: PMC10460865 DOI: 10.1002/advs.202301643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Phage-inducible chromosomal islands (PICIs) are a family of phage satellites that hijack phage components to facilitate their mobility and spread. Recently, these genetic constructs are repurposed as antibacterial drones, enabling a new toolbox for unorthodox applications in biotechnology. To illustrate a new suite of functions, the authors have developed a user-friendly diagnostic system, based upon PICI transduction to selectively enrich bacteria, allowing the detection and sequential recovery of Escherichia coli and Staphylococcus aureus. The system enables high transfer rates and sensitivities in comparison with phages, with detection down to ≈50 CFU mL-1 . In contrast to conventional detection strategies, which often rely on nucleic acid molecular assays, and cannot differentiate between dead and live organisms, this approach enables visual sensing of viable pathogens only, through the expression of a reporter gene encoded in the PICI. The approach extends diagnostic sensing mechanisms beyond cell-free synthetic biology strategies, enabling new synthetic biology/biosensing toolkits.
Collapse
Affiliation(s)
- Rodrigo Ibarra‐Chávez
- Department of BiologySection of MicrobiologyUniversity of CopenhagenUniversitetsparken 15, bldg. 1CopenhagenDK2100Denmark
- Institute of InfectionImmunity and InflammationCollege of MedicalVeterinary and Life SciencesUniversity of GlasgowGlasgowG12 8TAUK
- Division of Biomedical EngineeringJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Julien Reboud
- Division of Biomedical EngineeringJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - José R. Penadés
- Institute of InfectionImmunity and InflammationCollege of MedicalVeterinary and Life SciencesUniversity of GlasgowGlasgowG12 8TAUK
- Departamento de Ciencias BiomédicasUniversidad CEU Cardenal HerreraMoncada46113Spain
- Centre for Bacterial Resistance BiologyImperial College LondonSouth KensingtonSW7 2AZUK
| | - Jonathan M. Cooper
- Division of Biomedical EngineeringJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
28
|
Inda-Webb ME, Jimenez M, Liu Q, Phan NV, Ahn J, Steiger C, Wentworth A, Riaz A, Zirtiloglu T, Wong K, Ishida K, Fabian N, Jenkins J, Kuosmanen J, Madani W, McNally R, Lai Y, Hayward A, Mimee M, Nadeau P, Chandrakasan AP, Traverso G, Yazicigil RT, Lu TK. Sub-1.4 cm 3 capsule for detecting labile inflammatory biomarkers in situ. Nature 2023; 620:386-392. [PMID: 37495692 DOI: 10.1038/s41586-023-06369-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
Transient molecules in the gastrointestinal tract such as nitric oxide and hydrogen sulfide are key signals and mediators of inflammation. Owing to their highly reactive nature and extremely short lifetime in the body, these molecules are difficult to detect. Here we develop a miniaturized device that integrates genetically engineered probiotic biosensors with a custom-designed photodetector and readout chip to track these molecules in the gastrointestinal tract. Leveraging the molecular specificity of living sensors1, we genetically encoded bacteria to respond to inflammation-associated molecules by producing luminescence. Low-power electronic readout circuits2 integrated into the device convert the light emitted by the encapsulated bacteria to a wireless signal. We demonstrate in vivo biosensor monitoring in the gastrointestinal tract of small and large animal models and the integration of all components into a sub-1.4 cm3 form factor that is compatible with ingestion and capable of supporting wireless communication. With this device, diseases such as inflammatory bowel disease could be diagnosed earlier than is currently possible, and disease progression could be more accurately tracked. The wireless detection of short-lived, disease-associated molecules with our device could also support timely communication between patients and caregivers, as well as remote personalized care.
Collapse
Affiliation(s)
- M E Inda-Webb
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - M Jimenez
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Q Liu
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA
| | - N V Phan
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Ahn
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - C Steiger
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - A Wentworth
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - A Riaz
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA
| | - T Zirtiloglu
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA
| | - K Wong
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - K Ishida
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - N Fabian
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Comparative Medicine, MIT, Cambridge, MA, USA
| | - J Jenkins
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Kuosmanen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - W Madani
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R McNally
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Y Lai
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - A Hayward
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Comparative Medicine, MIT, Cambridge, MA, USA
| | - M Mimee
- Department of Microbiology, Biological Sciences Division and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | | | - A P Chandrakasan
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - G Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - R T Yazicigil
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA.
| | - T K Lu
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Senti Biosciences, South San Francisco, CA, USA.
| |
Collapse
|
29
|
Koehle AP, Brumwell SL, Seto EP, Lynch AM, Urbaniak C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 2023; 9:47. [PMID: 37344487 DOI: 10.1038/s41526-023-00285-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
Collapse
Affiliation(s)
- Allison P Koehle
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc, Middleburg Heights, OH, USA.
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
30
|
Gencer G, Mancuso C, Chua KJ, Ling H, Costello CM, Chang MW, March JC. Engineering Escherichia coli for diagnosis and management of hyperuricemia. Front Bioeng Biotechnol 2023; 11:1191162. [PMID: 37288353 PMCID: PMC10242094 DOI: 10.3389/fbioe.2023.1191162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Uric acid disequilibrium is implicated in chronic hyperuricemia-related diseases. Long-term monitoring and lowering of serum uric acid levels may be crucial for diagnosis and effective management of these conditions. However, current strategies are not sufficient for accurate diagnosis and successful long-term management of hyperuricemia. Moreover, drug-based therapeutics can cause side effects in patients. The intestinal tract plays an important role in maintaining healthy serum acid levels. Hence, we investigated the engineered human commensal Escherichia coli as a novel method for diagnosis and long-term management of hyperuricemia. To monitor changes in uric acid concentration in the intestinal lumen, we developed a bioreporter using the uric acid responsive synthetic promoter, pucpro, and uric acid binding Bacillus subtilis PucR protein. Results demonstrated that the bioreporter module in commensal E. coli can detect changes in uric acid concentration in a dose-dependent manner. To eliminate the excess uric acid, we designed a uric acid degradation module, which overexpresses an E. coli uric acid transporter and a B. subtilis urate oxidase. Strains engineered with this module degraded all the uric acid (250 µM) found in the environment within 24 h, which is significantly lower (p < 0.001) compared to wild type E. coli. Finally, we designed an in vitro model using human intestinal cell line, Caco-2, which provided a versatile tool to study the uric acid transport and degradation in an environment mimicking the human intestinal tract. Results showed that engineered commensal E. coli reduced (p < 0.01) the apical uric acid concentration by 40.35% compared to wild type E. coli. This study shows that reprogramming E. coli holds promise as a valid alternative synthetic biology therapy to monitor and maintain healthy serum uric acid levels.
Collapse
Affiliation(s)
- Gozde Gencer
- Biological and Environmental Engineering Department, Cornell University, Ithaca, NY, United States
| | - Christopher Mancuso
- Biomedical Engineering Department, Boston University, Boston, MA, United States
| | - Koon Jiew Chua
- Synthetic Biology Translational Research Program and Department of Biochemistry, Yong Loo Lin School of Medicine and NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Hua Ling
- Synthetic Biology Translational Research Program and Department of Biochemistry, Yong Loo Lin School of Medicine and NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Cait M. Costello
- Biological and Environmental Engineering Department, Cornell University, Ithaca, NY, United States
| | - Matthew Wook Chang
- Synthetic Biology Translational Research Program and Department of Biochemistry, Yong Loo Lin School of Medicine and NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - John C. March
- Biological and Environmental Engineering Department, Cornell University, Ithaca, NY, United States
| |
Collapse
|
31
|
Yan X, Liu X, Zhao C, Chen GQ. Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduct Target Ther 2023; 8:199. [PMID: 37169742 PMCID: PMC10173249 DOI: 10.1038/s41392-023-01440-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Synthetic biology aims to design or assemble existing bioparts or bio-components for useful bioproperties. During the past decades, progresses have been made to build delicate biocircuits, standardized biological building blocks and to develop various genomic/metabolic engineering tools and approaches. Medical and pharmaceutical demands have also pushed the development of synthetic biology, including integration of heterologous pathways into designer cells to efficiently produce medical agents, enhanced yields of natural products in cell growth media to equal or higher than that of the extracts from plants or fungi, constructions of novel genetic circuits for tumor targeting, controllable releases of therapeutic agents in response to specific biomarkers to fight diseases such as diabetes and cancers. Besides, new strategies are developed to treat complex immune diseases, infectious diseases and metabolic disorders that are hard to cure via traditional approaches. In general, synthetic biology brings new capabilities to medical and pharmaceutical researches. This review summarizes the timeline of synthetic biology developments, the past and present of synthetic biology for microbial productions of pharmaceutics, engineered cells equipped with synthetic DNA circuits for diagnosis and therapies, live and auto-assemblied biomaterials for medical treatments, cell-free synthetic biology in medical and pharmaceutical fields, and DNA engineering approaches with potentials for biomedical applications.
Collapse
Affiliation(s)
- Xu Yan
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, 101309, Beijing, China
| | - Cuihuan Zhao
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
- MOE Key Lab for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
32
|
Chen S, Chen X, Su H, Guo M, Liu H. Advances in Synthetic-Biology-Based Whole-Cell Biosensors: Principles, Genetic Modules, and Applications in Food Safety. Int J Mol Sci 2023; 24:ijms24097989. [PMID: 37175695 PMCID: PMC10178329 DOI: 10.3390/ijms24097989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
A whole-cell biosensor based on synthetic biology provides a promising new method for the on-site detection of food contaminants. The basic components of whole-cell biosensors include the sensing elements, such as transcription factors and riboswitches, and reporting elements, such as fluorescence, gas, etc. The sensing and reporting elements are coupled through gene expression regulation to form a simple gene circuit for the detection of target substances. Additionally, a more complex gene circuit can involve other functional elements or modules such as signal amplification, multiple detection, and delay reporting. With the help of synthetic biology, whole-cell biosensors are becoming more versatile and integrated, that is, integrating pre-detection sample processing, detection processes, and post-detection signal calculation and storage processes into cells. Due to the relative stability of the intracellular environment, whole-cell biosensors are highly resistant to interference without the need of complex sample preprocessing. Due to the reproduction of chassis cells, whole-cell biosensors replicate all elements automatically without the need for purification processing. Therefore, whole-cell biosensors are easy to operate and simple to produce. Based on the above advantages, whole-cell biosensors are more suitable for on-site detection than other rapid detection methods. Whole-cell biosensors have been applied in various forms such as test strips and kits, with the latest reported forms being wearable devices such as masks, hand rings, and clothing. This paper examines the composition, construction methods, and types of the fundamental components of synthetic biological whole-cell biosensors. We also introduce the prospect and development trend of whole-cell biosensors in commercial applications.
Collapse
Affiliation(s)
- Shijing Chen
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xiaolin Chen
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongfei Su
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Mingzhang Guo
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Huilin Liu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
33
|
Mathur S, Singh D, Ranjan R. Genetic circuits in microbial biosensors for heavy metal detection in soil and water. Biochem Biophys Res Commun 2023; 652:131-137. [PMID: 36842324 DOI: 10.1016/j.bbrc.2023.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/19/2023]
Abstract
With the rapid population growth, the world is witnessing an ever-increasing demand for energy and natural resources. Consequently, soil, air, and water are polluted with diverse pollutants, including heavy metals (HM). The detection of heavy metals is necessary to remediate them, which is achieved with biosensors. Initially, these HM were detected using atomic absorption spectroscopy (AAS), emission spectroscopy, mass spectrometry, gas chromatography etc., but these were costly and time consuming which further paved a way for microbe-based biosensors. The development of genetic circuits for microbe-based biosensors has become more popular in recent years for heavy metal detection. In this review, we have especially discussed the various types of genetic circuits such as toggle switches, logic gates, and amplification modules used in these biosensors as they are used to enhance sensitivity and specificity. Genetic circuits also allow for rapid and multiple analyte detection at the same time. The use of microbial biosensors for the detection of HM in the soil as well as the water is also described below. Although with a higher success rate than classical biosensors, these microbial biosensors still have some drawbacks like bioavailability and size of the analyte which are needed to be addressed.
Collapse
Affiliation(s)
- Shivangi Mathur
- Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India
| | - Deeksha Singh
- Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India
| | - Rajiv Ranjan
- Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India.
| |
Collapse
|
34
|
Köse S, Ahan RE, Köksaldı İÇ, Olgaç A, Kasapkara ÇS, Şeker UÖŞ. Multiplexed cell-based diagnostic devices for detection of renal biomarkers. Biosens Bioelectron 2023; 223:115035. [PMID: 36571991 DOI: 10.1016/j.bios.2022.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
The number of synthetic biology-based solutions employed in the medical industry is growing every year. The whole cell biosensors being one of them, have been proven valuable tools for developing low-cost, portable, personalized medicine alternatives to conventional techniques. Based on this concept, we targeted one of the major health problems in the world, Chronic Kidney Disease (CKD). To do so, we developed two novel biosensors for the detection of two important renal biomarkers: urea and uric acid. Using advanced gene expression control strategies, we improved the operational range and the response profiles of each biosensor to meet clinical specifications. We further engineered these systems to enable multiplexed detection as well as an AND-logic gate operating system. Finally, we tested the applicability of these systems and optimized their working dynamics inside complex medium human blood serum. This study could help the efforts to transition from labor-intensive and expensive laboratory techniques to widely available, portable, low-cost diagnostic options.
Collapse
Affiliation(s)
- Sıla Köse
- UNAM-Institute of Materias Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Recep Erdem Ahan
- UNAM-Institute of Materias Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - İlkay Çisil Köksaldı
- UNAM-Institute of Materias Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Asburçe Olgaç
- Dr Sami Ulus Children's Training and Research Hospital, Ankara, Turkey
| | - Çiğdem Seher Kasapkara
- Ankara Yildirim Beyazit University, Department of Internal Medicine, Children's Health and Disease Section, Ankara, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM-Institute of Materias Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
35
|
Aggarwal N, Kitano S, Puah GRY, Kittelmann S, Hwang IY, Chang MW. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem Rev 2023; 123:31-72. [PMID: 36317983 PMCID: PMC9837825 DOI: 10.1021/acs.chemrev.2c00431] [Citation(s) in RCA: 144] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/12/2023]
Abstract
The human microbiome is composed of a collection of dynamic microbial communities that inhabit various anatomical locations in the body. Accordingly, the coevolution of the microbiome with the host has resulted in these communities playing a profound role in promoting human health. Consequently, perturbations in the human microbiome can cause or exacerbate several diseases. In this Review, we present our current understanding of the relationship between human health and disease development, focusing on the microbiomes found across the digestive, respiratory, urinary, and reproductive systems as well as the skin. We further discuss various strategies by which the composition and function of the human microbiome can be modulated to exert a therapeutic effect on the host. Finally, we examine technologies such as multiomics approaches and cellular reprogramming of microbes that can enable significant advancements in microbiome research and engineering.
Collapse
Affiliation(s)
- Nikhil Aggarwal
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Shohei Kitano
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ginette Ru Ying Puah
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - Sandra Kittelmann
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - In Young Hwang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore
Institute of Technology, Singapore 138683, Singapore
| | - Matthew Wook Chang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
36
|
Biswas S, Clawson W, Levin M. Learning in Transcriptional Network Models: Computational Discovery of Pathway-Level Memory and Effective Interventions. Int J Mol Sci 2022; 24:285. [PMID: 36613729 PMCID: PMC9820177 DOI: 10.3390/ijms24010285] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Trainability, in any substrate, refers to the ability to change future behavior based on past experiences. An understanding of such capacity within biological cells and tissues would enable a particularly powerful set of methods for prediction and control of their behavior through specific patterns of stimuli. This top-down mode of control (as an alternative to bottom-up modification of hardware) has been extensively exploited by computer science and the behavioral sciences; in biology however, it is usually reserved for organism-level behavior in animals with brains, such as training animals towards a desired response. Exciting work in the field of basal cognition has begun to reveal degrees and forms of unconventional memory in non-neural tissues and even in subcellular biochemical dynamics. Here, we characterize biological gene regulatory circuit models and protein pathways and find them capable of several different kinds of memory. We extend prior results on learning in binary transcriptional networks to continuous models and identify specific interventions (regimes of stimulation, as opposed to network rewiring) that abolish undesirable network behavior such as drug pharmacoresistance and drug sensitization. We also explore the stability of created memories by assessing their long-term behavior and find that most memories do not decay over long time periods. Additionally, we find that the memory properties are quite robust to noise; surprisingly, in many cases noise actually increases memory potential. We examine various network properties associated with these behaviors and find that no one network property is indicative of memory. Random networks do not show similar memory behavior as models of biological processes, indicating that generic network dynamics are not solely responsible for trainability. Rational control of dynamic pathway function using stimuli derived from computational models opens the door to empirical studies of proto-cognitive capacities in unconventional embodiments and suggests numerous possible applications in biomedicine, where behavior shaping of pathway responses stand as a potential alternative to gene therapy.
Collapse
Affiliation(s)
- Surama Biswas
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
- Department of Computer Science & Engineering and Information Technology, Meghnad Saha Institute of Technology, Kolkata 700150, India
| | - Wesley Clawson
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
37
|
Engineering antiviral immune-like systems for autonomous virus detection and inhibition in mice. Nat Commun 2022; 13:7629. [PMID: 36494373 PMCID: PMC9734111 DOI: 10.1038/s41467-022-35425-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The ongoing COVID-19 pandemic has demonstrated that viral diseases represent an enormous public health and economic threat to mankind and that individuals with compromised immune systems are at greater risk of complications and death from viral diseases. The development of broad-spectrum antivirals is an important part of pandemic preparedness. Here, we have engineer a series of designer cells which we term autonomous, intelligent, virus-inducible immune-like (ALICE) cells as sense-and-destroy antiviral system. After developing a destabilized STING-based sensor to detect viruses from seven different genera, we have used a synthetic signal transduction system to link viral detection to the expression of multiple antiviral effector molecules, including antiviral cytokines, a CRISPR-Cas9 module for viral degradation and the secretion of a neutralizing antibody. We perform a proof-of-concept study using multiple iterations of our ALICE system in vitro, followed by in vivo functionality testing in mice. We show that dual output ALICESaCas9+Ab system delivered by an AAV-vector inhibited viral infection in herpetic simplex keratitis (HSK) mouse model. Our work demonstrates that viral detection and antiviral countermeasures can be paired for intelligent sense-and-destroy applications as a flexible and innovative method against virus infection.
Collapse
|
38
|
Li L, Zhang R, Chen L, Tian X, Li T, Pu B, Ma C, Ji X, Ba F, Xiong C, Shi Y, Mi X, Li J, Keasling JD, Zhang J, Liu Y. Permeability-Engineered Compartmentalization Enables In Vitro Reconstitution of Sustained Synthetic Biology Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203652. [PMID: 36180388 PMCID: PMC9731718 DOI: 10.1002/advs.202203652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/28/2022] [Indexed: 05/11/2023]
Abstract
In nature, biological compartments such as cells rely on dynamically controlled permeability for matter exchange and complex cellular activities. Likewise, the ability to engineer compartment permeability is crucial for in vitro systems to gain sustainability, robustness, and complexity. However, rendering in vitro compartments such a capability is challenging. Here, a facile strategy is presented to build permeability-configurable compartments, and marked advantages of such compartmentalization are shown in reconstituting sustained synthetic biology systems in vitro. Through microfluidics, the strategy produces micrometer-sized layered microgels whose shell layer serves as a sieving structure for biomolecules and particles. In this configuration, the transport of DNAs, proteins, and bacteriophages across the compartments can be controlled an guided by a physical model. Through permeability engineering, a compartmentalized cell-free protein synthesis system sustains multicycle protein production; ≈100 000 compartments are repeatedly used in a five-cycle synthesis, featuring a yield of 2.2 mg mL-1 . Further, the engineered bacteria-enclosing compartments possess near-perfect phage resistance and enhanced environmental fitness. In a complex river silt environment, compartmentalized whole-cell biosensors show maintained activity throughout the 32 h pollutant monitoring. It is anticipated that permeability-engineered compartmentalization should pave the way for practical synthetic biology applications such as green bioproduction, environmental sensing, and bacteria-based therapeutics.
Collapse
Affiliation(s)
- Luyao Li
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Rong Zhang
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Long Chen
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Xintong Tian
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Ting Li
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Bingchun Pu
- Department of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Conghui Ma
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Xiangyang Ji
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Fang Ba
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Chenwei Xiong
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Yunfeng Shi
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Xianqiang Mi
- Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Jian Li
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Jay D. Keasling
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
- Department of Chemical and Biomolecular Engineering & Department of BioengineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - Jingwei Zhang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghai200438China
| | - Yifan Liu
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
- Shanghai Clinical Research and Trial CenterShanghai201210China
| |
Collapse
|
39
|
Huang Y, Lin X, Yu S, Chen R, Chen W. Intestinal Engineered Probiotics as Living Therapeutics: Chassis Selection, Colonization Enhancement, Gene Circuit Design, and Biocontainment. ACS Synth Biol 2022; 11:3134-3153. [PMID: 36094344 DOI: 10.1021/acssynbio.2c00314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Intestinal probiotics are often used for the in situ treatment of diseases, such as metabolic disorders, tumors, and chronic inflammatory infections. Recently, there has been an increased emphasis on intelligent, customized treatments with a focus on long-term efficacy; however, traditional probiotic therapy has not kept up with this trend. The use of synthetic biology to construct gut-engineered probiotics as live therapeutics is a promising avenue in the treatment of specific diseases, such as phenylketonuria and inflammatory bowel disease. These studies generally involve a series of fundamental design issues: choosing an engineered chassis, improving the colonization ability of engineered probiotics, designing functional gene circuits, and ensuring the safety of engineered probiotics. In this review, we summarize the relevant past research, the progress of current research, and discuss the key issues that restrict the widespread application of intestinal engineered probiotic living therapeutics.
Collapse
Affiliation(s)
- Yan Huang
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xiaojun Lin
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Siyang Yu
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Ruiyue Chen
- Team SZU-China at iGEM 2021, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Weizhao Chen
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.,Shenzhen Key Laboratory for Microbial Gene Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
40
|
Abstract
AbstractComputational properties of neuronal networks have been applied to computing systems using simplified models comprising repeated connected nodes, e.g., perceptrons, with decision-making capabilities and flexible weighted links. Analogously to their revolutionary impact on computing, neuro-inspired models can transform synthetic gene circuit design in a manner that is reliable, efficient in resource utilization, and readily reconfigurable for different tasks. To this end, we introduce the perceptgene, a perceptron that computes in the logarithmic domain, which enables efficient implementation of artificial neural networks in Escherichia coli cells. We successfully modify perceptgene parameters to create devices that encode a minimum, maximum, and average of analog inputs. With these devices, we create multi-layer perceptgene circuits that compute a soft majority function, perform an analog-to-digital conversion, and implement a ternary switch. We also create a programmable perceptgene circuit whose computation can be modified from OR to AND logic using small molecule induction. Finally, we show that our approach enables circuit optimization via artificial intelligence algorithms.
Collapse
|
41
|
Robinson CM, Short NE, Riglar DT. Achieving spatially precise diagnosis and therapy in the mammalian gut using synthetic microbial gene circuits. Front Bioeng Biotechnol 2022; 10:959441. [PMID: 36118573 PMCID: PMC9478464 DOI: 10.3389/fbioe.2022.959441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian gut and its microbiome form a temporally dynamic and spatially heterogeneous environment. The inaccessibility of the gut and the spatially restricted nature of many gut diseases translate into difficulties in diagnosis and therapy for which novel tools are needed. Engineered bacterial whole-cell biosensors and therapeutics have shown early promise at addressing these challenges. Natural and engineered sensing systems can be repurposed in synthetic genetic circuits to detect spatially specific biomarkers during health and disease. Heat, light, and magnetic signals can also activate gene circuit function with externally directed spatial precision. The resulting engineered bacteria can report on conditions in situ within the complex gut environment or produce biotherapeutics that specifically target host or microbiome activity. Here, we review the current approaches to engineering spatial precision for in vivo bacterial diagnostics and therapeutics using synthetic circuits, and the challenges and opportunities this technology presents.
Collapse
Affiliation(s)
| | | | - David T. Riglar
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
42
|
Oliveira SMD, Densmore D. Hardware, Software, and Wetware Codesign Environment for Synthetic Biology. BIODESIGN RESEARCH 2022; 2022:9794510. [PMID: 37850136 PMCID: PMC10521664 DOI: 10.34133/2022/9794510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/10/2022] [Indexed: 10/19/2023] Open
Abstract
Synthetic biology is the process of forward engineering living systems. These systems can be used to produce biobased materials, agriculture, medicine, and energy. One approach to designing these systems is to employ techniques from the design of embedded electronics. These techniques include abstraction, standards, modularity, automated design, and formal semantic models of computation. Together, these elements form the foundation of "biodesign automation," where software, robotics, and microfluidic devices combine to create exciting biological systems of the future. This paper describes a "hardware, software, wetware" codesign vision where software tools can be made to act as "genetic compilers" that transform high-level specifications into engineered "genetic circuits" (wetware). This is followed by a process where automation equipment, well-defined experimental workflows, and microfluidic devices are explicitly designed to house, execute, and test these circuits (hardware). These systems can be used as either massively parallel experimental platforms or distributed bioremediation and biosensing devices. Next, scheduling and control algorithms (software) manage these systems' actual execution and data analysis tasks. A distinguishing feature of this approach is how all three of these aspects (hardware, software, and wetware) may be derived from the same basic specification in parallel and generated to fulfill specific cost, performance, and structural requirements.
Collapse
Affiliation(s)
- Samuel M. D. Oliveira
- Department of Electrical and Computer Engineering, Boston University, MA 02215, USA
- Biological Design Center, Boston University, MA 02215, USA
| | - Douglas Densmore
- Department of Electrical and Computer Engineering, Boston University, MA 02215, USA
- Biological Design Center, Boston University, MA 02215, USA
| |
Collapse
|
43
|
Russell BJ, Brown SD, Siguenza N, Mai I, Saran AR, Lingaraju A, Maissy ES, Dantas Machado AC, Pinto AFM, Sanchez C, Rossitto LA, Miyamoto Y, Richter RA, Ho SB, Eckmann L, Hasty J, Gonzalez DJ, Saghatelian A, Knight R, Zarrinpar A. Intestinal transgene delivery with native E. coli chassis allows persistent physiological changes. Cell 2022; 185:3263-3277.e15. [PMID: 35931082 PMCID: PMC9464905 DOI: 10.1016/j.cell.2022.06.050] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/15/2022] [Accepted: 06/25/2022] [Indexed: 12/26/2022]
Abstract
Live bacterial therapeutics (LBTs) could reverse diseases by engrafting in the gut and providing persistent beneficial functions in the host. However, attempts to functionally manipulate the gut microbiome of conventionally raised (CR) hosts have been unsuccessful because engineered microbial organisms (i.e., chassis) have difficulty in colonizing the hostile luminal environment. In this proof-of-concept study, we use native bacteria as chassis for transgene delivery to impact CR host physiology. Native Escherichia coli bacteria isolated from the stool cultures of CR mice were modified to express functional genes. The reintroduction of these strains induces perpetual engraftment in the intestine. In addition, engineered native E. coli can induce functional changes that affect physiology of and reverse pathology in CR hosts months after administration. Thus, using native bacteria as chassis to “knock in” specific functions allows mechanistic studies of specific microbial activities in the microbiome of CR hosts and enables LBT with curative intent. Native E. coli strains isolated from mouse stool are genetically engineered for long-term engraftment in the conventional mouse gut and enable long-term systemic effects on the host, such as improvements in insulin sensitivity in mouse models of type 2 diabetes.
Collapse
Affiliation(s)
- Baylee J Russell
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Steven D Brown
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole Siguenza
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Irene Mai
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anand R Saran
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amulya Lingaraju
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Erica S Maissy
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ana C Dantas Machado
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Antonio F M Pinto
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Concepcion Sanchez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Leigh-Ana Rossitto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yukiko Miyamoto
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - R Alexander Richter
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samuel B Ho
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA; VA Health Sciences San Diego, La Jolla, CA 92161, USA
| | - Lars Eckmann
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeff Hasty
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA; Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA; VA Health Sciences San Diego, La Jolla, CA 92161, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
44
|
Kempton HR, Love KS, Guo LY, Qi LS. Scalable biological signal recording in mammalian cells using Cas12a base editors. Nat Chem Biol 2022; 18:742-750. [PMID: 35637351 PMCID: PMC9246900 DOI: 10.1038/s41589-022-01034-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/06/2022] [Indexed: 12/26/2022]
Abstract
Biological signal recording enables the study of molecular inputs experienced throughout cellular history. However, current methods are limited in their ability to scale up beyond a single signal in mammalian contexts. Here, we develop an approach using a hyper-efficient dCas12a base editor for multi-signal parallel recording in human cells. We link signals of interest to expression of guide RNAs to catalyze specific nucleotide conversions as a permanent record, enabled by Cas12's guide-processing abilities. We show this approach is plug-and-play with diverse biologically relevant inputs and extend it for more sophisticated applications, including recording of time-delimited events and history of chimeric antigen receptor T cells' antigen exposure. We also demonstrate efficient recording of up to four signals in parallel on an endogenous safe-harbor locus. This work provides a versatile platform for scalable recording of signals of interest for a variety of biological applications.
Collapse
Affiliation(s)
- Hannah R Kempton
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Kasey S Love
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lucie Y Guo
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg BioHub, San Francisco, CA, USA.
| |
Collapse
|
45
|
Schmidt F, Zimmermann J, Tanna T, Farouni R, Conway T, Macpherson AJ, Platt RJ. Noninvasive assessment of gut function using transcriptional recording sentinel cells. Science 2022; 376:eabm6038. [PMID: 35549411 PMCID: PMC11163514 DOI: 10.1126/science.abm6038] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transcriptional recording by CRISPR spacer acquisition from RNA endows engineered Escherichia coli with synthetic memory, which through Record-seq reveals transcriptome-scale records. Microbial sentinels that traverse the gastrointestinal tract capture a wide range of genes and pathways that describe interactions with the host, including quantitative shifts in the molecular environment that result from alterations in the host diet, induced inflammation, and microbiome complexity. We demonstrate multiplexed recording using barcoded CRISPR arrays, enabling the reconstruction of transcriptional histories of isogenic bacterial strains in vivo. Record-seq therefore provides a scalable, noninvasive platform for interrogating intestinal and microbial physiology throughout the length of the intestine without manipulations to host physiology and can determine how single microbial genetic differences alter the way in which the microbe adapts to the host intestinal environment.
Collapse
Affiliation(s)
- Florian Schmidt
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Jakob Zimmermann
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Tanmay Tanna
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- Department of Computer Science, ETH Zurich, Universitätstrasse 6, 8092 Zurich, Switzerland
| | - Rick Farouni
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Andrew J. Macpherson
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
- Botnar Research Center for Child Health, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Randall J. Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- Botnar Research Center for Child Health, Mattenstrasse 24a, 4058 Basel, Switzerland
- Department of Chemistry, University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| |
Collapse
|
46
|
Kydd L, Alalhareth F, Mendez A, Hohn M, Radunskaya A, Kojouharov H, Jaworski J. Introduction of Plasmid to the Murine Gut via Consumption of an Escherichia coli Carrier and Examining the Impact of Bacterial Dosing and Antibiotics on Persistence. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022; 8:489-497. [PMID: 36274752 PMCID: PMC9576642 DOI: 10.1007/s40883-022-00248-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 11/29/2022]
Abstract
Purpose We examine the impacts of dosing strategies of plasmids on bacterial communities in the murine gut by measuring the quantity of plasmids in mouse feces. Methods We fed mice carrier bacteria, E. coli, that contain plasmids with both a reporter gene and an antibiotic resistant gene. We varied the quantity of the plasmid-carrying bacteria and the length of time the mice consumed the bacteria. We also pretreated the gut with broad-spectrum antibiotics and used continuous antibiotic treatment to investigate selection pressure. We collected bacteria from fecal pellets to quantify the number of plasmid-carrying bacteria via plate assay. Results Dosing regimens with plasmid-carrying bacteria resulted in a significantly increased duration of persistence of the plasmid within the gut when supplemented continuously with kanamycin during as well as after completion of bacterial dosing. The carrier bacteria concentration influenced the short-term abundance of carrier bacteria. Conclusion We evaluated the persistence of plasmid-carrying bacteria in the murine gut over time using varying dosage strategies. In future work, we will study how bacterial diversity in the gut impacts the degree of plasmid transfer and the prevalence of plasmid-carrying bacteria over time. Lay Summary Observing how plasmids persist within the gut can help us understand how newly introduced genes, including antibiotic resistance, are transmitted within the gut microbiome. In our experiments, mice were given bacteria containing a genetically engineered plasmid and were examined for the persistence of the plasmid in the gut. We found long-term persistence of the plasmid in the gut when administering antibiotics during and following dosing of the mice with bacteria carrying the plasmid. The use of higher concentrations of carrier bacteria influenced the short-term abundance of the plasmid-carrying bacteria in the gut. Description of Future Works
Building on evidence from these initial studies that persistence of plasmids within the gut can be regulated by the dosage strategy, we will explore future studies and models of gene uptake in the context of spatial and taxonomic control and further determine if dosing strategies alter the compositional diversity of the gut microbiome. Graphical abstract ![]()
Collapse
Affiliation(s)
- LeNaiya Kydd
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010 USA
| | - Fawaz Alalhareth
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX 76010 USA
| | - Ana Mendez
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX 76010 USA
| | - Maryann Hohn
- Department of Mathematics, Pomona College, Claremont, CA 91711 USA
| | - Ami Radunskaya
- Department of Mathematics, Pomona College, Claremont, CA 91711 USA
| | - Hristo Kojouharov
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX 76010 USA
| | - Justyn Jaworski
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010 USA
| |
Collapse
|
47
|
Kar S, Bordiya Y, Rodriguez N, Kim J, Gardner EC, Gollihar JD, Sung S, Ellington AD. Orthogonal control of gene expression in plants using synthetic promoters and CRISPR-based transcription factors. PLANT METHODS 2022; 18:42. [PMID: 35351174 PMCID: PMC8966344 DOI: 10.1186/s13007-022-00867-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND The construction and application of synthetic genetic circuits is frequently improved if gene expression can be orthogonally controlled, relative to the host. In plants, orthogonality can be achieved via the use of CRISPR-based transcription factors that are programmed to act on natural or synthetic promoters. The construction of complex gene circuits can require multiple, orthogonal regulatory interactions, and this in turn requires that the full programmability of CRISPR elements be adapted to non-natural and non-standard promoters that have few constraints on their design. Therefore, we have developed synthetic promoter elements in which regions upstream of the minimal 35S CaMV promoter are designed from scratch to interact via programmed gRNAs with dCas9 fusions that allow activation of gene expression. RESULTS A panel of three, mutually orthogonal promoters that can be acted on by artificial gRNAs bound by CRISPR regulators were designed. Guide RNA expression targeting these promoters was in turn controlled by either Pol III (U6) or ethylene-inducible Pol II promoters, implementing for the first time a fully artificial Orthogonal Control System (OCS). Following demonstration of the complete orthogonality of the designs, the OCS was tied to cellular metabolism by putting gRNA expression under the control of an endogenous plant signaling molecule, ethylene. The ability to form complex circuitry was demonstrated via the ethylene-driven, ratiometric expression of fluorescent proteins in single plants. CONCLUSIONS The design of synthetic promoters is highly generalizable to large tracts of sequence space, allowing Orthogonal Control Systems of increasing complexity to potentially be generated at will. The ability to tie in several different basal features of plant molecular biology (Pol II and Pol III promoters, ethylene regulation) to the OCS demonstrates multiple opportunities for engineering at the system level. Moreover, given the fungibility of the core 35S CaMV promoter elements, the derived synthetic promoters can potentially be utilized across a variety of plant species.
Collapse
Affiliation(s)
- Shaunak Kar
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
| | - Yogendra Bordiya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Life Sciences Solutions Group, Thermo Fisher Scientific, Austin, TX, USA
| | - Nestor Rodriguez
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Junghyun Kim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Elizabeth C Gardner
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | | | - Sibum Sung
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| | - Andrew D Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
48
|
Menuhin-Gruman I, Arbel M, Amitay N, Sionov K, Naki D, Katzir I, Edgar O, Bergman S, Tuller T. Evolutionary Stability Optimizer (ESO): A Novel Approach to Identify and Avoid Mutational Hotspots in DNA Sequences While Maintaining High Expression Levels. ACS Synth Biol 2022; 11:1142-1151. [PMID: 34928133 PMCID: PMC8938948 DOI: 10.1021/acssynbio.1c00426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Modern
synthetic biology procedures rely on the ability to generate
stable genetic constructs that keep their functionality over long
periods of time. However, maintenance of these constructs requires
energy from the cell and thus reduces the host’s fitness. Natural
selection results in loss-of-functionality mutations that negate the
expression of the construct in the population. Current approaches
for the prevention of this phenomenon focus on either small-scale,
manual design of evolutionary stable constructs or the detection of
mutational sites with unstable tendencies. We designed the Evolutionary
Stability Optimizer (ESO), a software tool that enables the large-scale
automatic design of evolutionarily stable constructs with respect
to both mutational and epigenetic hotspots and allows users to define
custom hotspots to avoid. Furthermore, our tool takes the expression
of the input constructs into account by considering the guanine-cytosine
(GC) content and codon usage of the host organism, balancing the trade-off
between stability and gene expression, allowing to increase evolutionary
stability while maintaining the high expression. In this study, we
present the many features of the ESO and show that it accurately predicts
the evolutionary stability of endogenous genes. The ESO was created
as an easy-to-use, flexible platform based on the notion that directed
genetic stability research will continue to evolve and revolutionize
current applications of synthetic biology. The ESO is available at
the following link: https://www.cs.tau.ac.il/~tamirtul/ESO/.
Collapse
Affiliation(s)
- Itamar Menuhin-Gruman
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Matan Arbel
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Niv Amitay
- School of Electrical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Karin Sionov
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Doron Naki
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Itai Katzir
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Omer Edgar
- School of Medicine, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Shaked Bergman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel 6997801
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel 6997801
| |
Collapse
|
49
|
Szydlo K, Ignatova Z, Gorochowski TE. Improving the Robustness of Engineered Bacteria to Nutrient Stress Using Programmed Proteolysis. ACS Synth Biol 2022; 11:1049-1059. [PMID: 35174698 PMCID: PMC9097571 DOI: 10.1021/acssynbio.1c00490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/30/2022]
Abstract
The use of short peptide tags in synthetic genetic circuits allows for the tuning of gene expression dynamics and release of amino acid resources through targeted protein degradation. Here, we use elements of the Escherichia coli and Mesoplasma florum transfer-mRNA (tmRNA) ribosome rescue systems to compare endogenous and foreign proteolysis systems in E. coli. We characterize the performance and burden of each and show that, while both greatly shorten the half-life of a tagged protein, the endogenous system is approximately 10 times more efficient. On the basis of these results we then demonstrate using mathematical modeling and experiments how proteolysis can improve cellular robustness through targeted degradation of a reporter protein in auxotrophic strains, providing a limited secondary source of essential amino acids that help partially restore growth when nutrients become scarce. These findings provide avenues for controlling the functional lifetime of engineered cells once deployed and increasing their tolerance to fluctuations in nutrient availability.
Collapse
Affiliation(s)
- Klara Szydlo
- Institute
of Biochemistry and Molecular Biology, University
of Hamburg, 20146, Hamburg, Germany
| | - Zoya Ignatova
- Institute
of Biochemistry and Molecular Biology, University
of Hamburg, 20146, Hamburg, Germany
| | - Thomas E. Gorochowski
- School
of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, United Kingdom
| |
Collapse
|
50
|
Moya-Ramírez I, Kotidis P, Marbiah M, Kim J, Kontoravdi C, Polizzi K. Polymer Encapsulation of Bacterial Biosensors Enables Coculture with Mammalian Cells. ACS Synth Biol 2022; 11:1303-1312. [PMID: 35245022 PMCID: PMC9007569 DOI: 10.1021/acssynbio.1c00577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coexistence of different populations of cells and isolation of tasks can provide enhanced robustness and adaptability or impart new functionalities to a culture. However, generating stable cocultures involving cells with vastly different growth rates can be challenging. To address this, we developed living analytics in a multilayer polymer shell (LAMPS), an encapsulation method that facilitates the coculture of mammalian and bacterial cells. We leverage LAMPS to preprogram a separation of tasks within the coculture: growth and therapeutic protein production by the mammalian cells and l-lactate biosensing by Escherichia coli encapsulated within LAMPS. LAMPS enable the formation of a synthetic bacterial-mammalian cell interaction that enables a living biosensor to be integrated into a biomanufacturing process. Our work serves as a proof-of-concept for further applications in bioprocessing since LAMPS combine the simplicity and flexibility of a bacterial biosensor with a viable method to prevent runaway growth that would disturb mammalian cell physiology.
Collapse
Affiliation(s)
- Ignacio Moya-Ramírez
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Pavlos Kotidis
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Masue Marbiah
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Juhyun Kim
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Karen Polizzi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|