1
|
Rojas-Juárez R, Rodríguez-Castelán J, Cuatecontzi-Fuentes I, Mendez-Tepepa M, Cruz-Lumbreras R, Rodríguez-Antolín J, Arroyo-Helguera OE, Cuevas-Romero E. Pancreatic inflammation induced by hypothyroidism in female rabbits is associated with cholesterol accumulation and a reduced expression of CYP51A1, FXRβ, and PPARβ/δ. Anat Rec (Hoboken) 2025; 308:1517-1528. [PMID: 39403034 DOI: 10.1002/ar.25590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 04/04/2025]
Abstract
In women and animal models, hypothyroidism induces hypercholesterolemia, pancreatitis, and insulitis. We investigated whether lipids are involved in the effects of hypothyroidism in the pancreas. Control (n = 6) and hypothyroid (n = 6) adult female rabbits were used. We quantified serum and pancreatic triacylglycerol and total cholesterol levels, the oxidative and antioxidant status, and the expression of low-density lipoprotein cholesterol receptor (LDLR) in the pancreas. Inflammation of the pancreas was evaluated by infiltration of immune cells positive to CD163 and α-farnesoid receptor (FXRα). Other lipid players involved in both inflammation and insulin secretion of the pancreas, such as lanosterol 14-α-demethylase (CYP51A1), β-farnesoid receptor (FXRβ), 3β-hydroxysteroid dehydrogenase (3β-HSD), and peroxisome proliferator-activated receptor β (PPARβ/δ), were quantified. Groups were compared by t-Student or U-Mann-Whitney tests (p ≤ 0.05). Hypothyroidism induced hypercholesterolemia and a high cholesterol accumulation in the pancreas of female rabbits, without affecting oxidative or antioxidative status nor the expression of LDLR. The pancreas of hypothyroid females showed inflammation identified by a great infiltration of immune cells, macrophages CD163+, and loss of expression of FXRα+ in immune cells. Moreover, a reduced expression of CYP51A1, FXRβ, and PPARβ/δ, but not 3β-HSD, in the hypothyroid pancreas was found. Pancreatitis and insulitis promoted by hypothyroidism may be related to the accumulation of cholesterol, lanosterol actions, and the activation of PPARβ/δ. All inflammatory markers evaluated in this study are related to glucose regulation, suggesting the link between hypothyroidism and diabetes.
Collapse
Affiliation(s)
- Rubicela Rojas-Juárez
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
- Programa Educativo de Química Clínica, Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | | | - Ismael Cuatecontzi-Fuentes
- Programa Educativo de Química Clínica, Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
- Maestría en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Maribel Mendez-Tepepa
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Rosalía Cruz-Lumbreras
- Programa Educativo de Química Clínica, Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
- Facultad de Odontología, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Jorge Rodríguez-Antolín
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | | | - Estela Cuevas-Romero
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
2
|
Jelleschitz J, Heider S, Kehm R, Baumgarten P, Ott C, Schnell V, Grune T, Höhn A. Insulitis and aging: Immune cell dynamics in Langerhans islets. Redox Biol 2025; 82:103587. [PMID: 40101534 PMCID: PMC11957801 DOI: 10.1016/j.redox.2025.103587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/07/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
With increasing age, the risk for age-related type-2-diabetes also increases due to impaired glucose tolerance and insulin secretion. This disease process may be influenced by various factors, including immune cell triggered inflammation and fibrosis. Although immune cells are a necessary component of islets, little is known about immune cell accumulation, immune cell subtype shifts and subsequent influence on glucose metabolism in healthy aging. However, this is critical for understanding the mechanisms that influence β-cell health. Therefore, we studied young and old male C57BL/6J mice, focusing on immune cell composition, patterns of accumulation, and the presence of fibrosis within the pancreatic islets. Our findings demonstrate that insulitis occurs in healthy aged mice without immediate development of a diabetic phenotype. Aged islets exhibited an increase in leukocytes and a shift in immune cell composition. While insulitis typically involves excessive immune cell accumulation, we observed a moderate increase in macrophages and T-cells during aging, which may support β-cell proliferation via cytokine secretion. In fact, aged mice in our study showed an increase in β-cell mass as well as a partially higher insulin secretory capacity, which compensated for the loss of β-cell functionality in insulitic islets and led to improved glucose tolerance. Furthermore, fibrosis which is normally triggered by immune cells, increased with age but appears to reach a steady state, emphasizing the importance of counter-regulatory mechanisms and immune system regulation. Our results suggest, that immune cell subtypes change with age and that non-pathological accumulation of immune-cells may regulate glucose metabolism through secretion of cytokines.
Collapse
Affiliation(s)
- Julia Jelleschitz
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Sophie Heider
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Richard Kehm
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Patricia Baumgarten
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner site Berlin, Berlin, Germany
| | - Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner site Berlin, Berlin, Germany
| | - Vanessa Schnell
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; DZHK (German Center for Cardiovascular Research), Partner site Berlin, Berlin, Germany
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
3
|
Bal T. Scaffold-free endocrine tissue engineering: role of islet organization and implications in type 1 diabetes. BMC Endocr Disord 2025; 25:107. [PMID: 40259265 PMCID: PMC12010671 DOI: 10.1186/s12902-025-01919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/17/2025] [Indexed: 04/23/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic hyperglycemia disorder emerging from beta-cell (insulin secreting cells of the pancreas) targeted autoimmunity. As the blood glucose levels significantly increase and the insulin secretion is gradually lost, the entire body suffers from the complications. Although various advances in the insulin analogs, blood glucose monitoring and insulin application practices have been achieved in the last few decades, a cure for the disease is not obtained. Alternatively, pancreas/islet transplantation is an attractive therapeutic approach based on the patient prognosis, yet this treatment is also limited mainly by donor shortage, life-long use of immunosuppressive drugs and risk of disease transmission. In research and clinics, such drawbacks are addressed by the endocrine tissue engineering of the pancreas. One arm of this engineering is scaffold-free models which often utilize highly developed cell-cell junctions, soluble factors and 3D arrangement of islets with the cellular heterogeneity to prepare the transplant formulations. In this review, taking T1D as a model autoimmune disease, techniques to produce so-called pseudoislets and their applications are studied in detail with the aim of understanding the role of mimicry and pointing out the promising efforts which can be translated from benchside to bedside to achieve exogenous insulin-free patient treatment. Likewise, these developments in the pseudoislet formation are tools for the research to elucidate underlying mechanisms in pancreas (patho)biology, as platforms to screen drugs and to introduce immunoisolation barrier-based hybrid strategies.
Collapse
Affiliation(s)
- Tugba Bal
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, 34662, Turkey.
| |
Collapse
|
4
|
Jonsson A, Korsgren O, Hedin A. Transcriptomic characterization of human pancreatic CD206- and CD206 + macrophages. Sci Rep 2025; 15:12037. [PMID: 40199933 PMCID: PMC11978877 DOI: 10.1038/s41598-025-96313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
Macrophages reside in all organs and participate in homeostatic- and immune regulative processes. Little is known about pancreatic macrophage gene expression. In the present study, global gene expression was characterized in human pancreatic macrophage subpopulations. CD206- and CD206 + macrophages were sorted separately from pancreatic islets and exocrine tissue to high purity using flow cytometry, followed by RNA-seq analysis. Comparing CD206- with CD206 + macrophages, CD206- showed enrichment in histones, proliferation and cell cycle regulation, glycolysis and SPP1-associated immunosuppressive polarization while CD206 + showed enrichment in complement and coagulation-, IL-10 and IL-2RA immune regulation, as well as scavenging-related gene sets. Comparing islet CD206- with exocrine CD206-, enrichments in islet samples included two sets involved in immune regulation, while enrichments in exocrine samples included sets related to extracellular matrix and immune activation. Fewer differences were found between CD206 + macrophages, with enrichments in islet samples including two IL2-RA related gene sets, while enrichments in exocrine samples included sets related to extracellular matrix and immune activation. Comparing macrophages between individuals with normoglycemia, elevated HbA1c or type 2 diabetes, only a few diverse differentially expressed genes were identified. This work characterizes global gene expression and identifies differences between CD206- and CD206 + macrophage populations within the human pancreas.
Collapse
Affiliation(s)
- Alexander Jonsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Anders Hedin
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Ma Y, Meng F, Lin Z, Chen Y, Lan T, Yang Z, Diao R, Zhang X, Chen Q, Zhang C, Tian Y, Li C, Fang W, Liang X, Zhang X. Bioengineering Platelets Presenting PD-L1, Galectin-9 and BTLA to Ameliorate Type 1 Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2501139. [PMID: 40019367 PMCID: PMC12021092 DOI: 10.1002/advs.202501139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/14/2025] [Indexed: 03/01/2025]
Abstract
Autoimmune destruction of pancreatic β-cells leads to impaired insulin production and onset of type 1 diabetes (T1D). Hence, immunomodulation of pancreas-infiltrated immune cells especially the β-cells autoreactive-T cells is a promising way to hinder and reverse the progress of T1D. Herein, megakaryocytes are primed with interferon-γ (IFN-γ) to produce platelets presenting high levels of immunosuppressive checkpoint ligands including programmed death-ligand 1 (PD-L1), Programmed Death-Ligand 2 (PD-L2), the B and T lymphocyte attenuator (BTLA) and Galectin-9 (Gal-9), termed as IFN-γ platelets. The IFN-γ platelets bound and interacted with T cells through immune checkpoint ligands and receptors, which efficaciously induced T cell exhaustion and apoptosis in vitro. Virtually, NOD diabetes mice received IFN-γ platelets treatments prominently preserved β-cell integrity and insulin production, ultimately hindering the progress to hyperglycemia. Intriguingly, both the amount and activity of the pancreas infiltrate-T cells intensively reduced, whereas the magnitude of regulatory T cells (Tregs) remarkably increased, which is attributed to IFN-γ platelets treatments. Moreover, IFN-γ platelets treatment instigated macrophage polarization toward an anti-inflammatory M2 phenotype that may stimulate pancreatic angiogenesis, and promote β-cell proliferation, consequently ameliorating the new-onset T1D.
Collapse
Grants
- 32371425 National Natural Science Foundation of China
- 32201084 National Natural Science Foundation of China
- JCYJ20240813151128037 Science, Technology & Innovation Commission of Shenzhen Municipality, Shenzhen Science and Technology Program
- RCYX20200714114643121 Science, Technology & Innovation Commission of Shenzhen Municipality, Shenzhen Science and Technology Program
- JCYJ20200109142610136 Science, Technology & Innovation Commission of Shenzhen Municipality, Shenzhen Science and Technology Program
- JCYJ20180507181654186 Science, Technology & Innovation Commission of Shenzhen Municipality, Shenzhen Science and Technology Program
- ZDSYS20220606100803007 Science, Technology & Innovation Commission of Shenzhen Municipality, Shenzhen Science and Technology Program
- 2022A1515012289 Natural Science Foundation of Guangdong Province
- GDMUB2022037 Doctoral personnel scientific research start-up Fund project of Guangdong Medical University
- 2024ZDZX2069 Key Field Special Programs of Guangdong Provincial Ordinary Colleges and Universities
- GDMULCJC2024114 Special Project for Clinical and Basic Sci & Tech Innovation of Guangdong Medical University
- National Natural Science Foundation of China
- Natural Science Foundation of Guangdong Province
Collapse
Affiliation(s)
- Yumeng Ma
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Fanqiang Meng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Zhongda Lin
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Yanjun Chen
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Tianyu Lan
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Zhaoxin Yang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Rui Diao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Xiaozhou Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Qi Chen
- Guangdong Provincial Key Laboratory of Medical Molecular DiagnosticsKey Laboratory of Stem Cell and Regenerative Tissue EngineeringSchool of Basic Medical SciencesGuangdong Medical UniversityDongguan523808P. R. China
- The Affiliated Dongguan Songshan Lake Central HospitalGuangdong Medical UniversityDongguanGuangdong523806P. R. China
| | - Chi Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Yishi Tian
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Chanjuan Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Wenli Fang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Xin Liang
- Guangdong Provincial Key Laboratory of Medical Molecular DiagnosticsKey Laboratory of Stem Cell and Regenerative Tissue EngineeringSchool of Basic Medical SciencesGuangdong Medical UniversityDongguan523808P. R. China
- The Affiliated Dongguan Songshan Lake Central HospitalGuangdong Medical UniversityDongguanGuangdong523806P. R. China
| | - Xudong Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of MedicineShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhenGuangdong518107P. R. China
- Department of PharmacologyMolecular Cancer Research CenterSchool of MedicineShenzhen Campus of Sun Yat‐sen UniversitySun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| |
Collapse
|
6
|
Mao C, Yu W, Lin L, Yang R, Hu S, Li G, Gu Y, Jin M, Lu E. Alpha-Ketoglutarate Alleviates Systemic Lupus Erythematosus-Associated Periodontitis in a Novel Murine Model. J Clin Periodontol 2025; 52:457-470. [PMID: 39552097 DOI: 10.1111/jcpe.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/05/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024]
Abstract
AIM To establish a reproducible experimental animal model for systemic lupus erythematosus (SLE)-associated periodontitis (PD), investigate the effects of SLE on PD and assess the therapeutic potential of alpha-ketoglutarate (αKG) for SLE-PD treatment. MATERIALS AND METHODS An SLE-PD murine model was established via ligature-induced PD in MRL-lpr strain, with MRL/MpJ strain as a non-SLE control. The periodontal state was assessed using micro-CT, real-time PCR, histology, immunofluorescence and flow cytometry assays. αKG levels were analysed, and a thermoresponsive gel was designed as a periodontal dimethyl (DM)-αKG delivery system. αKG levels were analysed in gingival crevicular fluid (GCF) of PD patients with or without SLE. RESULTS SLE significantly increased the periodontal inflammation and bone resorption in the SLE-PD model. αKG levels in GCF were lower in PD patients with SLE than in PD patients without SLE. Decreased αKG levels in the gingiva and macrophage M1/M2 imbalance were observed in SLE-PD mice. However, DM-αKG thermoresponsive gel effectively alleviated the periodontal inflammation, bone resorption and macrophage M1/M2 imbalance in SLE-PD mice. CONCLUSIONS Our study established, for the first time, a novel SLE-PD murine model and revealed that SLE increases the severity of PD in vivo. Our findings highlight the therapeutic potential of αKG for SLE-associated PD.
Collapse
Affiliation(s)
- Chuanyuan Mao
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijun Yu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Lin
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruhan Yang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shucheng Hu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanglong Li
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Gu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Jin
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Gottmann P, Speckmann T, Stadion M, Chawla P, Saurenbach J, Ninov N, Lickert H, Schürmann A. Transcriptomic heterogeneity of non-beta islet cells is associated with type 2 diabetes development in mouse models. Diabetologia 2025; 68:166-185. [PMID: 39508880 DOI: 10.1007/s00125-024-06301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/04/2024] [Indexed: 11/15/2024]
Abstract
AIMS/HYPOTHESIS The aim of this work was to understand the role of non-beta cells in pancreatic islets at early stages of type 2 diabetes pathogenesis. METHODS Specific clustering was employed to single-cell transcriptome data from islet cells of obese mouse strains differing in their diabetes susceptibility (diabetes-resistant B6.V.Lepob/ob [OB] and diabetes-susceptible New Zealand Obese [NZO] mice) on a diabetogenic diet. RESULTS Refined clustering analysis revealed several heterogeneous subpopulations for alpha cells, delta cells and macrophages, of which 133 mapped to human diabetes genes identified by genome-wide association studies. Importantly, a similar non-beta cell heterogeneity was found in a dataset of human islets from donors at different stages of type 2 diabetes. The predominant alpha cell cluster in NZO mice displayed signs of cellular stress and lower mitochondrial capacity (97 differentially expressed genes [DEGs]), whereas delta cells from these mice exhibited higher expression levels of maturation marker genes (Hhex and Sst) but lower somatostatin secretion than OB mice (184 DEGs). Furthermore, a cluster of macrophages was almost twice as abundant in islets of OB mice, and displayed extensive cell-cell communication with beta cells of OB mice. Treatment of beta cells with IL-15, predicted to be released by macrophages, activated signal transducer and activator of transcription (STAT3), which may mediate anti-apoptotic effects. Similar to mice, humans without diabetes possess a greater number of macrophages than those with prediabetes (39 mmol/mol [5.7%] < HbA1c < 46 mmol/mol [6.4%]) and diabetes. CONCLUSIONS/INTERPRETATION Our study indicates that the transcriptional heterogeneity of non-beta cells has an impact on intra-islet crosstalk and participates in beta cell (dys)function. DATA AVAILABILITY scRNA-seq data from the previous study are available in gene expression omnibus under gene accession number GSE159211 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159211 ).
Collapse
Affiliation(s)
- Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Thilo Speckmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Prateek Chawla
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
- Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Judith Saurenbach
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Nikolay Ninov
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
- Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.
- German Center for Diabetes Research (DZD), München Neuherberg, Germany.
- University of Potsdam, Institute of Nutritional Sciences, Nuthetal, Germany.
| |
Collapse
|
8
|
Bourgeois S, Coenen S, Degroote L, Willems L, Van Mulders A, Pierreux J, Heremans Y, De Leu N, Staels W. Harnessing beta cell regeneration biology for diabetes therapy. Trends Endocrinol Metab 2024; 35:951-966. [PMID: 38644094 DOI: 10.1016/j.tem.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
The pandemic scale of diabetes mellitus is alarming, its complications remain devastating, and current treatments still pose a major burden on those affected and on the healthcare system as a whole. As the disease emanates from the destruction or dysfunction of insulin-producing pancreatic β-cells, a real cure requires their restoration and protection. An attractive strategy is to regenerate β-cells directly within the pancreas; however, while several approaches for β-cell regeneration have been proposed in the past, clinical translation has proven challenging. This review scrutinizes recent findings in β-cell regeneration and discusses their potential clinical implementation. Hereby, we aim to delineate a path for innovative, targeted therapies to help shift from 'caring for' to 'curing' diabetes.
Collapse
Affiliation(s)
- Stephanie Bourgeois
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Sophie Coenen
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Laure Degroote
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Lien Willems
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Annelore Van Mulders
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Julie Pierreux
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Yves Heremans
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Nico De Leu
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Endocrinology, Universiteit Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium; Endocrinology, ASZ Aalst, 9300 Aalst, Belgium.
| | - Willem Staels
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Pediatric Endocrinology, Department of Pediatrics, KidZ Health Castle, Universiteit Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium.
| |
Collapse
|
9
|
Zhou S, Zhang X, Ni W, He Y, Li M, Wang C, Bai Y, Zhang H, Yao M. An Immune-Regulating Polysaccharide Hybrid Hydrogel with Mild Photothermal Effect and Anti-Inflammatory for Accelerating Infected Wound Healing. Adv Healthc Mater 2024; 13:e2400003. [PMID: 38711313 DOI: 10.1002/adhm.202400003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/24/2024] [Indexed: 05/08/2024]
Abstract
Bacterial infections and excessive inflammation present substantial challenges for clinical wound healing. Hydrogels with mild photothermal (PTT) effects have emerged as promising agents owing to their dual actions: positive effects on cells and negative effects on bacteria. Here, an injectable self-healing hydrogel of oxidized konjac glucomannan/arginine-modified chitosan (OKGM/CS-Arg, OC) integrated with protocatechualdehyde-@Fe (PF) nanoparticles capable of effectively absorbing near-infrared radiation is synthesized successfully. The OC/PF hydrogels exhibit excellent mechanical properties, biocompatibility, and antioxidant activity. Moreover, in synergy with PTT, OC/PF demonstrates potent antibacterial effects while concurrently stimulating cell migration and new blood vessel formation. In methicillin-resistant Staphylococcus aureus-infected full-thickness mouse wounds, the OC/PF hydrogel displays remarkable antibacterial and anti-inflammatory activities, and accelerates wound healing by regulating the wound immune microenvironment and promoting M2 macrophage polarization. Consequently, the OC/PF hydrogel represents a novel therapeutic approach for treating multidrug-resistant bacterial infections and offers a technologically advanced solution for managing infectious wounds in clinical settings.
Collapse
Affiliation(s)
- ShengZhe Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xueliang Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei Ni
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430000, P. R. China
| | - Yu He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Ming Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Caixia Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Yubing Bai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Hao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, P. R. China
| |
Collapse
|
10
|
Wang Y, Li L, Chen S, Yu Z, Gao X, Peng X, Ye Q, Li Z, Tan W, Chen Y. Faecalibacterium prausnitzii-derived extracellular vesicles alleviate chronic colitis-related intestinal fibrosis by macrophage metabolic reprogramming. Pharmacol Res 2024; 206:107277. [PMID: 38945379 DOI: 10.1016/j.phrs.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Faecalibacterium prausnitzii (F. prausnitzii) has been recognized for its various intestinal and extraintestinal benefits to human. And reduction of F. prausnitzii has been linked to an increased risk of intestinal fibrosis in patients of Crohn's disease (CD). In this study, oral administration of either live F. prausnitzii or its extracellular vesicles (FEVs) can markedly mitigate the severity of fibrosis in mice induced by repetitive administration of DSS. In vitro experiment revealed that FEVs were capable of directing the polarization of peripheral blood mononuclear cells (PBMCs) towards an M2b macrophage phenotype, which has been associated with anti-fibrotic activities. This effect of FEV was found to be stable under various conditions that promote the development of pro-fibrotic M1/M2a/M2c macrophages. Proteomics and RNA sequencing were performed to uncover the molecular modulation of macrophages by FEVs. Notably, we found that FEVs reprogramed every metabolism of macrophages by damaging the mitochondria, and inhibited oxidative phosphorylation and glycolysis. Moreover, FEV-treated macrophages showed a decreased expression of PPARγ and an altered lipid processing phenotype characterized by decreased cholesterol efflux, which may promote energy reprogramming. Taken together, these findings identify FEV as a driver of macrophage reprogramming, suggesting that triggering M2b macrophage polarization by oral admiration of FEV may serve as strategy to alleviate hyperfibrotic intestine conditions in CD.
Collapse
Affiliation(s)
- Ying Wang
- Integrative Clinical Microecology Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Linjie Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuze Chen
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zonglin Yu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuefeng Gao
- Integrative Clinical Microecology Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiaojie Peng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiujuan Ye
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zitong Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weihao Tan
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Integrative Clinical Microecology Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Dalle S, Abderrahmani A. Receptors and Signaling Pathways Controlling Beta-Cell Function and Survival as Targets for Anti-Diabetic Therapeutic Strategies. Cells 2024; 13:1244. [PMID: 39120275 PMCID: PMC11311556 DOI: 10.3390/cells13151244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
Preserving the function and survival of pancreatic beta-cells, in order to achieve long-term glycemic control and prevent complications, is an essential feature for an innovative drug to have clinical value in the treatment of diabetes. Innovative research is developing therapeutic strategies to prevent pathogenic mechanisms and protect beta-cells from the deleterious effects of inflammation and/or chronic hyperglycemia over time. A better understanding of receptors and signaling pathways, and of how they interact with each other in beta-cells, remains crucial and is a prerequisite for any strategy to develop therapeutic tools aimed at modulating beta-cell function and/or mass. Here, we present a comprehensive review of our knowledge on membrane and intracellular receptors and signaling pathways as targets of interest to protect beta-cells from dysfunction and apoptotic death, which opens or could open the way to the development of innovative therapies for diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| | - Amar Abderrahmani
- Université Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, F59000 Lille, France
| |
Collapse
|
12
|
Mathisen AF, Larsen U, Kavli N, Unger L, Daian LM, Vacaru AM, Vacaru AM, Herrera PL, Ghila L, Chera S. Moderate beta-cell ablation triggers synergic compensatory mechanisms even in the absence of overt metabolic disruption. Commun Biol 2024; 7:833. [PMID: 38982170 PMCID: PMC11233560 DOI: 10.1038/s42003-024-06527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
Regeneration, the ability to replace injured tissues and organs, is a phenomenon commonly associated with lower vertebrates but is also observed in mammals, in specific tissues. In this study, we investigated the regenerative potential of pancreatic islets following moderate beta-cell loss in mice. Using a rapid model of moderate ablation, we observed a compensatory response characterized by transient inflammation and proliferation signatures, ultimately leading to the recovery of beta-cell identity and function. Interestingly, this proliferative response occurred independently of inflammation, as demonstrated in ablated immunodeficient mice. Furthermore, exposure to high-fat diet stimulated beta-cell proliferation but negatively impacted beta-cell function. In contrast, an equivalent slower ablation model revealed a delayed but similar proliferative response, suggesting proliferation as a common regenerative response. However, high-fat diet failed to promote proliferation in this model, indicating a differential response to metabolic stressors. Overall, our findings shed light on the complex interplay between beta-cell loss, inflammation, and stress in modulating pancreatic islet regeneration. Understanding these mechanisms could pave the way for novel therapeutic strategies based on beta-cell proliferation.
Collapse
Affiliation(s)
- Andreas Frøslev Mathisen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ulrik Larsen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Natalie Kavli
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lucas Unger
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Laura Maria Daian
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Andrei Mircea Vacaru
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Ana-Maria Vacaru
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Pedro Luis Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Luiza Ghila
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
13
|
Schonblum A, Ali Naser D, Ovadia S, Egbaria M, Puyesky S, Epshtein A, Wald T, Mercado-Medrez S, Ashery-Padan R, Landsman L. Beneficial islet inflammation in health depends on pericytic TLR/MyD88 signaling. J Clin Invest 2024; 134:e179335. [PMID: 38885342 PMCID: PMC11245159 DOI: 10.1172/jci179335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
While inflammation is beneficial for insulin secretion during homeostasis, its transformation adversely affects β cells and contributes to diabetes. However, the regulation of islet inflammation for maintaining glucose homeostasis remains largely unknown. Here, we identified pericytes as pivotal regulators of islet immune and β cell function in health. Islets and pancreatic pericytes express various cytokines in healthy humans and mice. To interfere with the pericytic inflammatory response, we selectively inhibited the TLR/MyD88 pathway in these cells in transgenic mice. The loss of MyD88 impaired pericytic cytokine production. Furthermore, MyD88-deficient mice exhibited skewed islet inflammation with fewer cells, an impaired macrophage phenotype, and reduced IL-1β production. This aberrant pericyte-orchestrated islet inflammation was associated with β cell dedifferentiation and impaired glucose response. Additionally, we found that Cxcl1, a pericytic MyD88-dependent cytokine, promoted immune IL-1β production. Treatment with either Cxcl1 or IL-1β restored the mature β cell phenotype and glucose response in transgenic mice, suggesting a potential mechanism through which pericytes and immune cells regulate glucose homeostasis. Our study revealed pericyte-orchestrated islet inflammation as a crucial element in glucose regulation, implicating this process as a potential therapeutic target for diabetes.
Collapse
Affiliation(s)
- Anat Schonblum
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Dunia Ali Naser
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Shai Ovadia
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Mohammed Egbaria
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Shani Puyesky
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Alona Epshtein
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Tomer Wald
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Sophia Mercado-Medrez
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Limor Landsman
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| |
Collapse
|
14
|
Dong C, Hui P, Wu Z, Li J, Man X. CircRNA LOC729852 promotes bladder cancer progression by regulating macrophage polarization and recruitment via the miR-769-5p/IL-10 axis. J Cell Mol Med 2024; 28:e18225. [PMID: 38506082 PMCID: PMC10951884 DOI: 10.1111/jcmm.18225] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024] Open
Abstract
Circular RNAs (circRNAs) function as tumour promoters or suppressors in bladder cancer (BLCA) by regulating genes involved in macrophage recruitment and polarization. However, the underlying mechanisms are largely unknown. The aim of this study was to determine the biological role of circLOC729852 in BLCA. CircLOC729852 was upregulated in BLCA tissues and correlated with increased proliferation, migration and epithelial mesenchymal transition (EMT) of BCLA cells. MiR-769-5p was identified as a target for circLOC729852, which can upregulate IL-10 expression by directly binding to and suppressing miR-769-5p. Furthermore, our results indicated that the circLOC729852/miR-769-5p/IL-10 axis modulates autophagy signalling in BLCA cells and promotes the recruitment and M2 polarization of TAMs by activating the JAK2/STAT3 signalling pathway. In addition, circLOC729852 also promoted the growth of BLCA xenografts and M2 macrophage infiltration in vivo. Thus, circLOC729852 functions as an oncogene in BLCA by inducing secretion of IL-10 by the M2 TAMs, which then facilitates tumour cell growth and migration. Taken together, circLOC729852 is a potential diagnostic biomarker and therapeutic target for BLCA.
Collapse
Affiliation(s)
- Changming Dong
- Department of Urology, China Medical UniversityThe First Hospital of China Medical UniversityShenyangLiaoningChina
- Department of UrologyThe First Hospital of China Medical UniversityShenyangLiaoningPR China
| | - Pengyu Hui
- Department of UrologyThe Second Affiliated Hospital of Xi'an Medical UniversityXi'anShaanxiChina
| | - Zhengqi Wu
- Department of Urology, China Medical UniversityThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jianfeng Li
- Department of Urology, China Medical UniversityThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xiaojun Man
- Department of Urology, China Medical UniversityThe First Hospital of China Medical UniversityShenyangLiaoningChina
- Department of UrologyThe First Hospital of China Medical UniversityShenyangLiaoningPR China
| |
Collapse
|
15
|
Guo X, Zhang H, He C, Qin K, Lai Q, Fang Y, Chen Q, Li W, Wang Y, Wang X, Li A, Liu S, Li Q. RUNX1 promotes angiogenesis in colorectal cancer by regulating the crosstalk between tumor cells and tumor associated macrophages. Biomark Res 2024; 12:29. [PMID: 38419056 PMCID: PMC10903076 DOI: 10.1186/s40364-024-00573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Colorectal cancer (CRC) is a common malignancy worldwide. Angiogenesis and metastasis are the critical hallmarks of malignant tumor. Runt-related transcription factor 1 (RUNX1), an efficient transcription factor, facilitates CRC proliferation, metastasis and chemotherapy resistance. We aimed to investigate the RUNX1 mediated crosstalk between tumor cells and M2 polarized tumor associated macrophages (TAMs) in CRC, as well as its relationship with neoplastic angiogenesis. We found that RUNX1 recruited macrophages and induced M2 polarized TAMs in CRC by promoting the production of chemokine 2 (CCL2) and the activation of Hedgehog pathway. In addition, we found that the M2 macrophage-specific generated cytokine, platelet-derived growth factor (PDGF)-BB, promoted vessel formation both in vitro and vivo. PDGF-BB was also found to enhance the expression of RUNX1 in CRC cell lines, and promote its migration and invasion in vitro. A positive feedback loop of RUNX1 and PDGF-BB was thus formed. In conclusion, our data suggest that RUNX1 promotes CRC angiogenesis by regulating M2 macrophages during the complex crosstalk between tumor cells and TAMs. This observation provides a potential combined therapy strategy targeting RUNX1 and TAMs-related PDGF-BB in CRC.
Collapse
Affiliation(s)
- Xuxue Guo
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
- Department of Gastroenterology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haonan Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chengcheng He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kaiwen Qin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
- The First School of Clinical Medicine), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Qianhui Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weize Li
- The First School of Clinical Medicine), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiqing Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinke Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China.
- Pazhou Lab, Guangzhou, Guangdong, China.
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
16
|
Zhang QZ, Liu JH, Gao YR, Liang J, Tang CL. Effect of macrophage polarization on parasitic protection against type 1 diabetes mellitus. Exp Parasitol 2024; 256:108649. [PMID: 37914152 DOI: 10.1016/j.exppara.2023.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/06/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Type 1 diabetes mellitus is a chronic disease caused by the destruction of pancreatic beta cells. Based on the hygiene hypothesis, a growing body of evidence suggests a negative association between parasitic infections and diabetes in humans and animal models. The mechanism of parasite-mediated prevention of type 1 diabetes mellitus may be related to the adaptive and innate immune systems. Macrophage polarization is a new paradigm for the treatment of type 1 diabetes mellitus, and different host macrophage subsets play various roles during parasite infection. Proinflammatory cytokines are released by M1 macrophages, which are important in the development of type 1 diabetes mellitus. Parasite-activated M2 macrophages prevent the development of type 1 diabetes mellitus and can influence the development of adaptive immune responses through several mechanisms, including Th2 cells and regulatory T cells. Here, we review the role and mechanism of macrophage polarization in parasitic protection against type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Qi-Zhi Zhang
- Wuchang Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Jun-Hui Liu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, 430030, China
| | - Yan-Ru Gao
- Basic Medical Science Teaching Center, Medical Department, Wuhan City College, Wuhan, 430083, China
| | - Jun Liang
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, 430030, China.
| | - Chun-Lian Tang
- Wuchang Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, 430063, China.
| |
Collapse
|
17
|
Bosch AJT, Keller L, Steiger L, Rohm TV, Wiedemann SJ, Low AJY, Stawiski M, Rachid L, Roux J, Konrad D, Wueest S, Tugues S, Greter M, Böni-Schnetzler M, Meier DT, Cavelti-Weder C. CSF1R inhibition with PLX5622 affects multiple immune cell compartments and induces tissue-specific metabolic effects in lean mice. Diabetologia 2023; 66:2292-2306. [PMID: 37792013 PMCID: PMC10627931 DOI: 10.1007/s00125-023-06007-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 10/05/2023]
Abstract
AIMS/HYPOTHESIS Colony stimulating factor 1 (CSF1) promotes the proliferation, differentiation and survival of macrophages, which have been implicated in both beneficial and detrimental effects on glucose metabolism. However, the physiological role of CSF1 signalling in glucose homeostasis and the potential therapeutic implications of modulating this pathway are not known. We aimed to study the composition of tissue macrophages (and other immune cells) following CSF1 receptor (CSF1R) inhibition and elucidate the metabolic consequences of CSF1R inhibition. METHODS We assessed immune cell populations in various organs by flow cytometry, and tissue-specific metabolic effects by hyperinsulinaemic-euglycaemic clamps and insulin secretion assays in mice fed a chow diet containing PLX5622 (a CSF1R inhibitor) or a control diet. RESULTS CSF1R inhibition depleted macrophages in multiple tissues while simultaneously increasing eosinophils and group 2 innate lymphoid cells. These immunological changes were consistent across different organs and were sex independent and reversible after cessation of the PLX5622. CSF1R inhibition improved hepatic insulin sensitivity but concomitantly impaired insulin secretion. In healthy islets, we found a high frequency of IL-1β+ islet macrophages. Their depletion by CSF1R inhibition led to downregulation of macrophage-related pathways and mediators of cytokine activity, including Nlrp3, suggesting IL-1β as a candidate insulin secretagogue. Partial restoration of physiological insulin secretion was achieved by injecting recombinant IL-1β prior to glucose stimulation in mice lacking macrophages. CONCLUSIONS/INTERPRETATION Macrophages and macrophage-derived factors, such as IL-1β, play an important role in physiological insulin secretion. A better understanding of the tissue-specific effects of CSF1R inhibition on immune cells and glucose homeostasis is crucial for the development of targeted immune-modulatory treatments in metabolic disease. DATA AVAILABILITY The RNA-Seq dataset is available in the Gene Expression Omnibus (GEO) under the accession number GSE189434 ( http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE189434 ).
Collapse
Affiliation(s)
- Angela J T Bosch
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lena Keller
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Laura Steiger
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Theresa V Rohm
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Andy J Y Low
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Stawiski
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Leila Rachid
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Julien Roux
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Centre, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Centre, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Sonia Tugues
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Daniel T Meier
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Claudia Cavelti-Weder
- Department of Biomedicine, University of Basel, Basel, Switzerland.
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland.
| |
Collapse
|
18
|
Hasan I, Rainsford KD, Ross JS. Salsalate: a pleotropic anti-inflammatory drug in the treatment of diabetes, obesity, and metabolic diseases. Inflammopharmacology 2023; 31:2781-2797. [PMID: 37758933 DOI: 10.1007/s10787-023-01242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/12/2023] [Indexed: 09/29/2023]
Abstract
Type two Diabetes Mellitus (T2DM) is a rising epidemic. Available therapeutic strategies have provided glycaemic control via HbA1c reduction but fail to provide clinically meaningful reduction in microvascular and macrovascular (cardiac, renal, ophthalmological, and neurological) complications. Inflammation is strongly linked to the pathogenesis of T2DM. Underlying inflammatory mechanisms include oxidative stress, endoplasmic reticulum stress amyloid deposition in the pancreas, lipotoxicity, and glucotoxicity. Molecular signalling mechanisms in chronic inflammation linked to obesity and diabetes include JANK, NF-kB, and AMPK pathways. These activated pathways lead to a production of various inflammatory cytokines, such as Interleukin (IL-6), tumor necrosis factor (TNF)-alpha, and C-reactive protein (CRP), which create a chronic low-grade inflammation and ultimately dysregulation of glucose homeostasis in the liver, skeletal muscle, and smooth muscle. Anti-inflammatory agents are being tested as anti-diabetic agents such as the IL-1b antagonist, Anakinra, the IL-1b inhibitor, Canakinuma, the IL-6 antagonists such as Tocilizumab, Rapamycin (Everolimus), and the IKK-beta kinase inhibitor, Salsalate. Salsalate is a century old safe anti-inflammatory drug used in the treatment of arthritis. Long-term safety and efficacy of Salsalate in the treatment of T2DM have been evaluated, which showed improved fasting plasma glucose and reduced HbA1C levels as well as reduced pro-inflammatory markers in T2DM patients. Current publication summarizes the literature review of pathophysiology of role of inflammation in T2DM and clinical efficacy and safety of Salsalate in the treatment of T2DM.
Collapse
Affiliation(s)
- I Hasan
- RH Nanopharmaceuticals LLC, 140 Ocean Ave, Monmouth Beach, New Jersey, 07750, USA.
| | - K D Rainsford
- Emeritus Professor of Biomedical Sciences, Department of Biosciences and Chemistry, BMRC, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | - Joel S Ross
- RH Nanopharmaceuticals LLC, 140 Ocean Ave, Monmouth Beach, New Jersey, 07750, USA
- J & D Pharmaceuticals LLC, Monmouth County, USA
| |
Collapse
|
19
|
Malik SS, Padmanabhan D, Hull-Meichle RL. Pancreas and islet morphology in cystic fibrosis: clues to the etiology of cystic fibrosis-related diabetes. Front Endocrinol (Lausanne) 2023; 14:1269139. [PMID: 38075070 PMCID: PMC10704027 DOI: 10.3389/fendo.2023.1269139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/03/2023] [Indexed: 12/18/2023] Open
Abstract
Cystic fibrosis (CF) is a multi-organ disease caused by loss-of-function mutations in CFTR (which encodes the CF transmembrane conductance regulator ion channel). Cystic fibrosis related diabetes (CFRD) occurs in 40-50% of adults with CF and is associated with significantly increased morbidity and mortality. CFRD arises from insufficient insulin release from β cells in the pancreatic islet, but the mechanisms underlying the loss of β cell function remain understudied. Widespread pathological changes in the CF pancreas provide clues to these mechanisms. The exocrine pancreas is the epicenter of pancreas pathology in CF, with ductal pathology being the initiating event. Loss of CFTR function results in ductal plugging and subsequent obliteration. This in turn leads to destruction of acinar cells, fibrosis and fatty replacement. Despite this adverse environment, islets remain relatively well preserved. However, islet composition and arrangement are abnormal, including a modest decrease in β cells and an increase in α, δ and γ cell abundance. The small amount of available data suggest that substantial loss of pancreatic/islet microvasculature, autonomic nerve fibers and intra-islet macrophages occur. Conversely, T-cell infiltration is increased and, in CFRD, islet amyloid deposition is a frequent occurrence. Together, these pathological changes clearly demonstrate that CF is a disease of the pancreas/islet microenvironment. Any or all of these changes are likely to have a dramatic effect on the β cell, which relies on positive signals from all of these neighboring cell types for its normal function and survival. A thorough characterization of the CF pancreas microenvironment is needed to develop better therapies to treat, and ultimately prevent CFRD.
Collapse
Affiliation(s)
- Sarah S. Malik
- Department of Pharmacology, University of Washington, Seattle, WA, United States
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Diksha Padmanabhan
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Seattle Institute for Biomedical and Clinical Research, Seattle, WA, United States
| | - Rebecca L. Hull-Meichle
- Department of Pharmacology, University of Washington, Seattle, WA, United States
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Seattle Institute for Biomedical and Clinical Research, Seattle, WA, United States
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
20
|
Yang S, Du P, Cui H, Zheng M, He W, Gao X, Hu Z, Jia S, Lu Q, Zhao M. Regulatory factor X1 induces macrophage M1 polarization by promoting DNA demethylation in autoimmune inflammation. JCI Insight 2023; 8:e165546. [PMID: 37733446 PMCID: PMC10619507 DOI: 10.1172/jci.insight.165546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Abnormal macrophage polarization is generally present in autoimmune diseases. Overwhelming M1 macrophage activation promotes the continuous progression of inflammation, which is one of the reasons for the development of autoimmune diseases. However, the underlying mechanism is still unclear. Here we explore the function of Regulatory factor X1 (RFX1) in macrophage polarization by constructing colitis and lupus-like mouse models. Both in vivo and in vitro experiments confirmed that RFX1 can promote M1 and inhibit M2 macrophage polarization. Furthermore, we found that RFX1 promoted DNA demethylation of macrophage polarization-related genes by increasing APOBEC3A/Apobec3 expression. We identified a potential RFX1 inhibitor, adenosine diphosphate (ADP), providing a potential strategy for treating autoimmune diseases.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
| | - Pei Du
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
| | - Haobo Cui
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Meiling Zheng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
| | - Wei He
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaofei Gao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
| | - Zhi Hu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
| | - Sujie Jia
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| |
Collapse
|
21
|
Kimani CN, Reuter H, Kotzé SH, Muller CJF. Regeneration of Pancreatic Beta Cells by Modulation of Molecular Targets Using Plant-Derived Compounds: Pharmacological Mechanisms and Clinical Potential. Curr Issues Mol Biol 2023; 45:6216-6245. [PMID: 37623211 PMCID: PMC10453321 DOI: 10.3390/cimb45080392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
Type 2 diabetes (T2D) is characterized by pancreatic beta-cell dysfunction, increased cell death and loss of beta-cell mass despite chronic treatment. Consequently, there has been growing interest in developing beta cell-centered therapies. Beta-cell regeneration is mediated by augmented beta-cell proliferation, transdifferentiation of other islet cell types to functional beta-like cells or the reprograming of beta-cell progenitors into fully differentiated beta cells. This mediation is orchestrated by beta-cell differentiation transcription factors and the regulation of the cell cycle machinery. This review investigates the beta-cell regenerative potential of antidiabetic plant extracts and phytochemicals. Various preclinical studies, including in vitro, in vivo and ex vivo studies, are highlighted. Further, the potential regenerative mechanisms and the intra and extracellular mediators that are of significance are discussed. Also, the potential of phytochemicals to translate into regenerative therapies for T2D patients is highlighted, and some suggestions regarding future perspectives are made.
Collapse
Affiliation(s)
- Clare Njoki Kimani
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa;
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Sanet Henriët Kotzé
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- Division of Anatomy, Department of Biomedical Sciences, School of Veterinary Medicine, Ross University, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Christo John Fredrick Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa;
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
22
|
Camaya I, O’Brien B, Donnelly S. How do parasitic worms prevent diabetes? An exploration of their influence on macrophage and β-cell crosstalk. Front Endocrinol (Lausanne) 2023; 14:1205219. [PMID: 37564976 PMCID: PMC10411736 DOI: 10.3389/fendo.2023.1205219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Diabetes is the fastest growing chronic disease globally, with prevalence increasing at a faster rate than heart disease and cancer. While the disease presents clinically as chronic hyperglycaemia, two distinct subtypes have been recognised. Type 1 diabetes (T1D) is characterised as an autoimmune disease in which the insulin-producing pancreatic β-cells are destroyed, and type 2 diabetes (T2D) arises due to metabolic insufficiency, in which inadequate amounts of insulin are produced, and/or the actions of insulin are diminished. It is now apparent that pro-inflammatory responses cause a loss of functional β-cell mass, and this is the common underlying mechanism of both T1D and T2D. Macrophages are the central immune cells in the pathogenesis of both diseases and play a major role in the initiation and perpetuation of the proinflammatory responses that compromise β-cell function. Furthermore, it is the crosstalk between macrophages and β-cells that orchestrates the inflammatory response and ensuing β-cell dysfunction/destruction. Conversely, this crosstalk can induce immune tolerance and preservation of β-cell mass and function. Thus, specifically targeting the intercellular communication between macrophages and β-cells offers a unique strategy to prevent/halt the islet inflammatory events underpinning T1D and T2D. Due to their potent ability to regulate mammalian immune responses, parasitic worms (helminths), and their excretory/secretory products, have been examined for their potential as therapeutic agents for both T1D and T2D. This research has yielded positive results in disease prevention, both clinically and in animal models. However, the focus of research has been on the modulation of immune cells and their effectors. This approach has ignored the direct effects of helminths and their products on β-cells, and the modulation of signal exchange between macrophages and β-cells. This review explores how the alterations to macrophages induced by helminths, and their products, influence the crosstalk with β-cells to promote their function and survival. In addition, the evidence that parasite-derived products interact directly with endocrine cells to influence their communication with macrophages to prevent β-cell death and enhance function is discussed. This new paradigm of two-way metabolic conversations between endocrine cells and macrophages opens new avenues for the treatment of immune-mediated metabolic disease.
Collapse
Affiliation(s)
| | | | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
23
|
Wu D, Jiang Y, Wang Z, Ni Y, Ma A, Zhou Y, Liu R, Lou YR, Wang Q. Metabolomics analysis of islet regeneration in partial pancreatectomy mice reveals increased levels of long-chain fatty acids and activated cAMP signaling pathway. Biochem Biophys Res Commun 2023; 667:34-42. [PMID: 37207562 DOI: 10.1016/j.bbrc.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023]
Abstract
Islet regeneration is a complex process involving multiple metabolic adaptions, but the specific characterization of the islet metabolome in relation to cell proliferation has not been established. This study aimed to investigate the metabolomic changes of regenerative islets from partial pancreatectomy (Ppx) mice and speculate underlying mechanisms. Islet samples were collected from C57/BL6 mice undergoing 70-80% Ppx or sham surgery, followed by analyses of glucose homeostasis, islet morphology, and untargeted metabolomics profiles using liquid chromatography-tandem mass spectrometry (LC-MS/MS). There is no difference in blood glucose and body weight between sham and Ppx mice. After surgery, the Ppx mice showed impaired glucose tolerance, increased Ki67 positive beta cells, and elevated beta-cell mass. LC-MS/MS analysis identified fourteen differentially changed metabolites in islets of Ppx mice, including long-chain fatty acids (e.g., docosahexaenoic acid) and amino acid derivatives (e.g., creatine). Pathway analysis based on the KEGG database revealed five significantly enriched signaling pathways including cAMP signaling pathway. Further immunostaining assay on pancreatic tissue sections showed the levels of p-CREB, a transcription factor downstream of cAMP, elevated in islets from Ppx mice. In conclusion, our results demonstrate that islet regeneration involves metabolic alterations in long-chain fatty acids and amino acid derivatives, as well as the activation of the cAMP signaling pathway.
Collapse
Affiliation(s)
- Di Wu
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China; Institute of Endocrinology and Diabetes, Fudan University, Shanghai, China
| | - Yaojing Jiang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China; Institute of Endocrinology and Diabetes, Fudan University, Shanghai, China
| | - Zhihong Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China; Institute of Endocrinology and Diabetes, Fudan University, Shanghai, China
| | - Yunzhi Ni
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China; Institute of Endocrinology and Diabetes, Fudan University, Shanghai, China
| | - Anran Ma
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China; Institute of Endocrinology and Diabetes, Fudan University, Shanghai, China
| | - Yue Zhou
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China; Institute of Endocrinology and Diabetes, Fudan University, Shanghai, China
| | - Rui Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China; Institute of Endocrinology and Diabetes, Fudan University, Shanghai, China
| | - Yan-Ru Lou
- School of Pharmacy, Fudan University, Shanghai, China
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China; Institute of Endocrinology and Diabetes, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Shkhyan R, Flynn C, Lamoure E, Sarkar A, Van Handel B, Li J, York J, Banks N, Van der Horst R, Liu NQ, Lee S, Bajaj P, Vadivel K, Harn HIC, Tassey J, Lozito T, Lieberman JR, Chuong CM, Hurtig MS, Evseenko D. Inhibition of a signaling modality within the gp130 receptor enhances tissue regeneration and mitigates osteoarthritis. Sci Transl Med 2023; 15:eabq2395. [PMID: 36947594 PMCID: PMC10792550 DOI: 10.1126/scitranslmed.abq2395] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 01/17/2023] [Indexed: 03/24/2023]
Abstract
Adult mammals are incapable of multitissue regeneration, and augmentation of this potential may shift current therapeutic paradigms. We found that a common co-receptor of interleukin 6 (IL-6) cytokines, glycoprotein 130 (gp130), serves as a major nexus integrating various context-specific signaling inputs to either promote regenerative outcomes or aggravate disease progression. Via genetic and pharmacological experiments in vitro and in vivo, we demonstrated that a signaling tyrosine 814 (Y814) within gp130 serves as a major cellular stress sensor. Mice with constitutively inactivated Y814 (F814) were resistant to surgically induced osteoarthritis as reflected by reduced loss of proteoglycans, reduced synovitis, and synovial fibrosis. The F814 mice also exhibited enhanced regenerative, not reparative, responses after wounding in the skin. In addition, pharmacological modulation of gp130 Y814 upstream of the SRC and MAPK circuit by a small molecule, R805, elicited a protective effect on tissues after injury. Topical administration of R805 on mouse skin wounds resulted in enhanced hair follicle neogenesis and dermal regeneration. Intra-articular administration of R805 to rats after medial meniscal tear and to canines after arthroscopic meniscal release markedly mitigated the appearance of osteoarthritis. Single-cell sequencing data demonstrated that genetic and pharmacological modulation of Y814 resulted in attenuation of inflammatory gene signature as visualized by the anti-inflammatory macrophage and nonpathological fibroblast subpopulations in the skin and joint tissue after injury. Together, our study characterized a molecular mechanism that, if manipulated, enhances the intrinsic regenerative capacity of tissues through suppression of a proinflammatory milieu and prevents pathological outcomes in injury and disease.
Collapse
Affiliation(s)
- Ruzanna Shkhyan
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Candace Flynn
- Ontario Veterinary College, Department of Clinical Studies, University of Guelph, ON N1G 2W1, Canada
| | - Emma Lamoure
- Ontario Veterinary College, Department of Clinical Studies, University of Guelph, ON N1G 2W1, Canada
| | - Arijita Sarkar
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Benjamin Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jinxiu Li
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jesse York
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Nicholas Banks
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Robert Van der Horst
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Nancy Q. Liu
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Siyoung Lee
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Paul Bajaj
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
| | - Kanagasabai Vadivel
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
| | - Hans I.-Chen Harn
- Department of Pathology, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan 701401 Taiwan
| | - Jade Tassey
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Thomas Lozito
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Mark S. Hurtig
- Ontario Veterinary College, Department of Clinical Studies, University of Guelph, ON N1G 2W1, Canada
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
- Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| |
Collapse
|
25
|
Burganova G, Schonblum A, Sakhneny L, Epshtein A, Wald T, Tzaig M, Landsman L. Pericytes modulate islet immune cells and insulin secretion through Interleukin-33 production in mice. Front Endocrinol (Lausanne) 2023; 14:1142988. [PMID: 36967785 PMCID: PMC10034381 DOI: 10.3389/fendo.2023.1142988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction Immune cells were recently shown to support β-cells and insulin secretion. However, little is known about how islet immune cells are regulated to maintain glucose homeostasis. Administration of various cytokines, including Interleukin-33 (IL-33), was shown to influence β-cell function. However, the role of endogenous, locally produced IL-33 in pancreatic function remains unknown. Here, we show that IL-33, produced by pancreatic pericytes, is required for glucose homeostasis. Methods To characterize pancreatic IL-33 production, we employed gene expression, flow cytometry, and immunofluorescence analyses. To define the role of this cytokine, we employed transgenic mouse systems to delete the Il33 gene selectively in pancreatic pericytes, in combination with the administration of recombinant IL-33. Glucose response was measured in vivo and in vitro, and morphometric and molecular analyses were used to measure β-cell mass and gene expression. Immune cells were analyzed by flow cytometry. Resuts Our results show that pericytes are the primary source of IL-33 in the pancreas. Mice lacking pericytic IL-33 were glucose intolerant due to impaired insulin secretion. Selective loss of pericytic IL-33 was further associated with reduced T and dendritic cell numbers in the islets and lower retinoic acid production by islet macrophages. Discussion Our study demonstrates the importance of local, pericytic IL-33 production for glucose regulation. Additionally, it proposes that pericytes regulate islet immune cells to support β-cell function in an IL-33-dependent manner. Our study reveals an intricate cellular network within the islet niche.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Limor Landsman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
Tu B, Li J, Sun Z, Zhang T, Liu H, Yuan F, Fan C. Macrophage-Derived TGF-β and VEGF Promote the Progression of Trauma-Induced Heterotopic Ossification. Inflammation 2023; 46:202-216. [PMID: 35986177 DOI: 10.1007/s10753-022-01723-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Heterotopic ossification (HO) is a pathological bone formation process caused by musculoskeletal trauma. HO is characterized by aberrant endochondral ossification and angiogenesis. Our previous studies have indicated that macrophage inflammation is involved in traumatic HO formation. In this study, we found that macrophage infiltration and TGF-β signaling activation are presented in human HO. Depletion of macrophages effectively suppressed traumatic HO formation in a HO mice model, and macrophage depletion significantly inhibited the activation of TGF-β/Smad2/3 signaling. In addition, the TGF-β blockade created by a neutralizing antibody impeded ectopic bone formation in vivo. Notably, endochondral ossification and angiogenesis are attenuated following macrophage depletion or TGF-β inhibition. Furthermore, our observations on macrophage polarization revealed that M2 macrophages, rather than M1 macrophages, play a critical role in supporting HO development by enhancing the osteogenic and chondrogenic differentiation of mesenchymal stem cells. Our findings on ectopic bone formation in HO patients and the mice model indicate that M2 macrophages are an important contributor for HO development, and that inhibition of M2 polarization or TGF-β activity may be a potential method of therapy for traumatic HO.
Collapse
Affiliation(s)
- Bing Tu
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Juehong Li
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Ziyang Sun
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Tongtong Zhang
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Hang Liu
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Feng Yuan
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
27
|
Cai H, Chen Y, Chen X, Sun W, Li Y. Tumor-associated macrophages mediate gastrointestinal stromal tumor cell metastasis through CXCL2/CXCR2. Cell Immunol 2023; 384:104642. [PMID: 36577281 DOI: 10.1016/j.cellimm.2022.104642] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/26/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are linked with the progression and poor prognosis of multifarious solid tumors, but the regulatory mechanisms involved in gastrointestinal stromal tumors (GIST) remain indistinct. This study intended to delve into the job of TAM-derived chemokines in promoting metastasis in GIST microenvironment. METHODS Expression levels of M2-TAM markers and CXCL2 in primary and metastatic tissues of GIST were analyzed by bioinformatics methods, and we analyzed the correlation between CXCL2 and M2-TAM markers. Immunofluorescence was applied to assay CXCL2 and M2-TAM marker protein (CD68 and CD206) expression in tumor tissues. Serum CXCL2 concentration in metastatic and non-metastatic patients was assayed by ELISA. The differentiation of THP-1 cells was tested by flow cytometry. Cell function test was utilized to analyze the viability, invasion and migration of GIST cells. Western blot was used to examine the expression of epithelial-mesenchymal transition (EMT)-related proteins. The mouse liver metastasis model was established, and the effects of CXCL2 and EMT-related genes on metastasis were confirmed by hematoxylin-eosin staining and immunohistochemistry experiments. RESULTS Bioinformatics analysis ascertained that M2-TAM marker proteins and chemokine CXCL2 were highly expressed in GIST metastatic tissues, and CXCL2 and TAM were co-located in tumor tissues. Results of in vitro cell function experiments displayed that CXCL2 secreted by M2-TAM promoted the invasion, migration and EMT of GIST tumor cells, and the anti-CXCL2 antibody could block the metastasis promoting effect of CXCL2. Additionally, the silencing of CXCR2 in GIST cells inhibited the metastasis promoting effect of CXCL2. Animal studies further confirmed that CXCL2 promoted liver metastasis of GIST in vivo. CONCLUSION This study preliminarily revealed the mechanism of M2-TAM promoting tumor metastasis by secreting CXCL2 in GIST tumor microenvironment, and proffered theoretical reference for the development of immunotherapy strategies targeting M2-TAM.
Collapse
Affiliation(s)
- Hongke Cai
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xi Chen
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Weiping Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yang Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
28
|
Jiang Y, Wiersch J, Wu W, Qian J, Adama MPR, Wu N, Yang W, Chen C, Zhu L, Prasadan K, Gittes GK, Xiao X. Bone-marrow derived cells do not contribute to new beta-cells in the inflamed pancreas. Front Immunol 2023; 14:1084056. [PMID: 36733483 PMCID: PMC9887320 DOI: 10.3389/fimmu.2023.1084056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
The contribution of bone-marrow derived cells (BMCs) to a newly formed beta-cell population in adults is controversial. Previous studies have only used models of bone marrow transplantation from sex-mismatched donors (or other models of genetic labeling) into recipient animals that had undergone irradiation. This approach suffers from the significant shortcoming of the off-target effects of irradiation. Partial pancreatic duct ligation (PDL) is a mouse model of acute pancreatitis with a modest increase in beta-cell number. However, the possibility that recruited BMCs in the inflamed pancreas may convert into beta-cells has not been examined. Here, we used an irradiation-free model to track the fate of the BMCs from the donor mice. A ROSA-mTmG red fluorescent mouse was surgically joined to an INS1Cre knock-in mouse by parabiosis to establish a mixed circulation. PDL was then performed in the INS1Cre mice 2 weeks after parabiosis, which was one week after establishment of the stable blood chimera. The contribution of red cells from ROSA-mTmG mice to beta-cells in INS1Cre mouse was evaluated based on red fluorescence, while cell fusion was evaluated by the presence of green fluorescence in beta-cells. We did not detect any red or green insulin+ cells in the INS1Cre mice, suggesting that there was no contribution of BMCs to the newly formed beta-cells, either by direct differentiation, or by cell fusion. Thus, the contribution of BMCs to beta-cells in the inflamed pancreas should be minimal, if any.
Collapse
Affiliation(s)
- Yinan Jiang
- Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - John Wiersch
- Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Wei Wu
- Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of General Surgery, Children’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Jieqi Qian
- Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Ultrasound in Medicine, the Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Maharana Prathap R. Adama
- Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nannan Wu
- Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Weixia Yang
- Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Congde Chen
- Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingyan Zhu
- Department of Endocrinology, the First Affiliated Hospital of NanChang University, Nanchang, China
| | - Krishna Prasadan
- Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - George K. Gittes
- Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xiangwei Xiao
- Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
29
|
Wang JB, Gao YX, Ye YH, Lin TX, Li P, Lin JX, Chen QY, Cao LL, Lin M, Tu RH, Lin JL, Huang ZN, Zheng HL, Xie JW, Zheng CH, Huang CM. CDK5RAP3 acts as a tumour suppressor in gastric cancer through the infiltration and polarization of tumour-associated macrophages. Cancer Gene Ther 2023; 30:22-37. [PMID: 35999359 PMCID: PMC9842504 DOI: 10.1038/s41417-022-00515-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 01/21/2023]
Abstract
We have demonstrated that CDK5RAP3 exerts a tumour suppressor effect in gastric cancer, but its role in regulating tumour-associated macrophages (TAMs) has not yet been reported. Here, we show that CDK5RAP3 is related to the infiltration and polarization of macrophages. It inhibits the polarization of TAMs to M2 macrophages and promotes the polarization of the M1 phenotype. CDK5RAP3 reduces the recruitment of circulating monocytes to infiltrate tumour tissue by inhibiting the CCL2/CCR2 axis in gastric cancer. Blocking CCR2 reduces the growth of xenograft tumours and the infiltration of monocytes. CDK5RAP3 inhibits the nuclear transcription of NF-κB, thereby reducing the secretion of the cytokines IL4 and IL10 and blocking the polarization of M2 macrophages. In addition, the absence of CDK5RAP3 in gastric cancer cells allows macrophages to secrete more MMP2 to promote the epithelial-mesenchymal transition (EMT) process of gastric cancer cells, thereby enhancing the invasion and migration ability. Our results imply that CDK5RAP3 may be involved in the regulation of immune activity in the tumour microenvironment and is expected to become a potential immunotherapy target for gastric cancer.
Collapse
Affiliation(s)
- Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - You-Xin Gao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Yin-Hua Ye
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Tong-Xing Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Ju-Li Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Ze-Ning Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Hua-Long Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China.
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Tumour Microbiology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
30
|
Jaganjac M, Zarkovic N. Lipid Peroxidation Linking Diabetes and Cancer: The Importance of 4-Hydroxynonenal. Antioxid Redox Signal 2022; 37:1222-1233. [PMID: 36242098 DOI: 10.1089/ars.2022.0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: It is commonly believed that diabetes mellitus may be associated with cancer. Hence, diabetic patients are at higher risk for hepatocellular carcinoma, pancreatic cancer, colorectal cancer, and breast cancer, but the mechanisms that may link these two severe diseases are not well understood. Recent Advances: A number of factors have been suggested to promote tumorigenesis in diabetic patients, including insulin resistance, hyperglycemia, dyslipidemia, inflammation, and elevated insulin-like growth factor-1 (IGF-1), which may also promote pro-oxidants, and thereby alter redox homeostasis. The consequent oxidative stress associated with lipid peroxidation appears to be a possible pathogenic link between cancer and diabetes. Critical Issues: Having summarized the above aspects of diabetes and cancer pathology, we propose that the major bioactive product of oxidative degradation of polyunsaturated fatty acids (PUFAs), the reactive aldehyde 4-hydroxynonenal (4-HNE), which is also considered a second messenger of free radicals, may be the key pathogenic factor linking diabetes and cancer. Future Directions: Because the bioactivities of 4-HNE are cell-type and concentration-dependent, are often associated with inflammation, and are involved in signaling processes that regulate antioxidant activities, proliferation, differentiation, and apoptosis, we believe that further research in this direction could reveal options for better control of diabetes and cancer. Controlling the production of 4-HNE to avoid its cytotoxicity to normal but not cancer cells while preventing its diabetogenic activities could be an important aspect of modern integrative biomedicine. Antioxid. Redox Signal. 37, 1222-1233.
Collapse
Affiliation(s)
- Morana Jaganjac
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
31
|
Parasympathetic-macrophages-ductal epithelial cells axis promotes female rat submandibular gland regeneration after excretory duct ligation/deligation. Arch Oral Biol 2022; 145:105586. [DOI: 10.1016/j.archoralbio.2022.105586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
32
|
Jiang Y, Chen A, Kline D, Liu Q, Ma J, Wang Y, Zhang T, Qian J, Nelson L, Prasadan K, Hu B, Gittes GK, Xiao X. Polarized macrophages promote gestational beta cell growth through extracellular signal-regulated kinase 5 signalling. Diabetes Obes Metab 2022; 24:1721-1733. [PMID: 35546452 DOI: 10.1111/dom.14744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 12/25/2022]
Abstract
AIM To show that depletion of pancreatic macrophages impairs gestational beta cell proliferation and leads to glucose intolerance. MATERIALS AND METHODS Genetic animal models were applied to study the effects of depletion of pancreatic macrophges on gestational beta-cell proliferaiton and glucose response. The crosstalk between macrophages and beta-cells was studied in vivo using beta-cell-specific extracellular-signal-regulated kinase 5 (ERK5) knockout and epidermal growth receptor (EGFR) knockout mice, and in vitro using a co-culture system. RESULTS Beta cell-derived placental growth factor (PlGF) recruited naïve macrophages and polarized them towards an M2-like phenotype. These macrophages then secreted epidermal growth factor (EGF), which activated extracellular signal-regulated kinase 5 (ERK5) signalling in beta cells to promote gestational beta cell proliferation. On the other hand, activation of ERK5 signalling in beta cells likely, in turn, enhanced the production and secretion of PlGF by beta cells. CONCLUSIONS Our study shows a regulatory loop between macrophages and beta cells through PlGF/EGF/ERK5 signalling cascades to regulate gestational beta cell growth.
Collapse
Affiliation(s)
- Yinan Jiang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Apeng Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Diana Kline
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Qun Liu
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jie Ma
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yan Wang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ting Zhang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jieqi Qian
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Laura Nelson
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Krishna Prasadan
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - George K Gittes
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xiangwei Xiao
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
33
|
Xie T, Fu DJ, Li ZM, Lv DJ, Song XL, Yu YZ, Wang C, Li KJ, Zhai B, Wu J, Feng NH, Zhao SC. CircSMARCC1 facilitates tumor progression by disrupting the crosstalk between prostate cancer cells and tumor-associated macrophages via miR-1322/CCL20/CCR6 signaling. Mol Cancer 2022; 21:173. [PMID: 36045408 PMCID: PMC9434883 DOI: 10.1186/s12943-022-01630-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) mediate the infiltration of tumor-associated macrophages (TAMs) to facilitate carcinogenesis and development of various types of cancers. However, the role of circRNAs in regulating macrophages in prostate cancer (PCa) remains uncertain. METHODS Differentially expressed circRNAs in PCa were identified by RNA sequencing. The expression of circSMARCC1 was recognized and evaluated using fluorescence in situ hybridization and quantitative real-time PCR. The oncogenic role of circSMARCC1 in PCa tumor proliferation and metastasis was investigated through a series of in vitro and in vivo assays. Finally, Western blot, biotin-labeled RNA pulldown, luciferase assay, rescue experiments, and co-culture experiments with TAMs were conducted to reveal the mechanistic role of circSMARCC1. RESULTS CircSMARCC1 was dramatically up-regulated in PCa cells, plasma and tissues. Overexpression of circSMARCC1 promotes tumor proliferation and metastasis both in vitro and in vivo, whereas knockdown of circSMARCC1 exerts the opposite effects. Mechanistically, circSMARCC1 regulates the expression of CC-chemokine ligand 20 (CCL20) via sponging miR-1322 and activate PI3K-Akt signaling pathway involved in the proliferation and epithelial mesenchymal transformation. More importantly, high expression of circSMARCC1 was positively associated with colonization of CD68+/CD163+/CD206+ TAMs in tumor microenvironment. In addition, overexpression of circSMARCC1 facilitates the expression of CD163 in macrophages through the CCL20-CCR6 axis, induces TAMs infiltration and M2 polarization, thereby leading to PCa progression. CONCLUSIONS CircSMARCC1 up-regulates the chemokine CCL20 secretion by sponging miR-1322, which is involved in the crosstalk between tumor cells and TAMs by targeting CCL20/CCR6 signaling to promote progression of PCa.
Collapse
Affiliation(s)
- Tao Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510500, China
| | - Du-Jiang Fu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhi-Min Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dao-Jun Lv
- Department of Urology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xian-Lu Song
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Yu-Zhong Yu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510500, China
| | - Chong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kang-Jin Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Baoqian Zhai
- Department of Radiotherapy Oncology, Yancheng City No.1 People's Hospital, Yancheng, 224005, China
- The Fourth Affiliated Hospital of Nantong University, Yancheng, 224005, China
| | - Jiacheng Wu
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, No. 30 Tongyang bei Road, Tongzhou District, Nantong, 226361, China.
| | - Ning-Han Feng
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, 214002, China.
| | - Shan-Chao Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510500, China.
| |
Collapse
|
34
|
Cui F, Xu Z, Hu J, Lv Y. Spindle pole body component 25 and platelet-derived growth factor mediate crosstalk between tumor-associated macrophages and prostate cancer cells. Front Immunol 2022; 13:907636. [PMID: 35967419 PMCID: PMC9363606 DOI: 10.3389/fimmu.2022.907636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are involved in the growth of prostate cancer (PrC), while the molecular mechanisms underlying the interactive crosstalk between TAM and PrC cells remain largely unknown. Platelet-derived growth factor (PDGF) is known to promote mesenchymal stromal cell chemotaxis to the tumor microenvironment. Recently, activation of spindle pole body component 25 (SPC25) has been shown to promote PrC cell proliferation and is associated with PrC stemness. Here, the relationship between SPC25 and PDGF in the crosstalk between TAM and PrC was investigated. Significant increases in both PDGF and SPC25 levels were detected in PrC specimens compared to paired adjacent normal prostate tissues. A significant correlation was detected between PDGF and SPC25 levels in PrC specimens and cell lines. SPC25 increased PDGF production and tumor cell growth in cultured PrC cells and in xenotransplantation. Mechanistically, SPC25 appeared to activate PDGF in PrC likely through Early Growth Response 1 (Egr1), while the secreted PDGF signaled to TAM through PDGFR on macrophages and polarized macrophages, which, in turn, induced the growth of PrC cells likely through their production and secretion of transforming growth factor β1 (TGFβ1). Thus, our data suggest that SPC25 triggers the crosstalk between TAM and PrC cells via SPC25/PDGF/PDGFR/TGFβ1 receptor signaling to enhance PrC growth.
Collapse
Affiliation(s)
- Feilun Cui
- Department of Urology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Zhipeng Xu
- Department of Urology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jianpeng Hu
- Department of Urology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Jianpeng Hu, ; Yumei Lv,
| | - Yumei Lv
- Department of Health Management Section, Zhenjiang College, Zhenjiang, China
- *Correspondence: Jianpeng Hu, ; Yumei Lv,
| |
Collapse
|
35
|
Ye Z, Wei J, Zhan C, Hou J. Role of Transforming Growth Factor Beta in Peripheral Nerve Regeneration: Cellular and Molecular Mechanisms. Front Neurosci 2022; 16:917587. [PMID: 35769702 PMCID: PMC9234557 DOI: 10.3389/fnins.2022.917587] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Peripheral nerve injury (PNI) is one of the most common concerns in trauma patients. Despite significant advances in repair surgeries, the outcome can still be unsatisfactory, resulting in morbidities such as loss of sensory or motor function and reduced quality of life. This highlights the need for more supportive strategies for nerve regrowth and adequate recovery. Multifunctional cytokine transforming growth factor-β (TGF-β) is essential for the development of the nervous system and is known for its neuroprotective functions. Accumulating evidence indicates its involvement in multiple cellular and molecular responses that are critical to peripheral nerve repair. Following PNI, TGF-β is released at the site of injury where it can initiate a series of phenotypic changes in Schwann cells (SCs), modulate immune cells, activate neuronal intrinsic growth capacity, and regulate blood nerve barrier (BNB) permeability, thus enhancing the regeneration of the nerves. Notably, TGF-β has already been applied experimentally in the treatment of PNI. These treatments with encouraging outcomes further demonstrate its regeneration-promoting capacity. Herein, we review the possible roles of TGF-β in peripheral nerve regeneration and discuss the underlying mechanisms, thus providing new cues for better treatment of PNI.
Collapse
Affiliation(s)
- Zhiqian Ye
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junbin Wei
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaoning Zhan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jin Hou,
| |
Collapse
|
36
|
Gao D, Jiao J, Wang Z, Huang X, Ni X, Fang S, Zhou Q, Zhu X, Sun L, Yang Z, Yuan H. The roles of cell-cell and organ-organ crosstalk in the type 2 diabetes mellitus associated inflammatory microenvironment. Cytokine Growth Factor Rev 2022; 66:15-25. [PMID: 35459618 DOI: 10.1016/j.cytogfr.2022.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a classic metaflammatory disease, and the inflammatory states of the pancreatic islet and insulin target organs have been well confirmed. However, abundant evidence demonstrates that there are countless connections between these organs in the presence of a low degree of inflammation. In this review, we focus on cell-cell crosstalk among local cells in the islet and organ-organ crosstalk among insulin-related organs. In contrast to that in acute inflammation, macrophages are the dominant immune cells causing inflammation in the islets and insulin target organs in T2DM. In the inflammatory microenvironment (IME) of the islet, cell-cell crosstalk involving local macrophage polarization and proinflammatory cytokine production impair insulin secretion by β-cells. Furthermore, organ-organ crosstalk, including the gut-brain-pancreas axis and interactions among insulin-related organs during inflammation, reduces insulin sensitivity and induces endocrine dysfunction. Therefore, this crosstalk ultimately results in a cascade leading to β-cell dysfunction. These findings could have broad implications for therapies aimed at treating T2DM.
Collapse
Affiliation(s)
- Danni Gao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, PR China; Peking University Fifth School of Clinical Medicine, Beijing 100730, PR China
| | - Juan Jiao
- Department of Clinical Laboratory, the Seventh Medical Centre of Chinese PLA General Hospital, Beijing 100700, PR China
| | - Zhaoping Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, PR China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, PR China
| | - Xiaolin Ni
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, PR China
| | - Sihang Fang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, PR China
| | - Qi Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, PR China
| | - Xiaoquan Zhu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, PR China
| | - Liang Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, PR China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, PR China
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, PR China; Peking University Fifth School of Clinical Medicine, Beijing 100730, PR China.
| |
Collapse
|
37
|
Intermittent protein restriction protects islet β cells and improves glucose homeostasis in diabetic mice. Sci Bull (Beijing) 2022; 67:733-747. [PMID: 36546138 DOI: 10.1016/j.scib.2021.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/15/2021] [Accepted: 12/09/2021] [Indexed: 01/06/2023]
Abstract
Diabetes is caused by the interplay between genetics and environmental factors, tightly linked to lifestyle and dietary patterns. In this study, we explored the effectiveness of intermittent protein restriction (IPR) in diabetes control. IPR drastically reduced hyperglycemia in both streptozotocin-treated and leptin receptor-deficient db/db mouse models. IPR improved the number, proliferation, and function of β cells in pancreatic islets. IPR reduced glucose production in the liver and elevated insulin signaling in the skeletal muscle. IPR elevated serum level of FGF21, and deletion of the Fgf21 gene in the liver abrogated the hypoglycemic effect of IPR without affecting β cells. IPR caused less lipid accumulation and damage in the liver than that caused by continuous protein restriction in streptozotocin-treated mice. Single-cell RNA sequencing using mouse islets revealed that IPR reversed diabetes-associated β cell reduction and immune cell accumulation. As IPR is not based on calorie restriction and is highly effective in glycemic control and β cell protection, it has promising translational potential in the future.
Collapse
|
38
|
Qian J, Tao D, Shan X, Xiao X, Chen C. Role of angiogenesis in beta-cell epithelial-mesenchymal transition in chronic pancreatitis-induced diabetes. J Transl Med 2022; 102:290-297. [PMID: 34764436 DOI: 10.1038/s41374-021-00684-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/08/2022] Open
Abstract
Clinical evidence suggests that patients with chronic pancreatitis (CP) are prone to development of diabetes (chronic pancreatitis-related diabetes; CPRD), whereas the underlying mechanisms are not fully determined. Recently, we showed that the gradual loss of functional beta-cells in a mouse model for CPRD, partial pancreatic duct ligation (PDL), results from a transforming growth factor β1 (TGFβ1)-triggered beta-cell epithelial-mesenchymal transition (EMT), rather than from apoptotic beta-cell death. Here, the role of angiogenesis in CPRD-associated beta-cell EMT was addressed. We detected enhanced angiogenesis in the inflamed pancreas from CP patients by bioinformatic analysis and from PDL-mice. Inhibition of angiogenesis by specific antisera for vascular endothelial growth factor receptor 2 (VEGFR2), DC101, did not alter the loss of beta-cells and the fibrotic process in PDL-pancreas. However, DC101-mediated inhibition of angiogenesis abolished pancreatitis-induced beta-cell EMT and rendered it to apoptotic beta-cell death. Thus, our data suggest that angiogenesis promotes beta-cell survival in the inflamed pancreas, while suppression of angiogenesis turns beta-cell EMT into apoptotic beta-cell death. This finding could be informative during development of intervention therapies for CPRD.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Diabetes Mellitus/etiology
- Diabetes Mellitus/genetics
- Diabetes Mellitus/metabolism
- Disease Models, Animal
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Expression Profiling/methods
- Humans
- Insulin/metabolism
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/prevention & control
- Pancreatitis, Chronic/complications
- Pancreatitis, Chronic/genetics
- Pancreatitis, Chronic/metabolism
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- Mice
Collapse
Affiliation(s)
- Jieqi Qian
- Department of Pediatric Endocrinology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Dongdong Tao
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaoou Shan
- Department of Pediatric Endocrinology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Xiangwei Xiao
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA.
| | - Congde Chen
- Department of Pediatric Endocrinology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA.
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
39
|
Wang HL, Wang L, Zhao CY, Lan HY. Role of TGF-Beta Signaling in Beta Cell Proliferation and Function in Diabetes. Biomolecules 2022; 12:373. [PMID: 35327565 PMCID: PMC8945211 DOI: 10.3390/biom12030373] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/27/2022] Open
Abstract
Beta (β) cell dysfunction or loss is the common pathological feature in all types of diabetes mellitus (diabetes). Resolving the underlying mechanism may facilitate the treatment of diabetes by preserving the β cell population and function. It is known that TGF-β signaling plays diverse roles in β cell development, function, proliferation, apoptosis, and dedifferentiation. Inhibition of TGF-β signaling expands β cell lineage in the development. However, deletion of Tgfbr1 has no influence on insulin demand-induced but abolishes inflammation-induced β cell proliferation. Among canonical TGF-β signaling, Smad3 but not Smad2 is the predominant repressor of β cell proliferation in response to systemic insulin demand. Deletion of Smad3 simultaneously improves β cell function, apoptosis, and systemic insulin resistance with the consequence of eliminated overt diabetes in diabetic mouse models, revealing Smad3 as a key mediator and ideal therapeutic target for type-2 diabetes. However, Smad7 shows controversial effects on β cell proliferation and glucose homeostasis in animal studies. On the other hand, overexpression of Tgfb1 prevents β cells from autoimmune destruction without influence on β cell function. All these findings reveal the diverse regulatory roles of TGF-β signaling in β cell biology.
Collapse
Affiliation(s)
- Hong-Lian Wang
- Research Center for Integrative Medicine, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (H.-L.W.); (L.W.)
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Wang
- Research Center for Integrative Medicine, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (H.-L.W.); (L.W.)
| | - Chang-Ying Zhao
- Department of Endocrinology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China;
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Guangdong Academy of Sciences, Guangdong Provincial People’s Hospital Joint Research Laboratory on Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
40
|
Amamou A, O’Mahony C, Leboutte M, Savoye G, Ghosh S, Marion-Letellier R. Gut Microbiota, Macrophages and Diet: An Intriguing New Triangle in Intestinal Fibrosis. Microorganisms 2022; 10:490. [PMID: 35336066 PMCID: PMC8952309 DOI: 10.3390/microorganisms10030490] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Intestinal fibrosis is a common complication in inflammatory bowel disease (IBD) without specific treatment. As macrophages are the key actors in inflammatory responses and the wound healing process, they have been extensively studied in chronic diseases these past decades. By their exceptional ability to integrate diverse stimuli in their surrounding environment, macrophages display a multitude of phenotypes to underpin a broad spectrum of functions, from the initiation to the resolution of inflammation following injury. The hypothesis that distinct macrophage subtypes could be involved in fibrogenesis and wound healing is emerging and could open up new therapeutic perspectives in the treatment of intestinal fibrosis. Gut microbiota and diet are two key factors capable of modifying intestinal macrophage profiles, shaping their specific function. Defects in macrophage polarisation, inadequate dietary habits, and alteration of microbiota composition may contribute to the development of intestinal fibrosis. In this review, we describe the intriguing triangle between intestinal macrophages, diet, and gut microbiota in homeostasis and how the perturbation of this discreet balance may lead to a pro-fibrotic environment and influence fibrogenesis in the gut.
Collapse
Affiliation(s)
- Asma Amamou
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, T12 YT20 Cork, Ireland; (C.O.); (S.G.)
| | - Cian O’Mahony
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, T12 YT20 Cork, Ireland; (C.O.); (S.G.)
| | - Mathilde Leboutte
- INSERM UMR 1073 “Nutrition, Inflammation and Gut-Brain Axis”, Normandy University, 76183 Rouen, France; (M.L.); (R.M.-L.)
| | - Guillaume Savoye
- Department of Gastroenterology, Rouen University Hospital, 76031 Rouen, France;
| | - Subrata Ghosh
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, T12 YT20 Cork, Ireland; (C.O.); (S.G.)
| | - Rachel Marion-Letellier
- INSERM UMR 1073 “Nutrition, Inflammation and Gut-Brain Axis”, Normandy University, 76183 Rouen, France; (M.L.); (R.M.-L.)
| |
Collapse
|
41
|
Zhao Y, Knight CM, Jiang Z, Delgado E, Van Hoven AM, Ghanny S, Zhou Z, Zhou H, Yu H, Hu W, Li H, Li X, Perez-Basterrechea M, Zhao L, Zhao Y, Giangola J, Weinberg R, Mazzone T. Stem Cell Educator therapy in type 1 diabetes: From the bench to clinical trials. Clin Exp Rheumatol 2022; 21:103058. [PMID: 35108619 DOI: 10.1016/j.autrev.2022.103058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that causes a deficit of pancreatic islet β cells. Millions of individuals worldwide have T1D, and its incidence increases annually. Recent clinical trials have highlighted the limits of conventional immunotherapy in T1D and underscore the need for novel treatments that not only overcome multiple immune dysfunctions, but also help restore islet β-cell function. To address these two key issues, we have developed a unique and novel procedure designated the Stem Cell Educator therapy, based on the immune education by cord-blood-derived multipotent stem cells (CB-SC). Over the last 10 years, this technology has been evaluated through international multi-center clinical studies, which have demonstrated its clinical safety and efficacy in T1D and other autoimmune diseases. Mechanistic studies revealed that Educator therapy could fundamentally correct the autoimmunity and induce immune tolerance through multiple molecular and cellular mechanisms such as the expression of a master transcription factor autoimmune regulator (AIRE) in CB-SC for T-cell modulation, an expression of Galectin-9 on CB-SC to suppress activated B cells, and secretion of CB-SC-derived exosomes to polarize human blood monocytes/macrophages into type 2 macrophages. Educator therapy is the leading immunotherapy to date to safely and efficiently correct autoimmunity and restore β cell function in T1D patients.
Collapse
Affiliation(s)
- Yong Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA.
| | - Colette M Knight
- Hackensack Meridian School of Medicine, Inserra Family Diabetes Institute, Department of Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, USA.
| | - Zhaoshun Jiang
- Department of Endocrinology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong 250031, China.
| | - Elias Delgado
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Department of Medicine, University of Oviedo, Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33006, Spain.
| | - Anne Marie Van Hoven
- Hackensack Meridian School of Medicine, Inserra Family Diabetes Institute, Department of Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Steven Ghanny
- Department of Pediatric, Division of Endocrinology and Diabetes, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Huimin Zhou
- Section of Endocrinology, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Haibo Yu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, USA
| | - Heng Li
- Section of Neurology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250020, China
| | - Xia Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Marcos Perez-Basterrechea
- Unit of Cell Therapy and Regenerative Medicine, Hematology and Hemotherapy, Central University Hospital of Asturias, Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33006, Spain
| | - Laura Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | - Yeqian Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | - Joseph Giangola
- Hackensack Meridian School of Medicine, Inserra Family Diabetes Institute, Department of Medicine, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Rona Weinberg
- MPN Laboratory, New York Blood Center, New York, NY 10065, USA
| | | |
Collapse
|
42
|
Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity 2022; 55:31-55. [PMID: 35021057 PMCID: PMC8773457 DOI: 10.1016/j.immuni.2021.12.013] [Citation(s) in RCA: 908] [Impact Index Per Article: 302.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 01/13/2023]
Abstract
Obesity leads to chronic, systemic inflammation and can lead to insulin resistance (IR), β-cell dysfunction, and ultimately type 2 diabetes (T2D). This chronic inflammatory state contributes to long-term complications of diabetes, including non-alcoholic fatty liver disease (NAFLD), retinopathy, cardiovascular disease, and nephropathy, and may underlie the association of type 2 diabetes with other conditions such as Alzheimer's disease, polycystic ovarian syndrome, gout, and rheumatoid arthritis. Here, we review the current understanding of the mechanisms underlying inflammation in obesity, T2D, and related disorders. We discuss how chronic tissue inflammation results in IR, impaired insulin secretion, glucose intolerance, and T2D and review the effect of inflammation on diabetic complications and on the relationship between T2D and other pathologies. In this context, we discuss current therapeutic options for the treatment of metabolic disease, advances in the clinic and the potential of immune-modulatory approaches.
Collapse
Affiliation(s)
- Theresa V. Rohm
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel T. Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, CH-4031 Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Jerrold M. Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marc Y. Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, CH-4031 Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland.,Correspondence:
| |
Collapse
|
43
|
Genome-Wide Analysis of Smad7-Mediated Transcription in Mouse Embryonic Stem Cells. Int J Mol Sci 2021; 22:ijms222413598. [PMID: 34948395 PMCID: PMC8708723 DOI: 10.3390/ijms222413598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Smad7 has been identified as a negative regulator of the transforming growth factor TGF-β pathway by direct interaction with the TGF-β type I receptor (TβR-I). Although Smad7 has also been shown to play TGF-β unrelated functions in the cytoplasm and in the nucleus, a comprehensive analysis of its nuclear function has not yet been performed. Here, we show that in ESCs Smad7 is mainly nuclear and acts as a general transcription factor regulating several genes unrelated to the TGF-β pathway. Loss of Smad7 results in the downregulation of several key stemness master regulators, including Pou5f1 and Zfp42, and in the upregulation of developmental genes, with consequent loss of the stem phenotype. Integrative analysis of genome-wide mapping data for Smad7 and ESC self-renewal and pluripotency transcriptional regulators revealed that Smad7 co-occupies promoters of highly expressed key stemness regulators genes, by binding to a specific consensus response element NCGGAAMM. Altogether, our data establishes Smad7 as a new, integral component of the regulatory circuitry that controls ESC identity.
Collapse
|
44
|
Saleh M, Mohamed NA, Sehrawat A, Zhang T, Thomas M, Wang Y, Kalsi R, Molitoris J, Prasadan K, Gittes GK. β-cell Smad2 null mice have improved β-cell function and are protected from diet-induced hyperglycemia. J Biol Chem 2021; 297:101235. [PMID: 34582892 PMCID: PMC8605249 DOI: 10.1016/j.jbc.2021.101235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Understanding signaling pathways that regulate pancreatic β-cell function to produce, store, and release insulin, as well as pathways that control β-cell proliferation, is vital to find new treatments for diabetes mellitus. Transforming growth factor-beta (TGF-β) signaling is involved in a broad range of β-cell functions. The canonical TGF-β signaling pathway functions through intracellular smads, including smad2 and smad3, to regulate cell development, proliferation, differentiation, and function in many organs. Here, we demonstrate the role of TGF-β/smad2 signaling in regulating mature β-cell proliferation and function using β-cell-specific smad2 null mutant mice. β-cell-specific smad2-deficient mice exhibited improved glucose clearance as demonstrated by glucose tolerance testing, enhanced in vivo and ex vivo glucose-stimulated insulin secretion, and increased β-cell mass and proliferation. Furthermore, when these mice were fed a high-fat diet to induce hyperglycemia, they again showed improved glucose tolerance, insulin secretion, and insulin sensitivity. In addition, ex vivo analysis of smad2-deficient islets showed that they displayed increased glucose-stimulated insulin secretion and upregulation of genes involved in insulin synthesis and insulin secretion. Thus, we conclude that smad2 could represent an attractive therapeutic target for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mohamed Saleh
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA; Division of Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nada A Mohamed
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anuradha Sehrawat
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ting Zhang
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Madison Thomas
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yan Wang
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ranjeet Kalsi
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Justin Molitoris
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Krishna Prasadan
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - George K Gittes
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
45
|
Budd MA, Monajemi M, Colpitts SJ, Crome SQ, Verchere CB, Levings MK. Interactions between islets and regulatory immune cells in health and type 1 diabetes. Diabetologia 2021; 64:2378-2388. [PMID: 34550422 DOI: 10.1007/s00125-021-05565-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Type 1 diabetes results from defects in immune self-tolerance that lead to inflammatory infiltrate in pancreatic islets, beta cell dysfunction and T cell-mediated killing of beta cells. Although therapies that broadly inhibit immunity show promise to mitigate autoinflammatory damage caused by effector T cells, these are unlikely to permanently reset tolerance or promote regeneration of the already diminished pool of beta cells. An emerging concept is that certain populations of immune cells may have the capacity to both promote tolerance and support the restoration of beta cells by supporting proliferation, differentiation and/or regeneration. Here we will highlight three immune cell types-macrophages, regulatory T cells and innate lymphoid cells-for which there is evidence of dual roles of immune regulation and tissue regeneration. We explore how findings in this area from other fields might be extrapolated to type 1 diabetes and highlight recent discoveries in the context of type 1 diabetes. We also discuss technological advances that are supporting this area of research and contextualise new therapeutic avenues to consider for type 1 diabetes.
Collapse
Affiliation(s)
- Matthew A Budd
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Mahdis Monajemi
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Sarah J Colpitts
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - C Bruce Verchere
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
46
|
Kasthuriarachchi TDW, Harasgama JC, Lee S, Kwon H, Wan Q, Lee J. Cytosolic β-catenin is involved in macrophage M2 activation and antiviral defense in teleosts: Delineation through molecular characterization of β-catenin homolog from redlip mullet (Planiliza haematocheila). FISH & SHELLFISH IMMUNOLOGY 2021; 118:228-240. [PMID: 34284111 DOI: 10.1016/j.fsi.2021.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
β-catenin is a structural protein that makes the cell-cell connection in adherence junctions. Besides the structural functions, it also plays a role as a central transducer of the canonical Wnt signaling cascade, regulating nearly four hundred genes related to various cellular processes. Recently the immune functions of β-catenin during pathogenic invasion have gained more attention. In the present study, we elucidated the immune function of fish β-catenin by identifying and characterizing the β-catenin homolog (PhCatβ) from redlip mullet, Planiliza haematocheila. The complete open reading frame of PhCatβ consists of 2352 bp, which encodes a putative β-catenin homolog (molecular weight: 85.7 kDa). Multiple sequence alignment analysis revealed that β-catenin is highly conserved in vertebrates. Phylogenetic reconstruction demonstrated the close evolutionary relationship between PhCatβ and other fish β-catenin counterparts. The tissue distribution analysis showed the highest mRNA expression of PhCatβ in heart tissues of the redlip mullet under normal physiological conditions. While in response to pathogenic stress, the PhCatβ transcription level was dramatically increased in the spleen and gill tissues. The overexpression of PhCatβ stimulated M2 polarization and cell proliferation of murine RAW 264.7 macrophage. In fish cells, the overexpression of PhCatβ resulted in a significant upregulation of antiviral gene transcription and vice versa. Moreover, the overexpression of PhCatβ could inhibit the replication of VHSV in FHM cells. Our results strongly suggest that PhCatβ plays a role in macrophage activation and antiviral immune response in redlip mullet.
Collapse
Affiliation(s)
- T D W Kasthuriarachchi
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - J C Harasgama
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Seongdo Lee
- National Fishery Product Quality Management Service, Busan, 49111, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
47
|
Macrophages in heterotopic ossification: from mechanisms to therapy. NPJ Regen Med 2021; 6:70. [PMID: 34702860 PMCID: PMC8548514 DOI: 10.1038/s41536-021-00178-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
Heterotopic ossification (HO) is the formation of extraskeletal bone in non-osseous tissues. It is caused by an injury that stimulates abnormal tissue healing and regeneration, and inflammation is involved in this process. It is worth noting that macrophages are crucial mediators of inflammation. In this regard, abundant macrophages are recruited to the HO site and contribute to HO progression. Macrophages can acquire different functional phenotypes and promote mesenchymal stem cell (MSC) osteogenic differentiation, chondrogenic differentiation, and angiogenesis by expressing cytokines and other factors such as the transforming growth factor-β1 (TGF-β1), bone morphogenetic protein (BMP), activin A (Act A), oncostatin M (OSM), substance P (SP), neurotrophin-3 (NT-3), and vascular endothelial growth factor (VEGF). In addition, macrophages significantly contribute to the hypoxic microenvironment, which primarily drives HO progression. Thus, these have led to an interest in the role of macrophages in HO by exploring whether HO is a "butterfly effect" event. Heterogeneous macrophages are regarded as the "butterflies" that drive a sequence of events and ultimately promote HO. In this review, we discuss how the recruitment of macrophages contributes to HO progression. In particular, we review the molecular mechanisms through which macrophages participate in MSC osteogenic differentiation, angiogenesis, and the hypoxic microenvironment. Understanding the diverse role of macrophages may unveil potential targets for the prevention and treatment of HO.
Collapse
|
48
|
Zhu L, Qian J, Jiang Y, Yang T, Duan Q, Xiao X. PlGF Reduction Compromises Angiogenesis in Diabetic Foot Disease Through Macrophages. Front Immunol 2021; 12:736153. [PMID: 34659227 PMCID: PMC8511710 DOI: 10.3389/fimmu.2021.736153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetic foot disease (DFD) is a common and serious complication for diabetes and is characterized with impaired angiogenesis. In addition to the well-defined role of vascular endothelial growth factor (VEGF) -A and its defect in the pathogenesis of DFD, another VEGF family member, placental growth factor (PlGF), was also recently found to alter expression pattern in the DFD patients with undetermined mechanisms. This question was thus addressed in the current study. We detected attenuated PlGF upregulation in a mouse DFD model. In addition, the major cell types at the wound to express the unique PlGF receptor, VEGF receptor 1 (VEGFR1), were macrophages and endothelial cells. To assess how PlGF regulates DFD-associated angiogenesis, we injected recombinant PlGF and depleted VEGF1R specifically in macrophages by local injection of an adeno-associated virus (AAV) carrying siRNA for VEGFR1 under a macrophage-specific CD68 promoter. We found that the angiogenesis and recovery of the DFD were both improved by PlGF injection. The PlGF-induced improvement in angiogenesis and the recovery of skin injury were largely attenuated by macrophage-specific depletion of VEGF1R, likely resulting from reduced macrophage number and reduced M2 polarization. Together, our data suggest that reduced PlGF compromises angiogenesis in DFD at least partially through macrophages.
Collapse
Affiliation(s)
- Lingyan Zhu
- Department of Endocrinology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Endocrinology, The Peoples Hospital of Yudu County, Ganzhou, China
| | - Jieqi Qian
- Department of Surgery, Children’s Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yinan Jiang
- Department of Surgery, Children’s Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tianlun Yang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Duan
- Department of Cardiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiangwei Xiao
- Department of Surgery, Children’s Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
49
|
Sharp RC, Brown ME, Shapiro MR, Posgai AL, Brusko TM. The Immunoregulatory Role of the Signal Regulatory Protein Family and CD47 Signaling Pathway in Type 1 Diabetes. Front Immunol 2021; 12:739048. [PMID: 34603322 PMCID: PMC8481641 DOI: 10.3389/fimmu.2021.739048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Background The pathogenesis of type 1 diabetes (T1D) involves complex genetic susceptibility that impacts pathways regulating host immunity and the target of autoimmune attack, insulin-producing pancreatic β-cells. Interactions between risk variants and environmental factors result in significant heterogeneity in clinical presentation among those who develop T1D. Although genetic risk is dominated by the human leukocyte antigen (HLA) class II and insulin (INS) gene loci, nearly 150 additional risk variants are significantly associated with the disease, including polymorphisms in immune checkpoint molecules, such as SIRPG. Scope of Review In this review, we summarize the literature related to the T1D-associated risk variants in SIRPG, which include a protein-coding variant (rs6043409, G>A; A263V) and an intronic polymorphism (rs2281808, C>T), and their potential impacts on the immunoregulatory signal regulatory protein (SIRP) family:CD47 signaling axis. We discuss how dysregulated expression or function of SIRPs and CD47 in antigen-presenting cells (APCs), T cells, natural killer (NK) cells, and pancreatic β-cells could potentially promote T1D development. Major Conclusions We propose a hypothesis, supported by emerging genetic and functional immune studies, which states a loss of proper SIRP:CD47 signaling may result in increased lymphocyte activation and cytotoxicity and enhanced β-cell destruction. Thus, we present several novel therapeutic strategies for modulation of SIRPs and CD47 to intervene in T1D.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- CD47 Antigen/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/therapy
- Genetic Association Studies
- Humans
- Immunotherapy
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Polymorphism, Genetic
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Robert C. Sharp
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Matthew E. Brown
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Melanie R. Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Amanda L. Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
50
|
Multivalent effects of heptamannosylated β-cyclodextrins on macrophage polarization to accelerate wound healing. Colloids Surf B Biointerfaces 2021; 208:112071. [PMID: 34461486 DOI: 10.1016/j.colsurfb.2021.112071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023]
Abstract
Macrophages have high plasticity and heterogeneity, and can suppress or mediate inflammation, depending on their cytokine secretion and phenotype. Regulating macrophage polarization into its M2 phenotype has a remarkable effect on inflammatory inhibition, inducing the regeneration of injured tissues. Here, we synthesized two heptamannosylated β-cyclodextrin derivatives (CD-Man7 and C3-CD-Man7) and demonstrated that their multivalent mannose ligands could induce M2 macrophage polarization to accelerate wound healing. Unlike hydrophilic CD-Man7, amphiphilic C3-CD-Man7 can self-assemble to form nanoparticles (CD-Man-NPs) in aqueous solution. Further, in vitro results confirmed that multivalent mannose ligands of either CD-Man7 or CD-Man-NPs stimulated RAW264.7 macrophages to differentiate into the M2 phenotype, which promoted fibroblast migration via a paracrine mechanism. In vivo results confirmed that both CD-Man7 and CD-Man-NPs reduced the inflammatory response in wound tissue and accelerated wound healing. The present study demonstrates multivalent effects of CD-Man7 and CD-Man-NPs on M2 macrophage polarization, indicating the therapeutic potential of these β-cyclodextrin glycoconjugates in the treatment of inflammatory diseases and wound healing.
Collapse
|