1
|
He Z, Wang Y, Fu Y, Qin X, Lan W, Shi D, Tang Y, Yu F, Li Y. Potential impacts of polyethylene microplastics and heavy metals on Bidens pilosa L. growth: Shifts in root-associated endophyte microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137698. [PMID: 40020290 DOI: 10.1016/j.jhazmat.2025.137698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
This study investigates the impact of polyethylene (PE) microplastics of varying particle sizes and concentrations on the growth of Bidens pilosa L. and its root-associated microbial communities in cadmium (Cd) and lead (Pb) co-contaminated soil. PE microplastics had a significant impact on plant growth. Notably, at the P05-10 level, root length, root weight, and total biomass exhibited the greatest reductions by 48.9 %, 44.1 %, and 45.2 %, respectively. Furthermore, PE microplastics reduced photosynthetic pigment levels and promoted the accumulation of reactive oxygen species, as indicated by a 264.8 % and 57.2 % increase in H2O2 content in roots and leaves. High-throughput sequencing revealed substantial alterations in the composition of bacterial and fungal communities, with stress-resilient taxa such as Actinobacteria, Verrucomicrobiota, and Rhizophagus exhibiting increased relative abundance. Correlation analyses indicated that variations in soil pH and enzymatic activity influenced microbial community structure, which in turn affected plant physiological responses. Functional predictions using PICRUSt2 and BugBase suggested enhanced oxidative stress tolerance, increased secondary metabolite biosynthesis, and a higher prevalence of stress-resistant phenotypes under conditions of elevated PE concentrations and smaller particle sizes. Overall, this study provides novel insights into the potential effects of microplastics on Bidens pilosa L., particularly in its role as a hyperaccumulator, highlighting its capacity for heavy metal uptake under microplastic exposure.
Collapse
Affiliation(s)
- Ziang He
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Yanxue Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Yiyun Fu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Xiaoxiao Qin
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Wei Lan
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Dongyi Shi
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Yingxuan Tang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China.
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China.
| |
Collapse
|
2
|
Yang H, Zhang X, Yan Z, Wang Y, Wang Q, Lu B, Chen J, Wu X. Diversity and Function of Strawberry Endophytic Bacterial Communities Associated with Host Genotype and Niche. Curr Microbiol 2025; 82:244. [PMID: 40237826 PMCID: PMC12003465 DOI: 10.1007/s00284-025-04223-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Strawberry (Fragaria × ananassa) is the most widely cultivated small berries in the world. They are not only delicious, juicy, and nutritious, but also have important economic value. However, current research on endophytic bacteria related to strawberry is limited. This work provides a comprehensive description of the composition and diversity of bacterial communities in three niches (root, stem, and leaf) of three strawberry cultivars (White Elves, Tokun, and Akihime). This study indicated that the diversity and composition of strawberry bacterial communities differ significantly between the belowground niche (roots) and aboveground compartments (stems and leaves). The bacterial diversity and richness varied between niches for all three cultivars; and it significantly decreased from root to stem to leaf. The richness and alpha diversity of Akihime bacterial community were significantly lower than that of White Elves in the stems and leaves. Beneficial bacterial genera, such as Ochrobacter, Bradyrhizobium, Sphingomonas, and Pseudolobrys, were more abundant in White Elves and Tokun than in Akihime, especially in roots and stems. The results of this study provide an important reference for discovering new species or genetic variations to improve host fitness and stress tolerance. Further research is needed to uncover the interactions between plants and endophytic bacteria, as well as the potential for extracting bioactive compounds from these bacteria.
Collapse
Affiliation(s)
- Hongjun Yang
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, 212400, Jiangsu, China
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang, 212400, Jiangsu, China
| | - Xu Zhang
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, 212400, Jiangsu, China.
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang, 212400, Jiangsu, China.
| | - Zhiming Yan
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, 212400, Jiangsu, China
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang, 212400, Jiangsu, China
| | - Yuanhua Wang
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, 212400, Jiangsu, China
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang, 212400, Jiangsu, China
| | - Quanzhi Wang
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, 212400, Jiangsu, China
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang, 212400, Jiangsu, China
| | - Bei Lu
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, 212400, Jiangsu, China
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang, 212400, Jiangsu, China
| | - Jiajia Chen
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, 212400, Jiangsu, China
| | - Xiao Wu
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, 212400, Jiangsu, China
| |
Collapse
|
3
|
Chai L, Shun Y, Xue L, Yang Y, Li M. Insights into the association of Nicotiana tabacum health with eukaryotic microbial community and environmental factors. FRONTIERS IN PLANT SCIENCE 2025; 16:1563283. [PMID: 40247937 PMCID: PMC12003371 DOI: 10.3389/fpls.2025.1563283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/07/2025] [Indexed: 04/19/2025]
Abstract
As an important cash crop, Nicotiana tabacum's yield and quality are influenced by various factors, yet the correlations between its health status, microbial community, and environmental factors remain largely unexplored. In this study, we analyzed the microbial diversity of Nicotiana tabacum rhizosphere microbiomes using ITS rDNA sequencing under different conditions. Compared with soil associated with healthy Nicotiana tabacum, the alpha and beta diversity of the eukaryotic microbial community decreased in soil with diseased Nicotiana tabacum, indicating a decline in microbial abundance and composition. Compared with healthy soil, the eukaryotic microbial community in diseased soil exhibited looser structural networks, with the assembly process of both communities predominantly governed by stochastic processes. Soil element measurements and correlation analyses identified pH, manganese, and copper as key environmental factors associated with the health status of Nicotiana tabacum. A machine learning model incorporating environmental factors and major microbial phyla was developed to predict Nicotiana tabacum health status, achieving a high accuracy of 93%. These findings collectively offer comprehensive insights into the relationship between Nicotiana tabacum health status, soil conditions, environmental factors, and eukaryotic microbial community.
Collapse
Affiliation(s)
| | | | | | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Mei Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| |
Collapse
|
4
|
López Romo G, Santamaría RI, Bustos P, Echavarría F, Reveles Torres LR, Van Cauwenberghe J, González V. The rhizosphere of Phaseolus vulgaris L. cultivars hosts a similar bacterial community in local agricultural soils. PLoS One 2025; 20:e0319172. [PMID: 40111988 PMCID: PMC11925306 DOI: 10.1371/journal.pone.0319172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/29/2025] [Indexed: 03/22/2025] Open
Abstract
This study aimed to investigate the impact of various common beans (Phaseolus vulgaris L.) cultivars on the bacterial communities in the rhizosphere under local agricultural conditions. Even though the differences in cultivation history and physicochemical properties of nearby agriculture plots, the bacterial community in the bulk soil was quite similar and more diverse than that of the rhizosphere. The bacterial community of the rhizosphere was closely similar between Black and Bayo common bean cultivars but differs from Pinto Saltillo common beans collected in a different season. A shared bacterial group within the rhizosphere community across cultivars and specific taxa responding uniquely to each cultivar suggests a balance between responses to soil and plant cultivars. Nevertheless, rhizosphere composition was substantially influenced by the pre-existing soil bacterial community, whose diversity remained consistently similar under the studied field conditions. These findings provide a more comprehensive characterization of the rhizosphere across a limited range of domesticated common beans and agronomic soils that can be expanded to more common bean cultivars and soils to guide appropriate field interventions.
Collapse
Affiliation(s)
- Griselda López Romo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Rosa Isela Santamaría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Patricia Bustos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Francisco Echavarría
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Calera, Zacatecas, Mexico
| | | | - Jannick Van Cauwenberghe
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Víctor González
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
5
|
Ordon J, Logemann E, Maier LP, Lee T, Dahms E, Oosterwijk A, Flores-Uribe J, Miyauchi S, Paoli L, Stolze SC, Nakagami H, Felix G, Garrido-Oter R, Ma KW, Schulze-Lefert P. Conserved immunomodulation and variation in host association by Xanthomonadales commensals in Arabidopsis root microbiota. NATURE PLANTS 2025; 11:612-631. [PMID: 39972185 PMCID: PMC11928319 DOI: 10.1038/s41477-025-01918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/14/2025] [Indexed: 02/21/2025]
Abstract
Suppression of chronic Arabidopsis immune responses is a widespread but typically strain-specific trait across the major bacterial lineages of the plant microbiota. We show by phylogenetic analysis and in planta associations with representative strains that immunomodulation is a highly conserved, ancestral trait across Xanthomonadales, and preceded specialization of some of these bacteria as host-adapted pathogens. Rhodanobacter R179 activates immune responses, yet root transcriptomics suggest this commensal evades host immune perception upon prolonged association. R179 camouflage likely results from combined activities of two transporter complexes (dssAB) and the selective elimination of immunogenic peptides derived from all partners. The ability of R179 to mask itself and other commensals from the plant immune system is consistent with a convergence of distinct root transcriptomes triggered by immunosuppressive or non-suppressive synthetic microbiota upon R179 co-inoculation. Immunomodulation through dssAB provided R179 with a competitive advantage in synthetic communities in the root compartment. We propose that extensive immunomodulation by Xanthomonadales is related to their adaptation to terrestrial habitats and might have contributed to variation in strain-specific root association, which together accounts for their prominent role in plant microbiota establishment.
Collapse
Affiliation(s)
- Jana Ordon
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Elke Logemann
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Louis-Philippe Maier
- Center for Plant Molecular Biology, University Tuebingen, Tuebingen, Germany
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Tak Lee
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Eik Dahms
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Regional Computing Centre, University of Cologne, Cologne, Germany
| | - Anniek Oosterwijk
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Jose Flores-Uribe
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Shingo Miyauchi
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sara Christina Stolze
- Protein Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Hirofumi Nakagami
- Protein Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Georg Felix
- Center for Plant Molecular Biology, University Tuebingen, Tuebingen, Germany
| | - Ruben Garrido-Oter
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Ka-Wai Ma
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
6
|
Luo C, He Y, Chen Y. Rhizosphere microbiome regulation: Unlocking the potential for plant growth. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100322. [PMID: 39678067 PMCID: PMC11638623 DOI: 10.1016/j.crmicr.2024.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Rhizosphere microbial communities are essential for plant growth and health maintenance, but their recruitment and functions are affected by their interactions with host plants. Finding ways to use the interaction to achieve specific production purposes, so as to reduce the use of chemical fertilizers and pesticides, is an important research approach in the development of green agriculture. To demonstrate the importance of rhizosphere microbial communities and guide practical production applications, this review summarizes the outstanding performance of rhizosphere microbial communities in promoting plant growth and stress tolerance. We also discuss the effect of host plants on their rhizosphere microbes, especially emphasizing the important role of host plant species and genes in the specific recruitment of beneficial microorganisms to improve the plants' own traits. The aim of this review is to provide valuable insights into developing plant varieties that can consistently recruit specific beneficial microorganisms to improve crop adaptability and productivity, and thus can be applied to green and sustainable agriculture in the future.
Collapse
Affiliation(s)
- Chenghua Luo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yijun He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaping Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| |
Collapse
|
7
|
Xie G, Yin Z, Zhang Z, Wang X, Sun C. Microbial diversity and potential functional dynamics within the rhizocompartments of Dendrobium huoshanense. FRONTIERS IN PLANT SCIENCE 2024; 15:1450716. [PMID: 39372857 PMCID: PMC11449778 DOI: 10.3389/fpls.2024.1450716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
Introduction Understanding the microbial diversity and potential functional dynamics within the rhizocompartments of Dendrobium huoshanense is crucial for unraveling the plant-microbe interactions that influence its medicinal properties. Methods This study is the first to characterize the microbiome associated with the rhizocompartments of D. huoshanense, including its cultivation medium, rhizosphere, rhizoplane, and root endosphere, using high-throughput sequencing and subsequent bioinformatic analysis. Results Bacterial phylogenetic diversity was significantly higher in the endosphere than in the rhizosphere, while fungal α-diversity significantly decreased from the cultivation medium to the endosphere. Both bacterial and fungal niche widths decreased from the cultivation medium to the endosphere. β-Diversity analysis revealed distinct spatial patterns in both bacterial and fungal communities across the rhizocompartments, with the most pronounced differences between the cultivation medium and the endosphere. Taxonomically, Proteobacteria and Ascomycota were predominant in the endosphere for bacterial and fungal communities, respectively. Functional predictions showed significant enrichment of pathways related to xenobiotics biodegradation, lipid metabolism, and nitrogen fixation in the endosphere, while functions associated with plant pathogens and saprotrophs were significantly reduced. Discussion The results indicate a shift from generalist to specialist microbes from the cultivation medium to the endosphere, suggesting that D. huoshanense exerts strong selective pressure for endophytic fungi. Interestingly, a high proportion of fungi with unknown functions were found in the endosphere, highlighting an area for further research regarding the medicinal efficacy of D. huoshanense. Overall, this study provides foundational data for understanding the adaptive evolution of these microbial communities in response to specific microhabitats.
Collapse
Affiliation(s)
- Guijuan Xie
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu’an, China
- Anhui Engineering Technology Center for Conservation and Utilization of Traditional Chinese Medicine Resource, Lu’an, China
| | - Zhichao Yin
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Zhenlin Zhang
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Xinyu Wang
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Chuanbo Sun
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu’an, China
- Anhui Engineering Technology Center for Conservation and Utilization of Traditional Chinese Medicine Resource, Lu’an, China
| |
Collapse
|
8
|
Li F, Sun A, Jiao X, Yu DT, Ren P, Wu BX, He P, Bi L, He JZ, Hu HW. Nitrogenous fertilizer plays a more important role than cultivars in shaping sorghum-associated microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173831. [PMID: 38866152 DOI: 10.1016/j.scitotenv.2024.173831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
The plant microbiome plays a crucial role in facilitating plant growth through enhancing nutrient cycling, acquisition and transport, as well as alleviating stresses induced by nutrient limitations. Despite its significance, the relative importance of common agronomic practices, such as nitrogenous fertilizer, in shaping the plant microbiome across different cultivars remains unclear. This study investigated the dynamics of bacterial and fungal communities in leaf, root, rhizosphere, and bulk soil in response to nitrogenous fertilizer across ten sorghum varieties, using 16S rRNA and ITS gene amplicon sequencing, respectively. Our results revealed that nitrogen addition had a greater impact on sorghum-associated microbial communities compared to cultivar. Nitrogen addition significantly reduced bacterial diversity in all compartments except for the root endophytes. However, N addition significantly increased fungal diversity in both rhizosphere and bulk soils, while significantly reducing fungal diversity in the root endophytes. Furthermore, N addition significantly altered the community composition of bacteria and fungi in all four compartments, while cultivars only affected the community composition of root endosphere bacteria and fungi. Network analysis revealed that fertilization significantly reduced microbial network complexity and increased fungal-related network complexity. Collectively, this study provides empirical evidence that sorghum-associated microbiomes are predominantly shaped by nitrogenous fertilizer rather than by cultivars, suggesting that consistent application of nitrogenous fertilizer will ultimately alter plant-associated microbiomes regardless of cultivar selection.
Collapse
Affiliation(s)
- Fangfang Li
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Anqi Sun
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaoyan Jiao
- College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
| | - Dan-Ting Yu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China.
| | - Peixin Ren
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Bing-Xue Wu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Peng He
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Li Bi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ji-Zheng He
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
9
|
Spooren J, van Bentum S, Thomashow LS, Pieterse CMJ, Weller DM, Berendsen RL. Plant-Driven Assembly of Disease-Suppressive Soil Microbiomes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:1-30. [PMID: 38857541 DOI: 10.1146/annurev-phyto-021622-100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Plants have coevolved together with the microbes that surround them and this assemblage of host and microbes functions as a discrete ecological unit called a holobiont. This review outlines plant-driven assembly of disease-suppressive microbiomes. Plants are colonized by microbes from seed, soil, and air but selectively shape the microbiome with root exudates, creating microenvironment hot spots where microbes thrive. Using plant immunity for gatekeeping and surveillance, host-plant genetic properties govern microbiome assembly and can confer adaptive advantages to the holobiont. These advantages manifest in disease-suppressive soils, where buildup of specific microbes inhibits the causal agent of disease, that typically develop after an initial disease outbreak. Based on disease-suppressive soils such as take-all decline, we developed a conceptual model of how plants in response to pathogen attack cry for help and recruit plant-protective microbes that confer increased resistance. Thereby, plants create a soilborne legacy that protects subsequent generations and forms disease-suppressive soils.
Collapse
Affiliation(s)
- Jelle Spooren
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Sietske van Bentum
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Linda S Thomashow
- Wheat Health, Genetics and Quality Research Unit, US Department of Agriculture, Agricultural Research Service, Pullman, Washington, USA;
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - David M Weller
- Wheat Health, Genetics and Quality Research Unit, US Department of Agriculture, Agricultural Research Service, Pullman, Washington, USA;
| | - Roeland L Berendsen
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
Poupin MJ, González B. Embracing complexity in plant-microbiome systems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70000. [PMID: 39189551 PMCID: PMC11348195 DOI: 10.1111/1758-2229.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/27/2024] [Indexed: 08/28/2024]
Abstract
Despite recent advances in understanding the role of microorganisms in plant holobiont metabolism, physiology, and fitness, several relevant questions are yet to be answered, with implications for ecology, evolution, and sustainable agriculture. This article explores some of these questions and discusses emerging research areas in plant microbiomes. Firstly, it emphasizes the need to move beyond taxonomic characterization towards understanding microbial functions within plant ecosystems. Secondly, controlling methodological biases and enhancing OMICS technologies' standardization is imperative for a deeper comprehension of plant-microbiota interactions. Furthermore, while plant microbiota research has primarily centred on bacteria and fungi, other microbial players such as archaea, viruses, and microeukaryotes have been largely overlooked. Emerging evidence highlights their presence and potential roles, underscoring the need for thorough assessments. Future research should aim to elucidate the ecological microbial interactions, their impact on plant performance, and how the plant context shapes microbial community dynamics. Finally, a discussion is provided on how the multiple layers of abiotic and biotic factors influencing the spatiotemporal dynamics of plant-microbiome systems require in-depth attention. Examples illustrate how synthetic communities and computational methods such as machine learning and artificial intelligence provide alternatives to tackle these challenges and analyse the plant holobiont as a complex system.
Collapse
Affiliation(s)
- María Josefina Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezSantiagoChile
- Center of Applied Ecology and Sustainability (CAPES)SantiagoChile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN‐SAP)SantiagoChile
| | - Bernardo González
- Laboratorio de Bioingeniería, Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezSantiagoChile
- Center of Applied Ecology and Sustainability (CAPES)SantiagoChile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN‐SAP)SantiagoChile
| |
Collapse
|
11
|
Qu P, Wang B, Qi M, Lin R, Chen H, Xie C, Zhang Z, Qiu J, Du H, Ge Y. Medicinal Plant Root Exudate Metabolites Shape the Rhizosphere Microbiota. Int J Mol Sci 2024; 25:7786. [PMID: 39063028 PMCID: PMC11277521 DOI: 10.3390/ijms25147786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The interactions between plants and rhizosphere microbes mediated by plant root exudates are increasingly being investigated. The root-derived metabolites of medicinal plants are relatively diverse and have unique characteristics. However, whether medicinal plants influence their rhizosphere microbial community remains unknown. How medicinal plant species drive rhizosphere microbial community changes should be clarified. In this study involving high-throughput sequencing of rhizosphere microbes and an analysis of root exudates using a gas chromatograph coupled with a time-of-flight mass spectrometer, we revealed that the root exudate metabolites and microorganisms differed among the rhizosphere soils of five medicinal plants. Moreover, the results of a correlation analysis indicated that bacterial and fungal profiles in the rhizosphere soils of the five medicinal plants were extremely significantly or significantly affected by 10 root-associated metabolites. Furthermore, among the 10 root exudate metabolites, two (carvone and zymosterol) had opposite effects on rhizosphere bacteria and fungi. Our study findings suggest that plant-derived exudates modulate changes to rhizosphere microbial communities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huabo Du
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665099, China; (P.Q.); (B.W.); (M.Q.); (R.L.); (H.C.); (C.X.); (Z.Z.); (J.Q.)
| | - Yu Ge
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665099, China; (P.Q.); (B.W.); (M.Q.); (R.L.); (H.C.); (C.X.); (Z.Z.); (J.Q.)
| |
Collapse
|
12
|
Liu X, Guo Y, Li Y, Li Q, Yao L, Yu J, Chen H, Wu K, Qiu D, Wu Z, Zhou Q. Mitigating sediment cadmium contamination through combining PGPR Enterobacter ludwigii with the submerged macrophyte Vallisneria natans. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134662. [PMID: 38788574 DOI: 10.1016/j.jhazmat.2024.134662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Sediment cadmium contamination poses risks to aquatic ecosystems. Phytoremediation is an environmentally sustainable method to mitigate cadmium contamination. Submerged macrophytes are affected by cadmium stress, but plant growth-promoting rhizobacteria (PGPR) can restore the health status of submerged macrophytes. Herein, we aimed to reduce sediment cadmium concentration and reveal the mechanism by which the combined application of the PGPR Enterobacter ludwigii and the submerged macrophyte Vallisneria natans mitigates cadmium contamination. Sediment cadmium concentration decreased by 21.59% after submerged macrophytes were planted with PGPR, probably because the PGPR colonized the rhizosphere and roots of the macrophytes. The PGPR induced a 5.09-fold increase in submerged macrophyte biomass and enhanced plant antioxidant response to cadmium stress, as demonstrated by decreases in oxidative product levels (reactive oxygen species and malondialdehyde), which corresponded to shift in rhizosphere metabolism, notably in antioxidant defence systems (i.e., the peroxidation of linoleic acid into 9-hydroperoxy-10E,12Z-octadecadienoic acid) and in some amino acid metabolism pathways (i.e., arginine and proline). Additionally, PGPR mineralized carbon in the sediment to promote submerged macrophyte growth. Overall, PGPR mitigated sediment cadmium accumulation via a synergistic plantmicrobe mechanism. This work revealed the mechanism by which PGPR and submerged macrophytes control cadmium concentration in contaminated sediment.
Collapse
Affiliation(s)
- Xiangfen Liu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Guo
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yahua Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Qianzheng Li
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lu Yao
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Junqi Yu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Han Chen
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaixuan Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongru Qiu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenbin Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Qiaohong Zhou
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
13
|
Liu Q, Zhu J, Sun M, Song L, Ke M, Ni Y, Fu Z, Qian H, Lu T. Multigenerational Adaptation Can Enhance the Pathogen Resistance of Plants via Changes in Rhizosphere Microbial Community Assembly. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14581-14591. [PMID: 38957087 DOI: 10.1021/acs.jafc.4c02200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Plants withstand pathogen attacks by recruiting beneficial bacteria to the rhizosphere and passing their legacy on to the next generation. However, the underlying mechanisms involved in this process remain unclear. In our study, we combined microbiomic and transcriptomic analyses to reveal how the rhizosphere microbiome assembled through multiple generations and defense-related genes expressed in Arabidopsis thaliana under pathogen attack stress. Our results showed that continuous exposure to the pathogen Pseudomonas syringae pv tomato DC3000 led to improved growth and increased disease resistance in a third generation of rps2 mutant Arabidopsis thaliana. It could be attributed to the enrichment of specific rhizosphere bacteria, such as Bacillus and Bacteroides. Pathways associated with plant immunity and growth in A. thaliana, such as MAPK signaling pathways, phytohormone signal transduction, ABC transporter proteins, and flavonoid biosynthesis, were activated under the influence of rhizosphere bacterial communities. Our findings provide a scientific basis for explaining the relationship between beneficial microbes and defense-related gene expression. Understanding microbial communities and the mechanisms involved in plant responses to disease can contribute to better plant management and reduction of pesticide use.
Collapse
Affiliation(s)
- Qiuyun Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jichao Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Mengyan Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lin Song
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
14
|
Idowu AP, Yamamoto K, Koizumi T, Matsutani M, Takada K, Shiwa Y, Asfaw A, Matsumoto R, Ouyabe M, Pachakkil B, Kikuno H, Shiwachi H. Changes in the rhizosphere and root-associated bacteria community of white Guinea yam ( Dioscorea rotundata Poir.) impacted by genotype and nitrogen fertilization. Heliyon 2024; 10:e33169. [PMID: 39021943 PMCID: PMC11252748 DOI: 10.1016/j.heliyon.2024.e33169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
The bacterial diversity and composition of water yam (Dioscorea alata L. cv. A-19), which can grow without chemical fertilization, have recently been characterized with no significant differences compared with the use of chemical fertilization. However, the diversity and community structure of bacteria associated with the white Guinea yam (Dioscorea rotundata), the most cultivated and economically important yam in West Africa, have not yet been investigated. This study characterized the bacterial diversity and composition associated with bulk soil, rhizosphere, and plant roots in six white Guinea yam genotypes (S004, S020, S032, S042, S058, and S074) in field experiments in Ibadan, Nigeria under N-based chemical fertilizer application. The largest diversity of bacteria was found in the bulk soil, followed by the rhizosphere and roots. Based on the alpha diversity analysis, the bacterial diversity in both S020 and S042 increased with fertilizer application among the bulk soil samples. S058 grown under no-fertilizer conditions had the highest bacterial diversity among the rhizosphere samples. Beta diversity analysis highlighted the significant difference in the composition of bacteria associated with the genotypes and fertilizer treatments, and S032 had a unique bacterial composition compared to the other genotypes. The dominant phylum across all sample types was Proteobacteria. Actinobacteriota was the dominant phylum among bulk soil samples. At the genus level, Bacillus was the most abundant bacterial genus across both the control and treated samples. Pseudomonas was predominant across all rhizosphere samples. Chryseobacterium, Sphingobium, Delftia and Klebsiella associated with the rhizosphere were shown the altered relative abundance between the control and treated samples depending on genotypes. A genus related to symbiotic nitrogen-fixing bacteria, the Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade, showed higher relative abundance among all root samples, indicating that it is a core bacterial genus. Furthermore, the field application of chemical fertilizer had a significant impact on the relative abundances of two genera related to symbiotic nitrogen-fixers, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade and Bradyrhizobium in the rhizosphere and root. These results suggest that N-based chemical fertilizers and plant genotypes would influence the compositional arrangement of associated bacterial communities, including symbiotic nitrogen-fixing bacteria.
Collapse
Affiliation(s)
- Ayodeji Peter Idowu
- Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Tokyo, Japan
| | - Kosuke Yamamoto
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Takahiko Koizumi
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | | | - Kanako Takada
- Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuh Shiwa
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Asrat Asfaw
- International Institute of Tropical Agriculture (IITA), PMB 5320 Oyo Road Ibadan, Nigeria
| | - Ryo Matsumoto
- International Institute of Tropical Agriculture (IITA), PMB 5320 Oyo Road Ibadan, Nigeria
| | - Michel Ouyabe
- Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Tokyo, Japan
| | - Babil Pachakkil
- Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Tokyo, Japan
| | - Hidehiko Kikuno
- Miyako Subtropical Training and Research Farm, Tokyo University of Agriculture, Okinawa, Japan
| | - Hironobu Shiwachi
- Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
15
|
Wei F, Feng Z, Yang C, Zhao L, Zhang Y, Zhou J, Feng H, Zhu H, Xu X. Genetic control of rhizosphere microbiome of the cotton plants under field conditions. Appl Microbiol Biotechnol 2024; 108:371. [PMID: 38861165 PMCID: PMC11166756 DOI: 10.1007/s00253-024-13143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 06/12/2024]
Abstract
Understanding the extent of heritability of a plant-associated microbiome (phytobiome) is critically important for exploitation of phytobiomes in agriculture. Two crosses were made between pairs of cotton cultivars (Z2 and J11, L1 and Z49) with differential resistance to Verticillium wilt. F2 plants were grown in a field, together with the four parents to study the heritability of cotton rhizosphere microbiome. Amplicon sequencing was used to profile bacterial and fungal communities in the rhizosphere. F2 offspring plants of both crosses had higher average alpha diversity indices than the two parents; parents differed significantly from F2 offspring in Bray-Curtis beta diversity indices as well. Two types of data were used to study the heritability of rhizosphere microbiome: principal components (PCs) and individual top microbial operational taxonomic units (OTUs). For the L1 × Z49 cross, the variance among the F2 progeny genotypes (namely, genetic variance, VT) was significantly greater than the random variability (VE) for 12 and 34 out of top 100 fungal and bacterial PCs, respectively. For the Z2 × J11 cross, the corresponding values were 10 and 20 PCs. For 29 fungal OTUs and 10 bacterial OTUs out of the most abundant 100 OTUs, genetic variance (VT) was significantly greater than VE for the L1 × Z49 cross; the corresponding values for the Z2 × J11 cross were 24 and one. The estimated heritability was mostly in the range of 40% to 60%. These results suggested the existence of genetic control of polygenic nature for specific components of rhizosphere microbiome in cotton. KEY POINTS: • F2 offspring cotton plants differed significantly from parents in rhizosphere microbial diversity. • Specific rhizosphere components are likely to be genetically controlled by plants. • Common PCs and specific microbial groups are significant genetic components between the two crosses.
Collapse
Affiliation(s)
- Feng Wei
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zili Feng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Chuanzhen Yang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lihong Zhao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yalin Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Jinglong Zhou
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hongjie Feng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Heqin Zhu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | | |
Collapse
|
16
|
Kifushi M, Nishikawa Y, Hosokawa M, Ide K, Kogawa M, Anai T, Takeyama H. Analysis of microbial dynamics in the soybean root-associated environments from community to single-cell levels. J Biosci Bioeng 2024; 137:429-436. [PMID: 38570219 DOI: 10.1016/j.jbiosc.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
Plant root-associated environments such as the rhizosphere, rhizoplane, and endosphere, are notably different from non-root-associated soil environments. However, the microbial dynamics in these spatially divided compartments remain unexplored. In this study, we propose a combinational analysis of single-cell genomics with 16S rRNA gene sequencing. This method enabled us to understand the entire soil microbiome and individual root-associated microorganisms. We applied this method to soybean microbiomes and revealed that their composition was different between the rhizoplane and rhizosphere in the early growth stages, but became more similar as growth progressed. In addition, a total of 610 medium- to high-quality single-amplified genomes (SAGs) were acquired, including plant growth-promoting rhizobacteria (PGPR) candidates while genomes with high GC content tended to be missed by SAGs. The whole-genome analyses of the SAGs suggested that rhizoplane-enriched Flavobacterium solubilizes organophosphate actively and Bacillus colonizes roots more efficiently. Single-cell genomics, together with 16S rRNA gene sequencing, enabled us to connect microbial taxonomy and function, and assess microorganisms at a strain resolution even in the complex soil microbiome.
Collapse
Affiliation(s)
- Masako Kifushi
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masahito Hosokawa
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Keigo Ide
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masato Kogawa
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Toyoaki Anai
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Haruko Takeyama
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| |
Collapse
|
17
|
Du S, Wang L, Yang H, Zhang Q. Tree phylogeny predicts more than litter chemical components in explaining enzyme activities in forest leaf litter decomposition. Microbiol Res 2024; 283:127658. [PMID: 38457993 DOI: 10.1016/j.micres.2024.127658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/10/2024]
Abstract
Litter decomposition is an important process in ecosystem and despite recent research elucidating the significant influence of plant phylogeny on plant-associated microbial communities, it remains uncertain whether a parallel correlation exists between plant phylogeny and the community of decomposers residing in forest litter. In this study, we conducted a controlled litterbag experiment using leaf litter from ten distinct tree species in a central subtropical forest ecosystem in a region characterized by subtropical humid monsoon climate in China. The litterbags were placed in situ using a random experimental design and were collected after 12 months of incubation. Then, the litter chemical properties, microbial community composition and activities of enzyme related to the decomposition of organic carbon (C) and nitrogen (N) were assessed. Across all ten tree species, Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria were identified as the predominant bacterial classes, while the primary fungal classes were Dothideomycetes, Sordariomycetes and Eurotiomycetes. Mantel test revealed significant correlations between litter chemical component and microbial communities, as well as enzyme activities linked to N and C metabolism. However, after controlling for plant phylogenetic distance in partial Mantel test, the relationships between litter chemical component and microbial community structure and enzyme activities were not significant. Random forest and structural equation modeling indicated that plant phylogenetic distance exerted a more substantial influence than litter chemical components on microbial communities and enzyme activities associated with the decomposition of leaf litter. In summary, plant phylogenic divergence was found to be a more influential predictor of enzyme activity variations than microbial communities and litter traits, which were commonly considered reliable indicators of litter decomposition and ecosystem function, thereby highlighting the previously underestimated significance of plant phylogeny in shaping litter microbial communities and enzyme activities associated with degradation processes in forest litter.
Collapse
Affiliation(s)
- Shuhui Du
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030800, PR China
| | - Lujun Wang
- Anhui Academy of Forestry, No.618-1 Huangshan Road, Shushan District, Hefei 230031, PR China
| | - Haishui Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qian Zhang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China.
| |
Collapse
|
18
|
Huang Q, Zhang Y, Tan Y, Kong H, Cao Y, Wang J, Yin G, Guo A. Bt-Modified Transgenic Rice May Shift the Composition and Diversity of Rhizosphere Microbiota. PLANTS (BASEL, SWITZERLAND) 2024; 13:1300. [PMID: 38794371 PMCID: PMC11125220 DOI: 10.3390/plants13101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Plants significantly shape root-associated microbiota, making rhizosphere microbes useful environmental indicator organisms for safety assessment. Here, we report the pyrosequencing of the bacterial 16S ribosomal RNA in rhizosphere soil samples collected from transgenic cry1Ab/cry1Ac Bt rice Huahui No. 1 (GM crop) and its parental counterpart, Minghui63. We identified a total of 2579 quantifiable bacterial operational taxonomic units (OTUs). Many treatment-enriched microbial OTUs were identified, including 14 NonGM-enriched OTUs and 10 GM-enriched OTUs. OTUs belonging to the phyla Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes, Nitrospirae, Chlorobi and GN04 were identified as statistically different in abundance between GM and the other two treatments. Compared with the different impacts of different rice varieties on microbiota, the impact of rice planting on microbiota is more obvious. Furthermore, Huahui No. 1 transgenic Bt rice had a greater impact on the rhizosphere bacterial communities than Minghui63. Early developmental stages of the transgenic Bt rice had a significant impact on many Bacillaceae communities. Soil chemical properties were not significantly altered by the presence of transgenic Bt rice. The peak concentration level of Bt protein products was detected during the seedling stage of transgenic Bt rice, which may be an intriguing factor for bacterial diversity variations. Based on these findings, we conclude that transgenic Bt rice has a significant impact on root-associated bacteria. This information may be leveraged in future environmental safety assessments of transgenic Bt rice varieties.
Collapse
Affiliation(s)
- Qixing Huang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Sanya 572024, China; (Q.H.); (Y.Z.); (Y.C.); (J.W.)
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
- National Plant Protection Observation and Experiment Station at Sanya, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Sanya 572024, China
| | - Yuliang Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Sanya 572024, China; (Q.H.); (Y.Z.); (Y.C.); (J.W.)
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
- National Plant Protection Observation and Experiment Station at Sanya, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Sanya 572024, China
| | - Yanhua Tan
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Sanya 572024, China; (Q.H.); (Y.Z.); (Y.C.); (J.W.)
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
- National Plant Protection Observation and Experiment Station at Sanya, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Sanya 572024, China
| | - Hua Kong
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Sanya 572024, China; (Q.H.); (Y.Z.); (Y.C.); (J.W.)
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
- National Plant Protection Observation and Experiment Station at Sanya, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Sanya 572024, China
| | - Yang Cao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Sanya 572024, China; (Q.H.); (Y.Z.); (Y.C.); (J.W.)
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
- National Plant Protection Observation and Experiment Station at Sanya, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Sanya 572024, China
| | - Jungang Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Sanya 572024, China; (Q.H.); (Y.Z.); (Y.C.); (J.W.)
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Guohua Yin
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Anping Guo
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Sanya 572024, China; (Q.H.); (Y.Z.); (Y.C.); (J.W.)
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
- National Plant Protection Observation and Experiment Station at Sanya, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Sanya 572024, China
| |
Collapse
|
19
|
Zhao C, Onyino J, Gao X. Current Advances in the Functional Diversity and Mechanisms Underlying Endophyte-Plant Interactions. Microorganisms 2024; 12:779. [PMID: 38674723 PMCID: PMC11052469 DOI: 10.3390/microorganisms12040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Plant phenotype is a complex entity largely controlled by the genotype and various environmental factors. Importantly, co-evolution has allowed plants to coexist with the biotic factors in their surroundings. Recently, plant endophytes as an external plant phenotype, forming part of the complex plethora of the plant microbial assemblage, have gained immense attention from plant scientists. Functionally, endophytes impact the plant in many ways, including increasing nutrient availability, enhancing the ability of plants to cope with both abiotic and biotic stress, and enhancing the accumulation of important plant secondary metabolites. The current state of research has been devoted to evaluating the phenotypic impacts of endophytes on host plants, including their direct influence on plant metabolite accumulation and stress response. However, there is a knowledge gap in how genetic factors influence the interaction of endophytes with host plants, pathogens, and other plant microbial communities, eventually controlling the extended microbial plant phenotype. This review will summarize how host genetic factors can impact the abundance and functional diversity of the endophytic microbial community, how endophytes influence host gene expression, and the host-endophyte-pathogen disease triangle. This information will provide novel insights into how breeders could specifically target the plant-endophyte extended phenotype for crop improvement.
Collapse
Affiliation(s)
- Caihong Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Johnmark Onyino
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiquan Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Bamba M, Akyol TY, Azuma Y, Quilbe J, Andersen SU, Sato S. Synergistic effects of plant genotype and soil microbiome on growth in Lotus japonicus. FEMS Microbiol Ecol 2024; 100:fiae056. [PMID: 38678008 PMCID: PMC11068475 DOI: 10.1093/femsec/fiae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
The biological interactions between plants and their root microbiomes are essential for plant growth, and even though plant genotype (G), soil microbiome (M), and growth conditions (environment; E) are the core factors shaping root microbiome, their relationships remain unclear. In this study, we investigated the effects of G, M, and E and their interactions on the Lotus root microbiome and plant growth using an in vitro cross-inoculation approach, which reconstructed the interactions between nine Lotus accessions and four soil microbiomes under two different environmental conditions. Results suggested that a large proportion of the root microbiome composition is determined by M and E, while G-related (G, G × M, and G × E) effects were significant but small. In contrast, the interaction between G and M had a more pronounced effect on plant shoot growth than M alone. Our findings also indicated that most microbiome variations controlled by M have little effect on plant phenotypes, whereas G × M interactions have more significant effects. Plant genotype-dependent interactions with soil microbes warrant more attention to optimize crop yield and resilience.
Collapse
Affiliation(s)
- Masaru Bamba
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Turgut Yigit Akyol
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Yusuke Azuma
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Johan Quilbe
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Stig Uggerhøj Andersen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| |
Collapse
|
21
|
Maitra P, Hrynkiewicz K, Szuba A, Jagodziński AM, Al-Rashid J, Mandal D, Mucha J. Metabolic niches in the rhizosphere microbiome: dependence on soil horizons, root traits and climate variables in forest ecosystems. FRONTIERS IN PLANT SCIENCE 2024; 15:1344205. [PMID: 38645395 PMCID: PMC11026606 DOI: 10.3389/fpls.2024.1344205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/18/2024] [Indexed: 04/23/2024]
Abstract
Understanding belowground plant-microbial interactions is important for biodiversity maintenance, community assembly and ecosystem functioning of forest ecosystems. Consequently, a large number of studies were conducted on root and microbial interactions, especially in the context of precipitation and temperature gradients under global climate change scenarios. Forests ecosystems have high biodiversity of plants and associated microbes, and contribute to major primary productivity of terrestrial ecosystems. However, the impact of root metabolites/exudates and root traits on soil microbial functional groups along these climate gradients is poorly described in these forest ecosystems. The plant root system exhibits differentiated exudation profiles and considerable trait plasticity in terms of root morphological/phenotypic traits, which can cause shifts in microbial abundance and diversity. The root metabolites composed of primary and secondary metabolites and volatile organic compounds that have diverse roles in appealing to and preventing distinct microbial strains, thus benefit plant fitness and growth, and tolerance to abiotic stresses such as drought. Climatic factors significantly alter the quantity and quality of metabolites that forest trees secrete into the soil. Thus, the heterogeneities in the rhizosphere due to different climate drivers generate ecological niches for various microbial assemblages to foster beneficial rhizospheric interactions in the forest ecosystems. However, the root exudations and microbial diversity in forest trees vary across different soil layers due to alterations in root system architecture, soil moisture, temperature, and nutrient stoichiometry. Changes in root system architecture or traits, e.g. root tissue density (RTD), specific root length (SRL), and specific root area (SRA), impact the root exudation profile and amount released into the soil and thus influence the abundance and diversity of different functional guilds of microbes. Here, we review the current knowledge about root morphological and functional (root exudation) trait changes that affect microbial interactions along drought and temperature gradients. This review aims to clarify how forest trees adapt to challenging environments by leveraging their root traits to interact beneficially with microbes. Understanding these strategies is vital for comprehending plant adaptation under global climate change, with significant implications for future research in plant biodiversity conservation, particularly within forest ecosystems.
Collapse
Affiliation(s)
- Pulak Maitra
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Agnieszka Szuba
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Andrzej M. Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of Game Management and Forest Protection, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| | - Jubair Al-Rashid
- Tianjin Institute of Industrial Biotechnology, University of Chinese Academy of Sciences, Tianjin, China
| | - Dipa Mandal
- Institute of Microbiology, University of Chinese Academy of Sciences, Beijing, China
| | - Joanna Mucha
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of Forest Entomology and Pathology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
22
|
Mousa WK, Abu-Izneid T, Salah-Tantawy A. High-throughput sequencing reveals the structure and metabolic resilience of desert microbiome confronting climate change. FRONTIERS IN PLANT SCIENCE 2024; 15:1294173. [PMID: 38510442 PMCID: PMC10953687 DOI: 10.3389/fpls.2024.1294173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024]
Abstract
Introduction Desert ecosystems harbor a unique microbial diversity that is crucial for ecological stability and biogeochemical cycles. An in-depth understanding of the biodiversity, compositions, and functions of these microbial communities is imperative to navigate global changes and confront potential threats and opportunities applicable to agricultural ecosystems amid climate change. Methods This study explores microbial communities in the rhizosphere and endosphere of desert plants native to the Arabian Peninsula using next-generation sequencing of the 16S rRNA gene (V3-V4 hypervariable region). Results Our results reveal that each microbial community has a diverse and unique microbial composition. Based on alpha and beta diversity indices, the rhizosphere microbiome is significantly diverse and richer in microbial taxa compared to the endosphere. The data reveals a shift towards fast-growing microbes with active metabolism, involvement in nutrient cycling, nitrogen fixation, and defense pathways. Our data reveals the presence of habitat-specific microbial communities in the desert, highlighting their remarkable resilience and adaptability to extreme environmental conditions. Notably, we observed the existence of radiation-resistant microbes such as Deinococcus radiotolerans, Kocuria sp., and Rubrobacter radiotolerans which can tolerate high levels of ionizing radiation. Additionally, examples of microbes exhibiting tolerance to challenging conditions include Nocardioides halotolerans, thriving in high-salinity environments, and hyperthermophilic microbes such as Quasibacillus thermotolerans. Moreover, functional analysis reveals enrichment in chaperon biosynthesis pathways associated with correct protein folding under heat stress conditions. Discussion Our research sheds light on the unique diversity of desert microbes and underscores their potential applications to increase the resilience of agriculture ecosystems, offering a promising strategy to fortify crops against the challenges posed by climate change, ultimately supporting sustainable food production for our ever-expanding global population.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- Al Ain University (AAU) Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Tareq Abu-Izneid
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- Al Ain University (AAU) Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Ahmed Salah-Tantawy
- Institute of Analytical and Environmental Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu, Taiwan
- Department of Zoology, Marine Science Division, College of Science, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
23
|
Wang Y, Xue D, Chen X, Qiu Q, Chen H. Structure and Functions of Endophytic Bacterial Communities Associated with Sphagnum Mosses and Their Drivers in Two Different Nutrient Types of Peatlands. MICROBIAL ECOLOGY 2024; 87:47. [PMID: 38407642 PMCID: PMC10896819 DOI: 10.1007/s00248-024-02355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Sphagnum mosses are keystone plant species in the peatland ecosystems that play a crucial role in the formation of peat, which shelters a broad diversity of endophytic bacteria with important ecological functions. In particular, methanotrophic and nitrogen-fixing endophytic bacteria benefit Sphagnum moss hosts by providing both carbon and nitrogen. However, the composition and abundance of endophytic bacteria from different species of Sphagnum moss in peatlands of different nutrient statuses and their drivers remain unclear. This study used 16S rRNA gene amplicon sequencing to examine endophytic bacterial communities in Sphagnum mosses and measured the activity of methanotrophic microbial by the 13C-CH4 oxidation rate. According to the results, the endophytic bacterial community structure varied among Sphagnum moss species and Sphagnum capillifolium had the highest endophytic bacterial alpha diversity. Moreover, chlorophyll, phenol oxidase, carbon contents, and water retention capacity strongly shaped the communities of endophytic bacteria. Finally, Sphagnum palustre in Hani (SP) had a higher methane oxidation rate than S. palustre in Taishanmiao. This result is associated with the higher average relative abundance of Methyloferula an obligate methanotroph in SP. In summary, this work highlights the effects of Sphagnum moss characteristics on the endophytic bacteriome. The endophytic bacteriome is important for Sphagnum moss productivity, as well as for carbon and nitrogen cycles in Sphagnum moss peatlands.
Collapse
Affiliation(s)
- Yue Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Xue
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China.
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China.
| | - Xuhui Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Qiu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Huai Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China.
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China.
| |
Collapse
|
24
|
Abulfaraj AA, Shami AY, Alotaibi NM, Alomran MM, Aloufi AS, Al-Andal A, AlHamdan NR, Alshehrei FM, Sefrji FO, Alsaadi KH, Abuauf HW, Alshareef SA, Jalal RS. Exploration of genes encoding KEGG pathway enzymes in rhizospheric microbiome of the wild plant Abutilon fruticosum. AMB Express 2024; 14:27. [PMID: 38381255 PMCID: PMC10881953 DOI: 10.1186/s13568-024-01678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/28/2024] [Indexed: 02/22/2024] Open
Abstract
The operative mechanisms and advantageous synergies existing between the rhizobiome and the wild plant species Abutilon fruticosum were studied. Within the purview of this scientific study, the reservoir of genes in the rhizobiome, encoding the most highly enriched enzymes, was dominantly constituted by members of phylum Thaumarchaeota within the archaeal kingdom, phylum Proteobacteria within the bacterial kingdom, and the phylum Streptophyta within the eukaryotic kingdom. The ensemble of enzymes encoded through plant exudation exhibited affiliations with 15 crosstalking KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathways. The ultimate goal underlying root exudation, as surmised from the present investigation, was the biosynthesis of saccharides, amino acids, and nucleic acids, which are imperative for the sustenance, propagation, or reproduction of microbial consortia. The symbiotic companionship existing between the wild plant and its associated rhizobiome amplifies the resilience of the microbial community against adverse abiotic stresses, achieved through the orchestration of ABA (abscisic acid) signaling and its cascading downstream effects. Emergent from the process of exudation are pivotal bioactive compounds including ATP, D-ribose, pyruvate, glucose, glutamine, and thiamine diphosphate. In conclusion, we hypothesize that future efforts to enhance the growth and productivity of commercially important crop plants under both favorable and unfavorable environmental conditions may focus on manipulating plant rhizobiomes.
Collapse
Affiliation(s)
- Aala A Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia.
| | - Ashwag Y Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nahaa M Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Maryam M Alomran
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abeer Al-Andal
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Fatimah M Alshehrei
- Department of Biology, Jumum College University, Umm Al-Qura University, P.O. Box 7388, Makkah 21955, Saudi Arabia
| | - Fatmah O Sefrji
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Khloud H Alsaadi
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Haneen W Abuauf
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Sahar A Alshareef
- Department of Biological Science, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21921, Saudi Arabia
| | - Rewaa S Jalal
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia.
| |
Collapse
|
25
|
Cao H, Xu L, Song J, Xun M, Zhang W, Yang H. Bacterial community structure and co-occurrence networks in the rhizosphere and root endosphere of the grafted apple. BMC Microbiol 2024; 24:53. [PMID: 38341527 PMCID: PMC10858598 DOI: 10.1186/s12866-024-03210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Compared with aerial plant tissues (such as leaf, stem, and flower), root-associated microbiomes play an indisputable role in promoting plant health and productivity. We thus explored the similarities and differences between rhizosphere and root endosphere bacterial community in the grafted apple system. RESULTS Using pot experiments, three microhabitats (bulk soil, rhizosphere and root endosphere) samples were obtained from two-year-old apple trees grafted on the four different rootstocks. We then investigated the bacterial community composition, diversity, and co-occurrence network in three microhabitats using the Illumina sequencing methods. Only 63 amplicon sequence variants (ASVs) out of a total of 24,485 were shared in the rhizosphere and root endosphere of apple grafted on the four different rootstocks (M9T337, Malus hupehensis Rehd., Malus robusta Rehd., and Malus baccata Borkh.). The core microbiome contained 8 phyla and 25 families. From the bulk soil to the rhizosphere to the root endosphere, the members of the phylum and class levels demonstrated a significant enrichment and depletion pattern. Co-occurrence network analysis showed the network complexity of the rhizosphere was higher than the root endosphere. Most of the keystone nodes in both networks were classified as Proteobacteria, Actinobacteriota and Bacteroidetes and were low abundance species. CONCLUSION The hierarchical filtration pattern existed not only in the assembly of root endosphere bacteria, but also in the core microbiome. Moreover, most of the core ASVs were high-abundance species, while the keystone ASVs of the network were low-abundance species.
Collapse
Affiliation(s)
- Hui Cao
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, Shandong Province, China.
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an, 271018, Shandong Province, China.
| | - Longxiao Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an, 271018, Shandong Province, China
| | - Jianfei Song
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an, 271018, Shandong Province, China
| | - Mi Xun
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an, 271018, Shandong Province, China
| | - Weiwei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an, 271018, Shandong Province, China
| | - Hongqiang Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an, 271018, Shandong Province, China.
| |
Collapse
|
26
|
Chen L, Liu Y. The Function of Root Exudates in the Root Colonization by Beneficial Soil Rhizobacteria. BIOLOGY 2024; 13:95. [PMID: 38392313 PMCID: PMC10886372 DOI: 10.3390/biology13020095] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
Soil-beneficial microbes in the rhizosphere play important roles in improving plant growth and health. Root exudates play key roles in plant-microbe interactions and rhizobacterial colonization. This review describes the factors influencing the dynamic interactions between root exudates and the soil microbiome in the rhizosphere, including plant genotype, plant development, and environmental abiotic and biotic factors. We also discuss the roles of specific metabolic mechanisms, regulators, and signals of beneficial soil bacteria in terms of colonization ability. We highlight the latest research progress on the roles of root exudates in regulating beneficial rhizobacterial colonization. Organic acids, amino acids, sugars, sugar alcohols, flavonoids, phenolic compounds, volatiles, and other secondary metabolites are discussed in detail. Finally, we propose future research objectives that will help us better understand the role of root exudates in root colonization by rhizobacteria and promote the sustainable development of agriculture and forestry.
Collapse
Affiliation(s)
- Lin Chen
- National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain, Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
27
|
Yan K, Lu DS, Ding CJ, Wang Y, Tian YR, Su XH, Dong YF, Wang YP. Rare and abundant bacterial communities in poplar rhizosphere soils respond differently to genetic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168216. [PMID: 37923276 DOI: 10.1016/j.scitotenv.2023.168216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Interactions between plants and soil microbes are important to plant hybrid breeding under global change. However, the relationship between host plants and rhizosphere soil microorganisms has not been fully elucidated. Understanding the rhizosphere microbial structure of parents and progenies would provide a deeper insight into how genetic effects modulate the relationship between plants and soil. In this study, two family groups of poplar trees (A: parents and their two progenies; B: parents and their one progeny) with different genetic backgrounds (including seven genotypes) were selected from a common garden, and their rhizobacterial communities were analyzed to explore parent-progeny relationships. Our results showed significant differences in phylogenetic diversity, the number of 16S genes and the structure of rhizosphere bacterial communities (Adonis: R2 = 0.166, P < 0.01) between different family groups. Rhizosphere bacterial community structure was significantly dominated by genetic effects. Compared with abundant taxa, genetic effects were more powerful drivers of rare taxa. In addition, bacterial communities of hybrid progenies were all significantly more similar to their parents compared to the other group of parents, especially among rare taxa. The two poplar family groups exhibited differences between their rhizosphere bacterial co-occurrence networks. Group B had a relatively complex network with 2380 edges and 468 nodes, while group A had 1829 edges and 304 nodes. Soil organic carbon and carbon to nitrogen ratio (C/N) also influenced the rhizosphere bacterial community assembly. This was especially true for soil C/N, which explained 23 % of the β-nearest taxon index (βNTI) variation in rare taxa. Our results reveal the relationship of rhizosphere microorganisms between parents and progenies. This can help facilitate an understanding of the combination of plant breeding with microbes resource utilization and provide a theoretical basis for scientific advancement to support the development of forestry industry.
Collapse
Affiliation(s)
- Kun Yan
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - De Shan Lu
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Chang Jun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yan Wang
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Yong Ren Tian
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Xiao Hua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | | | - Yan Ping Wang
- Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
28
|
Huang Y, Hu H, Yue E, Ying W, Niu T, Yan J, Lu Q, Ruan S. Role of plant metabolites in the formation of bacterial communities in the rhizosphere of Tetrastigma hemsleyanum. Front Microbiol 2023; 14:1292896. [PMID: 38163074 PMCID: PMC10754964 DOI: 10.3389/fmicb.2023.1292896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Tetrastigma hemsleyanum Diels et Gilg, commonly known as Sanyeqing (SYQ), is an important traditional Chinese medicine. The content of bioactive constituents varies in different cultivars of SYQ. In the plant growth related researches, rhizosphere microbiome has gained significant attention. However, the role of bacterial communities in the accumulation of metabolites in plants have not been investigated. Herein, the composition of bacterial communities in the rhizosphere soils and the metabolites profile of different SYQ cultivars' roots were analyzed. It was found that the composition of microbial communities varied in the rhizosphere soils of different SYQ cultivars. The high abundance of Actinomadura, Streptomyces and other bacteria was found to be associated with the metabolites profile of SYQ roots. The findings suggest that the upregulation of rutin and hesperetin may contribute to the high bioactive constituent in SYQ roots. These results provide better understanding of the metabolite accumulation pattern in SYQ, and also provide a solution for enhancing the quality of SYQ by application of suitable microbial consortia.
Collapse
Affiliation(s)
- Yuqing Huang
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Hongliang Hu
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Erkui Yue
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Wu Ying
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Tianxin Niu
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Jianli Yan
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Qiujun Lu
- Hangzhou Agricultural and Rural Affairs Guarantee Center, Hangzhou, China
| | - Songlin Ruan
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
29
|
Yang H, Zhang X, Qiu X, Chen J, Wang Y, Zhang G, Jia S, Shen X, Ye W, Yan Z. Fusarium Wilt Invasion Results in a Strong Impact on Strawberry Microbiomes. PLANTS (BASEL, SWITZERLAND) 2023; 12:4153. [PMID: 38140478 PMCID: PMC10747085 DOI: 10.3390/plants12244153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Plant-endophytic microbes affect plant growth, development, nutrition, and resistance to pathogens. However, how endophytic microbial communities change in different strawberry plant compartments after Fusarium pathogen infection has remained elusive. In this study, 16S and internal transcribed spacer rRNA amplicon sequencing were used to systematically investigate changes in the bacterial and fungal diversity and composition in the endophytic compartments (roots, stems, and leaves) of healthy strawberries and strawberries with Fusarium wilt, respectively. The analysis of the diversity, structure, and composition of the bacterial and fungal communities revealed a strong effect of pathogen invasion on the endophytic communities. The bacterial and fungal community diversity was lower in the Fusarium-infected endophytic compartments than in the healthy samples. The relative abundance of certain bacterial and fungal genera also changed after Fusarium wilt infection. The relative abundance of the beneficial bacterial genera Bacillus, Bradyrhizobium, Methylophilus, Sphingobium, Lactobacillus, and Streptomyces, as well as fungal genera Acremonium, Penicillium, Talaromyces, and Trichoderma, were higher in the healthy samples than in the Fusarium wilt samples. The relative abundance of Fusarium in the infected samples was significantly higher than that in the healthy samples, consistent with the field observations and culture isolation results for strawberry wilt. Our findings provide a theoretical basis for the isolation, identification, and control of strawberry wilt disease.
Collapse
Affiliation(s)
- Hongjun Yang
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China; (H.Y.); (X.Q.); (Y.W.); (G.Z.); (S.J.); (X.S.)
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang 212400, China
| | - Xu Zhang
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China; (H.Y.); (X.Q.); (Y.W.); (G.Z.); (S.J.); (X.S.)
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang 212400, China
| | - Xiaohong Qiu
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China; (H.Y.); (X.Q.); (Y.W.); (G.Z.); (S.J.); (X.S.)
| | - Jiajia Chen
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China;
| | - Yuanhua Wang
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China; (H.Y.); (X.Q.); (Y.W.); (G.Z.); (S.J.); (X.S.)
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang 212400, China
| | - Geng Zhang
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China; (H.Y.); (X.Q.); (Y.W.); (G.Z.); (S.J.); (X.S.)
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang 212400, China
| | - Sizhen Jia
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China; (H.Y.); (X.Q.); (Y.W.); (G.Z.); (S.J.); (X.S.)
| | - Xiangqi Shen
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China; (H.Y.); (X.Q.); (Y.W.); (G.Z.); (S.J.); (X.S.)
| | - Wenwu Ye
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Zhiming Yan
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China; (H.Y.); (X.Q.); (Y.W.); (G.Z.); (S.J.); (X.S.)
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang 212400, China
| |
Collapse
|
30
|
Fan W, Xiao Y, Dong J, Xing J, Tang F, Shi F. Variety-driven rhizosphere microbiome bestows differential salt tolerance to alfalfa for coping with salinity stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1324333. [PMID: 38179479 PMCID: PMC10766110 DOI: 10.3389/fpls.2023.1324333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Soil salinization is a global environmental issue and a significant abiotic stress that threatens crop production. Root-associated rhizosphere microbiota play a pivotal role in enhancing plant tolerance to abiotic stresses. However, limited information is available concerning the specific variations in rhizosphere microbiota driven by different plant genotypes (varieties) in response to varying levels of salinity stress. In this study, we compared the growth performance of three alfalfa varieties with varying salt tolerance levels in soils with different degrees of salinization. High-throughput 16S rRNA and ITS sequencing were employed to analyze the rhizosphere microbial communities. Undoubtedly, the increasing salinity significantly inhibited alfalfa growth and reduced rhizosphere microbial diversity. However, intriguingly, salt-tolerant varieties exhibited relatively lower susceptibility to salinity, maintaining more stable rhizosphere bacterial community structure, whereas the reverse was observed for salt-sensitive varieties. Bacillus emerged as the dominant species in alfalfa's adaptation to salinity stress, constituting 21.20% of the shared bacterial genera among the three varieties. The higher abundance of Bacillus, Ensifer, and Pseudomonas in the rhizosphere of salt-tolerant alfalfa varieties is crucial in determining their elevated salt tolerance. As salinity levels increased, salt-sensitive varieties gradually accumulated a substantial population of pathogenic fungi, such as Fusarium and Rhizoctonia. Furthermore, rhizosphere bacteria of salt-tolerant varieties exhibited increased activity in various metabolic pathways, including biosynthesis of secondary metabolites, carbon metabolism, and biosynthesis of amino acids. It is suggested that salt-tolerant alfalfa varieties can provide more carbon sources to the rhizosphere, enriching more effective plant growth-promoting bacteria (PGPB) such as Pseudomonas to mitigate salinity stress. In conclusion, our results highlight the variety-mediated enrichment of rhizosphere microbiota in response to salinity stress, confirming that the high-abundance enrichment of specific dominant rhizosphere microbes and their vital roles play a significant role in conferring high salt adaptability to these varieties.
Collapse
Affiliation(s)
- Wenqiang Fan
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanzi Xiao
- College of Agriculture and Forestry, Hulunbuir University, Hulunber, China
| | - Jiaqi Dong
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Xing
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fang Tang
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengling Shi
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
31
|
Shankar N, Shetty P, Melo TC, Kesseli R. Multi-Generation Ecosystem Selection of Rhizosphere Microbial Communities Associated with Plant Genotype and Biomass in Arabidopsis thaliana. Microorganisms 2023; 11:2932. [PMID: 38138075 PMCID: PMC10745315 DOI: 10.3390/microorganisms11122932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The role of the microbiome in shaping the host's phenotype has emerged as a critical area of investigation, with implications in ecology, evolution, and host health. The complex and dynamic interactions involving plants and their diverse rhizospheres' microbial communities are influenced by a multitude of factors, including but not limited to soil type, environment, and plant genotype. Understanding the impact of these factors on microbial community assembly is key to yielding host-specific and robust benefits for plants, yet it remains challenging. Here, we conducted an artificial ecosystem selection experiment for eight generations of Arabidopsis thaliana Ler and Cvi to select soil microbiomes associated with a higher or lower biomass of the host. This resulted in divergent microbial communities shaped by a complex interplay between random environmental variations, plant genotypes, and biomass selection pressures. In the initial phases of the experiment, the genotype and the biomass selection treatment had modest but significant impacts. Over time, the plant genotype and biomass treatments gained more influence, explaining ~40% of the variation in the microbial community's composition. Furthermore, a genotype-specific association of plant-growth-promoting rhizobacterial taxa, Labraceae with Ler and Rhizobiaceae with Cvi, was observed under selection for high biomass.
Collapse
Affiliation(s)
- Nachiket Shankar
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA (R.K.)
| | - Prateek Shetty
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary;
| | - Tatiana C. Melo
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA (R.K.)
| | - Rick Kesseli
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA (R.K.)
| |
Collapse
|
32
|
Mei S. A Multi-Label Learning Framework for Predicting Chemical Classes and Biological Activities of Natural Products from Biosynthetic Gene Clusters. J Chem Ecol 2023; 49:681-695. [PMID: 37779180 DOI: 10.1007/s10886-023-01452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
Natural products (NP) or secondary metabolites, as a class of small chemical molecules that are naturally synthesized by chromosomally clustered biosynthesis genes (also called biosynthetic gene clusters, BGCs) encoded enzymes or enzyme complexes, mediates the bioecological interactions between host and microbiota and provides a natural reservoir for screening drug-like therapeutic pharmaceuticals. In this work, we propose a multi-label learning framework to functionally annotate natural products or secondary metabolites solely from their catalytical biosynthetic gene clusters without experimentally conducting NP structural resolutions. All chemical classes and bioactivities constitute the label space, and the sequence domains of biosynthetic gene clusters that catalyse the biosynthesis of natural products constitute the feature space. In this multi-label learning framework, a joint representation of features (BGCs domains) and labels (natural products annotations) is efficiently learnt in an integral and low-dimensional space to accurately define the inter-class boundaries and scale to the learning problem of many imbalanced labels. Computational results on experimental data show that the proposed framework achieves satisfactory multi-label learning performance, and the learnt patterns of BGCs domains are transferrable across bacteria, or even across kingdom, for instance, from bacteria to Arabidopsis thaliana. Lastly, take Arabidopsis thaliana and its rhizosphere microbiome for example, we propose a pipeline combining existing BGCs identification tools and this proposed framework to find and functionally annotate novel natural products for downstream bioecological studies in terms of plant-microbiota-soil interactions and plant environmental adaption.
Collapse
Affiliation(s)
- Suyu Mei
- Software College, Shenyang Normal University, Shenyang, 110034, China.
| |
Collapse
|
33
|
Lv H, Li X, He D, Chen X, Liu M, Lan Y, Zhao J, Wang H, Yan Z. Genotype-Controlled Vertical Transmission Exerts Selective Pressure on Community Assembly of Salvia miltiorrhiza. MICROBIAL ECOLOGY 2023; 86:2934-2948. [PMID: 37667132 DOI: 10.1007/s00248-023-02295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
The plant's endophytic fungi play an important role in promoting host development and metabolism. Studies have shown that the factors affecting the assembly of the endophyte community mainly include host genotype, vertical transmission, and soil origin. However, we do not know the role of vertically transmitted endohytic fungi influences on the host-plant's endophytic community assembly. Salvia miltiorrhiza from three production areas were used as research objects; we constructed three production area genotypes of S. miltiorrhiza regenerated seedlings simultaneously. Based on high-throughput sequencing, we analyzed the effects of genotype, soil origin, and vertical transmission on endophytic fungal communities. The results show that the community of soil origins significantly affected the endophytic fungal community in the regenerated seedlings of S. miltiorrhiza. The influence of genotype on community composition occurs through a specific mechanism. Genotype may selectively screen certain communities into the seed, thereby exerting selection pressure on the community composition process of offspring. As the number of offspring increases gradually, the microbiota, controlled by genotype and transmitted vertically, stabilizes, ultimately resulting in a significant effect of genotype on community composition.Furthermore, we observed that the taxa influencing the active ingredients are also selected as the vertically transmitted community. Moreover, the absence of an initial vertically transmitted community in S. miltiorrhiza makes it more vulnerable to infection by pathogenic fungi. Therefore, it is crucial to investigate and comprehend the selection model of the vertically transmitted community under varying genotypes and soil conditions. This research holds significant implications for enhancing the quality and yield of medicinal plants and economic crops.
Collapse
Affiliation(s)
- Hongyang Lv
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongmei He
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Liu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Lan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Chengdu, China.
- Institute of Chinese Medical Sciences, University of Macau, Taipa, China.
| | - Hai Wang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Zhuyun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
34
|
Zhang Y, Lin J, Chen S, Lu H, Liao C. The Influence of the Genotype and Planting Density on the Structure and Composition of Root and Rhizosphere Microbial Communities in Maize. Microorganisms 2023; 11:2443. [PMID: 37894100 PMCID: PMC10608840 DOI: 10.3390/microorganisms11102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
Maize has the largest cultivation area of any crop in the world and plays an important role in ensuring food security. High-density planting is essential for maintaining high maize yields in modern intensive agriculture. Nonetheless, how high-density planting and the tolerance of individual genotypes to such planting shape the root-associated microbiome of maize is still unknown. In this study, we analyzed the root and rhizosphere bacterial communities of two maize accessions with contrasting shoot architectures grown under high- and low-density planting conditions. Our results suggested that maize hosted specific, distinct bacterial communities in the root endocompartment and that the maize genotype had a significant effect on the selection of specific microbes from the rhizosphere. High-density planting also had significant effects on root-associated bacterial communities. Specifically, genotype and high-density planting coordinated to shape the structure, composition, and function of root and rhizosphere bacterial communities. Taken together, our results provide insights into how aboveground plant architecture and density may alter the belowground bacterial community in root-associated compartments of maize.
Collapse
Affiliation(s)
| | | | | | | | - Changjian Liao
- Technical Research Center of Dry Crop Variety Breeding in Fujian Province, Institute of Crops Research, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.Z.); (J.L.); (S.C.); (H.L.)
| |
Collapse
|
35
|
Liu X, Cui JL, Zhou ZY, Zhang ZB, Cui XG, Han B, Wang JH, Wang ML, Li YM. "Mini-community" simulation revealed the differences of endophytic fungal communities between the above- and below-ground tissues of Ephedra sinica Stapf. Fungal Biol 2023; 127:1276-1283. [PMID: 37821149 DOI: 10.1016/j.funbio.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 10/13/2023]
Abstract
The microecology of endophytic fungi in special habitats, such as the interior of different tissues from a medicinal plant, and its effects on the formation of metabolites with different biological activities are of great importance. However, the factors affecting fungal community formation are unclear. This study is the first to utilize "mini-community" remodeling to understand the above phenomena. First, high-throughput sequencing technology was applied to explore the community composition and diversity of endophytic fungi in the above-ground tissues (Ea) and below-ground tissues (Eb) of Ephedra sinica. Second, fungi were obtained through culture-dependent technology and used for "mini-community" remodeling in vitro. Then, the effects of environmental factors, partner fungi, and plant tissue fluid (internal environment) on endophytic fungal community formation were discussed. Results showed that environmental factors played a decisive role in the selection of endophytic fungi, that is, in Ea and Eb, 93.8% and 25.3% of endophytic fungi were halophilic, respectively, and 10.6% and 60.2% fungi were sensitive to high temperature (33 °C), respectively. Meanwhile, pH had little effect on fungal communities. The internal environment of the plant host further promoted the formation of endophytic fungal communities.
Collapse
Affiliation(s)
- Xi Liu
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China; Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Jin-Long Cui
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijng, 100700, People's Republic of China.
| | - Zhong-Ya Zhou
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China; Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Zong-Bao Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Xuan-Ge Cui
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Bo Han
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China; Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Jun-Hong Wang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Meng-Liang Wang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Yi-Min Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, People's Republic of China.
| |
Collapse
|
36
|
López JL, Fourie A, Poppeliers SWM, Pappas N, Sánchez-Gil JJ, de Jonge R, Dutilh BE. Growth rate is a dominant factor predicting the rhizosphere effect. THE ISME JOURNAL 2023; 17:1396-1405. [PMID: 37322285 PMCID: PMC10432406 DOI: 10.1038/s41396-023-01453-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
The root microbiome is shaped by plant root activity, which selects specific microbial taxa from the surrounding soil. This influence on the microorganisms and soil chemistry in the immediate vicinity of the roots has been referred to as the rhizosphere effect. Understanding the traits that make bacteria successful in the rhizosphere is critical for developing sustainable agriculture solutions. In this study, we compared the growth rate potential, a complex trait that can be predicted from bacterial genome sequences, to functional traits encoded by proteins. We analyzed 84 paired rhizosphere- and soil-derived 16S rRNA gene amplicon datasets from 18 different plants and soil types, performed differential abundance analysis, and estimated growth rates for each bacterial genus. We found that bacteria with higher growth rate potential consistently dominated the rhizosphere, and this trend was confirmed in different bacterial phyla using genome sequences of 3270 bacterial isolates and 6707 metagenome-assembled genomes (MAGs) from 1121 plant- and soil-associated metagenomes. We then identified which functional traits were enriched in MAGs according to their niche or growth rate status. We found that predicted growth rate potential was the main feature for differentiating rhizosphere and soil bacteria in machine learning models, and we then analyzed the features that were important for achieving faster growth rates, which makes bacteria more competitive in the rhizosphere. As growth rate potential can be predicted from genomic data, this work has implications for understanding bacterial community assembly in the rhizosphere, where many uncultivated bacteria reside.
Collapse
Affiliation(s)
- José L López
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, Bariloche, Rio Negro, Argentina
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Arista Fourie
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Sanne W M Poppeliers
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Nikolaos Pappas
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Juan J Sánchez-Gil
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands.
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
37
|
Hartman K, Schmid MW, Bodenhausen N, Bender SF, Valzano-Held AY, Schlaeppi K, van der Heijden MGA. A symbiotic footprint in the plant root microbiome. ENVIRONMENTAL MICROBIOME 2023; 18:65. [PMID: 37525294 PMCID: PMC10391997 DOI: 10.1186/s40793-023-00521-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND A major aim in plant microbiome research is determining the drivers of plant-associated microbial communities. While soil characteristics and host plant identity present key drivers of root microbiome composition, it is still unresolved whether the presence or absence of important plant root symbionts also determines overall microbiome composition. Arbuscular mycorrhizal fungi (AMF) and N-fixing rhizobia bacteria are widespread, beneficial root symbionts that significantly enhance plant nutrition, plant health, and root structure. Thus, we hypothesized that symbiont types define the root microbiome structure. RESULTS We grew 17 plant species from five families differing in their symbiotic associations (no symbioses, AMF only, rhizobia only, or AMF and rhizobia) in a greenhouse and used bacterial and fungal amplicon sequencing to characterize their root microbiomes. Although plant phylogeny and species identity were the most important factors determining root microbiome composition, we discovered that the type of symbioses also presented a significant driver of diversity and community composition. We found consistent responses of bacterial phyla, including members of the Acidobacteria, Chlamydiae, Firmicutes, and Verrucomicrobia, to the presence or absence of AMF and rhizobia and identified communities of OTUs specifically enriched in the different symbiotic groups. A total of 80, 75 and 57 bacterial OTUs were specific for plant species without symbiosis, plant species forming associations with AMF or plant species associating with both AMF and rhizobia, respectively. Similarly, 9, 14 and 4 fungal OTUs were specific for these plant symbiont groups. Importantly, these generic symbiosis footprints in microbial community composition were also apparent in absence of the primary symbionts. CONCLUSION Our results reveal that symbiotic associations of the host plant leaves an imprint on the wider root microbiome - which we term the symbiotype. These findings suggest the existence of a fundamental assembly principle of root microbiomes, dependent on the symbiotic associations of the host plant.
Collapse
Affiliation(s)
- Kyle Hartman
- Department of Agroecology and Environment, Plant Soil Interactions, Reckenholzstrasse 191, Agroscope, Zürich, 8046, Switzerland
| | | | - Natacha Bodenhausen
- Department of Agroecology and Environment, Plant Soil Interactions, Reckenholzstrasse 191, Agroscope, Zürich, 8046, Switzerland
- Department of Soil Sciences, Research Institute of Organic Agriculture FiBL, Frick, 5070, Switzerland
| | - S Franz Bender
- Department of Agroecology and Environment, Plant Soil Interactions, Reckenholzstrasse 191, Agroscope, Zürich, 8046, Switzerland
| | - Alain Y Valzano-Held
- Department of Agroecology and Environment, Plant Soil Interactions, Reckenholzstrasse 191, Agroscope, Zürich, 8046, Switzerland
| | - Klaus Schlaeppi
- Department of Agroecology and Environment, Plant Soil Interactions, Reckenholzstrasse 191, Agroscope, Zürich, 8046, Switzerland.
- Plant Microbe Interactions, Department of Environmental Sciences, University of Basel, Basel, 4056, Switzerland.
- Institute of Plant Sciences, Faculty of Science, University of Bern, Bern, 3013, Switzerland.
| | - Marcel G A van der Heijden
- Department of Agroecology and Environment, Plant Soil Interactions, Reckenholzstrasse 191, Agroscope, Zürich, 8046, Switzerland.
- Department of Plant and Microbial Biology, University of Zürich, Zürich, 8008, Switzerland.
| |
Collapse
|
38
|
Hesen V, Boele Y, Bakx-Schotman T, van Beersum F, Raaijmakers C, Scheres B, Willemsen V, van der Putten WH. Pioneer Arabidopsis thaliana spans the succession gradient revealing a diverse root-associated microbiome. ENVIRONMENTAL MICROBIOME 2023; 18:62. [PMID: 37468998 DOI: 10.1186/s40793-023-00511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Soil microbiomes are increasingly acknowledged to affect plant functioning. Research in molecular model species Arabidopsis thaliana has given detailed insights of such plant-microbiome interactions. However, the circumstances under which natural A. thaliana plants have been studied so far might represent only a subset of A. thaliana's full ecological context and potential biotic diversity of its root-associated microbiome. RESULTS We collected A. thaliana root-associated soils from a secondary succession gradient covering 40 years of land abandonment. All field sites were situated on the same parent soil material and in the same climatic region. By sequencing the bacterial and fungal communities and soil abiotic analysis we discovered differences in both the biotic and abiotic composition of the root-associated soil of A. thaliana and these differences are in accordance with the successional class of the field sites. As the studied sites all have been under (former) agricultural use, and a climatic cline is absent, we were able to reveal a more complete variety of ecological contexts A. thaliana can appear and sustain in. CONCLUSIONS Our findings lead to the conclusion that although A. thaliana is considered a pioneer plant species and previously almost exclusively studied in early succession and disturbed sites, plants can successfully establish in soils which have experienced years of ecological development. Thereby, A. thaliana can be exposed to a much wider variation in soil ecological context than is currently presumed. This knowledge opens up new opportunities to enhance our understanding of causal plant-microbiome interactions as A. thaliana cannot only grow in contrasting soil biotic and abiotic conditions along a latitudinal gradient, but also when those conditions vary along a secondary succession gradient. Future research could give insights in important plant factors to grow in more ecologically complex later-secondary succession soils, which is an impending direction of our current agricultural systems.
Collapse
Affiliation(s)
- Vera Hesen
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands.
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6700 AB, the Netherlands.
| | - Yvet Boele
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Tanja Bakx-Schotman
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6700 AB, the Netherlands
| | - Femke van Beersum
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6700 AB, the Netherlands
- Plant Ecology and Nature Conservation Group, Wageningen University, Droevendaalsesteeg 3a, Wageningen, 6708 PB, the Netherlands
| | - Ciska Raaijmakers
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6700 AB, the Netherlands
| | - Ben Scheres
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
- Department of Biotechnology, Rijk Zwaan Breeding B.V., Eerste Kruisweg 9, Fijnaart, 4793 RS, the Netherlands
| | - Viola Willemsen
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands.
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6700 AB, the Netherlands.
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands.
| |
Collapse
|
39
|
Lagunas B, Richards L, Sergaki C, Burgess J, Pardal AJ, Hussain RMF, Richmond BL, Baxter L, Roy P, Pakidi A, Stovold G, Vázquez S, Ott S, Schäfer P, Gifford ML. Rhizobial nitrogen fixation efficiency shapes endosphere bacterial communities and Medicago truncatula host growth. MICROBIOME 2023; 11:146. [PMID: 37394496 DOI: 10.1186/s40168-023-01592-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/05/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Despite the knowledge that the soil-plant-microbiome nexus is shaped by interactions amongst its members, very little is known about how individual symbioses regulate this shaping. Even less is known about how the agriculturally important symbiosis of nitrogen-fixing rhizobia with legumes is impacted according to soil type, yet this knowledge is crucial if we are to harness or improve it. We asked how the plant, soil and microbiome are modulated by symbiosis between the model legume Medicago truncatula and different strains of Sinorhizobium meliloti or Sinorhizobium medicae whose nitrogen-fixing efficiency varies, in three distinct soil types that differ in nutrient fertility, to examine the role of the soil environment upon the plant-microbe interaction during nodulation. RESULTS The outcome of symbiosis results in installment of a potentially beneficial microbiome that leads to increased nutrient uptake that is not simply proportional to soil nutrient abundance. A number of soil edaphic factors including Zn and Mo, and not just the classical N/P/K nutrients, group with microbial community changes, and alterations in the microbiome can be seen across different soil fertility types. Root endosphere emerged as the plant microhabitat more affected by this rhizobial efficiency-driven community reshaping, manifested by the accumulation of members of the phylum Actinobacteria. The plant in turn plays an active role in regulating its root community, including sanctioning low nitrogen efficiency rhizobial strains, leading to nodule senescence in particular plant-soil-rhizobia strain combinations. CONCLUSIONS The microbiome-soil-rhizobial dynamic strongly influences plant nutrient uptake and growth, with the endosphere and rhizosphere shaped differentially according to plant-rhizobial interactions with strains that vary in nitrogen-fixing efficiency levels. These results open up the possibility to select inoculation partners best suited for plant, soil type and microbial community. Video Abstract.
Collapse
Affiliation(s)
- Beatriz Lagunas
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | - Luke Richards
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Chrysi Sergaki
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Jamie Burgess
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Rana M F Hussain
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Laura Baxter
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Proyash Roy
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Anastasia Pakidi
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Gina Stovold
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Saúl Vázquez
- University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - Sascha Ott
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Present Address: Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, 35392, Germany.
| | - Miriam L Gifford
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV47AL, UK.
| |
Collapse
|
40
|
Lu M, Huang L, Wang Q, Cao X, Lin Q, He Z, Feng Y, Yang X. Soil properties drive the bacterial community to cadmium contamination in the rhizosphere of two contrasting wheat (Triticum aestivum L.) genotypes. J Environ Sci (China) 2023; 128:117-128. [PMID: 36801027 DOI: 10.1016/j.jes.2022.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) bioavailability in the rhizosphere makes an important difference in grain Cd accumulation in wheat. Here, pot experiments combined with 16S rRNA gene sequencing were conducted to compare the Cd bioavailability and bacterial community in the rhizosphere of two wheat (Triticum aestivum L.) genotypes, a low-Cd-accumulating genotype in grains (LT) and a high-Cd-accumulating genotype in grains (HT), grown on four different soils with Cd contamination. Results showed that there was non-significant difference in total Cd concentration among four soils. However, except for black soil, DTPA-Cd concentrations in HT rhizospheres were higher than those of LT in fluvisol, paddy soil and purple soil. Results of 16S rRNA gene sequencing showed that soil type (52.7%) was the strongest determinant of root-associated community, while there were still some differences in rhizosphere bacterial community composition between two wheat genotypes. Taxa specifically colonized in HT rhizosphere (Acidobacteria, Gemmatimonadetes, Bacteroidetes and Deltaproteobacteria) could participate in metal activation, whereas LT rhizosphere was highly enriched by plant growth-promoting taxa. In addition, PICRUSt2 analysis also predicted high relative abundances of imputed functional profiles related to membrane transport and amino acid metabolism in HT rhizosphere. These results revealed that the rhizosphere bacterial community may be an important factor regulating Cd uptake and accumulation in wheat and indicated that the high Cd-accumulating cultivar might improve Cd bioavailability in the rhizosphere by recruiting taxa related to Cd activation, thus promoting Cd uptake and accumulation.
Collapse
Affiliation(s)
- Min Lu
- Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education (MOE), College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lukuan Huang
- Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education (MOE), College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiong Wang
- College of Ecology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xuerui Cao
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, China
| | - Qiang Lin
- Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education (MOE), College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL 34945, USA
| | - Ying Feng
- Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education (MOE), College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoe Yang
- Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education (MOE), College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
41
|
Song L, Ping X, Mao Z, Zhao J, Yang Y, Li Y, Xie B, Ling J. Variation and stability of rhizosphere bacterial communities of Cucumis crops in association with root-knot nematodes infestation. FRONTIERS IN PLANT SCIENCE 2023; 14:1163271. [PMID: 37324672 PMCID: PMC10266268 DOI: 10.3389/fpls.2023.1163271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023]
Abstract
Introduction Root-knot nematodes (RKN) disease is a devastating disease in Cucumis crops production. Existing studies have shown that resistant and susceptible crops are enriched with different rhizosphere microorganisms, and microorganisms enriched in resistant crops can antagonize pathogenic bacteria. However, the characteristics of rhizosphere microbial communities of Cucumis crops after RKN infestation remain largely unknown. Methods In this study, we compared the changes in rhizosphere bacterial communities between highly RKN-resistant Cucumis metuliferus (cm3) and highly RKN-susceptible Cucumis sativus (cuc) after RKN infection through a pot experiment. Results The results showed that the strongest response of rhizosphere bacterial communities of Cucumis crops to RKN infestation occurred during early growth, as evidenced by changes in species diversity and community composition. However, the more stable structure of the rhizosphere bacterial community in cm3 was reflected in less changes in species diversity and community composition after RKN infestation, forming a more complex and positively co-occurrence network than cuc. Moreover, we observed that both cm3 and cuc recruited bacteria after RKN infestation, but the bacteria enriched in cm3 were more abundant including beneficial bacteria Acidobacteria, Nocardioidaceae and Sphingomonadales. In addition, the cuc was enriched with beneficial bacteria Actinobacteria, Bacilli and Cyanobacteria. We also found that more antagonistic bacteria than cuc were screened in cm3 after RKN infestation and most of them were Pseudomonas (Proteobacteria, Pseudomonadaceae), and Proteobacteria were also enriched in cm3 after RKN infestation. We hypothesized that the cooperation between Pseudomonas and the beneficial bacteria in cm3 could inhibit the infestation of RKN. Discussion Thus, our results provide valuable insights into the role of rhizosphere bacterial communities on RKN diseases of Cucumis crops, and further studies are needed to clarify the bacterial communities that suppress RKN in Cucumis crops rhizosphere.
Collapse
Affiliation(s)
- Liqun Song
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Microbial Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Chaoyang, China
| | - Xingxing Ping
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenchuan Mao
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Zhao
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Yang
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Li
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingyan Xie
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Ling
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
42
|
Guillen‐Otero T, Lee S, Chen C, Szoevenyi P, Kessler M. A metabarcoding protocol targeting two DNA regions to analyze root-associated fungal communities in ferns and lycophytes. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11523. [PMID: 37342167 PMCID: PMC10278937 DOI: 10.1002/aps3.11523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 06/22/2023]
Abstract
Premise Detailed studies of the fungi associated with lycophytes and ferns provide crucial insights into the early evolution of land plants. However, most investigations to date have assessed fern-fungus interactions based only on visual root inspection. In the present research, we establish and evaluate a metabarcoding protocol to analyze the fungal communities associated with fern and lycophyte roots. Methods We used two primer pairs focused on the ITS rRNA region to screen the general fungal communities, and the 18S rRNA to target Glomeromycota fungi (i.e., arbuscular mycorrhizal fungi). To test these approaches, we collected and processed roots from 12 phylogenetically distant fern and lycophyte species. Results We found marked compositional differences between the ITS and 18S data sets. While the ITS data set demonstrated the dominance of orders Glomerales (phylum Glomeromycota), Pleosporales, and Helotiales (both in phylum Ascomycota), the 18S data set revealed the greatest diversity of Glomeromycota. Non-metric multidimensional scaling (NMDS) ordination suggested an important geographical effect in sample similarities. Discussion The ITS-based approach is a reliable and effective method to analyze the fungal communities associated with fern and lycophyte roots. The 18S approach is more appropriate for studies focused on the detailed screening of arbuscular mycorrhizal fungi.
Collapse
Affiliation(s)
- Thais Guillen‐Otero
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Soon‐Jae Lee
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Cheng‐Wei Chen
- Biodiversity Program, Taiwan International Graduate ProgramAcademia Sinica and National Taiwan Normal UniversityTaipei115Taiwan
| | - Peter Szoevenyi
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Michael Kessler
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
43
|
Kaur J, Harder CB, Sharma J. Congeneric temperate orchids recruit similar-yet differentially abundant-endophytic bacterial communities that are uncoupled from soil, but linked to host phenology and population size. AMERICAN JOURNAL OF BOTANY 2023; 110:e16168. [PMID: 37052191 DOI: 10.1002/ajb2.16168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 05/16/2023]
Abstract
PREMISE Besides the beneficial plant-fungus symbiosis in mycorrhizal plants, bacteria also enhance plant fitness via tripartite interactions. While bacterial associations are presumably just as important for the obligate mycorrhizal family Orchidaceae, little is known about orchid associating bacteria (OAB). METHODS We examined the OAB communities of two, congeneric, terrestrial orchids, Platanthera cooperi and Platanthera praeclara, which represent widely disparate North American ecosystems. We tested whether they recruit distinct OAB communities, and whether variability in OAB communities can be linked to phenology, population size, or habitat soil. Genomic DNAs from roots of seedling, vegetative, and reproductive plants and from soil were subjected to Illumina sequencing of V4 and V5 regions of the 16S rRNA gene. RESULTS We obtained 809 OAB Zero-radius Operational Taxonomic Units (ZOTUs). Despite an overlap of 209 ZOTUs that accounted for >75% relative abundances of their respective OAB communities, the overall community structures of the two orchids were distinct. Within each orchid, distinctions were detected in the OAB communities of large and small populations and the three phenological stages. The OAB ZOTUs were either absent or present with low abundances in soil associated with both orchids. CONCLUSIONS The two orchids exhibited preferential recruitment of known growth-promoting OAB communities from soil. Their OAB communities also showed considerable overlap despite the large environmental and geographical separation of the two host taxa. Our results lend further support to the emerging evidence that not only the fungi, but root-associated bacteria also have functional importance for orchid ecology.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
- Department of Biology, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| | - Christoffer B Harder
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
- Department of Biology, MEMEG, Lund University, Ekologihuset, Sölvegatan, Sweden
- Department of Biology, Section of Terrestrial Ecology, University of Copenhagen, Copenhagen, Denmark
| | - Jyotsna Sharma
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
44
|
Zhang J, Liu W, Bu J, Lin Y, Bai Y. Host genetics regulate the plant microbiome. Curr Opin Microbiol 2023; 72:102268. [PMID: 36708613 DOI: 10.1016/j.mib.2023.102268] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
Plants recruit a taxonomically diverse microbial community, collectively termed the plant microbiome, that includes mutualists, pathogens, and commensals. These myriad microorganisms are robustly intertwined with their hosts and can determine plant fate by influencing fitness and growth or offering protection from detrimental bacteria, fungi, and herbivores. Recent studies have revealed significant effects of host genome diversity on plant-microbiome assembly and how host genetics determine microbiome composition, which is crucial for beneficial functions. The few host loci identified through genome-wide association studies suggest that genes involved in plant development, immunity, nutrient uptake, and root exudates regulate plant-microbiome community structure. Elucidating the role of host genetics in plant-microbiome assembly is key to understanding how plant-microbiome interactions are evolving and how to unlock the breeding and engineering potential of the microbiome for sustainable agriculture.
Collapse
Affiliation(s)
- Jingying Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; CAS center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Weidong Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; CAS center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jingshu Bu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; CAS center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China; College of Life Sciences, Northwest A&F University, 712100 Shaanxi, China
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, 712100 Shaanxi, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; CAS center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China.
| |
Collapse
|
45
|
Yue H, Yue W, Jiao S, Kim H, Lee YH, Wei G, Song W, Shu D. Plant domestication shapes rhizosphere microbiome assembly and metabolic functions. MICROBIOME 2023; 11:70. [PMID: 37004105 PMCID: PMC10064753 DOI: 10.1186/s40168-023-01513-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/07/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND The rhizosphere microbiome, which is shaped by host genotypes, root exudates, and plant domestication, is crucial for sustaining agricultural plant growth. Despite its importance, how plant domestication builds up specific rhizosphere microbiomes and metabolic functions, as well as the importance of these affected rhizobiomes and relevant root exudates in maintaining plant growth, is not well understood. Here, we firstly investigated the rhizosphere bacterial and fungal communities of domestication and wild accessions of tetraploid wheat using amplicon sequencing (16S and ITS) after 9 years of domestication process at the main production sites in China. We then explored the ecological roles of root exudation in shaping rhizosphere microbiome functions by integrating metagenomics and metabolic genomics approaches. Furthermore, we established evident linkages between root morphology traits and keystone taxa based on microbial culture and plant inoculation experiments. RESULTS Our results suggested that plant rhizosphere microbiomes were co-shaped by both host genotypes and domestication status. The wheat genomes contributed more variation in the microbial diversity and composition of rhizosphere bacterial communities than fungal communities, whereas plant domestication status exerted much stronger influences on the fungal communities. In terms of microbial interkingdom association networks, domestication destabilized microbial network and depleted the abundance of keystone fungal taxa. Moreover, we found that domestication shifted the rhizosphere microbiome from slow growing and fungi dominated to fast growing and bacteria dominated, thereby resulting in a shift from fungi-dominated membership with enrichment of carbon fixation genes to bacteria-dominated membership with enrichment of carbon degradation genes. Metagenomics analyses further indicated that wild cultivars of wheat possess higher microbial function diversity than domesticated cultivars. Notably, we found that wild cultivar is able to harness rhizosphere microorganism carrying N transformation (i.e., nitrification, denitrification) and P mineralization pathway, whereas rhizobiomes carrying inorganic N fixation, organic N ammonification, and inorganic P solubilization genes are recruited by the releasing of root exudates from domesticated wheat. More importantly, our metabolite-wide association study indicated that the contrasting functional roles of root exudates and the harnessed keystone microbial taxa with different nutrient acquisition strategies jointly determined the aboveground plant phenotypes. Furthermore, we observed that although domesticated and wild wheats recruited distinct microbial taxa and relevant functions, domestication-induced recruitment of keystone taxa led to a consistent growth regulation of root regardless of wheat domestication status. CONCLUSIONS Our results indicate that plant domestication profoundly influences rhizosphere microbiome assembly and metabolic functions and provide evidence that host plants are able to harness a differentiated ecological role of root-associated keystone microbiomes through the release of root exudates to sustain belowground multi-nutrient cycles and plant growth. These findings provide valuable insights into the mechanisms underlying plant-microbiome interactions and how to harness the rhizosphere microbiome for crop improvement in sustainable agriculture. Video Abstract.
Collapse
Affiliation(s)
- Hong Yue
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Wenjie Yue
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Shuo Jiao
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Gehong Wei
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Xianyang, 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| | - Duntao Shu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Xianyang, 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
46
|
Lan G, Wei Y, Li Y, Wu Z. Diversity and assembly of root-associated microbiomes of rubber trees. FRONTIERS IN PLANT SCIENCE 2023; 14:1136418. [PMID: 37063173 PMCID: PMC10102524 DOI: 10.3389/fpls.2023.1136418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Understanding the diversity and assembly of the microbiomes of plant roots is crucial to manipulate them for sustainable ecosystem functioning. However, there are few reports about microbial communities at a continuous fine-scale of roots for rubber trees. METHODS We investigate the structure, diversity, and assembly of bacterial and fungal communities for the soil (non-rhizosphere), rhizosphere, and rhizoplane as well as root endosphere of rubber trees using the amplicon sequencing of 16S ribosomal ribonucleic acid (rRNA) and Internally Transcribed Spacer (ITS) genes. RESULTS We show that 18.69% of bacterial and 20.20% of fungal operational taxonomic units (OTUs) in the rhizoplane derived from the endosphere and 20.64% of bacterial and 20.60% of fungal OTUs from the soil. This suggests that the rhizoplane microbial community was a mixed community of soil and endosphere microbial communities and that microorganisms can disperse bidirectionally across different compartments of the plant root. On the other hand, in the absence of an enrichment or depletion of core bacterial and fungal OTUs in the rhizosphere, little differences in microbial composition as well as a more shared microbial network structure between the soil and the rhizosphere support the theory that the rhizosphere microbial community is a subset of the soil community. A large number of functional genes (such as nitrogen fixation and nitrite reduction) and more enriched core OTUs as well as a less stable but more complex network structure were observed in the rhizoplane of rubber tree roots. This demonstrated that the rhizoplane is the most active root compartment and a hotspot for plant-soil-environment interactions. In addition, bacterial and fungal communities in the rhizoplane were more stochastic compared to the rhizosphere and soil. DISCUSSION Our study expands our understanding of root-associated microbial community structure and function, which may provide the scientific basis for sustainable agriculture through biological process management.
Collapse
Affiliation(s)
- Guoyu Lan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Tropical Forestry Ecology Group, Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, Hainan, China
| | - Yaqing Wei
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- College of Ecology and Environment, Hainan University, Haikou, Hainan, China
| | - Yuwu Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zhixiang Wu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Tropical Forestry Ecology Group, Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, Hainan, China
| |
Collapse
|
47
|
Dragojević M, Stankovic N, Djokic L, Raičević V, Jovičić-Petrović J. Endorhizosphere of indigenous succulent halophytes: a valuable resource of plant growth promoting bacteria. ENVIRONMENTAL MICROBIOME 2023; 18:20. [PMID: 36934265 PMCID: PMC10024849 DOI: 10.1186/s40793-023-00477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The adaptability of halophytes to increased soil salinity is related to complex rhizosphere interactions. In this study, an integrative approach, combining culture-independent and culture-dependent techniques was used to analyze the bacterial communities in the endorizosphere of indigenous succulent halophytes Salicornia europaea, Suaeda maritima, and Camphorosma annua from the natural salt marshes of Slano Kopovo (Serbia). The 16 S rDNA analyses gave, for the first time, an insight into the composition of the endophytic bacterial communities of S. maritima and C. annua. We have found that the composition of endophyte microbiomes in the same habitat is to some extent influenced by plant species. A cultivable portion of the halophyte microbiota was tested at different NaCl concentrations for the set of plant growth promoting (PGP) traits. Through the mining of indigenous halotolerant endophytes, we obtained a collection representing a core endophyte microbiome conferring desirable PGP traits. The majority (65%) of the selected strains belonged to the common halotolerant/halophilic genera Halomonas, Kushneria, and Halobacillus, with representatives exhibiting multiple PGP traits, and retaining beneficial traits in conditions of the increased salinity. The results suggest that the root endosphere of halophytes is a valuable source of PGP bacteria supporting plant growth and fitness in salt-affected soils.
Collapse
Affiliation(s)
- Milica Dragojević
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, 11080 Serbia
| | - Nada Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade, Serbia
| | - Lidija Djokic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade, Serbia
| | - Vera Raičević
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, 11080 Serbia
| | | |
Collapse
|
48
|
Rapeseed Domestication Affects the Diversity of Rhizosphere Microbiota. Microorganisms 2023; 11:microorganisms11030724. [PMID: 36985297 PMCID: PMC10056747 DOI: 10.3390/microorganisms11030724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Rhizosphere microbiota is important for plant growth and health. Domestication is a process to select suitable plants to satisfy the needs of humans, which may have great impacts on the interaction between the host and its rhizosphere microbiota. Rapeseed (Brassica napus) is an important oilseed crop derived from the hybridization between Brassica rapa and Brassica oleracea ~7500 years ago. However, variations in rhizosphere microbiota along with rapeseed domestication remain poorly understood. Here, we characterized the composition and structure of the rhizosphere microbiota among diverse rapeseed accessions, including ten B. napus, two B. rapa, and three B. oleracea accessions through bacterial 16S rRNA gene sequencing. B. napus exhibited a higher Shannon index and different bacterial relative abundance compared with its wild relatives in rhizosphere microbiota. Moreover, artificial synthetic B. napus lines G3D001 and No.2127 showed significantly different rhizosphere microbiota diversity and composition from other B. napus accessions and their ancestors. The core rhizosphere microbiota of B. napus and its wild relatives was also described. FAPROTAX annotation predicted that the synthetic B. napus lines had more abundant pathways related to nitrogen metabolism, and the co-occurrence network results demonstrated that Rhodoplanes acted as hub nodes to promote nitrogen metabolism in the synthetic B. napus lines. This study provides new insights into the impacts of rapeseed domestication on the diversity and community structure of rhizosphere microbiota, which may highlight the contribution of rhizosphere microbiota to plant health.
Collapse
|
49
|
Li Y, Lei S, Cheng Z, Jin L, Zhang T, Liang LM, Cheng L, Zhang Q, Xu X, Lan C, Lu C, Mo M, Zhang KQ, Xu J, Tian B. Microbiota and functional analyses of nitrogen-fixing bacteria in root-knot nematode parasitism of plants. MICROBIOME 2023; 11:48. [PMID: 36895023 PMCID: PMC9999639 DOI: 10.1186/s40168-023-01484-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Root-knot nematodes (RKN) are among the most important root-damaging plant-parasitic nematodes, causing severe crop losses worldwide. The plant rhizosphere and root endosphere contain rich and diverse bacterial communities. However, little is known about how RKN and root bacteria interact to impact parasitism and plant health. Determining the keystone microbial taxa and their functional contributions to plant health and RKN development is important for understanding RKN parasitism and developing efficient biological control strategies in agriculture. RESULTS The analyses of rhizosphere and root endosphere microbiota of plants with and without RKN showed that host species, developmental stage, ecological niche, and nematode parasitism, as well as most of their interactions, contributed significantly to variations in root-associated microbiota. Compared with healthy tomato plants at different developmental stages, significant enrichments of bacteria belonging to Rhizobiales, Betaproteobacteriales, and Rhodobacterales were observed in the endophytic microbiota of nematode-parasitized root samples. Functional pathways related to bacterial pathogenesis and biological nitrogen fixation were significantly enriched in nematode-parasitized plants. In addition, we observed significant enrichments of the nifH gene and NifH protein, the key gene/enzyme involved in biological nitrogen fixation, within nematode-parasitized roots, consistent with a potential functional contribution of nitrogen-fixing bacteria to nematode parasitism. Data from a further assay showed that soil nitrogen amendment could reduce both endophytic nitrogen-fixing bacteria and RKN prevalence and galling in tomato plants. CONCLUSIONS Results demonstrated that (1) community variation and assembly of root endophytic microbiota were significantly affected by RKN parasitism; (2) a taxonomic and functional association was found for endophytic nitrogen-fixing bacteria and nematode parasitism; and (3) the change of nitrogen-fixing bacterial communities through the addition of nitrogen fertilizers could affect the occurrence of RKN. Our results provide new insights into interactions among endophytic microbiota, RKN, and plants, contributing to the potential development of novel management strategies against RKN. Video Abstract.
Collapse
Affiliation(s)
- Ye Li
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Shaonan Lei
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Zhiqiang Cheng
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Lingyue Jin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Ting Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China
| | - Linjie Cheng
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Qinyi Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Xiaohong Xu
- Library, Fujian Normal University, Fuzhou, 350108, Fujian, China
| | - Canhua Lan
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Chaojun Lu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China
| | - Minghe Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| | - Baoyu Tian
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
50
|
Mundra S, Shockey J, Morsy M. Editorial: Plant microbiome: Ecology, functions, and application trends. FRONTIERS IN PLANT SCIENCE 2023; 14:1175556. [PMID: 36959951 PMCID: PMC10029725 DOI: 10.3389/fpls.2023.1175556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Sunil Mundra
- Department of Biology, College of Science, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al−Ain, United Arab Emirates
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Mustafa Morsy
- Department of Biological and Environmental Sciences, University of West Alabama, Livingston, AL, United States
| |
Collapse
|