1
|
Sun X, Tian T, Lian Y, Cui Z. Current Advances in Viral Nanoparticles for Biomedicine. ACS NANO 2024; 18:33827-33863. [PMID: 39648920 DOI: 10.1021/acsnano.4c13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Viral nanoparticles (VNPs) have emerged as crucial tools in the field of biomedicine. Leveraging their biological and physicochemical properties, VNPs exhibit significant advantages in the prevention, diagnosis, and treatment of human diseases. Through techniques such as chemical bioconjugation, infusion, genetic engineering, and encapsulation, these VNPs have been endowed with multifunctional capabilities, including the display of functional peptides or proteins, encapsulation of therapeutic drugs or inorganic particles, integration with imaging agents, and conjugation with bioactive molecules. This review provides an in-depth analysis of VNPs in biomedicine, elucidating their diverse types, distinctive features, production methods, and complex design principles behind multifunctional VNPs. It highlights recent innovative research and various applications, covering their roles in imaging, drug delivery, therapeutics, gene delivery, vaccines, immunotherapy, and tissue regeneration. Additionally, the review provides an assessment of their safety and biocompatibility and discusses challenges and future opportunities in the field, underscoring the vast potential and evolving nature of VNP research.
Collapse
Affiliation(s)
- Xianxun Sun
- School of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Tao Tian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yindong Lian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
2
|
Zhu J, Tao P, Chopra AK, Rao VB. Bacteriophage T4 as a Protein-Based, Adjuvant- and Needle-Free, Mucosal Pandemic Vaccine Design Platform. Annu Rev Virol 2024; 11:395-420. [PMID: 38768614 PMCID: PMC11690488 DOI: 10.1146/annurev-virology-111821-111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The COVID-19 pandemic has transformed vaccinology. Rapid deployment of mRNA vaccines has saved countless lives. However, these platforms have inherent limitations including lack of durability of immune responses and mucosal immunity, high cost, and thermal instability. These and uncertainties about the nature of future pandemics underscore the need for exploring next-generation vaccine platforms. Here, we present a novel protein-based, bacteriophage T4 platform for rapid design of efficacious vaccines against bacterial and viral pathogens. Full-length antigens can be displayed at high density on a 120 × 86 nm phage capsid through nonessential capsid binding proteins Soc and Hoc. Such nanoparticles, without any adjuvant, induce robust humoral, cellular, and mucosal responses when administered intranasally and confer sterilizing immunity. Combined with structural stability and ease of manufacture, T4 phage provides an excellent needle-free, mucosal pandemic vaccine platform and allows equitable vaccine access to low- and middle-income communities across the globe.
Collapse
Affiliation(s)
- Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA; ,
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ashok K Chopra
- Department of Microbiology and Immunology, Sealy Institute for Vaccine Sciences, Institute for Human Infections and Immunity, and Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA; ,
| |
Collapse
|
3
|
Dasgupta S, Thomas JA, Ray K. Mechanism of Viral DNA Packaging in Phage T4 Using Single-Molecule Fluorescence Approaches. Viruses 2024; 16:192. [PMID: 38399968 PMCID: PMC10893049 DOI: 10.3390/v16020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
In all tailed phages, the packaging of the double-stranded genome into the head by a terminase motor complex is an essential step in virion formation. Despite extensive research, there are still major gaps in the understanding of this highly dynamic process and the mechanisms responsible for DNA translocation. Over the last fifteen years, single-molecule fluorescence technologies have been applied to study viral nucleic acid packaging using the robust and flexible T4 in vitro packaging system in conjunction with genetic, biochemical, and structural analyses. In this review, we discuss the novel findings from these studies, including that the T4 genome was determined to be packaged as an elongated loop via the colocalization of dye-labeled DNA termini above the portal structure. Packaging efficiency of the TerL motor was shown to be inherently linked to substrate structure, with packaging stalling at DNA branches. The latter led to the design of multiple experiments whose results all support a proposed torsional compression translocation model to explain substrate packaging. Evidence of substrate compression was derived from FRET and/or smFRET measurements of stalled versus resolvase released dye-labeled Y-DNAs and other dye-labeled substrates relative to motor components. Additionally, active in vivo T4 TerS fluorescent fusion proteins facilitated the application of advanced super-resolution optical microscopy toward the visualization of the initiation of packaging. The formation of twin TerS ring complexes, each expected to be ~15 nm in diameter, supports a double protein ring-DNA synapsis model for the control of packaging initiation, a model that may help explain the variety of ring structures reported among pac site phages. The examination of the dynamics of the T4 packaging motor at the single-molecule level in these studies demonstrates the value of state-of-the-art fluorescent tools for future studies of complex viral replication mechanisms.
Collapse
Affiliation(s)
- Souradip Dasgupta
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Julie A. Thomas
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA;
| | - Krishanu Ray
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Zhu J, Batra H, Ananthaswamy N, Mahalingam M, Tao P, Wu X, Guo W, Fokine A, Rao VB. Design of bacteriophage T4-based artificial viral vectors for human genome remodeling. Nat Commun 2023; 14:2928. [PMID: 37253769 PMCID: PMC10229621 DOI: 10.1038/s41467-023-38364-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Designing artificial viral vectors (AVVs) programmed with biomolecules that can enter human cells and carry out molecular repairs will have broad applications. Here, we describe an assembly-line approach to build AVVs by engineering the well-characterized structural components of bacteriophage T4. Starting with a 120 × 86 nm capsid shell that can accommodate 171-Kbp DNA and thousands of protein copies, various combinations of biomolecules, including DNAs, proteins, RNAs, and ribonucleoproteins, are externally and internally incorporated. The nanoparticles are then coated with cationic lipid to enable efficient entry into human cells. As proof of concept, we assemble a series of AVVs designed to deliver full-length dystrophin gene or perform various molecular operations to remodel human genome, including genome editing, gene recombination, gene replacement, gene expression, and gene silencing. These large capacity, customizable, multiplex, and all-in-one phage-based AVVs represent an additional category of nanomaterial that could potentially transform gene therapies and personalized medicine.
Collapse
Affiliation(s)
- Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Himanshu Batra
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Neeti Ananthaswamy
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Marthandan Mahalingam
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Pan Tao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Xiaorong Wu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Wenzheng Guo
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA.
| |
Collapse
|
5
|
Rao VB, Zhu J. Bacteriophage T4 as a nanovehicle for delivery of genes and therapeutics into human cells. Curr Opin Virol 2022; 55:101255. [PMID: 35952598 PMCID: PMC11736861 DOI: 10.1016/j.coviro.2022.101255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022]
Abstract
The ability to deliver therapeutic genes and biomolecules into a human cell and restore a defective function has been the holy grail of medicine. Adeno-associated viruses and lentiviruses have been extensively used as delivery vehicles, but their capacity is limited to one (or two) gene(s). Bacteriophages are emerging as novel vehicles for gene therapy. The large 120 × 86-nm T4 capsid allows engineering of both its surface and its interior to incorporate combinations of DNAs, RNAs, proteins, and their complexes. In vitro assembly using purified components allows customization for various applications and for individualized therapies. Its large capacity, cell-targeting capability, safety, and inexpensive manufacturing could open unprecedented new possibilities for gene, cancer, and stem cell therapies. However, efficient entry into primary human cells and intracellular trafficking are significant barriers that must be overcome by gene engineering and evolution in order to translate phage-delivery technology from bench to bedside.
Collapse
Affiliation(s)
- Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| | - Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
6
|
Liu T, Li L, Cheng C, He B, Jiang T. Emerging prospects of protein/peptide-based nanoassemblies for drug delivery and vaccine development. NANO RESEARCH 2022; 15:7267-7285. [PMID: 35692441 PMCID: PMC9166156 DOI: 10.1007/s12274-022-4385-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 05/09/2023]
Abstract
Proteins have been widely used in the biomedical field because of their well-defined architecture, accurate molecular weight, excellent biocompatibility and biodegradability, and easy-to-functionalization. Inspired by the wisdom of nature, increasing proteins/peptides that possess self-assembling capabilities have been explored and designed to generate nanoassemblies with unique structure and function, including spatially organized conformation, passive and active targeting, stimuli-responsiveness, and high stability. These characteristics make protein/peptide-based nanoassembly an ideal platform for drug delivery and vaccine development. In this review, we focus on recent advances in subsistent protein/peptide-based nanoassemblies, including protein nanocages, virus-like particles, self-assemblable natural proteins, and self-assemblable artificial peptides. The origin and characteristics of various protein/peptide-based assemblies and their applications in drug delivery and vaccine development are summarized. In the end, the prospects and challenges are discussed for the further development of protein/peptide-based nanoassemblies.
Collapse
Affiliation(s)
- Taiyu Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Lu Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| |
Collapse
|
7
|
Suffian IFBM, Al-Jamal KT. Bioengineering of virus-like particles as dynamic nanocarriers for in vivo delivery and targeting to solid tumours. Adv Drug Deliv Rev 2022; 180:114030. [PMID: 34736988 DOI: 10.1016/j.addr.2021.114030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/16/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
Virus-like particles (VLPs) are known as self-assembled, non-replicative and non-infectious protein particles, which imitate the formation and structure of original wild type viruses, however, lack the viral genome and/or their fragments. The capacity of VLPs to encompass small molecules like nucleic acids and others has made them as novel vessels of nanocarriers for drug delivery applications. In addition, VLPs surface have the capacity to achieve variation of the surface display via several modification strategies including genetic modification, chemical modification, and non-covalent modification. Among the VLPs nanocarriers, Hepatitis B virus core (HBc) particles have been the most encouraging candidate. HBc particles are hollow nanoparticles in the range of 30-34 nm in diameter and 7 nm thick envelopes, consisting of 180 or 240 copies of identical polypeptide monomer. They also employ a distinctive position among the VLPs carriers due to the high-level synthesis, which serves as a strong protective capsid shell and efficient self-assembly properties. This review highlights on the bioengineering of HBc particles as dynamic nanocarriers for in vivo delivery and specific targeting to solid tumours.
Collapse
Affiliation(s)
- Izzat F B M Suffian
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (Kuantan Campus), Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
8
|
Feng Y, Liu Q, Chen M, Zhao X, Wang L, Liu L, Chen X. Framework nucleic acid programmed combinatorial delivery nanocarriers for parallel and multiplexed analysis. Chem Commun (Camb) 2021; 57:10935-10938. [PMID: 34596190 DOI: 10.1039/d1cc04691h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein we report a framework nucleic acid programmed strategy to develop nanocarriers to precisely and independently package multiple homo- and heterogeneous cargos in vitro and in vivo, thereby enabling multiplexed analysis of aptamer-ligand complexes to distinguish normal people and patients with prostate enlargement via simple serum tests, as well as favorable imaging and discrimination of MCF-7, PC-3 and A549 cancer cells and normal QSG-7701 cells.
Collapse
Affiliation(s)
- Yinghui Feng
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| | - Qi Liu
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| | - Miao Chen
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China. .,College of Life Science, Central South University, Changsha 410083, Hunan, China
| | - Xinyi Zhao
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| | - Lumin Wang
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| | - Longfei Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| |
Collapse
|
9
|
Serwer P, Wright ET, De La Chapa J, Gonzales CB. Basics for Improved Use of Phages for Therapy. Antibiotics (Basel) 2021; 10:antibiotics10060723. [PMID: 34208477 PMCID: PMC8234457 DOI: 10.3390/antibiotics10060723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Blood-borne therapeutic phages and phage capsids increasingly reach therapeutic targets as they acquire more persistence, i.e., become more resistant to non-targeted removal from blood. Pathogenic bacteria are targets during classical phage therapy. Metastatic tumors are potential future targets, during use of drug delivery vehicles (DDVs) that are phage derived. Phage therapy has, to date, only sometimes been successful. One cause of failure is low phage persistence. A three-step strategy for increasing persistence is to increase (1) the speed of lytic phage isolation, (2) the diversity of phages isolated, and (3) the effectiveness and speed of screening phages for high persistence. The importance of high persistence-screening is illustrated by our finding here of persistence dramatically higher for coliphage T3 than for its relative, coliphage T7, in murine blood. Coliphage T4 is more persistent, long-term than T3. Pseudomonas chlororaphis phage 201phi2-1 has relatively low persistence. These data are obtained with phages co-inoculated and separately assayed. In addition, highly persistent phage T3 undergoes dispersal to several murine organs and displays tumor tropism in epithelial tissue (xenografted human oral squamous cell carcinoma). Dispersal is an asset for phage therapy, but a liability for phage-based DDVs. We propose increased focus on phage persistence—and dispersal—screening.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry and Structural Biology, The University of Texas Health Center, San Antonio, TX 78229-3900, USA;
- Correspondence: ; Tel.: +1-210-567-3765
| | - Elena T. Wright
- Department of Biochemistry and Structural Biology, The University of Texas Health Center, San Antonio, TX 78229-3900, USA;
| | - Jorge De La Chapa
- Department of Comprehensive Dentistry, The University of Texas Health Center, San Antonio, TX 78229-3900, USA; (J.D.L.C.); (C.B.G.)
| | - Cara B. Gonzales
- Department of Comprehensive Dentistry, The University of Texas Health Center, San Antonio, TX 78229-3900, USA; (J.D.L.C.); (C.B.G.)
| |
Collapse
|
10
|
Tao Y, Chan HF, Shi B, Li M, Leong KW. Light: A Magical Tool for Controlled Drug Delivery. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2005029. [PMID: 34483808 PMCID: PMC8415493 DOI: 10.1002/adfm.202005029] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 05/04/2023]
Abstract
Light is a particularly appealing tool for on-demand drug delivery due to its noninvasive nature, ease of application and exquisite temporal and spatial control. Great progress has been achieved in the development of novel light-driven drug delivery strategies with both breadth and depth. Light-controlled drug delivery platforms can be generally categorized into three groups: photochemical, photothermal, and photoisomerization-mediated therapies. Various advanced materials, such as metal nanoparticles, metal sulfides and oxides, metal-organic frameworks, carbon nanomaterials, upconversion nanoparticles, semiconductor nanoparticles, stimuli-responsive micelles, polymer- and liposome-based nanoparticles have been applied for light-stimulated drug delivery. In view of the increasing interest in on-demand targeted drug delivery, we review the development of light-responsive systems with a focus on recent advances, key limitations, and future directions.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingyang Shi
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Kam W Leong
- Department of Biomedical Engineering, Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
11
|
Chung YH, Cai H, Steinmetz NF. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv Drug Deliv Rev 2020; 156:214-235. [PMID: 32603813 PMCID: PMC7320870 DOI: 10.1016/j.addr.2020.06.024] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023]
Abstract
Viral nanoparticles (VNPs) encompass a diverse array of naturally occurring nanomaterials derived from plant viruses, bacteriophages, and mammalian viruses. The application and development of VNPs and their genome-free versions, the virus-like particles (VLPs), for nanomedicine is a rapidly growing. VLPs can encapsulate a wide range of active ingredients as well as be genetically or chemically conjugated to targeting ligands to achieve tissue specificity. VLPs are manufactured through scalable fermentation or molecular farming, and the materials are biocompatible and biodegradable. These properties have led to a wide range of applications, including cancer therapies, immunotherapies, vaccines, antimicrobial therapies, cardiovascular therapies, gene therapies, as well as imaging and theranostics. The use of VLPs as drug delivery agents is evolving, and sufficient research must continuously be undertaken to translate these therapies to the clinic. This review highlights some of the novel research efforts currently underway in the VNP drug delivery field in achieving this greater goal.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, United States
| | - Hui Cai
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92093, United States
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, United States; Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92093, United States; Department of Radiology, University of California-San Diego, La Jolla, CA 92093, United States; Moores Cancer Center, University of California-San Diego, La Jolla, CA 92093, United States; Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
12
|
Liu JL, Zabetakis D, Breger JC, Anderson GP, Goldman ER. Multi-Enzyme Assembly on T4 Phage Scaffold. Front Bioeng Biotechnol 2020; 8:571. [PMID: 32671028 PMCID: PMC7327620 DOI: 10.3389/fbioe.2020.00571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/12/2020] [Indexed: 01/11/2023] Open
Abstract
Over the past two decades, various scaffolds have been designed and synthesized to organize enzyme cascades spatially for enhanced enzyme activity based on the concepts of substrate channeling and enhanced stability. The most bio-compatible synthetic scaffolds known for enzyme immobilization are protein and DNA nanostructures. Herein, we examined the utility of the T4 phage capsid to serve as a naturally occurring protein scaffold for the immobilization of a three-enzyme cascade: Amylase, Maltase, and Glucokinase. Covalent constructs between each of the enzymes and the outer capsid protein Hoc were prepared through SpyTag-SpyCatcher pairing and assembled onto phage capsids in vitro with an estimated average of 90 copies per capsid. The capsid-immobilized Maltase has a fourfold higher initial rate relative to Maltase free in solution. Kinetic analysis also revealed that the immobilized three-enzyme cascade has an 18-fold higher converted number of NAD+ to NADH relative to the mixtures in solution. Our results demonstrate that the T4 phage capsid can act as a naturally occurring scaffold with substantial potential to enhance enzyme activity by spatially organizing enzymes on the capsid Hoc.
Collapse
Affiliation(s)
- Jinny L Liu
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States
| | - Daniel Zabetakis
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States
| | - Joyce C Breger
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States
| | - George P Anderson
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States
| | - Ellen R Goldman
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States
| |
Collapse
|
13
|
Das S, Zhao L, Crooke SN, Tran L, Bhattacharya S, Gaucher EA, Finn MG. Stabilization of Near-Infrared Fluorescent Proteins by Packaging in Virus-like Particles. Biomacromolecules 2020; 21:2432-2439. [DOI: 10.1021/acs.biomac.0c00362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Soumen Das
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Liangjun Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Stephen N. Crooke
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Lily Tran
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Sonia Bhattacharya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Eric A. Gaucher
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
- School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| |
Collapse
|
14
|
Black LW, Yan B, Ray K. The T4 TerL Prohead Packaging Motor Does Not Drive DNA Translocation by a Proposed Dehydration Mechanism. Viruses 2020; 12:v12050522. [PMID: 32397493 PMCID: PMC7291337 DOI: 10.3390/v12050522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
A "DNA crunching" linear motor mechanism that employs a grip-and-release transient spring like compression of B- to A-form DNA has been found in our previous studies. Our FRET measurements in vitro show a decrease in distance from TerL to portal during packaging; furthermore, there is a decrease in distance between closely positioned dye pairs in the Y-stem of translocating Y-DNA that conforms to B- and A- structure. In normal translocation into the prohead the TerL motor expels all B-form tightly binding YOYO-1 dye that cannot bind A-form. The TerL motor cannot package A-form dsRNA. Our work reported here shows that addition of helper B form DNA:DNA (D:D) 20mers allows increased packaging of heteroduplex A-form DNA:RNA 20mers (D:R), evidence for a B- to A-form spring motor pushing duplex nucleic acid. A-form DNA:RNA 25mers, 30mers, and 35mers alone are efficiently packaged into proheads by the TerL motor showing that a proposed hypothetical dehydration motor mechanism operating on duplex substrates does not provide the packaging motor force. Taken together with our previous studies showing TerL motor protein motion toward the portal during DNA packaging, our present studies of short D:D and D:R duplex nucleic acid substrates strongly supports our previous evidence that the protein motor pushes rather than pulls or dehydrates duplex substrates to provide the translocation into prohead packaging force.
Collapse
Affiliation(s)
- Lindsay W. Black
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.Y.); (K.R.)
- Correspondence:
| | - Bingxue Yan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.Y.); (K.R.)
| | - Krishanu Ray
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.Y.); (K.R.)
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Ueno T, Niwase K, Tsubokawa D, Kikuchi K, Takai N, Furuta T, Kawano R, Uchihashi T. Dynamic behavior of an artificial protein needle contacting a membrane observed by high-speed atomic force microscopy. NANOSCALE 2020; 12:8166-8173. [PMID: 32239053 DOI: 10.1039/d0nr01121e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bacteriophage T4 and other bacteriophages have a protein component known as a molecular needle which is used for the transmembrane reaction in the infection process. In this paper, the transmembrane reaction mechanisms of artificial protein needles (PNs) constructed by protein engineering of the component protein of bacteriophage T4 are elucidated by observation of single-molecules by high-speed atomic force microscopy (HS-AFM) and molecular dynamics (MD) simulations. The HS-AFM images indicate that the tip of the needle structure stabilizes the interaction of the needle with the membrane surface and is involved in controlling the contact angle and angular velocity with respect to the membrane. The MD simulations indicate that the dynamic behavior of PN is governed by hydrogen bonds between the membrane phosphate fragments and the tip. Moreover, quartz crystal microbalance (QCM) and electrophysiological experiments indicate that the tip structure of PN affects its kinetic behavior and membrane potential. These results demonstrate that protein assemblies derived from natural biosupramolecules can be used to create nanomaterials with rationally-designed functionality.
Collapse
Affiliation(s)
- Takafumi Ueno
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Chang J, Chen X, Glass Z, Gao F, Mao L, Wang M, Xu Q. Integrating Combinatorial Lipid Nanoparticle and Chemically Modified Protein for Intracellular Delivery and Genome Editing. Acc Chem Res 2019; 52:665-675. [PMID: 30586281 DOI: 10.1021/acs.accounts.8b00493] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The use of protein to precisely manipulate cell signaling is an effective approach for controlling cell fate and developing precision medicine. More recently, programmable nucleases, such as CRISPR/Cas9, have shown extremely high potency for editing genetic flow of mammalian cells, and for treating genetic disorders. The therapeutic potential of proteins with an intracellular target, however, is mostly challenged by their low cell impermeability. Therefore, a developing delivery system to transport protein to the site of action in a spatiotemporal controlled manner is of great importance to expand the therapeutic index of the protein. In this Account, we first summarize our most recent advances in designing combinatorial lipid nanoparticles with diverse chemical structures for intracellular protein delivery. By designing parallel Michael addition or ring-opening reaction of aliphatic amines, we have generated a combinatorial library of cationic lipids, and identified several leading nanoparticle formulations for intracellular protein delivery both in vitro and in vivo. Moreover, we optimized the chemical structure of lipids to control lipid degradation and protein release inside cells for CRISPR/Cas9 genome-editing protein delivery. In the second part of this Account, we survey our recent endeavor in developing a chemical approach to modify protein, in particular, coupled with the nanoparticle delivery platform, to improve protein delivery for targeted diseases treatment and genome editing. Chemical modification of protein is a useful tool to modulate protein function and to improve the therapeutic index of protein drugs. Herein, we mostly summarize our recent advances on designing chemical approaches to modify protein with following unique findings: (1) chemically modified protein shows selective turn-on activity based on the specific intracellular microenvironment, with which we were able to protein-based targeted cancer therapy; (2) the conjugation of hyaluronic acid (HA) to protein allows cancer cell surface receptor-targeted delivery of protein; (3) the introduction of nonpeptidic boronic acid into protein enabled cell nucleus targeted delivery; this is the first report that a nonpeptidic signal can direct protein to subcellular compartment; and (4) the fusion of protein with negatively supercharged green fluorescent protein (GFP) facilitates the self-assembly of protein with lipid nanoparticle for genome-editing protein delivery. At the end of the Account, we give a perspective of expanding the chemistry that could be integrated to design biocompatible lipid nanocarriers for protein delivery and genome editing in vitro and in vivo, as well as the chemical approaches that we can harness to modulate protein activity in live cells for targeted diseases treatment.
Collapse
Affiliation(s)
- Jin Chang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecule Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
| | - Xianghan Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecule Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Zachary Glass
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Feng Gao
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecule Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecule Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
18
|
Jeevanandam J, Pal K, Danquah MK. Virus-like nanoparticles as a novel delivery tool in gene therapy. Biochimie 2018; 157:38-47. [PMID: 30408502 DOI: 10.1016/j.biochi.2018.11.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
Viruses are considered as natural nanomaterials as they are in the size range of 20-500 nm with a genetical material either DNA or RNA, which is surrounded by a protein coat capsid. Recently, the field of virus nanotechnology is gaining significant attention from researchers. Attention is given to the utilization of viruses as nanomaterials for medical, biotechnology and energy applications. Removal of genetic material from the viral capsid creates empty capsid for drug incorporation and coating the capsid protein crystals with antibodies, enzymes or aptamers will enhance their targeted drug deliver efficiency. Studies reported that these virus-like nanoparticles have been used in delivering drugs for cancer. It is also used in imaging and sensory applications for various diseases. However, there is reservation among researchers to utilize virus-like nanoparticles in targeted delivery of genes in gene therapy, as there is a possibility of using virus-like nanoparticles for targeted gene delivery. In addition, other biomedical applications that are explored using virus-like nanoparticles and the probable mechanism of delivering genes.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT250, Miri, Sarawak, 98009, Malaysia
| | - Kaushik Pal
- Bharath Institute of Higher Education and Research, Bharath University, Department of Nanotechnology, Research Park, 173 Agharam Road, Selaiyur, Chennai, 600073, Tamil Nadu, India.
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, 37403, United States
| |
Collapse
|
19
|
Santos SB, Costa AR, Carvalho C, Nóbrega FL, Azeredo J. Exploiting Bacteriophage Proteomes: The Hidden Biotechnological Potential. Trends Biotechnol 2018; 36:966-984. [DOI: 10.1016/j.tibtech.2018.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
|
20
|
Fiedler JD, Fishman MR, Brown SD, Lau J, Finn MG. Multifunctional Enzyme Packaging and Catalysis in the Qβ Protein Nanoparticle. Biomacromolecules 2018; 19:3945-3957. [DOI: 10.1021/acs.biomac.8b00885] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jason D. Fiedler
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Maxwell R. Fishman
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Steven D. Brown
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jolene Lau
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - M. G. Finn
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
21
|
Catalano CE. Bacteriophage lambda: The path from biology to theranostic agent. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018. [DOI: 10.1002/wnan.1517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Carlos E. Catalano
- Department of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical ScienceUniversity of ColoradoAuroraColorado
| |
Collapse
|
22
|
Khatami F, Larijani B, Tavangar SM. The presence of tumor extrachomosomal circular DNA (ecDNA) as a component of liquid biopsy in blood. Med Hypotheses 2018; 114:5-7. [PMID: 29602465 DOI: 10.1016/j.mehy.2018.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022]
Abstract
In molecular biology covalently closed circular DNAs are able to passthrough double layer of eukaryotic cellular membrane. Very recently the presence of circular extra chromosomal DNA (ecDNA) has been shown which are different in seventeen different types of cancers. In fact, ecDNA are the tricky way of oncogenes to increase their copy number. We hypothesis the presence of ecDNA in the blood of cancer patients as a subpopulation of liquid biopsy. On the occasion of their presence in blood they will be very beneficial to cover the small amount of cell frees DNA (cfDNA). Isolation and characterization of ecDNA will be possible by a sensitive method entitled Circle-Seq. The origin of tumor more than its prognosis and diagnosis will be possible in the easiest way by using ecDNA.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Pathology, Doctor Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Inaba H, Ueno T. Artificial bio-nanomachines based on protein needles derived from bacteriophage T4. Biophys Rev 2017; 10:641-658. [PMID: 29147941 DOI: 10.1007/s12551-017-0336-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022] Open
Abstract
Bacteriophage T4 is a natural bio-nanomachine which achieves efficient infection of host cells via cooperative motion of specific three-dimensional protein architectures. The relationships between the protein structures and their dynamic functions have recently been clarified. In this review we summarize the design principles for fabrication of nanomachines using the component proteins of bacteriophage T4 based on these recent advances. We focus on the protein needle known as gp5, which is located at the center of the baseplate at the end of the contractile tail of bacteriophage T4. This protein needle plays a critical role in directly puncturing host cells, and analysis has revealed that it contains a common motif used for cell puncture in other known injection systems, such as T6SS. Our artificial needle based on the β-helical domain of gp5 retains the ability to penetrate cells and can be engineered to deliver various cargos into living cells. Thus, the unique components of bacteriophage T4 and other natural nanomachines have great potential for use as molecular scaffolds in efforts to fabricate new bio-nanomachines.
Collapse
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
24
|
Han X, Woycechowsky KJ. Encapsulation and Controlled Release of Protein Guests by the Bacillus subtilis Lumazine Synthase Capsid. Biochemistry 2017; 56:6211-6220. [PMID: 29087189 DOI: 10.1021/acs.biochem.7b00669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In Bacillus subtilis, the 60-subunit dodecahedral capsid formed by lumazine synthase (BsLS) acts as a container for trimeric riboflavin synthase (BsRS). To test whether the C-terminal sequence of BsRS is responsible for its encapsulation by BsLS, the green fluorescent protein (GFP) was fused to either the last 11 or the last 32 amino acids of BsRS, yielding variant GFP11 or GFP32, respectively. After purification, BsLS capsids that had been co-produced in bacteria with GFP11 and GFP32 are 15- and 6-fold more fluorescent, respectively, than BsLS co-produced with GFP lacking any BsRS fragment, indicating complex formation. Enzyme-linked immunosorbent assay experiments confirm that GFP11 is localized within the BsLS capsid. In addition, fusing the last 11 amino acids of BsRS to the C-terminus of the Abrin A chain also led to its encapsulation by BsLS at a level similar to that of GFP11. Together, these results demonstrate that the C-terminal tail of BsRS can act as an encapsulation tag capable of targeting other proteins to the BsLS capsid interior. As with the natural BsLS-BsRS complex, mild changes in pH and buffer identity trigger dissociation of the GFP11 guest, accompanied by a substantial expansion of the BsLS capsid. This system for protein encapsulation and release provides a novel tool for bionanotechnology.
Collapse
Affiliation(s)
- Xue Han
- School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, China
| | - Kenneth J Woycechowsky
- School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, China
| |
Collapse
|
25
|
Karimi M, Zangabad PS, Baghaee-Ravari S, Ghazadeh M, Mirshekari H, Hamblin MR. Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light. J Am Chem Soc 2017; 139:4584-4610. [PMID: 28192672 PMCID: PMC5475407 DOI: 10.1021/jacs.6b08313] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanotechnology has begun to play a remarkable role in various fields of science and technology. In biomedical applications, nanoparticles have opened new horizons, especially for biosensing, targeted delivery of therapeutics, and so forth. Among drug delivery systems (DDSs), smart nanocarriers that respond to specific stimuli in their environment represent a growing field. Nanoplatforms that can be activated by an external application of light can be used for a wide variety of photoactivated therapies, especially light-triggered DDSs, relying on photoisomerization, photo-cross-linking/un-cross-linking, photoreduction, and so forth. In addition, light activation has potential in photodynamic therapy, photothermal therapy, radiotherapy, protected delivery of bioactive moieties, anticancer drug delivery systems, and theranostics (i.e., real-time monitoring and tracking combined with a therapeutic action to different diseases sites and organs). Combinations of these approaches can lead to enhanced and synergistic therapies, employing light as a trigger or for activation. Nonlinear light absorption mechanisms such as two-photon absorption and photon upconversion have been employed in the design of light-responsive DDSs. The integration of a light stimulus into dual/multiresponsive nanocarriers can provide spatiotemporal controlled delivery and release of therapeutic agents, targeted and controlled nanosystems, combined delivery of two or more agents, their on-demand release under specific conditions, and so forth. Overall, light-activated nanomedicines and DDSs are expected to provide more effective therapies against serious diseases such as cancers, inflammation, infections, and cardiovascular disease with reduced side effects and will open new doors toward the treatment of patients worldwide.
Collapse
Affiliation(s)
- Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Parham Sahandi Zangabad
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466 Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Soodeh Baghaee-Ravari
- Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Mehdi Ghazadeh
- Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Hamid Mirshekari
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
26
|
Thomas JA, Benítez Quintana AD, Bosch MA, Coll De Peña A, Aguilera E, Coulibaly A, Wu W, Osier MV, Hudson AO, Weintraub ST, Black LW. Identification of Essential Genes in the Salmonella Phage SPN3US Reveals Novel Insights into Giant Phage Head Structure and Assembly. J Virol 2016; 90:10284-10298. [PMID: 27605673 PMCID: PMC5105663 DOI: 10.1128/jvi.01492-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/26/2016] [Indexed: 01/20/2023] Open
Abstract
Giant tailed bacterial viruses, or phages, such as Pseudomonas aeruginosa phage ϕKZ, have long genomes packaged into large, atypical virions. Many aspects of ϕKZ and related phage biology are poorly understood, mostly due to the fact that the functions of the majority of their proteins are unknown. We hypothesized that the Salmonella enterica phage SPN3US could be a useful model phage to address this gap in knowledge. The 240-kb SPN3US genome shares a core set of 91 genes with ϕKZ and related phages, ∼61 of which are virion genes, consistent with the expectation that virion complexity is an ancient, conserved feature. Nucleotide sequencing of 18 mutants enabled assignment of 13 genes as essential, information which could not have been determined by sequence-based searches for 11 genes. Proteome analyses of two SPN3US virion protein mutants with knockouts in 64 and 241 provided new insight into the composition and assembly of giant phage heads. The 64 mutant analyses revealed all the genetic determinants required for assembly of the SPN3US head and a likely head-tail joining role for gp64, and its homologs in related phages, due to the tailless-particle phenotype produced. Analyses of the mutation in 241, which encodes an RNA polymerase β subunit, revealed that without this subunit, no other subunits are assembled into the head, and enabled identification of a "missing" β' subunit domain. These findings support SPN3US as an excellent model for giant phage research, laying the groundwork for future analyses of their highly unusual virions, host interactions, and evolution. IMPORTANCE In recent years, there has been a paradigm shift in virology with the realization that extremely large viruses infecting prokaryotes (giant phages) can be found in many environments. A group of phages related to the prototype giant phage ϕKZ are of great interest due to their virions being among the most complex of prokaryotic viruses and their potential for biocontrol and phage therapy applications. Our understanding of the biology of these phages is limited, as a large proportion of their proteins have not been characterized and/or have been deemed putative without any experimental verification. In this study, we analyzed Salmonella phage SPN3US using a combination of genomics, genetics, and proteomics and in doing so revealed new information regarding giant phage head structure and assembly and virion RNA polymerase composition. Our findings demonstrate the suitability of SPN3US as a model phage for the growing group of phages related to ϕKZ.
Collapse
Affiliation(s)
- Julie A Thomas
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | | | - Martine A Bosch
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Adriana Coll De Peña
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Elizabeth Aguilera
- Natural and Physical Sciences, Baltimore City Community College, Baltimore, Maryland, USA
| | - Assitan Coulibaly
- Natural and Physical Sciences, Baltimore City Community College, Baltimore, Maryland, USA
| | - Weimin Wu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael V Osier
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Susan T Weintraub
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Lindsay W Black
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Bárdy P, Pantůček R, Benešík M, Doškař J. Genetically modified bacteriophages in applied microbiology. J Appl Microbiol 2016; 121:618-33. [PMID: 27321680 DOI: 10.1111/jam.13207] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/07/2016] [Accepted: 06/16/2016] [Indexed: 01/18/2023]
Abstract
Bacteriophages represent a simple viral model of basic research with many possibilities for practical application. Due to their ability to infect and kill bacteria, their potential in the treatment of bacterial infection has been examined since their discovery. With advances in molecular biology and gene engineering, the phage application spectrum has been expanded to various medical and biotechnological fields. The construction of bacteriophages with an extended host range or longer viability in the mammalian bloodstream enhances their potential as an alternative to conventional antibiotic treatment. Insertion of active depolymerase genes to their genomes can enforce the biofilm disposal. They can also be engineered to transfer various compounds to the eukaryotic organisms and the bacterial culture, applicable for the vaccine, drug or gene delivery. Phage recombinant lytic enzymes can be applied as enzybiotics in medicine as well as in biotechnology for pathogen detection or programmed cell death in bacterial expression strains. Besides, modified bacteriophages with high specificity can be applied as bioprobes in detection tools to estimate the presence of pathogens in food industry, or utilized in the control of food-borne pathogens as part of the constructed phage-based biosorbents.
Collapse
Affiliation(s)
- P Bárdy
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - R Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - M Benešík
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - J Doškař
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
28
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
29
|
Qazi S, Miettinen HM, Wilkinson RA, McCoy K, Douglas T, Wiedenheft B. Programmed Self-Assembly of an Active P22-Cas9 Nanocarrier System. Mol Pharm 2016; 13:1191-6. [PMID: 26894836 PMCID: PMC7734702 DOI: 10.1021/acs.molpharmaceut.5b00822] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) RNA-guided endonucleases are powerful new tools for targeted genome engineering. These nucleases provide an efficient and precise method for manipulating eukaryotic genomes; however, delivery of these reagents to specific cell-types remains challenging. Virus-like particles (VLPs) derived from bacteriophage P22, are robust supramolecular protein cage structures with demonstrated utility for cell type-specific delivery of encapsulated cargos. Here, we genetically fuse Cas9 to a truncated form of the P22 scaffold protein, which acts as a template for capsid assembly as well as a specific encapsulation signal for Cas9. Our results indicate that Cas9 and a single-guide RNA are packaged inside the P22 VLP, and activity assays indicate that this RNA-guided endonuclease is functional for sequence-specific cleavage of dsDNA targets. This work demonstrates the potential for developing P22 as a delivery vehicle for cell specific targeting of Cas9.
Collapse
Affiliation(s)
- Shefah Qazi
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, IN 47405, USA
| | - Heini M. Miettinen
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Royce A. Wilkinson
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Kimberly McCoy
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, IN 47405, USA
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, IN 47405, USA
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
30
|
Chang L, Hu J, Chen F, Chen Z, Shi J, Yang Z, Li Y, Lee LJ. Nanoscale bio-platforms for living cell interrogation: current status and future perspectives. NANOSCALE 2016; 8:3181-3206. [PMID: 26745513 DOI: 10.1039/c5nr06694h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The living cell is a complex entity that dynamically responds to both intracellular and extracellular environments. Extensive efforts have been devoted to the understanding intracellular functions orchestrated with mRNAs and proteins in investigation of the fate of a single-cell, including proliferation, apoptosis, motility, differentiation and mutations. The rapid development of modern cellular analysis techniques (e.g. PCR, western blotting, immunochemistry, etc.) offers new opportunities in quantitative analysis of RNA/protein expression up to a single cell level. The recent entries of nanoscale platforms that include kinds of methodologies with high spatial and temporal resolution have been widely employed to probe the living cells. In this tutorial review paper, we give insight into background introduction and technical innovation of currently reported nanoscale platforms for living cell interrogation. These highlighted technologies are documented in details within four categories, including nano-biosensors for label-free detection of living cells, nanodevices for living cell probing by intracellular marker delivery, high-throughput platforms towards clinical current, and the progress of microscopic imaging platforms for cell/tissue tracking in vitro and in vivo. Perspectives for system improvement were also discussed to solve the limitations remains in current techniques, for the purpose of clinical use in future.
Collapse
Affiliation(s)
- Lingqian Chang
- NSF Nanoscale Science and Engineering Center (NSEC), The Ohio State University, Columbus, OH 43212, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kato M. Development of analytical methods for functional analysis of intracellular protein using signal-responsive silica or organic nanoparticles. J Pharm Biomed Anal 2016; 118:292-306. [PMID: 26580827 DOI: 10.1016/j.jpba.2015.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
Abstract
Because proteins control cellular function, intracellular protein analysis is needed to gain a better understanding of life and disease. However, in situ protein analysis still faces many difficulties because proteins are heterogeneously located within the cell and the types and amount of proteins within the cell are ever changing. Recently, nanotechnology has received increasing attention and multiple protein-containing nanoparticles have been developed. Nanoparticles offer a promising tool for intracellular protein analysis because (1) they can permeate the cellular membrane after modification or changing composition, (2) the stability of various proteins is improved by encapsulation within nanoparticles, and (3) protein release and activity can be controlled. In this review, we discuss the development of analytical methods for intracellular functional protein analysis using signal-responsive silica and organic nanoparticles.
Collapse
Affiliation(s)
- Masaru Kato
- Graduate School of Pharmaceutical Sciences and GPLLI Program, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
32
|
Bhattacharjee S, Brayden DJ. Development of nanotoxicology: implications for drug delivery and medical devices. Nanomedicine (Lond) 2015; 10:2289-305. [DOI: 10.2217/nnm.15.69] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Current nanotoxicology research suffers from suboptimal in vitro models, lack of in vitro–in vivo correlations, variability within in vitro protocols, deficits in both material purity and physicochemical characterization. Reliable nanomaterial toxicity and mechanistic insights are required for health and toxicity risk assessments. Much in vitro toxicological data is inconclusive in designating whether nanomaterials for drug delivery and medical device implants are truly safe. A critique is presented to analyze the interface between toxicology and nanopharmaceuticals. Deficiencies of existing practices in toxicology are reviewed and useful emerging techniques (e.g., lab-on-a-chip, tissue engineering, atomic force microscopy, high-content analysis) are highlighted. Cross-fertilization between disciplines will aid development of biocompatible delivery and implant platforms while improvements are being suggested for better translation of nanotoxicology.
Collapse
Affiliation(s)
| | - David J Brayden
- Conway Institute, University College Dublin (UCD), Dublin, Ireland
- School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
33
|
Long X, Zhang Z, Han S, Tang M, Zhou J, Zhang J, Xue Z, Li Y, Zhang R, Deng L, Dong A. Structural mediation on polycation nanoparticles by sulfadiazine to enhance DNA transfection efficiency and reduce toxicity. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7542-7551. [PMID: 25801088 DOI: 10.1021/am508847j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Reducing the toxicity while maintaining high transfection efficiency is an important issue for cationic polymers as gene carriers in clinical application. In this paper, a new zwitterionic copolymer, polycaprolactone-g-poly(dimethylaminoethyl methyacrylate-co-sulfadiazine methacrylate) (PC-SDZ) with unique pH-sensitivity, was designed and prepared. The incorporation of sulfadiazine into poly(dimethylaminoethyl methacrylate) (PDMAEMA) chains successfully mediates the surface properties including compacter shell structure, lower density of positive charges, stronger proton buffer capability, and enhanced hydrophobicity, which lead to reduction in toxicity and enhancements in stability, cellular uptake, endosome escape, and transfection efficiency for the PC-SDZ2 nanoparticles (NPs)/DNA complexes. Excellent transfection efficiency at the optimal N/P ratio of 10 was observed for PC-SDZ2 NPs/DNA complexes, which was higher than that of the commercial reagent-branched polyethylenimine (PEI). The cytotoxicity was evaluated by CCK8 measurement, and the results showed significant reduction in cytotoxicity even at high concentration of complexes after sulfadiazine modification. Therefore, this work may demonstrate a new way of structural mediation of cationic polymer carriers for gene delivery with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Xingwen Long
- †Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhihui Zhang
- ∥Research Center of Basic Medical Science and Department of Immunology, Basic Medical College; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China; Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Shangcong Han
- †Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Minjie Tang
- †Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junhui Zhou
- †Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianhua Zhang
- †Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhenyi Xue
- ∥Research Center of Basic Medical Science and Department of Immunology, Basic Medical College; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China; Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Yan Li
- ∥Research Center of Basic Medical Science and Department of Immunology, Basic Medical College; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China; Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Rongxin Zhang
- ∥Research Center of Basic Medical Science and Department of Immunology, Basic Medical College; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China; Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Liandong Deng
- †Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anjie Dong
- †Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education; Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- §Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
34
|
Old, new, and widely true: The bacteriophage T4 DNA packaging mechanism. Virology 2015; 479-480:650-6. [PMID: 25728298 DOI: 10.1016/j.virol.2015.01.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/22/2014] [Accepted: 01/20/2015] [Indexed: 01/28/2023]
Abstract
DNA packaging into empty viral procapsids by ATP-driven motor proteins applies widely among viruses. Recent fluorescence studies of phage T4 reveal: 1) the small terminase subunit (TerS) synapses pac homologs by a twin ring mechanism to gauge DNA maturation and allow packaging by the large terminase subunit (TerL); 2) translocation of linear DNA is efficient by TerL acting alone; expansion of the procapsid is controlled by the portal-terminase assembly; 3) both ends of the packaged DNA are held at the portal, showing a loop of DNA is packaged; 4) transient spring-like compression of B form to A form-like DNA accompanies translocation; 5) the C-terminal domain of TerL is docked to the portal and moves toward it when stalled; 6) a portal bound resolvase can release stalled Y-DNA compression and allow translocation in vitro; and 7) ATP powered translocation on A form dsDNA is supported by recent hexameric helicase studies.
Collapse
|
35
|
Chang JR, Song EH, Nakatani-Webster E, Monkkonen L, Ratner DM, Catalano CE. Phage lambda capsids as tunable display nanoparticles. Biomacromolecules 2014; 15:4410-9. [PMID: 25319793 DOI: 10.1021/bm5011646] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanoparticle technologies provide a powerful tool for the development of reagents for use in both therapeutic and diagnostic, or "theragnostic" biomedical applications. Two broad classes of particles are under development, viral and synthetic systems, each with their respective strengths and limitations. Here we adapt the phage lambda system to construct modular "designer" nanoparticles that blend these two approaches. We have constructed a variety of modified "decoration" proteins that allow site-specific modification of the shell with both protein and nonproteinaceous ligands including small molecules, carbohydrates, and synthetic display ligands. We show that the chimeric proteins can be used to simultaneously decorate the shell in a tunable surface density to afford particles that are physically homogeneous and that can be manufactured to display a variety of ligands in a defined composition. These designer nanoparticles set the stage for development of lambda as a theragnostic nanoparticle system.
Collapse
Affiliation(s)
- Jenny R Chang
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington H-172, Health Sciences Building, Box 357610, Seattle, Washington 98195-7610, United States
| | | | | | | | | | | |
Collapse
|