1
|
Fernandez R, Braga J. The morphology of the oval window in Paranthropus robustus compared to humans and other modern primates. Anat Rec (Hoboken) 2025. [PMID: 39976196 DOI: 10.1002/ar.25644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/20/2024] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
The oval window (OW) is an opening connecting the inner and middle ear. Its area has been shown to consistently scale with body mass (BM) in primates, and has been used alongside semi-circular canal (SCC) size to differentiate Homo sapiens and fossil hominins, including Paranthropus robustus. However, while the morphology of other inner ear elements, such as cochlea and SCCs, has been extensively studied in primates, OW shape has received little attention. In this study, we assess OW morphological variability in extant primates, and compare P. robustus to extant hominids. The potential of OW size to predict BM is also assessed. For this, measurements were performed on 3D scans from extant primate species and of P. robustus from the sites of Kromdraai, Swartkrans, and Drimolen. Size was assessed using perimeter (OWP), area (OWA), and centroid size (OWCS). Shape was assessed using geometric morphometric methods. The OW has no sexual dimorphism; there is no size difference between juveniles and adults, but there is a slight shape difference between human juveniles and adults, with a seemingly opposite ontogenetic trajectory compared to other primates. P. robustus has an intermediary OW shape between apes and humans, with more ape-like specimens from Kromdraai and more human-like ones from Drimolen. Overall, OW morphology discriminates primate species well enough, especially H. sapiens. BM is well explained by OWA, but OWA is not reliable as a BM proxy due to high prediction errors. Nonetheless, the OWA of P. robustus suggests a BM close to that of a chimpanzee.
Collapse
Affiliation(s)
- Ruy Fernandez
- Laboratoire de Géologie de Lyon-Terre, Planètes, Environnement, CNRS UMR 5276, ENS de Lyon, Lyon, France
- Centre for Anthropobiology & Genomics of Toulouse, CNRS UMR 5288, Université Paul Sabatier, Toulouse, France
| | - José Braga
- Centre for Anthropobiology & Genomics of Toulouse, CNRS UMR 5288, Université Paul Sabatier, Toulouse, France
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Rowan J, Wood B. Dart and the Taung juvenile: making sense of a century-old record of hominin evolution in Africa. Biol Lett 2024; 20:20240185. [PMID: 39045658 PMCID: PMC11267397 DOI: 10.1098/rsbl.2024.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
The announcement in 1925 by Raymond Dart of the discovery of the Taung juvenile's skull in a quarry in sub-Saharan Africa is deservedly a classic publication in the history of palaeoanthropology. Dart's paper-which designated Taung as the type specimen of the early hominin species Australopithecus africanus-provided the first fossil evidence supporting Charles Darwin's 1871 prediction that Africa was where the human lineage originated. The Taung juvenile's combination of ape and human characteristics eventually led to a paradigm shift in our understanding of human evolution. This contribution focuses on the milieu in which Dart's paper appeared (i.e. what was understood in 1925 about human evolution), the fossil evidence as set out by Dart, his interpretation of how a species represented by a fossilized juvenile's skull fitted within prevailing narratives about human evolution and the significance of the fossil being found in an environment inferred to be very different from that occupied by living apes. We also briefly review subsequent fossil finds that have corroborated the argument Dart made for having discovered evidence of a hitherto unknown close relative of humans, and summarize our current understanding of the earliest stages of human evolution and its environmental context.
Collapse
Affiliation(s)
- John Rowan
- Department of Archaeology, University of Cambridge, CambridgeCB2 3DZ, UK
| | - Bernard Wood
- CASHP, Department of Anthropology, George Washington University, Washington, DC20052, USA
| |
Collapse
|
3
|
Villamil CI, Middleton ER. Conserved patterns and locomotor-related evolutionary constraints in the hominoid vertebral column. J Hum Evol 2024; 190:103528. [PMID: 38579429 DOI: 10.1016/j.jhevol.2024.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
The evolution of the hominoid lineage is characterized by pervasive homoplasy, notably in regions such as the vertebral column, which plays a central role in body support and locomotion. Few isolated and fewer associated vertebrae are known for most fossil hominoid taxa, but identified specimens indicate potentially high levels of convergence in terms of both form and number. Homoplasy thus complicates attempts to identify the anatomy of the last common ancestor of hominins and other taxa and stymies reconstructions of evolutionary scenarios. One way to clarify the role of homoplasy is by investigating constraints via phenotypic integration, which assesses covariation among traits, shapes evolutionary pathways, and itself evolves in response to selection. We assessed phenotypic integration and evolvability across the subaxial (cervical, thoracic, lumbar, sacral) vertebral column of macaques (n = 96), gibbons (n = 77), chimpanzees (n = 92), and modern humans (n = 151). We found a mid-cervical cluster that may have shifted cranially in hominoids, a persistent thoracic cluster that is most marked in chimpanzees, and an expanded lumbosacral cluster in hominoids that is most expanded in gibbons. Our results highlight the highly conserved nature of the vertebral column. Taxa appear to exploit existing patterns of integration and ontogenetic processes to shift, expand, or reduce cluster boundaries. Gibbons appear to be the most highly derived taxon in our sample, possibly in response to their highly specialized locomotion.
Collapse
Affiliation(s)
- Catalina I Villamil
- School of Chiropractic, Universidad Central del Caribe, Puerto Rico, PO Box 60327, Bayamón, USA.
| | - Emily R Middleton
- Department of Anthropology, University of Wisconsin-Milwaukee, 3413 N. Downer Ave., Sabin Hall 390, Milwaukee, WI, USA
| |
Collapse
|
4
|
Stoessel A, David R, Bornitz M, Ossmann S, Neudert M. Auditory thresholds compatible with optimal speech reception likely evolved before the human-chimpanzee split. Sci Rep 2023; 13:20732. [PMID: 38007561 PMCID: PMC10676368 DOI: 10.1038/s41598-023-47778-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023] Open
Abstract
The anatomy of the auditory region of fossil hominins may shed light on the emergence of human spoken language. Humans differ from other great apes in several features of the external, middle and inner ear (e.g., short external ear canal, small tympanic membrane, large oval window). However, the functional implications of these differences remain poorly understood as comparative audiometric data from great apes are scarce and conflicting. Here, we measure the sound transfer function of the external and middle ears of humans, chimpanzees and bonobos, using laser-Doppler vibrometry and finite element analysis. This sound transfer function affects auditory thresholds, which relate to speech reception thresholds in humans. Unexpectedly we find that external and middle ears of chimpanzees and bonobos transfer sound better than human ones in the frequency range of spoken language. Our results suggest that auditory thresholds of the last common ancestor of Homo and Pan were already compatible with speech reception as observed in humans. Therefore, it seems unlikely that the morphological evolution observed in the bony auditory region of fossil hominins was driven by the emergence of spoken language. Instead, the peculiar human configuration may be a by-product of morpho-functional constraints linked to brain expansion.
Collapse
Affiliation(s)
- Alexander Stoessel
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstr. 1, 07743, Jena, Germany.
- Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
| | - Romain David
- Centre for Human Evolution Research, The Natural History Museum, Cromwell Rd, South Kensington, London, SW7 5BD, UK.
| | - Matthias Bornitz
- Department of Otorhinolaryngology, Head and Neck Surgery, Carl Gustav Carus Faculty of Medicine, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Steffen Ossmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Carl Gustav Carus Faculty of Medicine, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Marcus Neudert
- Department of Otorhinolaryngology, Head and Neck Surgery, Carl Gustav Carus Faculty of Medicine, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
5
|
Stamos PA, Alemseged Z. Hominin locomotion and evolution in the Late Miocene to Late Pliocene. J Hum Evol 2023; 178:103332. [PMID: 36947894 DOI: 10.1016/j.jhevol.2023.103332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/24/2023]
Abstract
In this review, we present on the evolution of the locomotor adaptation of hominins in the Late Miocene to Late Pliocene, with emphasis on some of the prominent advances and debates that have occurred over the past fifty years. We start with the challenging issue of defining hominin locomotor grades that are currently used liberally and offer our own working definitions of facultative, habitual, and obligate bipedalism. We then discuss the nature of the Pan-Homo last common ancestor and characterize the locomotor adaptation of Sahelanthropus, Orrorin, and Ardipithecus-often referred to as facultative bipeds-and examine the debates on the extent of bipedality and arboreality in these taxa. Moreover, the question of Middle Pliocene hominin locomotor diversity is addressed based on information derived from the 'Little Foot' specimen from Sterkfontein, footprints from Laetoli, and the Burtele Foot in Ethiopia. Our review suggests that the most convincing evidence for locomotor diversity comes from Burtele, whereas the evidence from Sterkfontein and Laetoli is unconvincing and equivocal, respectively. Finally, we address the decades old issue of the significance of arboreality in the otherwise habitual biped, Australopithecus, with emphasis on Australopithecus afarensis and its implications for the paleobiology of these creatures. We conclude that many of the apelike features encountered, mostly in the upper part of the Australopithecus skeleton, were retained for their significance in climbing. Approaches that have investigated character plasticity and those exploring internal bone structure have shown that the shoulder and limbs in Au. afarensis and Australopithecus africanus were involved in arboreal activities that are thought to be key for feeding, nesting, and predator avoidance. We conclude that many of the so-called retained ape-like features persisted due to stabilizing selection, that early hominins engaged in a considerable amount of arboreality even after Australopithecus had become a habitual biped, and arboreality only ceased to be an important component of hominin locomotor behavior after the emergence of Homo erectus.
Collapse
Affiliation(s)
- Peter A Stamos
- Department of Organismal Biology & Anatomy, The University of Chicago, Anatomy Bldg 201, 1027 E 57th Street, Chicago, IL 60637, USA
| | - Zeresenay Alemseged
- Department of Organismal Biology & Anatomy, The University of Chicago, Anatomy Bldg 201, 1027 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
6
|
Villamil CI, Santiago-Nazario A. Integration between the cranial boundaries of the nasopharynx and the upper cervical vertebrae in Homo and Pan. Anat Rec (Hoboken) 2021; 305:1974-1990. [PMID: 34510776 DOI: 10.1002/ar.24750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 01/17/2023]
Abstract
The nasopharynx is an important anatomical structure involved in respiration. Its bony boundaries, including the basicranium and upper cervical vertebrae, may be subject to selective pressures and constraints related to respiratory function. Here, we investigate phenotypic integration, or covariation, between the face, the basicranial boundaries of the nasopharynx, and the atlas and axis to understand constraints affecting these structures. We collected three-dimensional coordinate data from a sample of 80 humans and 44 chimpanzees, and used two-block partial least squares to assess RV (a multivariate generalization of Pearson's r2 ), rPLS , the covariance ratio, and effect size for integration among structures. We find that integration is significant among some of these structures, and that integration between the basicranial nasopharynx and vertebrae and between the face and vertebrae is likely independent. We also find divergences in the pattern of integration between humans and chimpanzees suggesting greater constraints among the human face and nasopharynx, which we suggest are linked to divergent developmental trajectories in the two taxa. Evolutionary changes in human basicranial anatomy, coupled with human-like developmental trajectories, may have required that the face grow to compensate any variation in nasopharyngeal structure. However, we were unable to determine whether the nasopharynx or the face is more strongly integrated with the vertebrae, and therefore whether respiration or biomechanical considerations related to positional behavior may be more strongly tied to vertebral evolution. Future work should focus on greater sample sizes, soft tissue structures, and more diverse taxa to further clarify these findings.
Collapse
|
7
|
Prang TC, Ramirez K, Grabowski M, Williams SA. Ardipithecus hand provides evidence that humans and chimpanzees evolved from an ancestor with suspensory adaptations. SCIENCE ADVANCES 2021; 7:eabf2474. [PMID: 33627435 PMCID: PMC7904256 DOI: 10.1126/sciadv.abf2474] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/12/2021] [Indexed: 05/08/2023]
Abstract
The morphology and positional behavior of the last common ancestor of humans and chimpanzees are critical for understanding the evolution of bipedalism. Early 20th century anatomical research supported the view that humans evolved from a suspensory ancestor bearing some resemblance to apes. However, the hand of the 4.4-million-year-old hominin Ardipithecus ramidus purportedly provides evidence that the hominin hand was derived from a more generalized form. Here, we use morphometric and phylogenetic comparative methods to show that Ardipithecus retains suspensory adapted hand morphologies shared with chimpanzees and bonobos. We identify an evolutionary shift in hand morphology between Ardipithecus and Australopithecus that renews questions about the coevolution of hominin manipulative capabilities and obligate bipedalism initially proposed by Darwin. Overall, our results suggest that early hominins evolved from an ancestor with a varied positional repertoire including suspension and vertical climbing, directly affecting the viable range of hypotheses for the origin of our lineage.
Collapse
Affiliation(s)
- Thomas C Prang
- Department of Anthropology, Texas A&M University, College Station, TX 77843, USA.
| | - Kristen Ramirez
- New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
- Department of Anthropology, CUNY Graduate Center, New York, NY 10016, USA
- Office of Medical Education, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Mark Grabowski
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK
- Centre for Ecology and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Scott A Williams
- New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY 10003, USA
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| |
Collapse
|
8
|
Rak Y, Kimbel WH, Moggi-Cecchi J, Lockwood CA, Menter C. The DNH 7 skull of Australopithecus robustus from Drimolen (Main Quarry), South Africa. J Hum Evol 2020; 151:102913. [PMID: 33388495 DOI: 10.1016/j.jhevol.2020.102913] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
Although the early hominin species Australopithecus robustus has been known for more than eight decades and is represented by hundreds of fossils from sites in South Africa, a complete, well-preserved skull has been elusive. DNH 7, an adult cranium and mandible from the Drimolen site, was identified, on the basis of its small size, as a presumptive female of A. robustus. Here, we provide a detailed comparative description of the specimen. In cranial, facial, and dental size, DNH 7 is confirmed to lie at the extreme small end of the A. robustus range of variation, along with a few fragmentary maxillofacial specimens from Swartkrans. In addition, relative to the classically derived craniofacial features of the Swartkrans+Kromdraai portions of the A. robustus hypodigm, primitive anatomy pervades the DNH 7 face, braincase, and cranial base. Taken together, these pieces of evidence place DNH 7 in a previously unfilled position on the robust Australopithecus morphocline, where the specimen highlights the morphological distinctions between southern and eastern African species of this group and epitomizes the anatomy expected of the group's last common ancestor.
Collapse
Affiliation(s)
- Yoel Rak
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Institute of Human Origins, Arizona State University, PO Box 874101, Tempe, AZ, 85287, USA
| | - William H Kimbel
- Institute of Human Origins, Arizona State University, PO Box 874101, Tempe, AZ, 85287, USA; School of Human Evolution and Social Change, Arizona State University, PO Box 872402, Tempe, AZ, 85287, USA.
| | - Jacopo Moggi-Cecchi
- Department of Biology, University of Florence, via del Proconsolo 12, 50122, Florence, Italy
| | - Charles A Lockwood
- Department of Anthropology, University College London, 14 Taviton Street, London, WC1H 0BW, UK
| | - Colin Menter
- Department of Biology, University of Florence, via del Proconsolo 12, 50122, Florence, Italy
| |
Collapse
|
9
|
Šimić G, Vukić V, Kopić J, Krsnik Ž, Hof PR. Molecules, Mechanisms, and Disorders of Self-Domestication: Keys for Understanding Emotional and Social Communication from an Evolutionary Perspective. Biomolecules 2020; 11:E2. [PMID: 33375093 PMCID: PMC7822183 DOI: 10.3390/biom11010002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
The neural crest hypothesis states that the phenotypic features of the domestication syndrome are due to a reduced number or disruption of neural crest cells (NCCs) migration, as these cells differentiate at their final destinations and proliferate into different tissues whose activity is reduced by domestication. Comparing the phenotypic characteristics of modern and prehistoric man, it is clear that during their recent evolutionary past, humans also went through a process of self-domestication with a simultaneous prolongation of the period of socialization. This has led to the development of social abilities and skills, especially language, as well as neoteny. Disorders of neural crest cell development and migration lead to many different conditions such as Waardenburg syndrome, Hirschsprung disease, fetal alcohol syndrome, DiGeorge and Treacher-Collins syndrome, for which the mechanisms are already relatively well-known. However, for others, such as Williams-Beuren syndrome and schizophrenia that have the characteristics of hyperdomestication, and autism spectrum disorders, and 7dupASD syndrome that have the characteristics of hypodomestication, much less is known. Thus, deciphering the biological determinants of disordered self-domestication has great potential for elucidating the normal and disturbed ontogenesis of humans, as well as for the understanding of evolution of mammals in general.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (J.K.); (Ž.K.)
| | - Vana Vukić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (J.K.); (Ž.K.)
| | - Janja Kopić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (J.K.); (Ž.K.)
| | - Željka Krsnik
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (J.K.); (Ž.K.)
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
10
|
Landi F, Profico A, Veneziano A, De Groote I, Manzi G. Locomotion, posture, and the foramen magnum in primates: Reliability of indices and insights into hominin bipedalism. Am J Primatol 2020; 82:e23170. [PMID: 32639073 DOI: 10.1002/ajp.23170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 06/08/2020] [Accepted: 06/20/2020] [Indexed: 11/06/2022]
Abstract
The position (FMP) and orientation (FMO) of the foramen magnum have been used as proxies for locomotion and posture in extant and extinct primates. Several indices have been designed to quantify FMP and FMO but their application has led to conflicting results. Here, we test six widely used indices and two approaches (univariate and multivariate) for their capability to discriminate between postural and locomotor types in extant primates and fossil hominins. We then look at the locomotion of australopithecines and Homo on the base of these new findings. The following measurements are used: the opisthocranion-prosthion (OP-PR) and the opisthocranion-glabella (OP-GL) indices, the basion-biporion (BA-BP) and basion-bicarotid chords, the foramen magnum angle (FMA), and the basion-sphenoccipital ratio. After exploring the indices variability using principal component analysis, pairwise comparisons are performed to test for the association between each index and the locomotor and postural habits. Cranial size and phylogeny are taken into account. Our analysis indicates that none of the indices or approaches provides complete discrimination across locomotor and postural categories, although some differences are highlighted. FMA and BA-BP distinguish respectively obligate and facultative bipeds from all other groups. For what concerns posture, orthogrades and pronogrades differ with respects to OP-PR, OP-GL, and FMA. Although the multivariate approach seems to have some discrimination power, the results are most likely driven by facial and neurocranial variability embedded in some of the indices. These results demonstrate that indices relying on the anteroposterior positioning of the foramen may not be appropriate proxies for locomotion among primates. The assumptions about locomotor and postural habits in fossil hominins based on foramen magnum indices should be revised in light of these new findings.
Collapse
Affiliation(s)
- Federica Landi
- CAHS, Centre for Anatomical and Human Sciences, Hull York Medical School, York, UK
| | - Antonio Profico
- Department of Archaeology, PalaeoHub, University of York, York, UK
| | - Alessio Veneziano
- SYRMEP, SYnchrotron Radiation for MEdical Physics, Elettra-Sincrotrone Trieste S.C.p.A, Basovizza, Trieste, Italy
| | - Isabelle De Groote
- Department of Archaeology, Section Prehistory of Western Europe, Ghent University, Ghent, Belgium
| | - Giorgio Manzi
- Department of Environmental Biology, Faculty of Mathematics Physics and Natural Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Diets of mammalian fossil fauna from Kanapoi, northwestern Kenya. J Hum Evol 2020; 140:102338. [DOI: 10.1016/j.jhevol.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 04/27/2017] [Accepted: 05/04/2017] [Indexed: 11/19/2022]
|
12
|
Seymour RS, Bosiocic V, Snelling EP, Chikezie PC, Hu Q, Nelson TJ, Zipfel B, Miller CV. Cerebral blood flow rates in recent great apes are greater than in Australopithecus species that had equal or larger brains. Proc Biol Sci 2019; 286:20192208. [PMID: 31718497 DOI: 10.1098/rspb.2019.2208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brain metabolic rate (MR) is linked mainly to the cost of synaptic activity, so may be a better correlate of cognitive ability than brain size alone. Among primates, the sizes of arterial foramina in recent and fossil skulls can be used to evaluate brain blood flow rate, which is proportional to brain MR. We use this approach to calculate flow rate in the internal carotid arteries (Q˙ICA), which supply most of the primate cerebrum. Q˙ICA is up to two times higher in recent gorillas, chimpanzees and orangutans compared with 3-million-year-old australopithecine human relatives, which had equal or larger brains. The scaling relationships between Q˙ICA and brain volume (Vbr) show exponents of 1.03 across 44 species of living haplorhine primates and 1.41 across 12 species of fossil hominins. Thus, the evolutionary trajectory for brain perfusion is much steeper among ancestral hominins than would be predicted from living primates. Between 4.4-million-year-old Ardipithecus and Homo sapiens, Vbr increased 4.7-fold, but Q˙ICA increased 9.3-fold, indicating an approximate doubling of metabolic intensity of brain tissue. By contrast, Q˙ICA is proportional to Vbr among haplorhine primates, suggesting a constant volume-specific brain MR.
Collapse
Affiliation(s)
- Roger S Seymour
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Vanya Bosiocic
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Edward P Snelling
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa.,Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Prince C Chikezie
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Qiaohui Hu
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Thomas J Nelson
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bernhard Zipfel
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Case V Miller
- Vertebrate Palaeontology Laboratory, Department of Earth Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
13
|
Joordens JC, Feibel CS, Vonhof HB, Schulp AS, Kroon D. Relevance of the eastern African coastal forest for early hominin biogeography. J Hum Evol 2019; 131:176-202. [DOI: 10.1016/j.jhevol.2019.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/25/2022]
|
14
|
Mongle CS, Strait DS, Grine FE. Expanded character sampling underscores phylogenetic stability of Ardipithecus ramidus as a basal hominin. J Hum Evol 2019; 131:28-39. [DOI: 10.1016/j.jhevol.2019.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 02/24/2019] [Accepted: 03/01/2019] [Indexed: 11/16/2022]
|
15
|
Prang TC. The African ape-like foot of Ardipithecus ramidus and its implications for the origin of bipedalism. eLife 2019; 8:44433. [PMID: 31038121 PMCID: PMC6491036 DOI: 10.7554/elife.44433] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/25/2019] [Indexed: 11/27/2022] Open
Abstract
The ancestral condition from which humans evolved is critical for understanding the adaptive origin of bipedal locomotion. The 4.4 million-year-old hominin partial skeleton attributed to Ardipithecus ramidus preserves a foot that purportedly shares morphometric affinities with monkeys, but this interpretation remains controversial. Here I show that the foot of Ar. ramidus is most similar to living chimpanzee and gorilla species among a large sample of anthropoid primates. The foot morphology of Ar. ramidus suggests that the evolutionary precursor of hominin bipedalism was African ape-like terrestrial quadrupedalism and climbing. The elongation of the midfoot and phalangeal reduction in Ar. ramidus relative to the African apes is consistent with hypotheses of increased propulsive capabilities associated with an early form of bipedalism. This study provides evidence that the modern human foot was derived from an ancestral form adapted to terrestrial plantigrade quadrupedalism. Walking on two legs is considered to be one of the first steps towards becoming human. While some animals are also able to walk on two legs, such as kangaroos, birds, and some rodents, the way they move is nevertheless quite distinct to the way humans walk. How animals evolve traits is influenced by the characteristics of their ancestors. But what exactly was the common ancestor of humans and chimpanzees like? Most primates are suited for a life in the trees. But some also have skeletal characteristics associated with living on the ground. For example, the feet of chimpanzees and gorillas show adaptations that suit life on the ground, such as walking on the sole of the foot with a heel first foot posture. So far, it was unclear whether the ancestor of humans and chimpanzees was primarily adapted to living on the ground or in the trees. To investigate this further, Prang studied the oldest-known fossil foot (4.4 million years) attributed to the hominin Ardipithecus ramidus. This involved using evolutionary models to evaluate the relationship between foot bone proportions and the locomotory behaviour of monkeys and apes. The results revealed that humans evolved from an ancestor that had a foot similar to living chimpanzees and gorillas. The African ape foot is uniquely suited to life on the ground, including shorter toe bones, but also shows some adaptations to life in the trees, such as an elongated, grasping big toe. Therefore, the locomotion of our common ancestor probably bore a strong resemblance to these two ape species. Moreover, if the last common ancestor already had ground-living characteristics, the first step of the evolution of human bipedalism did not involve descending from the trees to the ground, as our ancestors had already achieved this milestone in some form and frequency. This is an important discovery. If this ancestor already had adaptations for life on the ground, why did only humans evolve to walk upright despite the retention of climbing capabilities in the earliest human relatives? A next step could be to investigate what selective pressures favored upright walking in a partly ground-living African ape. This may provide us with more insight into our own evolutionary story as well as the ways in which living primates evolve adaptations in an ecological context.
Collapse
Affiliation(s)
- Thomas Cody Prang
- Department of Anthropology, Center for the Study of Human Origins (CSHO), New York University, New York, United states.,New York Consortium in Evolutionary Primatology (NYCEP), New York, United States
| |
Collapse
|
16
|
Russo GA, Marsh D, Foster AD. Response of the Axial Skeleton to Bipedal Loading Behaviors in an Experimental Animal Model. Anat Rec (Hoboken) 2018; 303:150-166. [PMID: 30365241 DOI: 10.1002/ar.24003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/21/2018] [Accepted: 03/27/2018] [Indexed: 11/09/2022]
Abstract
Many derived aspects of modern human axial skeletal morphology reflect our reliance on obligate bipedal locomotion. Insight into the adaptive significance of features, particularly in the spine, has been gained through experimental studies that induce bipedal standing or walking in quadrupedal mammals. Using an experimental animal model (Rattus norvegicus), the present study builds on earlier work by incorporating additional metrics of the cranium, employing quantitative methods established in the paleoanthropological literature, and exploring how variation in mechanical loading regimes impacts axial anatomy. Rats were assigned to one of five experimental groups, including "fully loaded bipedal walking," "partially loaded bipedal walking," "standing bipedally," "quadrupedal walking," and "no exercise control," and engaged in the behavior over 12-weeks. From μCT data obtained at the beginning and end of the experiment, we measured foramen magnum position and orientation, lumbar vertebral body wedging, cranial surface area of the lumbar and first sacral vertebral bodies, and sacral mediolateral width. Results demonstrate that bipedal rodents generally have more anteriorly positioned foramina magna, more dorsally wedged lumbar vertebrae, greater articular surface areas of lumbar and first sacral vertebral bodies, and sacra that exhibit greater mediolateral widths, compared to quadrupedal rodents. We further document variation among bipedal loading behavior groups (e.g., bipedal standing vs. walking). Our experimental animal model reveals how loading behaviors and adaptations may be specifically linked, and implicates a potential role for developmental plasticity in the evolutionary acquisition of bipedal adaptations in the hominin lineage. Anat Rec, 2018. © 2018 American Association for Anatomy.
Collapse
Affiliation(s)
- Gabrielle A Russo
- Department of Anthropology, Stony Brook University, Stony Brook, New York
| | - D'arcy Marsh
- Department of Anthropology, Stony Brook University, Stony Brook, New York
| | - Adam D Foster
- Department of Anatomy, School of Osteopathic Medicine, Campbell University, Buies Creek, North Carolina
| |
Collapse
|
17
|
Grabowski M, Hatala KG, Jungers WL. Body mass estimates of the earliest possible hominins and implications for the last common ancestor. J Hum Evol 2018; 122:84-92. [DOI: 10.1016/j.jhevol.2018.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 10/28/2022]
|
18
|
Cates J, Nevell L, Prajapati SI, Nelon LD, Chang JY, Randolph ME, Wood B, Keller C, Whitaker RT. Shape analysis of the basioccipital bone in Pax7-deficient mice. Sci Rep 2017; 7:17955. [PMID: 29263370 PMCID: PMC5738401 DOI: 10.1038/s41598-017-18199-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/04/2017] [Indexed: 11/09/2022] Open
Abstract
We compared the cranial base of newborn Pax7-deficient and wildtype mice using a computational shape modeling technology called particle-based modeling (PBM). We found systematic differences in the morphology of the basiooccipital bone, including a broadening of the basioccipital bone and an antero-inferior inflection of its posterior edge in the Pax7-deficient mice. We show that the Pax7 cell lineage contributes to the basioccipital bone and that the location of the Pax7 lineage correlates with the morphology most effected by Pax7 deficiency. Our results suggest that the Pax7-deficient mouse may be a suitable model for investigating the genetic control of the location and orientation of the foramen magnum, and changes in the breadth of the basioccipital.
Collapse
Affiliation(s)
- Joshua Cates
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Lisa Nevell
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington DC, USA.
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Suresh I Prajapati
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Laura D Nelon
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jerry Y Chang
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Bernard Wood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington DC, USA
| | - Charles Keller
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA.
- Children's Cancer Therapy Development Institute, Beaverton, OR, USA.
| | - Ross T Whitaker
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
19
|
Neaux D, Bienvenu T, Guy F, Daver G, Sansalone G, Ledogar JA, Rae TC, Wroe S, Brunet M. Relationship between foramen magnum position and locomotion in extant and extinct hominoids. J Hum Evol 2017; 113:1-9. [DOI: 10.1016/j.jhevol.2017.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/29/2022]
|
20
|
Profico A, Piras P, Buzi C, Di Vincenzo F, Lattarini F, Melchionna M, Veneziano A, Raia P, Manzi G. The evolution of cranial base and face in Cercopithecoidea and Hominoidea: Modularity and morphological integration. Am J Primatol 2017; 79. [DOI: 10.1002/ajp.22721] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Antonio Profico
- Dipartimento di Biologia Ambientale; Sapienza Università di Roma; Rome Italy
| | - Paolo Piras
- Dipartimento di Scienze Cardiovascolari, Respiratorie, Nefrologiche, Anestesiologiche e Geriatriche; Sapienza Università di Roma; Rome Italy
- Dipartimento di Ingegneria Strutturale e Geotecnica; Sapienza Università di Roma; Rome Italy
| | - Costantino Buzi
- Dipartimento di Biologia Ambientale; Sapienza Università di Roma; Rome Italy
| | - Fabio Di Vincenzo
- Dipartimento di Biologia Ambientale; Sapienza Università di Roma; Rome Italy
| | - Flavio Lattarini
- Dipartimento di Biologia Ambientale; Sapienza Università di Roma; Rome Italy
| | - Marina Melchionna
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse; Università di Napoli, Federico II; Naples Italy
| | - Alessio Veneziano
- School of Natural Sciences and Psychology; John Moores University; Liverpool United Kingdom
| | - Pasquale Raia
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse; Università di Napoli, Federico II; Naples Italy
| | - Giorgio Manzi
- Dipartimento di Biologia Ambientale; Sapienza Università di Roma; Rome Italy
| |
Collapse
|
21
|
Locomotion and basicranial anatomy in primates and marsupials. J Hum Evol 2017; 111:163-178. [DOI: 10.1016/j.jhevol.2017.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/27/2017] [Accepted: 07/07/2017] [Indexed: 01/19/2023]
|
22
|
Clark G, Henneberg M. Ardipithecus ramidus and the evolution of language and singing: An early origin for hominin vocal capability. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2017; 68:101-121. [PMID: 28363458 DOI: 10.1016/j.jchb.2017.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 03/02/2017] [Indexed: 01/28/2023]
Abstract
In this paper we analyse the possibility that the early hominin Ardipithecus ramidus had vocal capabilities far exceeding those of any extant non-human primate. We argue that erect posture combined with changes in craniofacial morphology, such as reduced facial and jaw length, not only provide evidence for increased levels of pro-sociality, but also increased vocal ability. Reduced length of the face and jaw, combined with a flexed cranial base, suggests the larynx in this species was situated deeper in the neck than in chimpanzees, a trait which may have facilitated increased vocal ability. We also provide evidence that Ar. ramidus, by virtue of its erect posture, possessed a degree of cervical lordosis significantly greater than chimpanzees. This is indicative of increased mobility of the larynx within the neck and hence increased capacity to modulate vocalisations. In the paleoanthropological literature, these changes in early hominin skull morphology have to date been analysed in terms of a shift in mating and social behaviour, with little consideration given to vocally mediated sociality. Similarly, in the literature on language evolution there is a distinct lacuna regarding links between craniofacial correlates of social and mating systems and vocal ability. These are surprising oversights given that pro-sociality and vocal capability require identical alterations to the common ancestral skull and skeletal configuration. We therefore propose a model which integrates data on whole organism morphogenesis with evidence for a potential early emergence of hominin socio-vocal adaptations. Consequently, we suggest vocal capability may have evolved much earlier than has been traditionally proposed. Instead of emerging in the Homo genus, we suggest the palaeoecological context of late Miocene and early Pliocene forests and woodlands facilitated the evolution of hominin socio-vocal capability. We also propose that paedomorphic morphogenesis of the skull via the process of self-domestication enabled increased levels of pro-social behaviour, as well as increased capacity for socially synchronous vocalisation to evolve at the base of the hominin clade.
Collapse
Affiliation(s)
- Gary Clark
- Biological Anthropology and Comparative Anatomy Unit, Adelaide Medical School, The University of Adelaide, Adelaide 5005, Australia.
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Unit, Adelaide Medical School, The University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
23
|
Russo GA, Kirk EC. Another look at the foramen magnum in bipedal mammals. J Hum Evol 2017; 105:24-40. [DOI: 10.1016/j.jhevol.2017.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 11/28/2022]
|
24
|
The cervical spine of Australopithecus sediba. J Hum Evol 2017; 104:32-49. [DOI: 10.1016/j.jhevol.2017.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/31/2016] [Accepted: 01/04/2017] [Indexed: 11/22/2022]
|
25
|
Skull 5 from Dmanisi: Descriptive anatomy, comparative studies, and evolutionary significance. J Hum Evol 2017; 104:50-79. [PMID: 28317556 DOI: 10.1016/j.jhevol.2017.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 11/21/2022]
Abstract
A fifth hominin skull (cranium D4500 and mandible D2600) from Dmanisi is massively constructed, with a large face and a very small brain. Traits documented for the first time in a basal member of the Homo clade include the uniquely low ratio of endocranial volume to basicranial width, reduced vertex height, angular vault profile, smooth nasal sill coupled with a long and sloping maxillary clivus, elongated palate, and tall mandibular corpus. The convex clivus and receding symphysis of skull 5 produce a muzzle-like form similar to that of Australopithecus afarensis. While the Dmanisi cranium is very robust, differing from OH 13, OH 24, and KNM-ER 1813, it resembles Homo habilis specimens in the "squared off" outline of its maxilla in facial view, maxillary sulcus, rounded and receding zygomatic arch, and flexed zygomaticoalveolar pillar. These characters distinguish early Homo from species of Australopithecus and Paranthropus. Skull 5 is unlike Homo rudolfensis cranium KNM-ER 1470. Although it appears generally primitive, skull 5 possesses a bar-like supraorbital torus, elongated temporal squama, occipital transverse torus, and petrotympanic traits considered to be derived for Homo erectus. As a group, the Dmanisi crania and mandibles display substantial anatomical and metric variation. A key question is whether the fossils document age-related growth and sex dimorphism within a single population, or whether two (or more) distinct taxa may be present at the site. We use the coefficient of variation to compare Dmanisi with Paranthropus boisei, H. erectus, and recent Homo sapiens, finding few signals that the Dmanisi sample is excessively variable in comparison to these reference taxa. Using cranial measurements and principal components analysis, we explore the proposal that the Dmanisi skulls can be grouped within a regionally diverse hypodigm for H. erectus. Our results provide only weak support for this hypothesis. Finally, we consider all available morphological and paleobiological evidence in an attempt to clarify the phyletic relationship of Dmanisi to Homo species evolving >2.0 to 1.0 Ma.
Collapse
|
26
|
Roberts P, Boivin N, Lee-Thorp J, Petraglia M, Stock J. Tropical forests and the genus Homo. Evol Anthropol 2017; 25:306-317. [PMID: 28004892 DOI: 10.1002/evan.21508] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 11/05/2022]
Abstract
Tropical forests constitute some of the most diverse and complex terrestrial ecosystems on the planet. From the Miocene onward, they have acted as a backdrop to the ongoing evolution of our closest living relatives, the great apes, and provided the cradle for the emergence of early hominins, who retained arboreal physiological adaptations at least into the Late Pliocene. There also now exists growing evidence, from the Late Pleistocene onward, for tool-assisted intensification of tropical forest occupation and resource extraction by our own species, Homo sapiens. However, between the Late Pliocene and Late Pleistocene there is an apparent gap in clear and convincing evidence for the use of tropical forests by hominins, including early members of our own genus. In discussions of Late Pliocene and Early Pleistocene hominin evolution, including the emergence and later expansion of Homo species across the globe, tropical forest adaptations tend to be eclipsed by open, savanna environments. Thus far, it is not clear whether this Early-Middle Pleistocene lacuna in Homo-rainforest interaction is real and representative of an adaptive shift with the emergence of our species or if it is simply reflective of preservation bias.
Collapse
|
27
|
Bruner E, Bondioli L, Coppa A, Frayer DW, Holloway RL, Libsekal Y, Medin T, Rook L, Macchiarelli R. The endocast of the one-million-year-old human cranium from Buia (UA 31), Danakil Eritrea. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 160:458-68. [PMID: 27040007 DOI: 10.1002/ajpa.22983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 11/11/2022]
Abstract
OBJECTIVES The Homo erectus-like cranium from Buia (UA 31) was found in the Eritrean Danakil depression and dated to 1 million years. Its outer morphology displays archaic traits, as well as distinctive and derived characters. The present study provides the description and metric comparison of its endocranial anatomy. MATERIALS AND METHODS UA 31 was originally filled by a diffuse concretion. Following its removal and cleaning, the endocast (995 cc) was reconstructed after physical molding and digital scan. Its morphology is here compared with specimens belonging to different human taxa, taking into account endocranial metrics, cortical traits, and craniovascular features. RESULTS The endocast is long and narrow when compared to the H. erectus/ergaster hypodigm, although its proportions are compatible with the morphology displayed by all archaic and medium-brained human species. The occipital areas display a pronounced bulging, the cerebellum is located in a posterior position, and the middle meningeal vessels are more developed in the posterior regions. These features are common among specimens attributed to H. erectus s.l., particularly the Middle Pleistocene endocasts from Zhoukoudian. The parietal lobes are markedly bossed. This lateral bulging is associated with the lower parietal circumvolutions, as in other archaic specimens. This pronounced parietal curvature is apparently due to a narrow cranial base, more than to wider parietal areas. CONCLUSIONS The endocast of UA 31 shows a general plesiomorphic phenotype, with some individual features (e.g., dolichocephaly and rounded lower parietal areas) which confirm a remarkable degree of morphological variability within the H. erectus/ergaster hypodigm. Am J Phys Anthropol 160:458-468, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, 09002, Spain
| | - Luca Bondioli
- Sezione di Bioarcheologia, Museo Nazionale Preistorico Etnografico "Luigi Pigorini", 00144, Rome, Italy
| | - Alfredo Coppa
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", 00185, Rome, Italy
| | - David W Frayer
- Department of Anthropology, University of Kansas, KS 66045-2110, Lawrence, USA
| | - Ralph L Holloway
- Department of Anthropology, Columbia University, 5532, New York, USA
| | | | - Tsegai Medin
- National Museum of Eritrea, 5284, Asmara, Eritrea.,Institut Catala de Paleoecologia Humana i Evolució Social, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Lorenzo Rook
- Dipartimento di Scienze della Terra, Università di Firenze, 50121, Italy
| | - Roberto Macchiarelli
- UMR 7194 CNRS-Muséum national d'Histoire naturelle, 75000, Paris, France.,Département Géosciences, Université de Poitiers, 86000, France
| |
Collapse
|
28
|
Implications of the Relationship Between Basicranial Flexion and Facial Orientation for the Evolution of Hominid Craniofacial Structures. INT J PRIMATOL 2015. [DOI: 10.1007/s10764-015-9886-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Quam R, Martínez I, Rosa M, Bonmatí A, Lorenzo C, de Ruiter DJ, Moggi-Cecchi J, Conde Valverde M, Jarabo P, Menter CG, Thackeray JF, Arsuaga JL. Early hominin auditory capacities. SCIENCE ADVANCES 2015; 1:e1500355. [PMID: 26601261 PMCID: PMC4643776 DOI: 10.1126/sciadv.1500355] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/26/2015] [Indexed: 06/05/2023]
Abstract
Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats.
Collapse
Affiliation(s)
- Rolf Quam
- Department of Anthropology, Binghamton University [State University of New York (SUNY)], Binghamton, NY 13902–6000, USA
- Centro de Investigación (UCM-ISCIII) sobre Evolución y Comportamiento Humanos, Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Division of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Ignacio Martínez
- Centro de Investigación (UCM-ISCIII) sobre Evolución y Comportamiento Humanos, Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Departamento de Ciencias de la Vida, Universidad de Alcalá, Edificio de Ciencias, Campus Universitario, 28805 Alcalá de Henares, Spain
| | - Manuel Rosa
- Departamento de Teoría de la Señal y Comunicaciones, Universidad de Alcalá, Escuela Politécnica Superior, Campus Universitario, 28805 Alcalá de Henares, Spain
| | - Alejandro Bonmatí
- Centro de Investigación (UCM-ISCIII) sobre Evolución y Comportamiento Humanos, Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Departamento de Paleontología, Universidad Complutense de Madrid, Facultad de Ciencias Geológicas, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Carlos Lorenzo
- Centro de Investigación (UCM-ISCIII) sobre Evolución y Comportamiento Humanos, Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Área de Prehistoria, Universitat Rovira i Virgili, Avinguda Catalunya 35, 43002 Tarragona, Spain
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES), Campus Sescelades URV (Edifici W3), 43007 Tarragona, Spain
| | - Darryl J. de Ruiter
- Department of Anthropology, Texas A&M University, College Station, TX 77843, USA
| | - Jacopo Moggi-Cecchi
- Laboratori di Antropologia, Dipartimento di Biologia, Universita’ di Firenze, via del Proconsolo, 12 50122 Firenze, Italy
| | - Mercedes Conde Valverde
- Departamento de Ciencias de la Vida, Universidad de Alcalá, Edificio de Ciencias, Campus Universitario, 28805 Alcalá de Henares, Spain
| | - Pilar Jarabo
- Departamento de Teoría de la Señal y Comunicaciones, Universidad de Alcalá, Escuela Politécnica Superior, Campus Universitario, 28805 Alcalá de Henares, Spain
| | - Colin G. Menter
- Centre for Anthropological Research, Humanities Research Village, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | - J. Francis Thackeray
- Evolutionary Studies Institute, University of the Witwatersrand, PO WITS, Johannesburg 2050, South Africa
| | - Juan Luis Arsuaga
- Centro de Investigación (UCM-ISCIII) sobre Evolución y Comportamiento Humanos, Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Departamento de Paleontología, Universidad Complutense de Madrid, Facultad de Ciencias Geológicas, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
30
|
Neither chimpanzee nor human, Ardipithecus reveals the surprising ancestry of both. Proc Natl Acad Sci U S A 2015; 112:4877-84. [PMID: 25901308 DOI: 10.1073/pnas.1403659111] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Australopithecus fossils were regularly interpreted during the late 20th century in a framework that used living African apes, especially chimpanzees, as proxies for the immediate ancestors of the human clade. Such projection is now largely nullified by the discovery of Ardipithecus. In the context of accumulating evidence from genetics, developmental biology, anatomy, ecology, biogeography, and geology, Ardipithecus alters perspectives on how our earliest hominid ancestors--and our closest living relatives--evolved.
Collapse
|
31
|
The life history of Ardipithecus ramidus: a heterochronic model of sexual and social maturation. ANTHROPOLOGICAL REVIEW 2015. [DOI: 10.1515/anre-2015-0009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
In this paper we analyse the ontogeny of craniofacial growth in Ardipithecus ramidus in the context of its possible social and environmental determinants. We sought to test the hypothesis that this form of early hominin evolved a specific adult craniofacial morphology via heterochronic dissociation of growth trajectories. We suggest the lack of sexual dimorphism in craniofacial morphology provides evidence for a suite of adult behavioral adaptations, and consequently an ontogeny, unlike any other species of extant ape. The lack of sexually dimorphic craniofacial morphology suggests A. ramidus males adopted reproductive strategies that did not require male on male conflict. Male investment in the maternal metabolic budget and/or paternal investment in offspring may have been reproductive strategies adopted by males. Such strategies would account for the absence of innate morphological armoury in males. Consequently, A. ramidus would have most likely had sub-adult periods of socialisation unlike that of any extant ape. We also argue that A.ramidus and chimpanzee craniofacial morphology are apomorphic, each representing a derived condition relative to that of the common ancestor, with A. ramidus developing its orthognatic condition via paedomoporhosis, and chimpanzees evolving increased prognathism via peramorphosis. In contrast we suggest cranial volume and life history trajectories may be synapomorphic traits that both species inherited and retained form a putative common ancestral condition. Our analysis also provides support for the hypothesis that an intensification of maternal care was central to the process of hominization.
Collapse
|
32
|
Reno PL. Genetic and developmental basis for parallel evolution and its significance for hominoid evolution. Evol Anthropol 2015; 23:188-200. [PMID: 25347977 DOI: 10.1002/evan.21417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Greater understanding of ape comparative anatomy and evolutionary history has brought a general appreciation that the hominoid radiation is characterized by substantial homoplasy.(1-4) However, little consensus has been reached regarding which features result from repeated evolution. This has important implications for reconstructing ancestral states throughout hominoid evolution, including the nature of the Pan-Homo last common ancestor (LCA). Advances from evolutionary developmental biology (evo-devo) have expanded the diversity of model organisms available for uncovering the morphogenetic mechanisms underlying instances of repeated phenotypic change. Of particular relevance to hominoids are data from adaptive radiations of birds, fish, and even flies demonstrating that parallel phenotypic changes often use similar genetic and developmental mechanisms. The frequent reuse of a limited set of genes and pathways underlying phenotypic homoplasy suggests that the conserved nature of the genetic and developmental architecture of animals can influence evolutionary outcomes. Such biases are particularly likely to be shared by closely related taxa that reside in similar ecological niches and face common selective pressures. Consideration of these developmental and ecological factors provides a strong theoretical justification for the substantial homoplasy observed in the evolution of complex characters and the remarkable parallel similarities that can occur in closely related taxa. Thus, as in other branches of the hominoid radiation, repeated phenotypic evolution within African apes is also a distinct possibility. If so, the availability of complete genomes for each of the hominoid genera makes them another model to explore the genetic basis of repeated evolution.
Collapse
Affiliation(s)
- Philip L Reno
- Department of Anthropology, The Pennsylvania State University, University Park, PA, 16802
| |
Collapse
|
33
|
Terhune CE, Robinson CA, Ritzman TB. Ontogenetic variation in the mandibular ramus of great apes and humans. J Morphol 2014; 275:661-77. [DOI: 10.1002/jmor.20246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 12/07/2013] [Accepted: 12/15/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Claire E. Terhune
- Department of Anthropology; University of Arkansas; Fayetteville Arkansas
| | - Chris A. Robinson
- Department of Biology; Bronx Community College, City University of New York; Bronx New York
| | - Terrence B. Ritzman
- Institute of Human Origins and School of Human Evolution and Social Change; Arizona State University; Tempe Arizona
| |
Collapse
|