1
|
Amor NP, Guo K, Zhang S, Xia J, Yang Y, Lin A. Lipid Nanoparticle: Beyond Delivery Vehicle-Unveiling Its Immunological Adjuvant Potential. FASEB J 2025; 39:e70641. [PMID: 40372384 DOI: 10.1096/fj.202500622r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/17/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
Lipid nanoparticles (LNPs) have extensively been used in drug delivery over the years, and the perspective of their significance has been well established. Latest findings have demonstrated the inherent adjuvant capacity of some specific lipid components, especially in stimulating immune compartments, which prompted the rational use of lipid-based delivery vehicles in drug R&D. In this concise review, we summarize current knowledge on the adjuvant properties of LNP, with a particular focus on the key components that mediate such effects. Specifically, we describe the vital role of ionizable lipids in triggering innate immune activation and inflammation and highlight the importance of these lipids in determining vaccine effectiveness or safety. Furthermore, the mechanisms by which LNP enhance the immune response are discussed in detail, shedding light on their potential applications in next-generation vaccine design and development. We also present compelling pre-clinical studies that serve as strong evidence for the adjuvant properties of LNP components in enhancing vaccine immunogenicity.
Collapse
Affiliation(s)
- Narh Philip Amor
- Innovation Center for Nucleic Acid Medicine, Institute for Innovative Drug Development and Life Sciences, Wuxi, China Pharmaceutical University, Nanjing, China
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, China
- Center for Infectious Medicine and Vaccine Research, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kun Guo
- Innovation Center for Nucleic Acid Medicine, Institute for Innovative Drug Development and Life Sciences, Wuxi, China Pharmaceutical University, Nanjing, China
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, China
- Center for Infectious Medicine and Vaccine Research, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shun Zhang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Jun Xia
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Yong Yang
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, China
- Center for Infectious Medicine and Vaccine Research, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ang Lin
- Innovation Center for Nucleic Acid Medicine, Institute for Innovative Drug Development and Life Sciences, Wuxi, China Pharmaceutical University, Nanjing, China
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, China
- Center for Infectious Medicine and Vaccine Research, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
2
|
Wu F, Li N, Xiao Y, Palanki R, Yamagata H, Mitchell MJ, Han X. Lipid Nanoparticles for Delivery of CRISPR Gene Editing Components. SMALL METHODS 2025:e2401632. [PMID: 40434188 DOI: 10.1002/smtd.202401632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 05/05/2025] [Indexed: 05/29/2025]
Abstract
Gene editing has emerged as a promising therapeutic option for treating genetic diseases. However, a central challenge in the field is the safe and efficient delivery of these large editing tools, especially in vivo. Lipid nanoparticles (LNPs) are attractive nonviral vectors due to their low immunogenicity and high delivery efficiency. To maximize editing efficiency, LNPs should efficiently protect gene editing components against multiple biological barriers and release them into the cytoplasm of target cells. In this review, the widely used CRISPR gene editing systems are first overviewed. Then, each component of LNPs, as well as their effects on delivery, are systematically discussed. Following this, the current LNP engineering strategies to achieve non-liver targeting are summarized. Finally, preclinical and clinical applications of LNPs for in vivo genome editing are highlighted, and perspectives for the future development of LNPs are provided.
Collapse
Affiliation(s)
- Fan Wu
- Key Laboratory of RNA Innovation, Science and Engineering, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Nei Li
- Key Laboratory of RNA Innovation, Science and Engineering, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yudian Xiao
- Key Laboratory of RNA Innovation, Science and Engineering, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hannah Yamagata
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xuexiang Han
- Key Laboratory of RNA Innovation, Science and Engineering, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
3
|
Heiser BJ, Veyssi A, Ghosh D. Recent strategies for enhanced delivery of mRNA to the lungs. Nanomedicine (Lond) 2025; 20:1043-1069. [PMID: 40190037 PMCID: PMC12051540 DOI: 10.1080/17435889.2025.2485669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
mRNA-based therapies have emerged as a transformative tool in modern medicine, gaining significant attention following their successful use in COVID-19 vaccines. Delivery to the lungs offers several compelling advantages for mRNA delivery. The lungs are one of the most vascularized organs in the body, which provides an extensive surface area that can facilitate efficient drug transport. Local delivery to the lungs bypasses gastrointestinal degradation, potentially enhancing therapeutic efficacy. In addition, the extensive capillary network of the lungs provides an ideal target for systemic delivery. However, developing effective mRNA therapies for the lungs presents significant challenges. The complex anatomy of the lungs and the body's immune response to foreign particles create barriers to delivery. This review discusses key approaches for overcoming these challenges and improving mRNA delivery to the lungs. It examines both local and systemic delivery strategies aimed at improving lung delivery while mitigating off-target effects. Although substantial progress has been made in lung-targeted mRNA therapies, challenges remain in optimizing cellular uptake and achieving therapeutic efficacy within pulmonary tissues. The continued refinement of delivery strategies that enhance lung-specific targeting while minimizing degradation is critical for the clinical success of mRNA-based pulmonary therapies.
Collapse
Affiliation(s)
- Brittany J. Heiser
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Arian Veyssi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Yuan Z, Luozhong S, Li R, Gu W, Chen Y, Bhashyam D, Lai R, Jiang S. Transient Macrophage Depletion Circumvents Scavenging and Redirects Biodistribution of mRNA-Lipid Nanoparticles. ACS NANO 2025; 19:14422-14433. [PMID: 40167042 DOI: 10.1021/acsnano.5c02001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The mononuclear phagocytic system is recognized as a major scavenger of mRNA-lipid nanoparticles (LNPs), clearing and redirecting these particles away from their intended targets and thus diminishing their delivery efficacy. Understanding the mechanism by which mRNA-LNPs interact with phagocytes and how this interaction affects the mRNA transfection is critical to enhancing the delivery of mRNA. In this study, we temporarily depleted both circulating and resident macrophages (MF) and evaluated the transfection efficiency and biodistribution of mRNA-LNPs. We first demonstrated the enhanced liver expression using two liver-tropic formulations and the significant improvement of the in vivo gene editing efficiency of CRISPR-Cas9 in the Ai14 mouse model after MF depletion, providing a versatile strategy for enhanced mRNA delivery to the liver regardless of the formulation employed. We then extended our investigations to lung-tropic and lymphoid-tropic LNP formulations and discovered that MF depletion abolishes the targeting capacities of these non-liver-tropic formulations, providing insights into the organ targeting of LNPs. Finally, we screened and compared various clinically relevant MF depletion methods, providing the translation potential of this method on enhanced hepatic delivery of mRNA.
Collapse
Affiliation(s)
- Zhefan Yuan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Sijin Luozhong
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ruoxin Li
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Wenchao Gu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yu Chen
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dani Bhashyam
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rachel Lai
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
5
|
Huayamares SG, Lian L, Rab R, Hou Y, Radmand A, Kim H, Zenhausern R, Achyut BR, Gilbert Ross M, Lokugamage MP, Loughrey D, Peck HE, Echeverri ES, Da Silva Sanchez AJ, Shajii A, Li A, Tiegreen KE, Santangelo PJ, Sorscher EJ, Dahlman JE. Nanoparticle delivery of a prodrug-activating bacterial enzyme leads to anti-tumor responses. Nat Commun 2025; 16:3490. [PMID: 40221395 PMCID: PMC11993580 DOI: 10.1038/s41467-025-58548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Most cancer patients diagnosed with late-stage head and neck squamous cell carcinoma are treated with chemoradiotherapy, which can lead to toxicity. One potential alternative is tumor-limited conversion of a prodrug into its cytotoxic form. We reason this could be achieved by transient and tumor-specific expression of purine nucleoside phosphorylase (PNP), an Escherichia coli enzyme that converts fludarabine into 2-fluoroadenine, a potent cytotoxic drug. To efficiently express bacterial PNP in tumors, we evaluate 44 chemically distinct lipid nanoparticles (LNPs) using species-agnostic DNA barcoding in tumor-bearing mice. Our lead LNP, designated LNP intratumoral (LNPIT), delivers mRNA that leads to PNP expression in vivo. Additionally, in tumor cells transfected with LNPIT, we observe upregulated pathways related to RNA and protein metabolism, providing insight into the tumor cell response to LNPs in vivo. When mice are treated with LNPIT-PNP, then subsequently given fludarabine phosphate, we observe anti-tumor responses. These data are consistent with an approach in which LNP-mRNA expression of a bacterial enzyme activates a prodrug in solid tumors.
Collapse
Affiliation(s)
- Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Regina Rab
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Yuning Hou
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Afsane Radmand
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan Zenhausern
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Bhagelu R Achyut
- Department of Pediatrics, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | | - Melissa P Lokugamage
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Hannah E Peck
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Elisa Schrader Echeverri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Alejandro J Da Silva Sanchez
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aram Shajii
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Andrea Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Karen E Tiegreen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
6
|
Laturski AE, Dulay MT, Perry JL, DeSimone JM. Transfection via RNA-Based Nanoparticles: Comparing Encapsulation vs Adsorption Approaches of RNA Incorporation. Bioconjug Chem 2025; 36:367-376. [PMID: 39999074 DOI: 10.1021/acs.bioconjchem.5c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Historically, RNA delivery via nanoparticles has primarily relied on encapsulation, as demonstrated by lipid nanoparticles in SARS-CoV-2 vaccines. Concerns about RNA degradation on nanoparticle surfaces initially limited the exploration of adsorption-based approaches. However, recent advancements have renewed interest in adsorption as a viable alternative. This Viewpoint explores the approaches of RNA incorporation in nanoparticles, comparing encapsulation, adsorption, and the combination of encapsulation and adsorption, and presents a framework to guide the selection of the most suitable strategy based on general characteristics.
Collapse
Affiliation(s)
- Amy E Laturski
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Maria T Dulay
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Jillian L Perry
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7575, United States
| | - Joseph M DeSimone
- Department of Chemical Engineering and Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Alshehry Y, Liu X, Li W, Wang Q, Cole J, Zhu G. Lipid Nanoparticles for mRNA Delivery in Cancer Immunotherapy. AAPS J 2025; 27:66. [PMID: 40102316 DOI: 10.1208/s12248-025-01051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025] Open
Abstract
Cancer immunotherapy is poised to be one of the major modalities for cancer treatment. Messenger RNA (mRNA) has emerged as a versatile and promising platform for the development of effective cancer immunotherapy. Delivery systems for mRNA therapeutics are pivotal for their optimal therapeutic efficacy and minimal adverse side effects. Lipid nanoparticles (LNPs) have demonstrated a great success for mRNA delivery. Numerous LNPs have been designed and optimized to enhance mRNA stability, facilitate transfection, and ensure intracellular delivery for subsequent processing. Nevertheless, challenges remain to, for example, improve the efficiency of endosomal escape and passive targeting. This review highlights key advancements in the development of mRNA LNPs for cancer immunotherapy. We delve into the design of LNPs for mRNA delivery, encompassing the chemical structures, characterization, and structure-activity relationships (SAR) of LNP compositions. We discuss the key factors influencing the transfection efficiency, passive targeting, and tropism of mRNA-loaded LNPs. We also review the preclinical and clinical applications of mRNA LNPs in cancer immunotherapy. This review can enhance our understanding in the design and application of LNPs for mRNA delivery in cancer immunotherapy.
Collapse
Affiliation(s)
- Yasir Alshehry
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Xiang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Wenhua Li
- Department of Pharmaceutical Sciences, College of Pharmacy, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Qiyan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Janét Cole
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Guizhi Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States of America.
- Bioinnovations in Brain Cancer, Biointerfaces Institute, Rogel Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, United States of America.
| |
Collapse
|
8
|
Loughrey D, Paunovska K, Echeverri ES, Tiegreen KE, Dahlman JE. The time course of in vivo cellular responses to LNPs. Chem Commun (Camb) 2025; 61:4535-4538. [PMID: 39996281 DOI: 10.1039/d4cc06659f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Cells actively respond to drug delivery systems. However, the time course of cellular responses to lipid nanoparticles (LNPs) remains unclear. Here we characterized the transcriptomic response to LNPs carrying mRNA at different timepoints in vivo. Exposure to LNPs altered the expression of signaling pathways including endocytosis and lysosomal pathways as soon as one hour after administration. These pathways returned to their baseline state by 24 hours. Our data are consistent with the hypothesis that cells actively yet transiently respond to LNPs.
Collapse
Affiliation(s)
- David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Elisa Schrader Echeverri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Karen E Tiegreen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
9
|
Naeem S, Zhang J, Zhang Y, Wang Y. Nucleic acid therapeutics: Past, present, and future. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102440. [PMID: 39897578 PMCID: PMC11786870 DOI: 10.1016/j.omtn.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Nucleic acid therapeutics have become increasingly recognized in recent years for their capability to target both coding and non-coding sequences. Several types of nucleic acid modalities, including siRNA, mRNA, aptamer, along with antisense oligo, have been approved by regulatory bodies for therapeutic use. The field of nucleic acid therapeutics has been brought to the forefront by the rapid development of vaccines against COVID-19, followed by a number of approvals for clinical use including much anticipated CRISPR-Cas9. However, obstacles such as the difficulty of achieving efficient and targeted delivery to diseased sites remain. This review provides an overview of nucleic acid therapeutics and highlights substantial advancements, including critical engineering, conjugation, and delivery strategies, that are paving the way for their growing role in modern medicine.
Collapse
Affiliation(s)
- Sajid Naeem
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ju Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Zhang
- School of Biomedical Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Yu Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
10
|
Tang C, Zhang Y, Li B, Fan X, Wang Z, Su R, Qi W, Wang Y. Modular Design of Lipopeptide-Based Organ-Specific Targeting (POST) Lipid Nanoparticles for Highly Efficient RNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415643. [PMID: 39924757 DOI: 10.1002/adma.202415643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/17/2025] [Indexed: 02/11/2025]
Abstract
Lipid nanoparticles (LNPs) with highly efficient and specific extrahepatic targeting abilities are promising in gene delivery, and the lipopeptides (LPs) with excellent designability and functionality are expected to empower the construction of functional LNPs. This study aims to develop highly efficient ionizable components that accurately match different targeting lipid systems through the modular design of LPs. Based on this, a lipopeptide-based organ-specific targeting (POST) LNP screening strategy is constructed, in which lysine-histidine-based lipopeptides (KH-LPs) are designed as highly efficient ionizable components. The optimal KH-LP LNP screened in vitro shows excellent siRNA/mRNA transfecting ability in various hard-to-transfect cell lines. Compared to the classic LNPs, the POST LNPs screened in vivo achieve even higher (or at least comparable) efficiency and specificity in delivering mRNA and siRNA to the lung, liver, and spleen, respectively. The structure-activity relationship (SAR) proves that the modular regulation of LP structures can accurately provide the optimal ionizable components for different targeting lipid systems, demonstrating the potential of this strategy in developing efficient and selective targeting systems, which is expected to open up more possibilities for gene therapy.
Collapse
Affiliation(s)
- Chuanmei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yexi Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Bowen Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiangwei Fan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zixuan Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
11
|
Wang K, Young TL, Chen J, Tsai SN, Xu Y, Varley AJ, Solek NC, Gong F, Lu RXZ, Hubbard BP, Li B. A Reverse Transcription Nucleic-Acid-Based Barcoding System for In Vivo Measurement of Lipid Nanoparticle mRNA Delivery. ACS BIO & MED CHEM AU 2025; 5:35-41. [PMID: 39990951 PMCID: PMC11843327 DOI: 10.1021/acsbiomedchemau.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
Lipid nanoparticles (LNPs) are the most extensively validated clinical delivery vehicles for mRNA therapeutics, exemplified by their widespread use in the mRNA COVID-19 vaccines. The pace of lipid nanoparticle (LNP) development for mRNA therapeutics is restricted by the limitations of existing methods for large-scale LNP screening. To address this challenge, we developed Quantitative Analysis of Reverse Transcribed Barcodes (QuART), a novel nucleic-acid-based system for measuring LNP functional delivery in vivo. QuART uses a bacterial retron reverse transcription system to couple functional mRNA delivery into the cytoplasm with a cDNA barcode readout. Our results demonstrate that QuART can be used to identify functional mRNA delivery both in vitro in cell culture and in vivo in mice. Multiplexing of QuART could enable high-throughput screening of LNP formulations, facilitating the rapid discovery of promising LNP candidates for mRNA therapeutics.
Collapse
Affiliation(s)
- Kevin
C. Wang
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Tiana L. Young
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jingan Chen
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Shannon N. Tsai
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Yue Xu
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Andrew J. Varley
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Nicholas C. Solek
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Fanglin Gong
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Rick X. Z. Lu
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Basil P. Hubbard
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5G 2C8, Canada
| | - Bowen Li
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 2C1, Canada
| |
Collapse
|
12
|
García Coll J, Trousselier P, Pawar SD, Bessin Y, Lichon L, Leblond Chain J, Sachon E, Bettache N, Ulrich S. Amphiphilic dynamic covalent polymer vectors of siRNA. Chem Sci 2025; 16:2413-2419. [PMID: 39790989 PMCID: PMC11707677 DOI: 10.1039/d4sc07668k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025] Open
Abstract
Dynamic covalent polymers (DCPs) recently emerged as smart siRNA delivery vectors, which dynamically self-assemble through siRNA templating and depolymerize in a controlled manner. Herein, we report the dynamic combinatorial screening of cationic and amphiphilic peptide-based monomers. We provide experimental evidence, by mass spectrometry analyses, of the siRNA-templated formation of DCPs, and show that amphiphilic DCPs display superior activity in terms of siRNA complexation and delivery in cells. Thus, the work describes a new type of siRNA vector based on dynamic covalent lipopolyplexes, which feature improved activity as well as better nano-structuration compared to previous generations of DCPs.
Collapse
Affiliation(s)
- José García Coll
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
| | - Pauline Trousselier
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
| | - Sachin Dattram Pawar
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM) Paris France
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
| | - Laure Lichon
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
| | | | - Emmanuelle Sachon
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM) Paris France
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
| |
Collapse
|
13
|
Yu M, Lin L, Zhou D, Liu S. Interaction design in mRNA delivery systems. J Control Release 2025; 377:413-426. [PMID: 39580076 DOI: 10.1016/j.jconrel.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
Following the coronavirus disease 2019 (COVID-19) pandemic, mRNA technology has made significant breakthroughs, emerging as a potential universal platform for combating various diseases. To address the challenges associated with mRNA delivery, such as instability and limited delivery efficacy, continuous advancements in genetic engineering and nanotechnology have led to the exploration and refinement of various mRNA structural modifications and delivery platforms. These achievements have significantly broadened the clinical applications of mRNA therapies. Despite the progress, the understanding of the interactions in mRNA delivery systems remains limited. These interactions are complex and multi-dimensional, occurring between mRNA and vehicles as well as delivery materials and helper ingredients. Resultantly, stability of the mRNA delivery systems and their delivery efficiency can be both significantly affected. This review outlines the current state of mRNA delivery strategies and summarizes the interactions in mRNA delivery systems. The interactions include the electrostatic interactions, hydrophobic interactions, hydrogen bonding, π-π stacking, coordination interactions, and so on. This interaction understanding provides guideline for future design of next-generation mRNA delivery systems, thereby offering new perspectives and strategies for developing diverse mRNA therapeutics.
Collapse
Affiliation(s)
- Mengyao Yu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Lixin Lin
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shuai Liu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
14
|
Liu Y, Wang Y, Kulkarni RA, Wegiel LA, Lee B, Bedingfield SK, Weitz D. Syringable Microcapsules for Sustained, Localized, and Controllable siRNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2025; 17:187-196. [PMID: 39705128 DOI: 10.1021/acsami.4c12805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
The clinical use of small interfering RNA (siRNA) and antisense oligonucleotides often requires invasive routes of administration, including intrathecal or intraocular injection. Additionally, these treatments often necessitate repeated injections. While nanoparticle formulation and chemical modifications have extended siRNA therapeutic durability, challenges persist, such as the side effects of bolus injections with high toxicity and maximum exposure in the acute phase. We present a microcapsule-based method to extend the activity of cholesterol-conjugated siRNA locally. Using microfluidics, microcapsules with well-defined size distribution and shell thickness are fabricated with poly(lactic-co-glycolic acid) (PLGA) with varying molecular weights and compositions. The microcapsules show a remarkably high drug encapsulation efficiency of nearly 100% and a high loading capacity (8900 μg siRNA/1 mg polymer). Additionally, microcapsules with an average diameter of 40 μm show superior syringeability when tested with needles ranging from gauge sizes of 27 to 32 G. This makes them suitable for various injection routes. Two sustained-release formulations were selected based on a 3-month in vitro release test. Subsequently, these formulations were injected subcutaneously into mice to verify their in vivo release profiles. The findings demonstrate that the microcapsules effectively shield the siRNAs from being cleared and enable them to be released constantly over 3 months. In contrast, unencapsulated siRNAs are rapidly cleared.
Collapse
Affiliation(s)
- Yan Liu
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yang Wang
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, Massachusetts 02138, United States
| | | | | | - Byungkook Lee
- Eli Lilly & Company, Indianapolis, Indiana 46285, United States
| | | | - David Weitz
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
15
|
Das R, Ge X, Fei F, Parvanian S, Weissleder R, Garris CS. Lipid Nanoparticle-mRNA Engineered Dendritic Cell Based Adoptive Cell Therapy Enhances Cancer Immune Response. SMALL METHODS 2025; 9:e2400633. [PMID: 39039995 PMCID: PMC11740962 DOI: 10.1002/smtd.202400633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/27/2024] [Indexed: 07/24/2024]
Abstract
Lipid nanoparticles encapsulating mRNA (LNP-mRNA) revolutionized medicine over the past several years. While clinically approved indications currently focus on infectious disease vaccination, LNP-mRNA based treatments also hold promise for cancer immunotherapy. However, the route of dosing may impact treatment efficacy, safety, and dose. To minimize adverse effects, it is hypothesized that LNP-mRNA can be used to activate and engineer dendritic cells (DC) ex vivo before re-administration of these cells. Here, it is shown that LNP-mRNA engineered DCs can indeed vaccinate recipient mice. Vaccinated mice showed strong anti-tumor T cell responses, rejected tumor challenge, and displayed no evidence of toxicity. Further, it is found that DC specific ablation of the immune activating kinase NFkB inducing kinase (NIK) abrogated vaccination efficacy, demonstrating that adoptively transferred DCs can be functionally modified in addition to their antigen presentation capacity. Collectively, these studies show that ex vivo LNP-mRNA engineering of DCs is a feasible and robust therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Riddha Das
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Xinying Ge
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
- Master's Program in ImmunologyHarvard Medical School200 Longwood AveBostonMA02115USA
| | - Fan Fei
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
- Master's Program in ImmunologyHarvard Medical School200 Longwood AveBostonMA02115USA
| | - Sepideh Parvanian
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Ralph Weissleder
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
- Department of Systems BiologyHarvard Medical School200 Longwood AveBostonMA02115USA
- Department of RadiologyMassachusetts General Brigham32 Fruit StBostonMA02114USA
| | - Christopher S. Garris
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
- Department of PathologyMassachusetts General Hospital55 Fruit StBostonMA02114USA
| |
Collapse
|
16
|
Askarizadeh A, Vahdat-Lasemi F, Karav S, Kesharwani P, Sahebkar A. Lipid nanoparticle-based delivery of small interfering RNAs: New possibilities in the treatment of diverse diseases. Eur Polym J 2025; 223:113624. [DOI: 10.1016/j.eurpolymj.2024.113624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Liu C, Jiang Y, Xue W, Liu J, Wang Z, Li X. Multiple tail ionizable lipids improve in vivo mRNA delivery efficiency with biosafety. Int J Pharm 2024; 667:124868. [PMID: 39454975 DOI: 10.1016/j.ijpharm.2024.124868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Ionizable lipid-based lipid nanoparticles (LNP) play a crucial role in the delivery of mRNA. The hydrophobic tail of ionizable lipid affects the formation of LNP and the release of mRNA. In this report, we focus on the effect of the number, chain length, and double bond number of the hydrophobic tail on the delivery efficiency. First, a series of ionizable lipids with two, three and four tails were synthesized and characterized featured with imidazole group as the head. The ionizable lipids derived LNP were prepared using a microfluidic co-mixing device, yielding particles primarily in the size range of 100 to 150 nm, with a polydispersity index (PDI) below 0.2. Screening identified ionizable lipids with four tails exhibiting superior delivery efficiency, of which U-15, U-17, U-18 and U-19 demonstrated the highest performance. Additionally, the U-19 significantly prolongs mRNA expression duration, and along with specific extrahepatic delivery effect compared to ALC-0315. Tissue slice tests on representatives (U-06: two tails, U-19: four tails, U-29: three tails) revealed no notable abnormalities. Analysis of immunogenicity, liver and kidney function tests indicated that all samples exhibited no evident immunogenicity or in vivo toxicity. Findings from tests on lysosome escape, cell transfection, and cytotoxicity revealed excellent in vitro delivery effectiveness. In summary, among the 35 imidazole-based ionizable lipids screened, optimal effects were exhibited by four tails, which providing a new strategy for the development of ionizable lipids.
Collapse
Affiliation(s)
- Chao Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yuhao Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wenliang Xue
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jinyu Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zihao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
18
|
Jain N, Singh A, Bhatia D. DNA-amphiphilic nanostructures: synthesis, characterization and applications. NANOSCALE 2024; 17:18-52. [PMID: 39560070 DOI: 10.1039/d4nr03236e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
DNA's extraordinary potential reaches far beyond its role as a carrier of genetic information. It serves as a remarkably adaptable structural foundation for constructing intricate nanostructures with a diverse range of functionalities. This inherent programmability sets DNA apart from other biomolecules like peptides, proteins, and small molecules. By covalently attaching DNA to synthetic hydrophobic moieties, researchers create DNA amphiphiles capable of interacting with artificial lipid bilayers and cell membranes. These hybrid structures have rapidly gained prominence due to their promising potential in the medical field. This review provides a comprehensive overview of the latest advancements in the synthesis of DNA amphiphiles and their assembly into well-defined nanostructures. It explores the diverse applications of these nanostructures across various medical domains, including targeted drug delivery, innovative immunotherapies, and gene-silencing techniques. Moreover, the review delves into the current challenges and prospects of this rapidly evolving field, highlighting the potential of DNA hybrid materials to revolutionize medical treatments and diagnostics. By addressing the limitations and exploring new avenues of research, scientists aim to unlock the full potential of DNA nanotechnology for the benefit of human health.
Collapse
Affiliation(s)
- Nishkarsh Jain
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Prem Nagar, Patiala, Punjab 147004, India
| | - Ankur Singh
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
19
|
Cheng J, Jian L, Chen Z, Li Z, Yu Y, Wu Y. In Vivo Delivery Processes and Development Strategies of Lipid Nanoparticles. Chembiochem 2024; 25:e202400481. [PMID: 39101874 DOI: 10.1002/cbic.202400481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/06/2024]
Abstract
Lipid nanoparticles (LNPs) represent an advanced and highly efficient delivery system for RNA molecules, demonstrating exceptional biocompatibility and remarkable delivery efficiency. This is evidenced by the clinical authorization of three LNP formulations: Patisiran, BNT162b2, and mRNA-1273. To further maximize the efficacy of RNA-based therapy, it is imperative to develop more potent LNP delivery systems that can effectively protect inherently unstable and negatively charged RNA molecules from degradation by nucleases, while facilitating their cellular uptake into target cells. Therefore, this review presents feasible strategies commonly employed for the development of efficient LNP delivery systems. The strategies encompass combinatorial chemistry for large-scale synthesis of ionizable lipids, rational design strategy of ionizable lipids, functional molecules-derived lipid molecules, the optimization of LNP formulations, and the adjustment of particle size and charge property of LNPs. Prior to introducing these developing strategies, in vivo delivery processes of LNPs, a crucial determinant influencing the clinical translation of LNP formulations, is described to better understand how to develop LNP delivery systems.
Collapse
Affiliation(s)
- Jiashun Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lina Jian
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhaolin Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhuoyuan Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yaobang Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yihang Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
20
|
Laila UE, An W, Xu ZX. Emerging prospects of mRNA cancer vaccines: mechanisms, formulations, and challenges in cancer immunotherapy. Front Immunol 2024; 15:1448489. [PMID: 39654897 PMCID: PMC11625737 DOI: 10.3389/fimmu.2024.1448489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer continues to pose an alarming threat to global health, necessitating the need for the development of efficient therapeutic solutions despite massive advances in the treatment. mRNA cancer vaccines have emerged as a hopeful avenue, propelled by the victory of mRNA technology in COVID-19 vaccines. The article delves into the intricate mechanisms and formulations of cancer vaccines, highlighting the ongoing efforts to strengthen mRNA stability and ensure successful translation inside target cells. Moreover, it discusses the design and mechanism of action of mRNA, showcasing its potential as a useful benchmark for developing efficacious cancer vaccines. The significance of mRNA therapy and selecting appropriate tumor antigens for the personalized development of mRNA vaccines are emphasized, providing insights into the immune mechanism. Additionally, the review explores the integration of mRNA vaccines with other immunotherapies and the utilization of progressive delivery platforms, such as lipid nanoparticles, to improve immune responses and address challenges related to immune evasion and tumor heterogeneity. While underscoring the advantages of mRNA vaccines, the review also addresses the challenges associated with the susceptibility of RNA to degradation and the difficulty in identifying optimum tumor-specific antigens, along with the potential solutions. Furthermore, it provides a comprehensive overview of the ongoing research efforts aimed at addressing these hurdles and enhancing the effectiveness of mRNA-based cancer vaccines. Overall, this review is a focused and inclusive impression of the present state of mRNA cancer vaccines, outlining their possibilities, challenges, and future predictions in the fight against cancer, ultimately aiding in the development of more targeted therapies against cancer.
Collapse
Affiliation(s)
| | | | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
21
|
Vashist A, Perez Alvarez G, Andion Camargo V, Raymond AD, Arias AY, Kolishetti N, Vashist A, Manickam P, Aggarwal S, Nair M. Recent advances in nanogels for drug delivery and biomedical applications. Biomater Sci 2024; 12:6006-6018. [PMID: 39484856 PMCID: PMC11528912 DOI: 10.1039/d4bm00224e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/26/2024] [Indexed: 11/03/2024]
Abstract
Nanotechnology has shown great promise for researchers to develop efficient nanocarriers for better therapy, imaging, and sustained release of drugs. The existing treatments are accompanied by serious toxicity limitations, leading to severe side effects, multiple drug resistance, and off-target activity. In this regard, nanogels have garnered significant attention for their multi-functional role combining advanced therapeutics with imaging in a single platform. Nanogels can be functionalized to target specific tissues which can improve the efficiency of drug delivery and other challenges associated with the existing nanocarriers. Translation of nanogel technology requires more exploration towards stability and enhanced efficiency. In this review, we present the advances and challenges related to nanogels for cancer therapy, ophthalmology, neurological disorders, tuberculosis, wound healing, and anti-viral applications. A perspective on recent research trends of nanogels for translation to clinics is also discussed.
Collapse
Affiliation(s)
- Arti Vashist
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Gabriela Perez Alvarez
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Vianessa Andion Camargo
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Andrea D Raymond
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Adriana Yndart Arias
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Nagesh Kolishetti
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Atul Vashist
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, India
- Centre of Excellence in Nanosensors and Nanomedicine, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Saurabh Aggarwal
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Madhavan Nair
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
22
|
Li J, Hu J, Jin D, Huo H, Chen N, Lin J, Lu X. High-throughput synthesis and optimization of ionizable lipids through A 3 coupling for efficient mRNA delivery. J Nanobiotechnology 2024; 22:672. [PMID: 39497197 PMCID: PMC11536852 DOI: 10.1186/s12951-024-02919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/09/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND The efficacy of mRNA-based vaccines and therapies relies on lipid nanoparticles (LNPs) as carriers to deliver mRNA into cells. The chemical structure of ionizable lipids (ILs) within LNPs is crucial in determining their delivery efficiency. RESULTS In this study, we synthesized 623 alkyne-bearing ionizable lipids using the A3 coupling reaction and assessed their effectiveness in mRNA delivery. ILs with specific structural features-18-carbon alkyl chains, a cis-double bond, and ethanolamine head groups-demonstrated superior mRNA delivery capabilities. Variations in saturation, double bond placement, and chain length correlated with decreased efficacy. Alkynes positioned adjacent to nitrogen atoms in ILs reduced the acid dissociation constant (pKa) of LNPs, thereby hindering mRNA delivery efficiency. Conversion of alkynes to alkanes significantly enhanced mRNA delivery of ILs both in vitro and in vivo. Moreover, combining optimized ILs with cKK-E12 yields synergistic LNPs that showed markedly augmented mRNA expression levels in vivo. CONCLUSIONS Overall, our study provides insights into the structure-function relationships of ILs, providing a foundation for the rational design of ILs to enhance the efficacy of LNPs in mRNA delivery.
Collapse
Affiliation(s)
- Jingjiao Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Hu
- Key State Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Danni Jin
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Haonan Huo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Chen
- Key State Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiaqi Lin
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Xueguang Lu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
23
|
Mrksich K, Padilla MS, Mitchell MJ. Breaking the final barrier: Evolution of cationic and ionizable lipid structure in lipid nanoparticles to escape the endosome. Adv Drug Deliv Rev 2024; 214:115446. [PMID: 39293650 PMCID: PMC11900896 DOI: 10.1016/j.addr.2024.115446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/18/2024] [Accepted: 09/07/2024] [Indexed: 09/20/2024]
Abstract
In the past decade, nucleic acid therapies have seen a boon in development and clinical translation largely due to advances in nanotechnology that have enabled their safe and targeted delivery. Nanoparticles can protect nucleic acids from degradation by serum enzymes and can facilitate entry into cells. Still, achieving endosomal escape to allow nucleic acids to enter the cytoplasm has remained a significant barrier, where less than 5% of nanoparticles within the endo-lysosomal pathway are able to transfer their cargo to the cytosol. Lipid-based drug delivery vehicles, particularly lipid nanoparticles (LNPs), have been optimized to achieve potent endosomal escape, and thus have been the vector of choice in the clinic as demonstrated by their utilization in the COVID-19 mRNA vaccines. The success of LNPs is in large part due to the rational design of lipids that can specifically overcome endosomal barriers. In this review, we chart the evolution of lipid structure from cationic lipids to ionizable lipids, focusing on structure-function relationships, with a focus on how they relate to endosomal escape. Additionally, we examine recent advancements in ionizable lipid structure as well as discuss the future of lipid design.
Collapse
Affiliation(s)
- Kaitlin Mrksich
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marshall S Padilla
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Wei PS, Thota N, John G, Chang E, Lee S, Wang Y, Ma Z, Tsai YH, Mei KC. Enhancing RNA-lipid nanoparticle delivery: Organ- and cell-specificity and barcoding strategies. J Control Release 2024; 375:366-388. [PMID: 39179112 PMCID: PMC11972657 DOI: 10.1016/j.jconrel.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Recent advancements in RNA therapeutics highlight the critical need for precision gene delivery systems that target specific organs and cells. Lipid nanoparticles (LNPs) have emerged as key vectors in delivering mRNA and siRNA, offering protection against enzymatic degradation, enabling targeted delivery and cellular uptake, and facilitating RNA cargo release into the cytosol. This review discusses the development and optimization of organ- and cell-specific LNPs, focusing on their design, mechanisms of action, and therapeutic applications. We explore innovations such as DNA/RNA barcoding, which facilitates high-throughput screening and precise adjustments in formulations. We address major challenges, including improving endosomal escape, minimizing off-target effects, and enhancing delivery efficiencies. Notable clinical trials and recent FDA approvals illustrate the practical applications and future potential of LNP-based RNA therapies. Our findings suggest that while considerable progress has been made, continued research is essential to resolve existing limitations and bridge the gap between preclinical and clinical evaluation of the safety and efficacy of RNA therapeutics. This review highlights the dynamic progress in LNP research. It outlines a roadmap for future advancements in RNA-based precision medicine.
Collapse
Affiliation(s)
- Pu-Sheng Wei
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Nagasri Thota
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Greshma John
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Evelyn Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Sunjae Lee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Yuanjun Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Zitao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Yu-Hsuan Tsai
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Kuo-Ching Mei
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA.
| |
Collapse
|
25
|
Tarab-Ravski D, Stotsky-Oterin L, Elisha A, Kundoor GR, Ramishetti S, Hazan-Halevy I, Haas H, Peer D. The future of genetic medicines delivered via targeted lipid nanoparticles to leukocytes. J Control Release 2024; 376:286-302. [PMID: 39401676 DOI: 10.1016/j.jconrel.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Genetic medicines hold vast therapeutic potential, offering the ability to silence or induce gene expression, knock out genes, and even edit DNA fragments. Applying these therapeutic modalities to leukocytes offers a promising path for treating various conditions yet overcoming the obstacles of specific and efficient delivery to leukocytes remains a major bottleneck in their clinical translation. Lipid nanoparticles (LNPs) have emerged as the leading delivery system for nucleic acids due to their remarkable versatility and ability to improve their in vivo stability, pharmacokinetics, and therapeutic benefits. Equipping LNPs with targeting moieties can promote their specific cellular uptake and internalization to leukocytes, making targeted LNPs (tLNPs) an inseparable part of developing leukocyte-targeted gene therapy. However, despite the significant advancements in research, genetic medicines for leukocytes using targeted delivery approaches have not been translated into the clinic yet. Herein, we discuss the important aspects of designing tLNPs and highlight the considerations for choosing an appropriate bioconjugation strategy and targeting moiety. Furthermore, we provide our insights on limiting challenges and identify key areas for further research to advance these exciting therapies for patient care.
Collapse
Affiliation(s)
- Dana Tarab-Ravski
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Lior Stotsky-Oterin
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Aviad Elisha
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Govinda Reddy Kundoor
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | | | - Inbal Hazan-Halevy
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Heinrich Haas
- NeoVac Ltd. 127 Olympic Ave., OX14 4SA, Milton Park, Oxfordshire, UK; Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
26
|
Lokras AG, Bobak TR, Baghel SS, Sebastiani F, Foged C. Advances in the design and delivery of RNA vaccines for infectious diseases. Adv Drug Deliv Rev 2024; 213:115419. [PMID: 39111358 DOI: 10.1016/j.addr.2024.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
RNA medicines represent a paradigm shift in treatment and prevention of critical diseases of global significance, e.g., infectious diseases. The highly successful messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were developed at record speed during the coronavirus disease 2019 pandemic. A consequence of this is exceptionally shortened vaccine development times, which in combination with adaptability makes the RNA vaccine technology highly attractive against infectious diseases and for pandemic preparedness. Here, we review state of the art in the design and delivery of RNA vaccines for infectious diseases based on different RNA modalities, including linear mRNA, self-amplifying RNA, trans-amplifying RNA, and circular RNA. We provide an overview of the clinical pipeline of RNA vaccines for infectious diseases, and present analytical procedures, which are paramount for characterizing quality attributes and guaranteeing their quality, and we discuss future perspectives for using RNA vaccines to combat pathogens beyond SARS-CoV-2.
Collapse
Affiliation(s)
- Abhijeet Girish Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Thomas Rønnemoes Bobak
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Saahil Sandeep Baghel
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Federica Sebastiani
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark; Division of Physical Chemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
27
|
Beckert N, Dietrich A, Hubbuch J. RP-CAD for Lipid Quantification: Systematic Method Development and Intensified LNP Process Characterization. Pharmaceuticals (Basel) 2024; 17:1217. [PMID: 39338379 PMCID: PMC11435201 DOI: 10.3390/ph17091217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Lipid nanoparticles (LNPs) and their versatile nucleic acid payloads bear great potential as delivery systems. Despite their complex lipid composition, their quality is primarily judged by particle characteristics and nucleic acid encapsulation. In this study, we present a holistic reversed-phase (RP)-charged aerosol detection (CAD)-based method developed for commonly used LNP formulations, allowing for intensified LNP and process characterization. We used an experimental approach for power function value (PFV) optimization termed exploratory calibration, providing a single PFV (1.3) in an appropriate linearity range for all six lipids. Followed by the procedure of method calibration and validation, linearity (10-400 ng, R2 > 0.996), precision, accuracy, and robustness were effectively proven. To complement the commonly determined LNP attributes and to evaluate the process performance across LNP processing, the developed RP-CAD method was applied in a process parameter study varying the total flow rate (TFR) during microfluidic mixing. The RP-CAD method revealed a constant lipid molar ratio across processing but identified deviations in the theoretical lipid content and general lipid loss, which were both, however, entirely TFR-independent. The deviations in lipid content could be successfully traced back to the lipid stock solution preparation. In contrast, the observed lipid loss was attributable to the small-scale dialysis following microfluidic mixing. Overall, this study establishes a foundation for employing RP-CAD for lipid quantification throughout LNP processing, and it highlights the potential to extend its applicability to other LNPs, process parameter studies, or processes such as cross-flow filtration.
Collapse
Affiliation(s)
| | | | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences—Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (N.B.); (A.D.)
| |
Collapse
|
28
|
Alqahtani MS, Syed R, Alqahtani AS, Almarfadi OM, Roni MA, Sadhu SS. Synthesis and bioactivity of a novel surfactin-based lipopeptide for mRNA delivery. NANOSCALE ADVANCES 2024:d4na00404c. [PMID: 39247856 PMCID: PMC11376094 DOI: 10.1039/d4na00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
The effective delivery of messenger ribonucleic acid (mRNA) to specific cell types and target tissues poses a significant challenge in nonviral therapeutic strategies. Lipid-based nanoparticles (LNPs) have emerged as a leading carrier system for delivering mRNA, particularly for infectious diseases, such as COVID-19. This study aimed to describe the synthesis of a novel lipopeptide based on surfactin, a naturally occurring surfactant. Additionally, a series of novel LNPs were rationally designed, based on the modified surfactin, OleSurf, and were formulated and optimized. The physicochemical properties, morphologies, and stabilities of the particles were evaluated. All formulations containing OleSurf produced particles with a diameter <80 nm and an encapsulation efficiency >95%. OleSurf LNPs demonstrated excellent transfection efficiency and luciferase expression with no cytotoxicity, compared to lipofectamine 2000, a known transfection reagent, and were comparable to the DLin-MC3-DMA lipid. OleSurf-based LNPs behaved as efficient mRNA carriers and showed enhanced mRNA-binding capabilities, associated with facilitated intracellular release, endosomal escape, and protection from endonuclease degradation. In addition, OleSurf-LNPs showed a higher mRNA delivery efficiency, a more advantageous biodistribution pattern, and an improved safety profile in vivo. Overall, the novel OleSurf LNPs presented an optimal delivery platform for mRNA therapeutics.
Collapse
Affiliation(s)
- Mohammed S Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
- Department of Pharmaceutics, Nanomedicine & Biotechnology Research Unit, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Rabbani Syed
- Department of Pharmaceutics, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
- Department of Pharmaceutics, Nanomedicine & Biotechnology Research Unit, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Omer M Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Monzurul A Roni
- Department of Health Sciences Education and Pathology, University of Illinois College of Medicine Peoria IL 61605 USA
| | - Satya S Sadhu
- Chemistry Department, Northern Michigan University 1401, Presque, Isle Marquette MI 49855 USA
| |
Collapse
|
29
|
Chen S, Deng Z, Ji D. Advances in the development of lipid nanoparticles for ophthalmic therapeutics. Biomed Pharmacother 2024; 178:117108. [PMID: 39067162 DOI: 10.1016/j.biopha.2024.117108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024] Open
Abstract
Previously, researchers have employed Lipid nanoparticles (LNPs) to directly encapsulate medicines. In the realm of gene therapy, researchers have begun to employ lipid nanoparticles to encapsulate nucleic acids such as messenger RNA, small interfering RNA, and plasmid DNA, which are known as nucleic acid lipid nanoparticles. Recent breakthroughs in LNP-based medicine have provided significant prospects for the treatment of ocular disorders, such as corneal, choroidal, and retinal diseases. The use of LNP as a delivery mechanism for medicines and therapeutic genes can increase their effectiveness while avoiding undesired immune reactions. However, LNP-based medicines may pose ocular concerns. In this review, we discuss the general framework of LNP. Additionally, we review adjustable approaches and evaluate their possible risks. In addition, we examine newly described ocular illnesses in which LNP was utilized as a delivery mechanism. Finally, we provide perspectives for solving these potential issues.
Collapse
Affiliation(s)
- Shen Chen
- The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Deng
- Department of Ophthalmology, the Third Xiangya Hospital, Central South University, Changsha, China.
| | - Dan Ji
- Department of Ophthalmology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China; Department of Ophthalmology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Ophthalmology, Changsha, China.
| |
Collapse
|
30
|
He Z, Liu Z, Chen Y. Chemical Design Strategy of Ionizable Lipids for In Vivo mRNA Delivery. ChemMedChem 2024; 19:e202400199. [PMID: 38722488 DOI: 10.1002/cmdc.202400199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/08/2024] [Indexed: 06/27/2024]
Abstract
Lipid nanoparticles (LNPs) are the most clinically successful drug delivery systems that have accelerated the development of mRNA drugs and vaccines. Among various structural components of LNPs, more recent attention has been paid in ionizable lipids (ILs) that was supposed as the key component in determining the effectiveness of LNPs for in vivo mRNA delivery. ILs are typically comprised of three moieties including ionizable heads, linkers, and hydrophobic tails, which suggested that the combination of different functional groups in three moieties could produce ILs with diverse chemical structures and biological identities. In this concept article, we provide a summary of chemical design strategy for high-performing IL candidates and discuss their structure-activity relationships for shifting tissue-selective mRNA delivery. We also propose an outlook for the development of next-generation ILs, enabling the broader translation of mRNA formulated with LNPs.
Collapse
Affiliation(s)
- Zepeng He
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510006, China
- College of Chemistry and Molecular Science, Henan University, Zhengzhou, 450046, China
- State Key Laboratory of Antiviral Drugs, Henan University, Zhengzhou, 450046, China
| |
Collapse
|
31
|
Vu HT, Nguyen VD, Ikenaga H, Matsubara T. Application of PPAR Ligands and Nanoparticle Technology in Metabolic Steatohepatitis Treatment. Biomedicines 2024; 12:1876. [PMID: 39200340 PMCID: PMC11351628 DOI: 10.3390/biomedicines12081876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH) is a major disease worldwide whose effective treatment is challenging. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily and function as ligand-activated transcription factors. To date, three distinct subtypes of PPARs have been characterized: PPARα, PPARβ/δ, and PPARγ. PPARα and PPARγ are crucial regulators of lipid metabolism that modulate the transcription of genes involved in fatty acid (FA), bile acid, and cholesterol metabolism. Many PPAR agonists, including natural (FAs, eicosanoids, and phospholipids) and synthetic (fibrate, thiazolidinedione, glitazar, and elafibranor) agonists, have been developed. Furthermore, recent advancements in nanoparticles (NPs) have led to the development of new strategies for MASLD/MASH therapy. This review discusses the applications of specific cell-targeted NPs and highlights the potential of PPARα- and PPARγ-targeted NP drug delivery systems for MASLD/MASH treatment.
Collapse
Affiliation(s)
- Hung Thai Vu
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
| | - Vien Duc Nguyen
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
| | - Hiroko Ikenaga
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, Sakai 599-8570, Osaka, Japan
| |
Collapse
|
32
|
López-Cerdá S, Molinaro G, Tello RP, Correia A, Waris E, Hirvonen J, Barreto G, Santos HA. Antifibrotic and Pro-regenerative Effects of SMAD3 siRNA and Collagen I mRNA-Loaded Lipid Nanoparticles in Human Tenocytes. ACS APPLIED NANO MATERIALS 2024; 7:17736-17747. [PMID: 39144399 PMCID: PMC11320386 DOI: 10.1021/acsanm.4c02996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 08/16/2024]
Abstract
Tendinopathy involves the inflammation and degeneration of the tendon due to repetitive strain injury. Current treatments primarily target inflammation resolution, yet they do not aim at tissue regeneration. In this study, a microfluidics approach is harnessed to develop a platform of lipid nanoparticles (LNPs) loaded simultaneously with SMAD3 siRNA and collagen I mRNA, aiming to explore its potential dual antifibrotic and regenerative effects in human tenocytes. The developed LNPs displayed size homogeneity and colloidal stability and exhibited high cytocompatibility in human tenocytes. Moreover, LNPs allowed for efficient uptake and transfection efficiency of the RNAs. In the in vitro efficacy studies, the gene expression and production of SMAD3 and collagen I were tested by real-time quantitative chain polymerase reaction and immuno- and intracellular staining, revealing collagen I production enhancement, SMAD3 inhibition, and modulation of other tendon repair factors by the LNPs. Overall, the potential of this platform of RNA-loaded LNPs to be used as a dual therapeutic approach to prevent fibrosis and promote tissue remodeling in late stages of tendon diseases was confirmed.
Collapse
Affiliation(s)
- Sandra López-Cerdá
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Giuseppina Molinaro
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Rubén Pareja Tello
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Alexandra Correia
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Eero Waris
- Department
of Hand Surgery, University of Helsinki
and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Jouni Hirvonen
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Goncalo Barreto
- Translational
Immunology Research Program, Faculty of Medicine, University of Helsinki, PL 4 (Yliopistonkatu 3), 00014 Helsinki, Finland
- Medical
Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical
Engineering, Aalto University, 02150 Espoo, Finland
- Orton
Orthopedic Hospital, Tenholantie 10, 00280 Helsinki, Finland
| | - Hélder A. Santos
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Department
of Biomedical Engineering, The Personalized Medicine Research Institute
(PRECISION), University Medical Center Groningen
(UMCG), University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
33
|
Curreri AM, Dunne M, Bibbey MG, Kapate N, Kim J, Mitragotri S. Localization of Intramuscular mRNA Delivery Using Deep Eutectic-Lipid Nanocomposites. Adv Healthc Mater 2024; 13:e2400327. [PMID: 38693774 DOI: 10.1002/adhm.202400327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Messenger ribonucleic acid (mRNA) has long been touted as a next-generation therapeutic modality for infectious disease, cancer, and genetic disorders. Lipid nanoparticles (LNPs) provide an elegant delivery strategy for mRNA cargo to help realize this potential for vaccination. However, systemic exposure seen with traditional LNP formulations can have significant implications on efficacy and safety. Efforts to mitigate this have largely been focused on laborious lipid or LNP redesign. Here, the use of a deep eutectic-lipid nanocomposite delivery system for the tuning of mRNA expression for intramuscular injections in vivo is reported. One deep eutectic, cholinium malonate, allows for the linear control of percent expression at the muscular injection site based solely on its concentration in the formulation. The same deep eutectic solvent (DES) can increase local muscle expression by 68% and significantly decrease off-target liver expression by 72%. Physico-chemical studies suggest that the DES incorporates into or onto the pre-formed LNPs thus impacting endosomal escape and in situ interactions. These nanocomposites provide new possibilities for previously approved LNP formulations and without the need for lipid redesign to induce localized expression.
Collapse
Affiliation(s)
- Alexander Michael Curreri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150 Western Ave, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St, Boston, MA, 02115, USA
| | - Michael Dunne
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150 Western Ave, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St, Boston, MA, 02115, USA
| | - Michael Griffith Bibbey
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150 Western Ave, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St, Boston, MA, 02115, USA
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150 Western Ave, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jayoung Kim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150 Western Ave, Allston, MA, 02134, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center at Forth Worth, 3500 Camp Bowie Blvd., Forth Worth, TX, 76107, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150 Western Ave, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St, Boston, MA, 02115, USA
| |
Collapse
|
34
|
Vaidya A, Moore S, Chatterjee S, Guerrero E, Kim M, Farbiak L, Dilliard SA, Siegwart DJ. Expanding RNAi to Kidneys, Lungs, and Spleen via Selective ORgan Targeting (SORT) siRNA Lipid Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313791. [PMID: 38973655 DOI: 10.1002/adma.202313791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/14/2024] [Indexed: 07/09/2024]
Abstract
Inhibition of disease-causing mutations using RNA interference (RNAi) has resulted in clinically approved medicines with additional candidates in late stage trials. However, targetable tissues currently in preclinical development are limited to liver following systemic intravenous (IV) administration because predictable delivery of siRNA to non-liver tissues remains an unsolved challenge. Here, evidence of durable extrahepatic gene silencing enabled by siRNA Selective ORgan Targeting lipid nanoparticles (siRNA SORT LNPs) to the kidneys, lungs, and spleen is provided. LNPs excel at dose-dependent silencing of tissue-enriched endogenous targets resulting in 60%-80% maximal knockdown after a single IV injection and up to 88% downregulation of protein expression in mouse lungs after two doses. To examine knockdown potency and unbiased organ targeting, B6.129TdTom/EGFP mice that constitutively express the TdTomato transgene across all cell types are utilized to demonstrate 58%, 45%, and 15% reduction in TdTomato fluorescence in lungs, spleen, and kidneys, respectively. Finally, physiological relevance of siRNA SORT LNP-mediated gene silencing is established via acute suppression of endogenous Tie2 which induces lung-specific phenotypic alteration of vascular endothelial barrier. Due to plethora of extrahepatic diseases that may benefit from RNAi interventions, it is anticipated that the findings will expand preclinical landscape of therapeutic targets beyond the liver.
Collapse
Affiliation(s)
- Amogh Vaidya
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Stephen Moore
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Sumanta Chatterjee
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Erick Guerrero
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Minjeong Kim
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Lukas Farbiak
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Sean A Dilliard
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Daniel J Siegwart
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| |
Collapse
|
35
|
Jin SE, Sung JH. Delivery Strategies of siRNA Therapeutics for Hair Loss Therapy. Int J Mol Sci 2024; 25:7612. [PMID: 39062852 PMCID: PMC11277092 DOI: 10.3390/ijms25147612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Therapeutic needs for hair loss are intended to find small interfering ribonucleic acid (siRNA) therapeutics for breakthrough. Since naked siRNA is restricted to meet a druggable target in clinic,, delivery systems are indispensable to overcome intrinsic and pathophysiological barriers, enhancing targetability and persistency to ensure safety, efficacy, and effectiveness. Diverse carriers repurposed from small molecules to siRNA can be systematically or locally employed in hair loss therapy, followed by the adoption of new compositions associated with structural and environmental modification. The siRNA delivery systems have been extensively studied via conjugation or nanoparticle formulation to improve their fate in vitro and in vivo. In this review, we introduce clinically tunable siRNA delivery systems for hair loss based on design principles, after analyzing clinical trials in hair loss and currently approved siRNA therapeutics. We further discuss a strategic research framework for optimized siRNA delivery in hair loss from the scientific perspective of clinical translation.
Collapse
Affiliation(s)
- Su-Eon Jin
- Epi Biotech Co., Ltd., Incheon 21984, Republic of Korea
| | | |
Collapse
|
36
|
Li B, Raji IO, Gordon AGR, Sun L, Raimondo TM, Oladimeji FA, Jiang AY, Varley A, Langer RS, Anderson DG. Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry. NATURE MATERIALS 2024; 23:1002-1008. [PMID: 38740955 DOI: 10.1038/s41563-024-01867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/15/2024] [Indexed: 05/16/2024]
Abstract
To unlock the full promise of messenger (mRNA) therapies, expanding the toolkit of lipid nanoparticles is paramount. However, a pivotal component of lipid nanoparticle development that remains a bottleneck is identifying new ionizable lipids. Here we describe an accelerated approach to discovering effective ionizable lipids for mRNA delivery that combines machine learning with advanced combinatorial chemistry tools. Starting from a simple four-component reaction platform, we create a chemically diverse library of 584 ionizable lipids. We screen the mRNA transfection potencies of lipid nanoparticles containing those lipids and use the data as a foundational dataset for training various machine learning models. We choose the best-performing model to probe an expansive virtual library of 40,000 lipids, synthesizing and experimentally evaluating the top 16 lipids flagged. We identify lipid 119-23, which outperforms established benchmark lipids in transfecting muscle and immune cells in several tissues. This approach facilitates the creation and evaluation of versatile ionizable lipid libraries, advancing the formulation of lipid nanoparticles for precise mRNA delivery.
Collapse
Affiliation(s)
- Bowen Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
| | - Idris O Raji
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
| | - Akiva G R Gordon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lizhuang Sun
- Department of Statistics, University of Michigan, Ann Arbor, MI, USA
| | - Theresa M Raimondo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Favour A Oladimeji
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allen Y Jiang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew Varley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Robert S Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
- Department of Statistics, University of Michigan, Ann Arbor, MI, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA.
- Department of Statistics, University of Michigan, Ann Arbor, MI, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
37
|
Sato Y, Nakamura T, Yamada Y, Harashima H. The impact of, and expectations for, lipid nanoparticle technology: From cellular targeting to organelle targeting. J Control Release 2024; 370:516-527. [PMID: 38718875 DOI: 10.1016/j.jconrel.2024.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
The success of mRNA vaccines against COVID-19 has enhanced the potential of lipid nanoparticles (LNPs) as a system for the delivery of mRNA. In this review, we describe our progress using a lipid library to engineer ionizable lipids and promote LNP technology from the viewpoints of safety, controlled biodistribution, and mRNA vaccines. These advancements in LNP technology are applied to cancer immunology, and a potential nano-DDS is constructed to evaluate immune status that is associated with a cancer-immunity cycle that includes the sub-cycles in tumor microenvironments. We also discuss the importance of the delivery of antigens and adjuvants in enhancing the cancer-immunity cycle. Recent progress in NK cell targeting in cancer immunotherapy is also introduced. Finally, the impact of next-generation DDS technology is explained using the MITO-Porter membrane fusion-based delivery system for the organelle targeting of the mitochondria. We introduce a successful example of the MITO-Porter used in a cell therapeutic strategy to treat cardiomyopathy.
Collapse
Affiliation(s)
- Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | | |
Collapse
|
38
|
Anderson CF, Singh A, Stephens T, Hoang CD, Schneider JP. Kinetically Controlled Polyelectrolyte Complex Assembly of microRNA-Peptide Nanoparticles toward Treating Mesothelioma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314367. [PMID: 38532642 PMCID: PMC11176031 DOI: 10.1002/adma.202314367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Broad size distributions and poor long-term colloidal stability of microRNA-carrying nanoparticles, especially those formed by polyelectrolyte complexation, represent major hurdles in realizing their clinical translation. Herein, peptide design is used alongside optimized flash nanocomplexation (FNC) to produce uniform peptide-based miRNA particles of exceptional stability that display anticancer activity against mesothelioma in vitro and in vivo. Modulating the content and display of lysine-based charge from small intrinsically disordered peptides used to complex miRNA proves essential in achieving stable colloids. FNC facilitates kinetic isolation of the mechanistic steps involved in particle formation to allow the preparation of particles of discrete size in a highly reproducible, scalable, and continuous manner, facilitating pre-clinical studies. To the best of the authors knowledge, this work represents the first example of employing FNC to prepare polyelectrolyte complexes of miRNA and peptide. Encapsulation of these particles into an injectable hydrogel matrix allows for their localized in vivo delivery by syringe. A one-time injection of a gel containing particles composed of miRNA-215-5p and the peptide PKM1 limits tumor progression in a xenograft model of mesothelioma.
Collapse
Affiliation(s)
- Caleb F. Anderson
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA
| | - Anand Singh
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Chuong D. Hoang
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joel P. Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA
| |
Collapse
|
39
|
Ahmed T. Lipid nanoparticle mediated small interfering RNA delivery as a potential therapy for Alzheimer's disease. Eur J Neurosci 2024; 59:2915-2954. [PMID: 38622050 DOI: 10.1111/ejn.16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that exhibits a gradual decline in cognitive function and is prevalent among a significant number of individuals globally. The use of small interfering RNA (siRNA) molecules in RNA interference (RNAi) presents a promising therapeutic strategy for AD. Lipid nanoparticles (LNPs) have been developed as a delivery vehicle for siRNA, which can selectively suppress target genes, by enhancing cellular uptake and safeguarding siRNA from degradation. Numerous research studies have exhibited the effectiveness of LNP-mediated siRNA delivery in reducing amyloid beta (Aβ) levels and enhancing cognitive function in animal models of AD. The feasibility of employing LNP-mediated siRNA delivery as a therapeutic approach for AD is emphasized by the encouraging outcomes reported in clinical studies for other medical conditions. The use of LNP-mediated siRNA delivery has emerged as a promising strategy to slow down or even reverse the progression of AD by targeting the synthesis of tau phosphorylation and other genes linked to the condition. Improvement of the delivery mechanism and determination of the most suitable siRNA targets are crucial for the efficacious management of AD. This review focuses on the delivery of siRNA through LNPs as a promising therapeutic strategy for AD, based on the available literature.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
40
|
Gurrola TE, Effah SN, Sariyer IK, Dampier W, Nonnemacher MR, Wigdahl B. Delivering CRISPR to the HIV-1 reservoirs. Front Microbiol 2024; 15:1393974. [PMID: 38812680 PMCID: PMC11133543 DOI: 10.3389/fmicb.2024.1393974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is well known as one of the most complex and difficult viral infections to cure. The difficulty in developing curative strategies arises in large part from the development of latent viral reservoirs (LVRs) within anatomical and cellular compartments of a host. The clustered regularly interspaced short palindromic repeats/ CRISPR-associated protein 9 (CRISPR/Cas9) system shows remarkable potential for the inactivation and/or elimination of integrated proviral DNA within host cells, however, delivery of the CRISPR/Cas9 system to infected cells is still a challenge. In this review, the main factors impacting delivery, the challenges for delivery to each of the LVRs, and the current successes for delivery to each reservoir will be discussed.
Collapse
Affiliation(s)
- Theodore E. Gurrola
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Samuel N. Effah
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilker K. Sariyer
- Department of Microbiology, Immunology, and Inflammation and Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
41
|
Pawar S, Pingale P, Garkal A, Osmani RAM, Gajbhiye K, Kulkarni M, Pardeshi K, Mehta T, Rajput A. Unlocking the potential of nanocarrier-mediated mRNA delivery across diverse biomedical frontiers: A comprehensive review. Int J Biol Macromol 2024; 267:131139. [PMID: 38615863 DOI: 10.1016/j.ijbiomac.2024.131139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
Messenger RNA (mRNA) has gained marvelous attention for managing and preventing various conditions like cancer, Alzheimer's, infectious diseases, etc. Due to the quick development and success of the COVID-19 mRNA-based vaccines, mRNA has recently grown in prominence. A lot of products are in clinical trials and some are already FDA-approved. However, still improvements in line of optimizing stability and delivery, reducing immunogenicity, increasing efficiency, expanding therapeutic applications, scalability and manufacturing, and long-term safety monitoring are needed. The delivery of mRNA via a nanocarrier system gives a synergistic outcome for managing chronic and complicated conditions. The modified nanocarrier-loaded mRNA has excellent potential as a therapeutic strategy. This emerging platform covers a wide range of diseases, recently, several clinical studies are ongoing and numerous publications are coming out every year. Still, many unexplained physical, biological, and technical problems of mRNA for safer human consumption. These complications were addressed with various nanocarrier formulations. This review systematically summarizes the solved problems and applications of nanocarrier-based mRNA delivery. The modified nanocarrier mRNA meaningfully improved mRNA stability and abridged its immunogenicity issues. Furthermore, several strategies were discussed that can be an effective solution in the future for managing complicated diseases.
Collapse
Affiliation(s)
- Smita Pawar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik 422005, Maharashtra, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Kavita Gajbhiye
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Madhur Kulkarni
- SCES's Indira College of Pharmacy, New Pune Mumbai Highway, Tathwade 411033, Pune, Maharashtra, India
| | - Krutika Pardeshi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sandip University, Nashik 422213, Maharashtra, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India.
| |
Collapse
|
42
|
Omo-Lamai S, Wang Y, Patel MN, Essien EO, Shen M, Majumdar A, Espy C, Wu J, Channer B, Tobin M, Murali S, Papp TE, Maheshwari R, Wang L, Chase LS, Zamora ME, Arral ML, Marcos-Contreras OA, Myerson JW, Hunter CA, Tsourkas A, Muzykantov V, Brodsky I, Shin S, Whitehead KA, Gaskill P, Discher D, Parhiz H, Brenner JS. Lipid Nanoparticle-Associated Inflammation is Triggered by Sensing of Endosomal Damage: Engineering Endosomal Escape Without Side Effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589801. [PMID: 38659905 PMCID: PMC11042321 DOI: 10.1101/2024.04.16.589801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as the dominant platform for RNA delivery, based on their success in the COVID-19 vaccines and late-stage clinical studies in other indications. However, we and others have shown that LNPs induce severe inflammation, and massively aggravate pre-existing inflammation. Here, using structure-function screening of lipids and analyses of signaling pathways, we elucidate the mechanisms of LNP-associated inflammation and demonstrate solutions. We show that LNPs' hallmark feature, endosomal escape, which is necessary for RNA expression, also directly triggers inflammation by causing endosomal membrane damage. Large, irreparable, endosomal holes are recognized by cytosolic proteins called galectins, which bind to sugars on the inner endosomal membrane and then regulate downstream inflammation. We find that inhibition of galectins abrogates LNP-associated inflammation, both in vitro and in vivo . We show that rapidly biodegradable ionizable lipids can preferentially create endosomal holes that are smaller in size and reparable by the endosomal sorting complex required for transport (ESCRT) pathway. Ionizable lipids producing such ESCRT-recruiting endosomal holes can produce high expression from cargo mRNA with minimal inflammation. Finally, we show that both routes to non-inflammatory LNPs, either galectin inhibition or ESCRT-recruiting ionizable lipids, are compatible with therapeutic mRNAs that ameliorate inflammation in disease models. LNPs without galectin inhibition or biodegradable ionizable lipids lead to severe exacerbation of inflammation in these models. In summary, endosomal escape induces endosomal membrane damage that can lead to inflammation. However, the inflammation can be controlled by inhibiting galectins (large hole detectors) or by using biodegradable lipids, which create smaller holes that are reparable by the ESCRT pathway. These strategies should lead to generally safer LNPs that can be used to treat inflammatory diseases.
Collapse
|
43
|
Tanna S, Doshi G, Godad A. siRNA as potential therapeutic strategy for hypertension. Eur J Pharmacol 2024; 969:176467. [PMID: 38431244 DOI: 10.1016/j.ejphar.2024.176467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Hypertension, a well-known cardiovascular disorder noticed by rise in blood pressure, poses a significant global health challenge. The development RNA interfering (RNAi)-based therapies offers a ground-breaking molecular tool, holds promise for addressing hypertension's intricate molecular mechanisms. Harnessing the power of small interfering RNA (siRNA), researchers aim to selectively target and modulate genes associated with hypertension. Furthermore, they aim to downregulate the levels of mRNA by activating cellular nucleases in response to sequence homology between the siRNA and the corresponding mRNA molecule. As a result, genes involved in the cause of disorders linked to a known genetic background can be silenced using siRNA strategy. In the realm of hypertension, siRNA therapy emerges as a potential therapy for prognostics, diagnostics and treatments. It plays an important role in execution of targeting suppression of genes involved in vascular tone regulation, sodium handling, and pathways contributing to high blood pressure. A clinical trial involving intervention like angiotensinogen siRNA (AGT siRNA) is currently being carried out to treat hypertension. Genetic correlations between uromodulin (UMOD) and hypertension are investigated as emerging Non AGT siRNA target. Furthermore, expression of UMOD is responsible for regulation of sodium by modulating the tumor necrosis factor-α and regulating the Na + -K + -2Cl-cotransporter (NKCC2) in the thick ascending limb, which makes it an important target for blood pressure regulation.
Collapse
Affiliation(s)
- Srushti Tanna
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Angel Godad
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India.
| |
Collapse
|
44
|
Wang J, Zhu H, Gan J, Liang G, Li L, Zhao Y. Engineered mRNA Delivery Systems for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308029. [PMID: 37805865 DOI: 10.1002/adma.202308029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Indexed: 10/09/2023]
Abstract
Messenger RNA (mRNA)-based therapeutic strategies have shown remarkable promise in preventing and treating a staggering range of diseases. Optimizing the structure and delivery system of engineered mRNA has greatly improved its stability, immunogenicity, and protein expression levels, which has led to a wider range of uses for mRNA therapeutics. Herein, a thorough analysis of the optimization strategies used in the structure of mRNA is first provided and delivery systems are described in great detail. Furthermore, the latest advancements in biomedical engineering for mRNA technology, including its applications in combatting infectious diseases, treating cancer, providing protein replacement therapy, conducting gene editing, and more, are summarized. Lastly, a perspective on forthcoming challenges and prospects concerning the advancement of mRNA therapeutics is offered. Despite these challenges, mRNA-based therapeutics remain promising, with the potential to revolutionize disease treatment and contribute to significant advancements in the biomedical field.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haofang Zhu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jingjing Gan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gaofeng Liang
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, 450009, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, 450009, China
| |
Collapse
|
45
|
Wang S, Zhu Y, Du S, Zheng Y. Preclinical Advances in LNP-CRISPR Therapeutics for Solid Tumor Treatment. Cells 2024; 13:568. [PMID: 38607007 PMCID: PMC11011435 DOI: 10.3390/cells13070568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Solid tumors, with their intricate cellular architecture and genetic heterogeneity, have long posed therapeutic challenges. The advent of the CRISPR genome editing system offers a promising, precise genetic intervention. However, the journey from bench to bedside is fraught with hurdles, chief among them being the efficient delivery of CRISPR components to tumor cells. Lipid nanoparticles (LNPs) have emerged as a potential solution. This biocompatible nanomaterial can encapsulate the CRISPR/Cas9 system, ensuring targeted delivery while mitigating off-target effects. Pre-clinical investigations underscore the efficacy of LNP-mediated CRISPR delivery, with marked disruption of oncogenic pathways and subsequent tumor regression. Overall, CRISPR/Cas9 technology, when combined with LNPs, presents a groundbreaking approach to cancer therapy, offering precision, efficacy, and potential solutions to current limitations. While further research and clinical testing are required, the future of personalized cancer treatment based on CRISPR/Cas9 holds immense promise.
Collapse
Affiliation(s)
- Shuting Wang
- School of Pharmacy, Hainan Medical University, Haikou 571199, China;
| | - Yuxi Zhu
- Department of Pediatrics, University Hospitals Rainbow Babies & Children’s Hospital, Cleveland, OH 44106, USA;
| | - Shi Du
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Yunsi Zheng
- School of Pharmacy, Hainan Medical University, Haikou 571199, China;
| |
Collapse
|
46
|
Nabar N, Dacoba TG, Covarrubias G, Romero-Cruz D, Hammond PT. Electrostatic adsorption of polyanions onto lipid nanoparticles controls uptake, trafficking, and transfection of RNA and DNA therapies. Proc Natl Acad Sci U S A 2024; 121:e2307809121. [PMID: 38437543 PMCID: PMC10945854 DOI: 10.1073/pnas.2307809121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/09/2023] [Indexed: 03/06/2024] Open
Abstract
Rapid advances in nucleic acid therapies highlight the immense therapeutic potential of genetic therapeutics. Lipid nanoparticles (LNPs) are highly potent nonviral transfection agents that can encapsulate and deliver various nucleic acid therapeutics, including but not limited to messenger RNA (mRNA), silencing RNA (siRNA), and plasmid DNA (pDNA). However, a major challenge of targeted LNP-mediated systemic delivery is the nanoparticles' nonspecific uptake by the liver and the mononuclear phagocytic system, due partly to the adsorption of endogenous serum proteins onto LNP surfaces. Tunable LNP surface chemistries may enable efficacious delivery across a range of organs and cell types. Here, we describe a method to electrostatically adsorb bioactive polyelectrolytes onto LNPs to create layered LNPs (LLNPs). LNP cores varying in nucleic acid cargo and component lipids were stably layered with four biologically relevant polyanions: hyaluronate (HA), poly-L-aspartate (PLD), poly-L-glutamate (PLE), and polyacrylate (PAA). We further investigated the impact of the four surface polyanions on the transfection and uptake of mRNA- and pDNA-loaded LNPs in cell cultures. PLD- and PLE-LLNPs increased mRNA transfection twofold over unlayered LNPs in immune cells. HA-LLNPs increased pDNA transfection rates by more than twofold in epithelial and immune cells. In a healthy C57BL/6 murine model, PLE- and HA-LLNPs increased transfection by 1.8-fold to 2.5-fold over unlayered LNPs in the liver and spleen. These results suggest that LbL assembly is a generalizable, highly tunable platform to modify the targeting specificity, stability, and transfection efficacy of LNPs, as well as incorporate other charged targeting and therapeutic molecules into these systems.
Collapse
Affiliation(s)
- Namita Nabar
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02139
| | - Tamara G. Dacoba
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02139
| | - Gil Covarrubias
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Denisse Romero-Cruz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02139
| |
Collapse
|
47
|
Kiel K, Król SK, Bronisz A, Godlewski J. MiR-128-3p - a gray eminence of the human central nervous system. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102141. [PMID: 38419943 PMCID: PMC10899074 DOI: 10.1016/j.omtn.2024.102141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
MicroRNA-128-3p (miR-128-3p) is a versatile molecule with multiple functions in the physiopathology of the human central nervous system. Perturbations of miR-128-3p, which is enriched in the brain, contribute to a plethora of neurodegenerative disorders, brain injuries, and malignancies, as this miRNA is a crucial regulator of gene expression in the brain, playing an essential role in the maintenance and function of cells stemming from neuronal lineage. However, the differential expression of miR-128-3p in pathologies underscores the importance of the balance between its high and low levels. Significantly, numerous reports pointed to miR-128-3p as one of the most depleted in glioblastoma, implying it is a critical player in the disease's pathogenesis and thus may serve as a therapeutic agent for this most aggressive form of brain tumor. In this review, we summarize the current knowledge of the diverse roles of miR-128-3p. We focus on its involvement in the neurogenesis and pathophysiology of malignant and neurodegenerative diseases. We also highlight the promising potential of miR-128-3p as an antitumor agent for the future therapy of human cancers, including glioblastoma, and as the linchpin of brain development and function, potentially leading to the development of new therapies for neurological conditions.
Collapse
Affiliation(s)
- Klaudia Kiel
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Sylwia Katarzyna Król
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Agnieszka Bronisz
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Jakub Godlewski
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| |
Collapse
|
48
|
Witten J, Hu Y, Langer R, Anderson DG. Recent advances in nanoparticulate RNA delivery systems. Proc Natl Acad Sci U S A 2024; 121:e2307798120. [PMID: 38437569 PMCID: PMC10945842 DOI: 10.1073/pnas.2307798120] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Nanoparticle-based RNA delivery has shown great progress in recent years with the approval of two mRNA vaccines for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and a liver-targeted siRNA therapy. Here, we discuss the preclinical and clinical advancement of new generations of RNA delivery therapies along multiple axes. Improvements in cargo design such as RNA circularization and data-driven untranslated region optimization can drive better mRNA expression. New materials discovery research has driven improved delivery to extrahepatic targets such as the lung and splenic immune cells, which could lead to pulmonary gene therapy and better cancer vaccines, respectively. Other organs and even specific cell types can be targeted for delivery via conjugation of small molecule ligands, antibodies, or peptides to RNA delivery nanoparticles. Moreover, the immune response to any RNA delivery nanoparticle plays a crucial role in determining efficacy. Targeting increased immunogenicity without induction of reactogenic side effects is crucial for vaccines, while minimization of immune response is important for gene therapies. New developments have addressed each of these priorities. Last, we discuss the range of RNA delivery clinical trials targeting diverse organs, cell types, and diseases and suggest some key advances that may play a role in the next wave of therapies.
Collapse
Affiliation(s)
- Jacob Witten
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Yizong Hu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard and Massachusetts Institute of Technology Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Daniel G. Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard and Massachusetts Institute of Technology Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
49
|
Abstract
Carriers for RNA delivery must be dynamic, first stabilizing and protecting therapeutic RNA during delivery to the target tissue and across cellular membrane barriers and then releasing the cargo in bioactive form. The chemical space of carriers ranges from small cationic lipids applied in lipoplexes and lipid nanoparticles, over medium-sized sequence-defined xenopeptides, to macromolecular polycations applied in polyplexes and polymer micelles. This perspective highlights the discovery of distinct virus-inspired dynamic processes that capitalize on mutual nanoparticle-host interactions to achieve potent RNA delivery. From the host side, subtle alterations of pH, ion concentration, redox potential, presence of specific proteins, receptors, or enzymes are cues, which must be recognized by the RNA nanocarrier via dynamic chemical designs including cleavable bonds, alterable physicochemical properties, and supramolecular assembly-disassembly processes to respond to changing biological microenvironment during delivery.
Collapse
Affiliation(s)
- Simone Berger
- Department of Pharmacy, Pharmaceutical Biotechnology, Ludwig-Maximilians-Universität Munich, 81377Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
| | - Ulrich Lächelt
- Center for NanoScience, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Vienna1090, Austria
| | - Ernst Wagner
- Department of Pharmacy, Pharmaceutical Biotechnology, Ludwig-Maximilians-Universität Munich, 81377Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
| |
Collapse
|
50
|
Radmand A, Kim H, Beyersdorf J, Dobrowolski CN, Zenhausern R, Paunovska K, Huayamares SG, Hua X, Han K, Loughrey D, Hatit MZC, Del Cid A, Ni H, Shajii A, Li A, Muralidharan A, Peck HE, Tiegreen KE, Jia S, Santangelo PJ, Dahlman JE. Cationic cholesterol-dependent LNP delivery to lung stem cells, the liver, and heart. Proc Natl Acad Sci U S A 2024; 121:e2307801120. [PMID: 38437539 PMCID: PMC10945827 DOI: 10.1073/pnas.2307801120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/22/2023] [Indexed: 03/06/2024] Open
Abstract
Adding a cationic helper lipid to a lipid nanoparticle (LNP) can increase lung delivery and decrease liver delivery. However, it remains unclear whether charge-dependent tropism is universal or, alternatively, whether it depends on the component that is charged. Here, we report evidence that cationic cholesterol-dependent tropism can differ from cationic helper lipid-dependent tropism. By testing how 196 LNPs delivered mRNA to 22 cell types, we found that charged cholesterols led to a different lung:liver delivery ratio than charged helper lipids. We also found that combining cationic cholesterol with a cationic helper lipid led to mRNA delivery in the heart as well as several lung cell types, including stem cell-like populations. These data highlight the utility of exploring charge-dependent LNP tropism.
Collapse
Affiliation(s)
- Afsane Radmand
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA30332
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA30332
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Jared Beyersdorf
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Curtis N. Dobrowolski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Ryan Zenhausern
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Sebastian G. Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Xuanwen Hua
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Keyi Han
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Marine Z. C. Hatit
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Ada Del Cid
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Huanzhen Ni
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Aram Shajii
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Andrea Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Abinaya Muralidharan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA30332
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA30332
| | - Hannah E. Peck
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Karen E. Tiegreen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - James E. Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| |
Collapse
|