1
|
Cheung BCH, Chen X, Davis HJ, Nordmann CS, Toth J, Hodgson L, Segall JE, Shenoy VB, Wu M. Identification of CD44 as a key engager to hyaluronic acid-rich extracellular matrices for cell traction force generation and tumor invasion in 3D. Matrix Biol 2025; 135:1-11. [PMID: 39528207 PMCID: PMC11729355 DOI: 10.1016/j.matbio.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Mechanical properties of the extracellular matrix (ECM) critically regulate a number of important cell functions including growth, differentiation and migration. Type I collagen and glycosaminoglycans (GAGs) are two primary components of ECMs that contribute to mammalian tissue mechanics, with the collagen fiber network sustaining tension, and GAGs withstanding compression. The architecture and stiffness of the collagen network are known to be important for cell-ECM mechanical interactions via cell surface adhesion receptor integrin. In contrast, studies of GAGs in modulating cell-ECM interactions are limited. Here, we present experimental studies on the roles of hyaluronic acid (HA) in single tumor cell traction force generation using a recently developed 3D cell traction force microscopy method. Our work reveals that CD44, a cell surface receptor to HA, is engaged in cell traction force generation in conjunction with β1-integrin. We find that HA significantly modifies the architecture and mechanics of the collagen fiber network, decreasing tumor cells' propensity to remodel the collagen network, attenuating traction force generation, transmission distance, and tumor invasion. Our findings point to a novel role for CD44 in traction force generation, which can be a potential therapeutic target for diseases involving HA rich ECMs such as breast cancer and glioblastoma.
Collapse
Affiliation(s)
- Brian C H Cheung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Xingyu Chen
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah J Davis
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA; Department of Biological Sciences, Cornell University, Ithaca, NY, USA
| | - Cassidy S Nordmann
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joshua Toth
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey E Segall
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vivek B Shenoy
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Michalczyk M, Humeniuk E, Adamczuk G, Korga-Plewko A. Hyaluronic Acid as a Modern Approach in Anticancer Therapy-Review. Int J Mol Sci 2022; 24:ijms24010103. [PMID: 36613567 PMCID: PMC9820514 DOI: 10.3390/ijms24010103] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Hyaluronic acid (HA) is a linear polysaccharide and crucial component of the extracellular matrix (ECM), maintaining tissue hydration and tension. Moreover, HA contributes to embryonic development, healing, inflammation, and cancerogenesis. This review summarizes new research on the metabolism and interactions of HA with its binding proteins, known as hyaladherins (CD44, RHAMM), revealing the molecular basis for its distinct biological function in the development of cancer. The presence of HA on the surface of tumor cells is a sign of an adverse prognosis. The involvement of HA in malignancy has been extensively investigated using cancer-free naked mole rats as a model. The HA metabolic components are examined for their potential impact on promoting or inhibiting tumor formation, proliferation, invasion, and metastatic spread. High molecular weight HA is associated with homeostasis and protective action due to its ability to preserve tissue integrity. In contrast, low molecular weight HA indicates a pathological condition in the tissue and plays a role in pro-oncogenic activity. A systematic approach might uncover processes related to cancer growth, establish novel prognostic indicators, and identify potential targets for treatment action.
Collapse
|
3
|
Guo Q, Yang C, Gao F. The state of CD44 activation in cancer progression and therapeutic targeting. FEBS J 2022; 289:7970-7986. [PMID: 34478583 DOI: 10.1111/febs.16179] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/20/2021] [Accepted: 09/02/2021] [Indexed: 01/14/2023]
Abstract
CD44, a non-kinase transmembrane glycoprotein, is ubiquitously expressed on various types of cells, especially cancer stem cells (CSCs), and has been implicated in cancer onset and aggressiveness. The major ligand for the CD44, hyaluronan (HA), binds to and interacts with CD44, which in turn triggers downstream signaling cascades, thereby promoting cellular behaviors such as proliferation, motility, invasiveness and chemoresistance. The CD44-HA interaction is cell-specific and strongly affected by the state of CD44 activation. Therefore, the binding of HA to CD44 is essential for the activation of CD44 during which the detailed regulatory mechanism needs to be clarified. Different CD44 activation states distribute in human carcinoma and normal tissue; however, whether CD44 activation is a critical requirement for tumor initiation, progression and notorious CSC properties remains to be clarified. A deeper understanding of the regulation of CD44 activation may facilitate the development of novel targeted drugs in the future. Here, we review the current findings concerning the states of CD44 activation on the cell surface, the underlying regulatory mechanisms of CD44 activation, the known role for CD44 activation in tumor progression and CSC hallmarks, as well as the potential of HA-coated nanoparticle for targeting activated CD44 for cancer therapy.
Collapse
Affiliation(s)
- Qian Guo
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Gao
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
4
|
Xu BL, Wang XM, Chen GY, Yuan P, Han L, Qin P, Li TP, You HQ, Zhang CJ, Fu XM, Yuan L, Wang ZB, Gao QL. In vivo growth of subclones derived from Lewis lung carcinoma is determined by the tumor microenvironment. Am J Cancer Res 2022; 12:5255-5270. [PMID: 36504888 PMCID: PMC9729899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Abstract
Heterogeneity is a fundamental feature of human tumors and plays a major role in drug resistance and disease progression. In the present study, we selected single-cell-derived cell lines (SCDCLs) derived from Lewis lung carcinoma (LLC1) cells to investigate tumorigenesis and heterogeneity. SCDCLs were generated using limiting dilution. Five SCDCLs were subcutaneously injected into wild-type C57BL/6N mice; however, they displayed significant differences in tumor growth. Subclone SCC1 grew the fastest in vivo, whereas it grew slower in vitro. The growth pattern of SCC2 was the opposite to that of SCC1. Genetic differences in these two subclones showed marked differences in cell adhesion and proliferation. Pathway enrichment results indicate that signal transduction and immune system responses were the most significantly altered functional categories in SCC2 cells compared to those in SCC1 cells in vitro. The number and activation of CD3+ and CD8+ T cells and NK cells in the tumor tissue of tumor-bearing mice inoculated with SCC2 were significantly higher, whereas those of myeloid cells were significantly lower, than those in the SCC1 and LLC1 groups. Our results suggest that the in vivo growth of two subclones derived from LLC1 was determined by the tumor microenvironment rather than their intrinsic proliferative cell characteristics.
Collapse
Affiliation(s)
- Ben-Ling Xu
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhou 450008, Henan, P. R. China
| | - Xiao-Ming Wang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhou 450008, Henan, P. R. China
| | - Guang-Yu Chen
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhou 450008, Henan, P. R. China
| | - Peng Yuan
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhou 450008, Henan, P. R. China
| | - Lu Han
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhou 450008, Henan, P. R. China
| | - Peng Qin
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhou 450008, Henan, P. R. China
| | - Tie-Peng Li
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhou 450008, Henan, P. R. China
| | - Hong-Qin You
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhou 450008, Henan, P. R. China
| | - Cheng-Juan Zhang
- Center of Bio Repository, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhou 450008, Henan, P. R. China
| | - Xiao-Min Fu
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhou 450008, Henan, P. R. China
| | - Long Yuan
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhou 450008, Henan, P. R. China
| | - Zi-Bing Wang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhou 450008, Henan, P. R. China
| | - Quan-Li Gao
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhou 450008, Henan, P. R. China
| |
Collapse
|
5
|
Carvalho AM, Valcarcel J, Soares da Costa D, Gomes M, Vázquez JA, Reis RL, Novoa-Carballal R, Pashkuleva I. Hyaluronan Brush-like Copolymers Promote CD44 Declustering in Breast Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41779-41789. [PMID: 36053163 DOI: 10.1021/acsami.2c11864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report on the synthesis of hyaluronan (HA) brush-like copolymers and their application as antagonists of tumorigenic CD44-HA interactions. HA (4.8 kDa, ca. 24 saccharides) was grafted on 2-hydrohyethyl methacrylate (HEMA) by end-on oxime ligation. The obtained copolymers were compared with low and high molecular weight HA in terms of hydrolysis kinetics in the presence of hyaluronidase (isothermal titration calorimetry) and interactions with CD44 (surface plasmon resonance). The results evidenced that the high molecular weight HA and HA-g-HEMA have a much higher affinity to CD44 than low molecular weight HA. Additionally, slower enzymatic degradation was observed for the copolymer, making it an excellent candidate for active targeting of tumorigenic CD44-HA interactions. We, therefore, investigated the effect of the copolymer on cancer cell lines with different expression of CD44 and observed an efficient declustering of CD44 that is usually associated with reduction of metastasis and drug resistance.
Collapse
Affiliation(s)
- Ana M Carvalho
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017Barco, Portugal
- ICVS/3B's - PT Government Associate Laboratory, 4710-057Braga/Guimarães, Portugal
| | - Jesus Valcarcel
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigacións Mariñas (IIM-CSIC), Eduardo Cabello 6, Vigo36208, Galicia, Spain
| | - Diana Soares da Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017Barco, Portugal
- ICVS/3B's - PT Government Associate Laboratory, 4710-057Braga/Guimarães, Portugal
| | - Marisa Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017Barco, Portugal
- ICVS/3B's - PT Government Associate Laboratory, 4710-057Braga/Guimarães, Portugal
| | - José Antonio Vázquez
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigacións Mariñas (IIM-CSIC), Eduardo Cabello 6, Vigo36208, Galicia, Spain
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017Barco, Portugal
- ICVS/3B's - PT Government Associate Laboratory, 4710-057Braga/Guimarães, Portugal
| | - Ramon Novoa-Carballal
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017Barco, Portugal
- ICVS/3B's - PT Government Associate Laboratory, 4710-057Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017Barco, Portugal
- ICVS/3B's - PT Government Associate Laboratory, 4710-057Braga/Guimarães, Portugal
| |
Collapse
|
6
|
Carvalho AM, Soares da Costa D, Reis RL, Pashkuleva I. RHAMM expression tunes the response of breast cancer cell lines to hyaluronan. Acta Biomater 2022; 146:187-196. [PMID: 35577044 DOI: 10.1016/j.actbio.2022.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/12/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023]
Abstract
Hyaluronan (HA) synthesis and degradation are altered during carcinogenesis leading to an increased HA content in the tumor microenvironment, which correlates with poor prognosis and treatment outcomes. The main HA receptors, CD44 and RHAMM, are also overexpressed in tumors where they activate anti-apoptotic, proliferative, invasive, and migration signaling pathways. Herein, we used a unidirectional HA gradient to investigate in a high-throughput fashion the bi-directional communication between HA and breast cancer cell lines with different surface expression of CD44 and RHAMM. We found that the expression of CD44 and RHAMM depends on the HA density: the expression of these receptors is promoted at higher HA density and RHAMM is more sensitive to these changes when compared to CD44. Blocking either CD44 or RHAMM revealed different functions on binding and recognizing HA and a compensatory expression between these two receptors that maintains protumorigenic effectors such as cortactin. STATEMENT OF SIGNIFICANCE: We show that the expression of main hyaluronan (HA) receptors CD44 and RHAMM is enhanced in a HA concentration-dependent manner. Blocking activity experiments with either RHAMM or CD44 reveal the redundancy of these two receptors towards HA recognition and activation/recruitment of protumorigenic molecular effector, cortactin. These experiments also demonstrate that cells with overexpressed RHAMM are more sensitive to HA density than CD44 positive cells. The reported results are important for the development of therapies that target the hyaluronan signaling in the tumor microenvironment.
Collapse
Affiliation(s)
- Ana M Carvalho
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal
| | - Diana Soares da Costa
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal.
| |
Collapse
|
7
|
Enemark MB, Hybel TE, Madsen C, Lauridsen KL, Honoré B, Plesner TL, Hamilton-Dutoit S, d’Amore F, Ludvigsen M. Tumor-Tissue Expression of the Hyaluronic Acid Receptor RHAMM Predicts Histological Transformation in Follicular Lymphoma Patients. Cancers (Basel) 2022; 14:cancers14051316. [PMID: 35267625 PMCID: PMC8909114 DOI: 10.3390/cancers14051316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Histological transformation (HT) remains the leading cause of mortality in follicular lymphoma (FL), underlining the need to identify reliable transformation predictors. The hyaluronic acid receptors CD44 and the receptor for hyaluronan mediated motility (RHAMM, also known as HMMR and CD168), have been shown to be involved in the pathogeneses of both solid tumors and hematological malignancies. In an attempt to improve risk stratification, expression of RHAMM and CD44 were evaluated by immunohistochemistry and digital image analysis in pre-therapeutic tumor-tissue biopsies from FL patients, either without (nt-FL, n = 34), or with (st-FL, n = 31) subsequent transformation, and in paired biopsies from the transformed lymphomas (tFL, n = 31). At the time of initial diagnosis, samples from st-FL patients had a higher expression of RHAMM compared with samples from nt-FL patients (p < 0.001). RHAMM expression further increased in tFL samples following transformation (p < 0.001). Evaluation of CD44 expression showed no differences in expression comparing nt-FL, st-FL, and tFL samples. Shorter transformation-free survival was associated with high tumoral and intrafollicular RHAMM expression, as well as with low intrafollicular CD44 expression (p = 0.002, p < 0.001, and p = 0.034, respectively). Our data suggest that high tumor-tissue RHAMM expression predicts the risk of shorter transformation-free survival in FL patients already at initial diagnosis.
Collapse
Affiliation(s)
- Marie Beck Enemark
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.E.); (T.E.H.); (C.M.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Trine Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.E.); (T.E.H.); (C.M.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Charlotte Madsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.E.); (T.E.H.); (C.M.); (F.d.)
| | | | - Bent Honoré
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | | | - Stephen Hamilton-Dutoit
- Department of Pathology, Aarhus University Hospital, 8000 Aarhus, Denmark; (K.L.L.); (S.H.-D.)
| | - Francesco d’Amore
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.E.); (T.E.H.); (C.M.); (F.d.)
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.B.E.); (T.E.H.); (C.M.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Correspondence: ; Tel.: +45-22859523
| |
Collapse
|
8
|
Kohl C, Aung T, Haerteis S, Ignatov A, Ortmann O, Papathemelis T. The 3D in vivo chorioallantoic membrane model and its role in breast cancer research. J Cancer Res Clin Oncol 2022; 148:1033-1043. [PMID: 35122110 DOI: 10.1007/s00432-022-03936-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE We aimed to evaluate the role of the chorioallantoic membrane model (CAM) in breast cancer research. METHODS The following is an overview of the use of the CAM in the field of breast cancer research based on a PubMed literature query. RESULTS The CAM is a 3D in vivo model that can be used for the analysis of tumor growth, biology and angiogenesis of primary tumor tissue or tumor cell lines. The CAM model has been used in breast cancer research for drug testing, migration assays and the evaluation of vascularization, amongst others. The CAM model is a valuable method that offers a better imitation of the physiological phenomena compared to 2D or 3D in vitro models. CONCLUSION The CAM model has primarily and successfully been utilized for the assessment of the tumor biology of established breast cancer cell lines. Further, the CAM model is a promising method to analyze patient derived primary tumor material and could be used as a "patient-specific 3D-tumor-therapy-model" for the cost-efficient evaluation of anti-cancer drugs to find the optimal treatment for breast cancer patients.
Collapse
Affiliation(s)
- Cynthia Kohl
- Department of Gynecology and Obstetrics, St. Marien Hospital Amberg, 92224, Amberg, Germany.
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany.,Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, 94469, Deggendorf, Germany
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
| | - Atanas Ignatov
- Department of Gynecology and Obstetrics, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053, Regensburg, Germany
| | - Thomas Papathemelis
- Department of Gynecology and Obstetrics, St. Marien Hospital Amberg, 92224, Amberg, Germany
| |
Collapse
|
9
|
Chinoca J, Andrade D, Mendes A, Marchi PD, Prieto T, Baldavira C, Farhat C, Martins J, Nader H, Carraro D, Capelozzi V, Sá VD. Monitoring non-small cell lung cancer progression and treatment response through hyaluronic acid in sputum. Braz J Med Biol Res 2022; 55:e11513. [PMID: 35320334 PMCID: PMC8851905 DOI: 10.1590/1414-431x2021e11513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022] Open
Abstract
We evaluated whether hyaluronan (HA) levels in the sputum could be used as a
noninvasive tool to predict progressive disease and treatment response, as
detected in a computed tomography scan in non-small cell lung cancer (NSCLC)
patients. Sputum samples were collected from 84 patients with histological
confirmation of NSCLC, 33 of which were in early-stage and 51 in advanced-stage
disease. Patients received systemic chemotherapy (CT) after surgery (n=36),
combined CT and immunotherapy (IO) (n=15), or targeted therapy for driver
mutation and disease relapse (N=4). The primary end-point was to compare sputum
HA levels in two different concentrations of hypertonic saline solution with
overall survival (OS) and the secondary and exploratory end-points were
radiologic responses to treatment and patient outcome. Higher concentrations of
HA in the sputum were significantly associated to factors related to tumor
stage, phenotype, response to treatment, and outcome. In the early stage,
patients with lower sputum HA levels before treatment achieved a complete tumor
response after systemic CT with better progression-free survival (PFS) than
those with high HA levels. We also examined the importance of the sputum HA
concentration and tumor response in the 51 patients who developed metastatic
disease and received CT+IO. Patients with low levels of sputum HA showed a
complete tumor response in the computed tomography scan and stable disease after
CT+IO treatment, as well as a better PFS than those receiving CT alone. HA
levels in sputum of NSCLC patients may serve as a candidate biomarker to detect
progressive disease and monitor treatment response in computed tomography
scans.
Collapse
Affiliation(s)
| | | | - A. Mendes
- Universidade Federal de São Paulo, Brasil
| | | | | | | | | | - J.R.M. Martins
- Universidade Federal de São Paulo, Brasil; Universidade Federal de São Paulo, Brasil
| | - H.B. Nader
- Universidade Federal de São Paulo, Brasil
| | | | | | - V. de Sá
- AC Camargo Cancer Center, Brasil; Universidade de São Paulo, Brasil
| |
Collapse
|
10
|
Aghlara-Fotovat S, Nash A, Kim B, Krencik R, Veiseh O. Targeting the extracellular matrix for immunomodulation: applications in drug delivery and cell therapies. Drug Deliv Transl Res 2021; 11:2394-2413. [PMID: 34176099 DOI: 10.1007/s13346-021-01018-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Host immune cells interact bi-directionally with their extracellular matrix (ECM) to receive and deposit molecular signals, which orchestrate cellular activation, proliferation, differentiation, and function to maintain healthy tissue homeostasis. In response to pathogens or damage, immune cells infiltrate diseased sites and synthesize critical ECM molecules such as glycoproteins, proteoglycans, and glycosaminoglycans to promote healing. When the immune system misidentifies pathogens or fails to survey damaged cells effectively, maladies such as chronic inflammation, autoimmune diseases, and cancer can develop. In these conditions, it is essential to restore balance to the body through modulation of the immune system and the ECM. This review details the components of dysregulated ECM implicated in pathogenic environments and therapeutic approaches to restore tissue homeostasis. We evaluate emerging strategies to overcome inflamed, immune inhibitory, and otherwise diseased microenvironments, including mechanical stimulation, targeted proteases, adoptive cell therapy, mechanomedicine, and biomaterial-based cell therapeutics. We highlight various strategies that have produced efficacious responses in both pre-clinical and human trials and identify additional opportunities to develop next-generation interventions. Significantly, we identify a need for therapies to address dense or fibrotic tissue for the treatment of organ tissue damage and various cancer subtypes. Finally, we conclude that therapeutic techniques that disrupt, evade, or specifically target the pathogenic microenvironment have a high potential for improving therapeutic outcomes and should be considered a priority for immediate exploration. A schematic showing the various methods of extracellular matrix disruption/targeting in both fibrotic and cancerous environments. a Biomaterial-based cell therapy can be used to deliver anti-inflammatory cytokines, chemotherapeutics, or other factors for localized, slow release of therapeutics. b Mechanotherapeutics can be used to inhibit the deposition of molecules such as collagen that affect stiffness. c Ablation of the ECM and target tissue can be accomplished via mechanical degradation such as focused ultrasound. d Proteases can be used to improve the distribution of therapies such as oncolytic virus. e Localization of therapeutics such as checkpoint inhibitors can be improved with the targeting of specific ECM components, reducing off-target effects and toxicity.
Collapse
Affiliation(s)
| | - Amanda Nash
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Boram Kim
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Robert Krencik
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Tolg C, Messam BJA, McCarthy JB, Nelson AC, Turley EA. Hyaluronan Functions in Wound Repair That Are Captured to Fuel Breast Cancer Progression. Biomolecules 2021; 11:1551. [PMID: 34827550 PMCID: PMC8615562 DOI: 10.3390/biom11111551] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
Signaling from an actively remodeling extracellular matrix (ECM) has emerged as a critical factor in regulating both the repair of tissue injuries and the progression of diseases such as metastatic cancer. Hyaluronan (HA) is a major component of the ECM that normally functions in tissue injury to sequentially promote then suppress inflammation and fibrosis, a duality in which is featured, and regulated in, wound repair. These essential response-to-injury functions of HA in the microenvironment are hijacked by tumor cells for invasion and avoidance of immune detection. In this review, we first discuss the numerous size-dependent functions of HA and emphasize the multifunctional nature of two of its receptors (CD44 and RHAMM) in regulating the signaling duality of HA in excisional wound healing. This is followed by a discussion of how HA metabolism is de-regulated in malignant progression and how targeting HA might be used to better manage breast cancer progression.
Collapse
Affiliation(s)
- Cornelia Tolg
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada;
| | - Britney Jodi-Ann Messam
- Department Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada;
| | - James Benjamin McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Andrew Cook Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Eva Ann Turley
- London Regional Cancer Program, Lawson Health Research Institute, Department Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
12
|
RHAMM Is a Multifunctional Protein That Regulates Cancer Progression. Int J Mol Sci 2021; 22:ijms221910313. [PMID: 34638654 PMCID: PMC8508827 DOI: 10.3390/ijms221910313] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023] Open
Abstract
The functional complexity of higher organisms is not easily accounted for by the size of their genomes. Rather, complexity appears to be generated by transcriptional, translational, and post-translational mechanisms and tissue organization that produces a context-dependent response of cells to specific stimuli. One property of gene products that likely increases the ability of cells to respond to stimuli with complexity is the multifunctionality of expressed proteins. Receptor for hyaluronan-mediated motility (RHAMM) is an example of a multifunctional protein that controls differential responses of cells in response-to-injury contexts. Here, we trace its evolution into a sensor-transducer of tissue injury signals in higher organisms through the detection of hyaluronan (HA) that accumulates in injured microenvironments. Our goal is to highlight the domain and isoform structures that generate RHAMM's function complexity and model approaches for targeting its key functions to control cancer progression.
Collapse
|
13
|
Protein Ligands in the Secretome of CD36 + Fibroblasts Induce Growth Suppression in a Subset of Breast Cancer Cell Lines. Cancers (Basel) 2021; 13:cancers13184521. [PMID: 34572749 PMCID: PMC8469330 DOI: 10.3390/cancers13184521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Human breast cancers are not fully autonomous. They are dependent on nutrients and growth-promoting signals provided by stromal cells. In order to instruct the surrounding cells to provide essential growth factors, cancer cells co-opt normal signaling molecules and mechanisms. To inhibit or potentially reverse tumor growth, our goal is to emulate this signaling and reprogram the microenvironment. For example, in a healthy mammary gland, fibroblasts (FBs) overexpress CD36; and the downregulation of CD36 is one of the hallmarks of cancer-associated FBs. Therefore, in this project, we hypothesized that signaling from CD36+ FBs could cause growth suppression in a subset of breast cancer cell lines. We then designed a series of experiments to validate this growth suppression and identified responsible secreted factors by the CD36+ FBs. These experiments suggested that three protein ligands are primarily responsible for growth suppression in a subset of breast cancer cell lines. Abstract Reprogramming the tumor stroma is an emerging approach to circumventing the challenges of conventional cancer therapies. This strategy, however, is hampered by the lack of a specific molecular target. We previously reported that stromal fibroblasts (FBs) with high expression of CD36 could be utilized for this purpose. These studies are now expanded to identify the secreted factors responsible for tumor suppression. Methodologies included 3D colonies, fluorescent microscopy coupled with quantitative techniques, proteomics profiling, and bioinformatics analysis. The results indicated that the conditioned medium (CM) of the CD36+ FBs caused growth suppression via apoptosis in the triple-negative cell lines of MDA-MB-231, BT549, and Hs578T, but not in the ERBB2+ SKBR3. Following the proteomics and bioinformatic analysis of the CM of CD36+ versus CD36− FBs, we determined KLF10 as one of the transcription factors responsible for growth suppression. We also identified FBLN1, SLIT3, and PENK as active ligands, where their minimum effective concentrations were determined. Finally, in MDA-MB-231, we showed that a mixture of FBLN1, SLIT3, and PENK could induce an amount of growth suppression similar to the CM of CD36+ FBs. In conclusion, our findings suggest that these ligands, secreted by CD36+ FBs, can be targeted for breast cancer treatment.
Collapse
|
14
|
Guo H, Fan Q. Identification of the HMMR Gene as a Diagnostic and Prognostic Biomarker in Hepatocellular Carcinoma Based on Integrated Bioinformatics Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5970085. [PMID: 34221079 PMCID: PMC8221880 DOI: 10.1155/2021/5970085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND We aimed to investigate the expression of the hyaluronan-mediated motility receptor (HMMR) gene in hepatocellular carcinoma (HCC) and nonneoplastic tissues and to investigate the diagnostic and prognostic value of HMMR. METHOD With the reuse of the publicly available The Cancer Genome Atlas (TCGA) data, 374 HCC patients and 50 nonneoplastic tissues were used to investigate the diagnostic and prognostic values of HMMR genes by receiver operating characteristic (ROC) curve analysis and survival analysis. All patients were divided into low- and high-expression groups based on the median value of HMMR expression level. Univariate and multivariate Cox regression analysis were used to identify prognostic factors. Gene set enrichment analysis (GSEA) was performed to explore the potential mechanism of the HMMR genes involved in HCC. The diagnostic and prognostic values were further validated in an external cohort from the International Cancer Genome Consortium (ICGC). RESULTS HMMR mRNA expression was significantly elevated in HCC tissues compared with that in normal tissues from both TCGA and the ICGC cohorts (all P values <0.001). Increased HMMR expression was significantly associated with histologic grade, pathological stage, and survival status (all P values <0.05). The area under the ROC curve for HMMR expression in HCC and normal tissues was 0.969 (95% CI: 0.948-0.983) in the TCGA cohort and 0.956 (95% CI: 0.932-0.973) in the ICGC cohort. Patients with high HMMR expression had a poor prognosis than patients with low expression group in both cohorts (all P < 0.001). Univariate and multivariate analysis also showed that HMMR is an independent predictor factor associated with overall survival in both cohorts (all P values <0.001). GSEA showed that genes upregulated in the high-HMMR HCC subgroup were mainly significantly enriched in the cell cycle pathway, pathways in cancer, and P53 signaling pathway. CONCLUSION HMMR is expressed at high levels in HCC. HMMR overexpression may be an unfavorable prognostic factor for HCC.
Collapse
Affiliation(s)
- Honglan Guo
- Department of Gastroenterology, The First People's Hospital of Chenzhou City, Chenzhou 423000, Hunan, China
| | - Qinqiao Fan
- Department of Hepatobiliary, The First People's Hospital of Chenzhou City, Chenzhou 423000, Hunan, China
| |
Collapse
|
15
|
Zhang T, Fu C, Alradwan I, Yen T, Lip H, Cai P, Rauth AM, Zhang L, Wu XY. Targeting Signaling Pathways of Hyaluronic Acid and Integrin Receptors by Synergistic Combination Nanocomposites Inhibits Systemic Metastases and Primary Triple Negative Breast Cancer. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tian Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy University of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Chaoping Fu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy University of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Ibrahim Alradwan
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy University of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - TinYo Yen
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy University of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - HoYin Lip
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy University of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Ping Cai
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy University of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Andrew M. Rauth
- Departments of Medical Biophysics and Radiation Oncology University of Toronto 610 University Ave Toronto Ontario M5G 2M9 Canada
| | - Liming Zhang
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy University of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| |
Collapse
|
16
|
Yen CH, Young TH, Huang TW. Cell detachment ratio on pH-responsive chitosan: A useful biometric for prognostic judgment and drug efficacy assessment in oncology. Carbohydr Polym 2021; 261:117911. [PMID: 33766385 DOI: 10.1016/j.carbpol.2021.117911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/28/2020] [Accepted: 03/02/2021] [Indexed: 12/20/2022]
Abstract
The inherently unpredictable complexity of tumors impedes the widespread practice of the molecular biomarkers in outcome prediction. Alternatively, from the biophysical perspective, this study sought to investigate the applicability of the cell detachment ratio (CDR) derived from pH-responsive chitosan as a biometrical identifier for the disease state in cancer prognostic judgment and drug efficacy assessment. In the targeted therapy model, the repression of tumor dissemination in cells harboring aberrant ErbB signals (human non-small cell lung cancer cell line PC9 and breast cancer cell line BT474) were first demonstrated both in vitro and in vivo. Consequently, the corresponding CDR profile goes synchronously with the extent of cancer regression in response to the medication. Definitive integrins that drive the cell detachment were also verified through CDR examination following the integrin functional blockade. Conclusively, CDR is a promising clinical index for evaluation of the metastatic cell behaviors in terms of the cell detachment.
Collapse
Affiliation(s)
- Chia-Hsiang Yen
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan.
| | - Tai-Horng Young
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan; Department of Biomedical Engineering, National Taiwan University Hospital, No. 7, Chung-Shan S Rd., Taipei 100, Taiwan.
| | - Tsung-Wei Huang
- Department of Electrical Engineering, College of Electrical and Communication Engineering, Yuan Ze University, No. 135, Yuan-Tung Rd., Taoyuan 320, Taiwan; Department of Otolaryngology, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., New Taipei City 220, Taiwan.
| |
Collapse
|
17
|
Guo Q, Liu Y, He Y, Du Y, Zhang G, Yang C, Gao F. CD44 activation state regulated by the CD44v10 isoform determines breast cancer proliferation. Oncol Rep 2021; 45:7. [PMID: 33649828 PMCID: PMC7876991 DOI: 10.3892/or.2021.7958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/14/2021] [Indexed: 12/27/2022] Open
Abstract
The cell surface glycoprotein CD44 displays different active statuses; however, it remains unknown whether the activation process of CD44 is critical for tumor development and progression. The aim of the present study was to investigate whether breast cancer (BCa) cells with different activation states of CD44 show similar or distinct functional characteristics and to further examine the mechanisms regulating CD44 activities. A feature for the ‘activated’ state of CD44 is that it can bind to its principal ligand hyaluronan (HA). The binding of CD44 with HA is usually influenced by CD44 alternative splicing, resulting in multiple CD44 isoforms that determine CD44 activities. Flow cytometry was used to sort BCa cell subsets based on CD44-HA binding abilities (HA−/low vs. HAhigh). Subsequently, cell proliferation and colony formation assays were performed in vitro, and CD44 expression patterns were analyzed via western blotting. The results demonstrated that the CD44 variant isoform 10 (CD44v10) was highly expressed in a HA−/low binding subset of BCa cells, which exhibited a significantly higher proliferation capacity compared with the HAhigh binding subpopulation. Knockdown of CD44v10 isoform in HA−/low binding subpopulation induced an increase in HA binding ability and markedly inhibited proliferation. Furthermore, the mechanistic analysis identified that CD44v10 facilitated cell proliferation via activation of ERK/p38 MAPK and AKT/mTOR signaling. Moreover, the knockdown of CD44v10 expression downregulated the phosphorylation of ERK, AKT and mTOR, while no alteration was observed in p38 phosphorylation. Collectively, the present study identified a subset of fast-growing BCa cells characterized by CD44v10 expression, which may serve as a specific therapeutic target for BCa.
Collapse
Affiliation(s)
- Qian Guo
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yiwen Liu
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yiqing He
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yan Du
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Guoliang Zhang
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Cuixia Yang
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Feng Gao
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
18
|
Gote V, Sharma AD, Pal D. Hyaluronic Acid-Targeted Stimuli-Sensitive Nanomicelles Co-Encapsulating Paclitaxel and Ritonavir to Overcome Multi-Drug Resistance in Metastatic Breast Cancer and Triple-Negative Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22031257. [PMID: 33513992 PMCID: PMC7865449 DOI: 10.3390/ijms22031257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Active targeting and overcoming multi-drug resistance (MDR) can be some of the important attributes of targeted therapy for metastatic breast cancer (MBC) and triple-negative breast cancer (TNBC) treatment. In this study, we constructed a hyaluronic acid (HA)-decorated mixed nanomicelles-encapsulating chemotherapeutic agent paclitaxel (PTX) and P-glycoprotein inhibitor ritonavir (RTV). HA was conjugated to poly (lactide) co-(glycolide) (PLGA) polymer by disulfide bonds (HA-ss-PLGA). HA is a natural ligand for CD44 receptors overexpressed in breast cancer cells. Disulfide bonds undergo rapid reduction in the presence of glutathione, present in breast cancer cells. The addition of RTV can inhibit the P-gp and CYP3A4-mediated metabolism of PTX, thus aiding in reversing MDR and sensitizing the cells toward PTX. An in vitro uptake and cytotoxicity study in MBC MCF-7 and TNBC MDA-MB-231 cell lines demonstrated the effective uptake of the nanomicelles and drug PTX compared to non-neoplastic breast epithelium MCF-12A cells. Interestingly, in vitro potency determination showed a reduction in mitochondrial membrane potential and reactive oxygen species in breast cancer cell lines, indicating effective apoptosis of cancer cells. Thus, stimuli-sensitive nanomicelles along with HA targeting and RTV addition can effectively serve as a chemotherapeutic drug delivery agent for MBC and TNBC.
Collapse
|
19
|
Carvalho AM, Soares da Costa D, Paulo PMR, Reis RL, Pashkuleva I. Co-localization and crosstalk between CD44 and RHAMM depend on hyaluronan presentation. Acta Biomater 2021; 119:114-124. [PMID: 33091625 DOI: 10.1016/j.actbio.2020.10.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 01/04/2023]
Abstract
CD44 and the receptor for hyaluronic acid-mediated motility (RHAMM) are the main hyaluronan (HA) receptors. They are commonly overexpressed in different cancers activating signaling pathways related to tumor progression, metastasis and chemoresistance. Besides their involvement in signal transduction via interaction with HA, currently, there is a little information about the possible crosstalk between CD44 and RHAMM and the role of HA in this process. In the present work, we used immunocytochemistry combined with Förster resonance energy transfer (FRET) microscopy and co-immunoprecipitation to elucidate the involvement of HA in CD44 and RHAMM expression, co-localization and crosstalk. We studied breast cancer cells lines with different degrees of invasiveness and expression of these receptors in the absence of exogenous HA and compared the data with the results obtained for cultures supplemented with either soluble HA or seeded on substrates with end-on immobilized HA. Our results demonstrated that cells response depends on the HA presentation: CD44/RHAMM complexation was upregulated in all cell lines upon interaction with immobilized HA, but not with its soluble form. Moreover, the results showed that the expression of both CD44 and RHAMM is regulated via interactions with HA indicating cell-specific feedback loop(s) in the signaling cascade.
Collapse
Affiliation(s)
- Ana M Carvalho
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal.
| | - Diana Soares da Costa
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal
| | - Pedro M R Paulo
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal
| | - Iva Pashkuleva
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal.
| |
Collapse
|
20
|
Chen X, Shi X, Liu Y, He Y, Du Y, Zhang G, Yang C, Gao F. Remodelling of the bone marrow microenvironment by stromal hyaluronan modulates the malignancy of breast cancer cells. Cell Commun Signal 2020; 18:89. [PMID: 32517712 PMCID: PMC7285718 DOI: 10.1186/s12964-020-00592-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/07/2020] [Indexed: 12/24/2022] Open
Abstract
Background Hyaluronan (HA) is an abundant component of the bone marrow (BM) extracellular matrix. Here, we investigated the abnormal deposition of HA in the BM microenvironment and its remodelling in mediating the malignancy of breast cancer cells (BCCs). Methods BCCs were transplanted into nude mice by intracardiac injection. The BCCs were cocultured with BM-derived stromal HS5 cells. Then, the abnormal metabolism of HA and its correlation with the malignant growth and the intracellular signalling pathways of the BCCs were investigated. After knockdown/out of the HA receptor CD44 in cancer cells by shRNA and CRISPR/Cas9, the mechanism was investigated in vivo through intratibial inoculation and in vitro by coculture with HS5 cells. Results The malignancy of cancer cells was highly related to the degree of accumulation of HA in the BM. Further, stromal cell-derived HA, especially the mixed complex, significantly promoted the growth of BCCs and osteolysis by binding to the CD44 receptor. Additionally, the investigation of the underlying mechanism revealed that the PI3K, Cyclin D1, and CDK4 pathways were involved in the effect of bone stromal cell-derived HA on the BCC activities. Conclusion These data suggested that HA in abnormal BM stroma might be a therapeutic candidate for bone metastasis of breast cancer. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.,College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Xiaoxing Shi
- Department of Laboratory Medicine, Shanghai Wujing General Hospital, Shanghai, 201103, People's Republic of China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Yan Du
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China. .,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Feng Gao
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China. .,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
21
|
Hyaluronic acid binding to CD44S is indiscriminate of molecular weight. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183348. [PMID: 32428448 DOI: 10.1016/j.bbamem.2020.183348] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/09/2020] [Accepted: 05/07/2020] [Indexed: 01/06/2023]
Abstract
The ubiquitous presence of hyaluronic acid (HA) in the extracellular matrix (ECM) of both healthy and diseased tissues underscores its importance in human physiology. Previous studies suggest that HA can be used as a probe to qualitatively monitor cell surface levels of CD44 and other important HA receptors; however, these studies use mixtures of HA at various molecular weights. Using fluorescently labeled HA, we evaluated the apparent differences of low (25 kilodalton) and high (700 kilodalton) molecular weight HA interacting with breast cancer cell lines of varying levels of CD44. Our results confirm that CD44 expression and the apparent level of HA interaction correlates with molecular weight. Importantly, we show that HA only binds a small fraction of the major CD44 isoform, CD44S, on cell surfaces and that CD44S interactions account for <50% of the total HA bound to cell surfaces. Although increased fluorescence level correlates with higher molecular weight of HA, this appears to be an artifact of chain length and not a result of multivalent binding between HA and CD44S. Accordingly, we verify that HA binding characteristics of cell surfaces is similar to previous artificial membrane models which proposed that HA anchors to CD44S and forms a non-binding corona of HA that extends beyond the surface.
Collapse
|
22
|
Isoform-specific promotion of breast cancer tumorigenicity by TBX3 involves induction of angiogenesis. J Transl Med 2020; 100:400-413. [PMID: 31570773 PMCID: PMC7044113 DOI: 10.1038/s41374-019-0326-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
TBX3 is a member of the highly conserved family of T-box transcription factors involved in embryogenesis, organogenesis and tumor progression. While the functional role of TBX3 in tumorigenesis has been widely studied, less is known about the specific functions of the different isoforms (TBX3iso1 and TBX3iso2) which differ in their DNA-binding domain. We therefore sought to investigate the functional consequence of this highly conserved splice event as it relates to TBX3-induced tumorigenesis. By utilizing a nude mouse xenograft model, we have identified differential tumorigenic potential between TBX3 isoforms, with TBX3iso1 overexpression more commonly associated with invasive carcinoma and high tumor vascularity. Transcriptional analysis of signaling pathways altered by TBX3iso1 and TBX3iso2 overexpression revealed significant differences in angiogenesis-related genes. Importantly, osteopontin (OPN), a cancer-associated secreted phosphoprotein, was significantly up-regulated with TBX3iso1 (but not TBX3iso2) overexpression. This pattern was observed across three non/weakly-tumorigenic breast cancer cell lines (21PT, 21NT, and MCF7). Up-regulation of OPN in TBX3iso1 overexpressing cells was associated with induction of hyaluronan synthase 2 (HAS2) expression and increased retention of hyaluronan in pericellular matrices. These transcriptional changes were accompanied by the ability to induce endothelial cell vascular channel formation by conditioned media in vitro, which could be inhibited through addition of an OPN neutralizing antibody. Within the TCGA breast cancer cohort, we identified an 8.1-fold higher TBX3iso1 to TBX3iso2 transcript ratio in tumors relative to control, and this ratio was positively associated with high-tumor grade and an aggressive molecular subtype. Collectively, the described changes involving TBX3iso1-dependent promotion of angiogenesis may thus serve as an adaptive mechanism within breast cancer cells, potentially explaining differences in tumor formation rates between TBX3 isoforms in vivo. This study is the first of its kind to report significant functional differences between the two TBX3 isoforms, both in vitro and in vivo.
Collapse
|
23
|
Beri P, Popravko A, Yeoman B, Kumar A, Chen K, Hodzic E, Chiang A, Banisadr A, Placone JK, Carter H, Fraley SI, Katira P, Engler AJ. Cell Adhesiveness Serves as a Biophysical Marker for Metastatic Potential. Cancer Res 2019; 80:901-911. [PMID: 31857292 DOI: 10.1158/0008-5472.can-19-1794] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/30/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
Tumors are heterogeneous and composed of cells with different dissemination abilities. Despite significant effort, there is no universal biological marker that serves as a metric for metastatic potential of solid tumors. Common to disseminating cells from such tumors, however, is the need to modulate their adhesion as they detach from the tumor and migrate through stroma to intravasate. Adhesion strength is heterogeneous even among cancer cells within a given population, and using a parallel plate flow chamber, we separated and sorted these populations into weakly and strongly adherent groups; when cultured under stromal conditions, this adhesion phenotype was stable over multiple days, sorting cycles, and common across all epithelial tumor lines investigated. Weakly adherent cells displayed increased migration in both two-dimensional and three-dimensional migration assays; this was maintained for several days in culture. Subpopulations did not show differences in expression of proteins involved in the focal adhesion complex but did exhibit intrinsic focal adhesion assembly as well as contractile differences that resulted from differential expression of genes involved in microtubules, cytoskeleton linkages, and motor activity. In human breast tumors, expression of genes associated with the weakly adherent population resulted in worse progression-free and disease-free intervals. These data suggest that adhesion strength could potentially serve as a stable marker for migration and metastatic potential within a given tumor population and that the fraction of weakly adherent cells present within a tumor could act as a physical marker for metastatic potential. SIGNIFICANCE: Cancer cells exhibit heterogeneity in adhesivity, which can be used to predict metastatic potential.
Collapse
Affiliation(s)
- Pranjali Beri
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Anna Popravko
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Benjamin Yeoman
- Department of Bioengineering, University of California, San Diego, La Jolla, California
- Department of Mechanical Engineering, San Diego State University, San Diego, California
| | - Aditya Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Kevin Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Enio Hodzic
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Alyssa Chiang
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Afsheen Banisadr
- Biomedical Sciences Program, University of California, San Diego, La Jolla, California
| | - Jesse K Placone
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Hannah Carter
- Moores Cancer Center, University of California, San Diego, La Jolla, California
- Department of Medicine/Division of Medical Genetics, University of California, San Diego, La Jolla, California
| | - Stephanie I Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, California
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, California
- Computational Sciences Research Center, San Diego State University, San Diego, California
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, California.
- Biomedical Sciences Program, University of California, San Diego, La Jolla, California
- Sanford Consortium for Regenerative Medicine, La Jolla, California
| |
Collapse
|
24
|
Acquisition of a side population fraction augments malignant phenotype in ovarian cancer. Sci Rep 2019; 9:14215. [PMID: 31578411 PMCID: PMC6775117 DOI: 10.1038/s41598-019-50794-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/19/2019] [Indexed: 01/29/2023] Open
Abstract
Side population (SP) cells harbor malignant phenotypes in cancer. The aim of this study was to identify genes that modulate the proportion of ovarian cancer SP cells. Using a shRNA library targeting 15,000 genes, a functional genomics screen was performed to identify genes whose suppression increased the SP percentage. The biological effects caused by alteration of those identified genes were investigated in vitro and in vivo. We found that suppression of MSL3, ZNF691, VPS45, ITGB3BP, TLE2, and ZNF498 increased the proportion of SP cells. Newly generated SP cells exhibit greater capacity for sphere formation, single cell clonogenicity, and in vivo tumorigenicity. On the contrary, overexpression of MSL3, VPS45, ITGB3BP, TLE2, and ZNF498 decreased the proportion of SP cells, sphere formation capacity and single cell clonogenicity. In ovarian cancer cases, low expression of MSL3, ZNF691 and VPS45 was related to poor prognosis. Suppression of these six genes enhanced activity of the hedgehog pathway. Cyclopamine, a hedgehog pathway inhibitor, significantly decreased the number of SP cells and their sphere forming ability. Our results provide new information regarding molecular mechanisms favoring SP cells and suggest that Hedgehog signaling may provide a viable target for ovarian cancer.
Collapse
|
25
|
He R, Zuo S. A Robust 8-Gene Prognostic Signature for Early-Stage Non-small Cell Lung Cancer. Front Oncol 2019; 9:693. [PMID: 31417870 PMCID: PMC6684755 DOI: 10.3389/fonc.2019.00693] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022] Open
Abstract
Background: The current staging system is imprecise for prognostic prediction of early-stage non-small cell lung cancer (NSCLC). This study aimed to develop a robust prognostic signature for early-stage NSCLC, allowing classification of patients with a high risk of poor outcome and specific treatment decision. Method: In the present study, a comprehensive genome-wide profiling analysis was conducted using a retrospective pool of early-stage NSCLC patient data from the previous datasets of Gene Expression Omnibus (GEO) including GSE31210, GSE37745, and GSE50081 and The Cancer Genome Atlas (TCGA). Cox proportional hazards models were implemented to determine the association between gene expression levels and overall patient survival in each dataset. The common genes among all datasets were selected as candidate prognostic genes. A risk score model was developed and validated using four independent datasets and the entire cohort. The Kaplan-Meier with log-rank test was used to assess survival difference. Results: A univariate Cox proportional hazards regression analysis for each dataset showed that a total of 2280 genes in GSE31210, 762 genes in GSE37745, 871 genes in GSE50081, and 666 genes in TCGA were identified as candidate protective genes, while overall 2131 genes in GSE31210, 913 in GSE37745, 1107 in GSE50081, and 997 in TCGA were identified as candidate risky genes. There were 8 common genes associated with overall survival, including 7 mRNA and 1 lncRNA. By using the Step-wise multivariate Cox analysis, an 8-gene prognostic signature (CDCP1, HMMR, TPX2, CIRBP, HLF, KBTBD7, SEC24B-AS1, and SH2B1) for early-stage NSCLC was developed. Patients in the high-risk group had shorter overall survival than those in the low-risk group. Multivariate regression and stratified analysis suggested that the prognostic power of the 8-gene signature was independent of other clinical factors. Furthermore, the 8-gene signature achieved AUC values of 0.726, 0.701, 0.725 and 0.650 in GSE31210, GSE37745, GSE50081 and TCGA, respectively. Moreover, the combination of the 8-gene signature and the stage resulted to a better patient classification for survival prediction and treatment decision. Conclusion: This study developed a robust gene signature with great value for prognostic prediction in early-stage NSCLC, which may contribute to patient classification and personalized treatment decisions.
Collapse
Affiliation(s)
- Ru He
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, China
| | - Shuguang Zuo
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, China.,Institute of Infection and Immunity, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
26
|
Liu M, Tolg C, Turley E. Dissecting the Dual Nature of Hyaluronan in the Tumor Microenvironment. Front Immunol 2019; 10:947. [PMID: 31134064 PMCID: PMC6522846 DOI: 10.3389/fimmu.2019.00947] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/12/2019] [Indexed: 01/01/2023] Open
Abstract
Hyaluronan (HA) is a glycosaminoglycan with a simple structure but diverse and often opposing functions. The biological activities of this polysaccharide depend on its molecular weight and the identity of interacting receptors. HA is initially synthesized as high molecular-weight (HMW) polymers, which maintain homeostasis and restrain cell proliferation and migration in normal tissues. These HMW-HA functions are mediated by constitutively expressed receptors including CD44, LYVE-1, and STABILIN2. During normal processes such as tissue remodeling and wound healing, HMW-HA is fragmented into low molecular weight polymers (LMW-HA) by hyaluronidases and free radicals, which promote inflammation, immune cell recruitment and the epithelial cell migration. These functions are mediated by RHAMM and TLR2,4, which coordinate signaling with CD44 and other HA receptors. Tumor cells hijack the normally tightly regulated HA production/fragmentation associated with wound repair/remodeling, and these HA functions participate in driving and maintaining malignant progression. However, elevated HMW-HA production in the absence of fragmentation is linked to cancer resistance. The controlled production of HA polymer sizes and their functions are predicted to be key to dissecting the role of microenvironment in permitting or restraining the oncogenic potential of tissues. This review focuses on the dual nature of HA in cancer initiation vs. resistance, and the therapeutic potential of HA for chemo-prevention and as a target for cancer management.
Collapse
Affiliation(s)
- Muhan Liu
- Department of Biochemistry, Western University, London, ON, Canada
| | - Cornelia Tolg
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Eva Turley
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.,Department of Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
27
|
Beri P, Matte BF, Fattet L, Kim D, Yang J, Engler AJ. Biomaterials to model and measure epithelial cancers. NATURE REVIEWS. MATERIALS 2018; 3:418-430. [PMID: 30416759 PMCID: PMC6224155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The use of biomaterials has substantially contributed to both our understanding of tumorigenesis and our ability to identify and capture tumour cells in vitro and in vivo. Natural and synthetic biomaterials can be applied as models to recapitulate key features of the tumour microenvironment in vitro, including architectural, mechanical and biological functions. Engineered biomaterials can further mimic the spatial and temporal properties of the surrounding tumour niche to investigate the specific effects of the environment on disease progression, offering an alternative to animal models for the testing of cancer cell behaviour. Biomaterials can also be used to capture and detect cancer cells in vitro and in vivo to monitor tumour progression. In this Review, we discuss the natural and synthetic biomaterials that can be used to recreate specific features of tumour microenvironments. We examine how biomaterials can be applied to capture circulating tumour cells in blood samples for the early detection of metastasis. We highlight biomaterial-based strategies to investigate local regions adjacent to the tumour and survey potential applications of biomaterial-based devices for diagnosis and prognosis, such as the detection of cellular deformability and the non-invasive surveillance of tumour-adjacent stroma.
Collapse
Affiliation(s)
- Pranjali Beri
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Bibiana F. Matte
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Oral Pathology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Laurent Fattet
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Daehwan Kim
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jing Yang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| |
Collapse
|
28
|
Barattin M, Mattarei A, Balasso A, Paradisi C, Cantù L, Del Favero E, Viitala T, Mastrotto F, Caliceti P, Salmaso S. pH-Controlled Liposomes for Enhanced Cell Penetration in Tumor Environment. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17646-17661. [PMID: 29737834 DOI: 10.1021/acsami.8b03469] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An innovative pH-switchable colloidal system that can be exploited for site-selective anticancer drug delivery has been generated by liposome decoration with a new novel synthetic non-peptidic oligo-arginine cell-penetration enhancer (CPE) and a quenching PEGylated counterpart that detaches from the vesicle surface under the acidic conditions of tumors. The CPE module ( Arg4- DAG) is formed by four arginine units conjugated to a first-generation (G1) 2,2-bis(hydroxymethyl)propionic acid (bis-MPA)/2,2-bis(aminomethyl)propionic acid (bis-AMPA) polyester dendron terminating with 1,2-distearoyl-3-azidopropane for liposome bilayer insertion. The zeta potential of the Arg4- DAG-decorated liposomes increased up to +32 mV as the Arg4- DAG/lipids molar ratio increased. The Arg4- DAG liposome shielding at pH 7.4 was provided by methoxy-PEG5 kDa-polymethacryloyl sulfadimethoxine (mPEG5 kDa-SDM8) with 7.1 apparent p Ka. Zeta potential, surface plasmon resonance and synchrotron small-angle X-ray scattering analyses showed that at pH 7.4 mPEG5 kDa-SDM8 associates with polycationic Arg4- DAG-decorated liposomes yielding liposomes with neutral zeta potential. At pH 6.5, which mimics the tumor environment, mPEG5 kDa-SDM8 detaches from the liposome surface yielding Arg4- DAG exposure. Flow cytometry and confocal microscopy showed a 30-fold higher HeLa cancer cell association of the Arg4- DAG-decorated liposomes compared to non-decorated liposomes. At pH 7.4, the mPEG5 kDa-SDM8-coated liposomes undergo low cell association while remarkable cell association occurred at pH 6.5, which allowed for the controlled intracellular delivery of model macromolecules and small molecules loaded in the liposome under tumor conditions.
Collapse
Affiliation(s)
- Michela Barattin
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 , Padova 35131 , Italy
| | - Andrea Mattarei
- Department of Chemical Sciences , University of Padova , Via F. Marzolo 1 , Padova 35131 , Italy
| | - Anna Balasso
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 , Padova 35131 , Italy
| | - Cristina Paradisi
- Department of Chemical Sciences , University of Padova , Via F. Marzolo 1 , Padova 35131 , Italy
| | - Laura Cantù
- Department of Medical Biotechnologies and Traslational Medicine , University of Milano , LITA, Via F.lli Cervi, 93 , Segrate 20090 , Italy
| | - Elena Del Favero
- Department of Medical Biotechnologies and Traslational Medicine , University of Milano , LITA, Via F.lli Cervi, 93 , Segrate 20090 , Italy
| | - Tapani Viitala
- Centre for Drug Research and Division of Pharmaceutical Biosciences, Faculty of Pharmacy , University of Helsinki , Viikinkaari 5 , Helsinki FI-00014 , Finland
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 , Padova 35131 , Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 , Padova 35131 , Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 , Padova 35131 , Italy
| |
Collapse
|
29
|
McCarthy JB, El-Ashry D, Turley EA. Hyaluronan, Cancer-Associated Fibroblasts and the Tumor Microenvironment in Malignant Progression. Front Cell Dev Biol 2018; 6:48. [PMID: 29868579 PMCID: PMC5951929 DOI: 10.3389/fcell.2018.00048] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
This review summarizes the roles of CAFs in forming a “cancerized” fibrotic stroma favorable to tumor initiation and dissemination, in particular highlighting the functions of the extracellular matrix component hyaluronan (HA) in these processes. The structural complexity of the tumor and its host microenvironment is now well appreciated to be an important contributing factor to malignant progression and resistance-to-therapy. There are multiple components of this complexity, which include an extensive remodeling of the extracellular matrix (ECM) and associated biomechanical changes in tumor stroma. Tumor stroma is often fibrotic and rich in fibrillar type I collagen and hyaluronan (HA). Cancer-associated fibroblasts (CAFs) are a major source of this fibrotic ECM. CAFs organize collagen fibrils and these biomechanical alterations provide highways for invading carcinoma cells either under the guidance of CAFs or following their epithelial to mesenchymal transition (EMT). The increased HA metabolism of a tumor microenvironment instructs carcinoma initiation and dissemination by performing multiple functions. The key effects of HA reviewed here are its role in activating CAFs in pre-malignant and malignant stroma, and facilitating invasion by promoting motility of both CAFs and tumor cells, thus facilitating their invasion. Circulating CAFs (cCAFs) also form heterotypic clusters with circulating tumor cells (CTC), which are considered to be pre-cursors of metastatic colonies. cCAFs are likely required for extravasation of tumors cells and to form a metastatic niche suitable for new tumor colony growth. Therapeutic interventions designed to target both HA and CAFs in order to limit tumor spread and increase response to current therapies are discussed.
Collapse
Affiliation(s)
- James B McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer Center, Minneapolis, MN, United States
| | - Dorraya El-Ashry
- Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer Center, Minneapolis, MN, United States
| | - Eva A Turley
- London Regional Cancer Program, Department of Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry, Lawson Health Research Institute, Western University, London, ON, Canada
| |
Collapse
|
30
|
Hauser-Kawaguchi A, Luyt LG, Turley E. Design of peptide mimetics to block pro-inflammatory functions of HA fragments. Matrix Biol 2018; 78-79:346-356. [PMID: 29408009 DOI: 10.1016/j.matbio.2018.01.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/22/2018] [Accepted: 01/28/2018] [Indexed: 12/26/2022]
Abstract
Hyaluronan is a simple extracellular matrix polysaccharide that actively regulates inflammation in tissue repair and disease processes. The native HA polymer, which is large (>500 kDa), contributes to the maintenance of homeostasis. In remodeling and diseased tissues, polymer size is strikingly polydisperse, ranging from <10 kDa to >500 kDa. In a diseased or stressed tissue context, both smaller HA fragments and high molecular weight HA polymers can acquire pro-inflammatory functions, which result in the activation of multiple receptors, triggering pro-inflammatory signaling to diverse stimuli. Peptide mimics that bind and scavenge HA fragments have been developed, which show efficacy in animal models of inflammation. These studies indicate both that HA fragments are key to driving inflammation and that scavenging these is a viable therapeutic approach to blunting inflammation in disease processes. This mini-review summarizes the peptide-based methods that have been reported to date for blocking HA signaling events as an anti-inflammatory therapeutic approach.
Collapse
Affiliation(s)
| | - Leonard G Luyt
- Department of Chemistry, Western University, London, ON, Canada; Department of Oncology, Schulich School of Medicine, Western University, London, ON, Canada; Department of Medical Imaging, Schulich School of Medicine, Western University, London, ON, Canada; Cancer Research Laboratories, London Regional Cancer Center, Victoria Hospital, London, ON N6A 4L6, Canada
| | - Eva Turley
- Department of Oncology, Schulich School of Medicine, Western University, London, ON, Canada; Cancer Research Laboratories, London Regional Cancer Center, Victoria Hospital, London, ON N6A 4L6, Canada; Department of Biochemistry, Schulich School of Medicine, Western University, London, ON, Canada; Department of Surgery, Schulich School of Medicine, Western University, London, ON, Canada.
| |
Collapse
|
31
|
Schütze A, Vogeley C, Gorges T, Twarock S, Butschan J, Babayan A, Klein D, Knauer SK, Metzen E, Müller V, Jendrossek V, Pantel K, Milde-Langosch K, Fischer JW, Röck K. RHAMM splice variants confer radiosensitivity in human breast cancer cell lines. Oncotarget 2017; 7:21428-40. [PMID: 26870892 PMCID: PMC5008296 DOI: 10.18632/oncotarget.7258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/20/2016] [Indexed: 11/25/2022] Open
Abstract
Biomarkers for prognosis in radiotherapy-treated breast cancer patients are urgently needed and important to stratify patients for adjuvant therapies. Recently, a role of the receptor of hyaluronan-mediated motility (RHAMM) has been suggested for tumor progression. Our aim was (i) to investigate the prognostic value of RHAMM in breast cancer and (ii) to unravel its potential function in the radiosusceptibility of breast cancer cells. We demonstrate that RHAMM mRNA expression in breast cancer biopsies is inversely correlated with tumor grade and overall survival. Radiosusceptibility in vitro was evaluated by sub-G1 analysis (apoptosis) and determination of the proliferation rate. The potential role of RHAMM was addressed by short interfering RNAs against RHAMM and its splice variants. High expression of RHAMMv1/v2 in p53 wild type cells (MCF-7) induced cellular apoptosis in response to ionizing radiation. In comparison, in p53 mutated cells (MDA-MB-231) RHAMMv1/v2 was expressed sparsely resulting in resistance towards irradiation induced apoptosis. Proliferation capacity was not altered by ionizing radiation in both cell lines. Importantly, pharmacological inhibition of the major ligand of RHAMM, hyaluronan, sensitized both cell lines towards radiation induced cell death. Based on the present data, we conclude that the detection of RHAMM splice variants in correlation with the p53 mutation status could help to predict the susceptibility of breast cancer cells to radiotherapy. Additionally, our studies raise the possibility that the response to radiotherapy in selected cohorts may be improved by pharmaceutical strategies against RHAMM and its ligand hyaluronan.
Collapse
Affiliation(s)
- Alexandra Schütze
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Christian Vogeley
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Tobias Gorges
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Twarock
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jonas Butschan
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Anna Babayan
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Shirley K Knauer
- Institute for Molecular Biology II, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Eric Metzen
- Institute of Physiology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Volkmar Müller
- Department of Gynecology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karin Milde-Langosch
- Department of Gynecology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jens W Fischer
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Katharina Röck
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| |
Collapse
|
32
|
A novel self-nanoemulsifying formulation for sunitinib: Evaluation of anticancer efficacy. Colloids Surf B Biointerfaces 2017; 160:65-72. [DOI: 10.1016/j.colsurfb.2017.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022]
|
33
|
Buttermore ST, Hoffman MS, Kumar A, Champeaux A, Nicosia SV, Kruk PA. Increased RHAMM expression relates to ovarian cancer progression. J Ovarian Res 2017; 10:66. [PMID: 28954627 PMCID: PMC5618727 DOI: 10.1186/s13048-017-0360-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elevated hyaluronan-mediated motility receptor (RHAMM) has been reported to contribute to disease progression, aggressive phenotype and poor prognosis in multiple cancer types, however, RHAMM's role in ovarian cancer (OC) has not been elucidated. Therefore, we sought to evaluate the role for RHAMM in epithelial OC. RESULTS Despite little to no expression in normal ovarian surface epithelium, western immunoblotting, immunohistochemical staining and enzyme linked immunosorbent assay showed elevated RHAMM levels in clinical tissue sections, omental metastasis and urine specimens of serous OC patients, as well as in cell lysates. We also found that RHAMM levels increase with increasing grade and stage in serous OC tissues and that RHAMM localizes to the apical cell surface and inclusion cysts. Apical localization of RHAMM suggested protein secretion which was validated by detection of significantly elevated urinary RHAMM levels (p < 0.0001) in OC patients (116.66 pg/mL) compared with normal controls (8.16 pg/mL). Likewise, urinary RHAMM levels decreased following cytoreductive surgery in OC patients suggesting the source of urinary RHAMM from tumor tissue. Lastly, we validated RHAMM levels in OC cell lysate and found at least 12× greater levels compared to normal ovarian surface epithelial cells. CONCLUSION This pilot study shows, for the first time, that RHAMM may contribute to OC disease and could potentially be used as a prognostic marker.
Collapse
Affiliation(s)
- Stephanie T Buttermore
- Department of Pathology & Cell Biology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC 11, Tampa, FL, 33612, USA
| | | | - Ambuj Kumar
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Anne Champeaux
- Department of Pathology & Cell Biology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC 11, Tampa, FL, 33612, USA
| | - Santo V Nicosia
- Department of Pathology & Cell Biology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC 11, Tampa, FL, 33612, USA
| | - Patricia A Kruk
- Department of Pathology & Cell Biology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC 11, Tampa, FL, 33612, USA. .,Department of Obstetrics & Gynecology, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
34
|
Navone NM, Labanca E. Modeling Cancer Metastasis. PATIENT-DERIVED XENOGRAFT MODELS OF HUMAN CANCER 2017. [DOI: 10.1007/978-3-319-55825-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Fan SH, Wang YY, Wu ZY, Zhang ZF, Lu J, Li MQ, Shan Q, Wu DM, Sun CH, Hu B, Zheng YL. AGPAT9 suppresses cell growth, invasion and metastasis by counteracting acidic tumor microenvironment through KLF4/LASS2/V-ATPase signaling pathway in breast cancer. Oncotarget 2016; 6:18406-17. [PMID: 26110566 PMCID: PMC4621899 DOI: 10.18632/oncotarget.4074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/08/2015] [Indexed: 12/22/2022] Open
Abstract
Human 1-acylglycerol-3-phosphate O-acyltransferase 9 (AGPAT9) is the gene identified from adipose tissue in 2007. We found AGPAT9 expression was significantly higher in poorly invasive MCF7 human breast cancer cells than the highly invasive MDA-MB-231 cells. AGPAT9 significantly inhibited the proliferation of breast cancer cells in vitro and in vivo. Live-cell imaging and transwell assays showed that AGPAT9 could significantly inhibit the migration and invasive capacities of breast cancer cells. The inhibitory effect of AGPAT9 on metastasis was also observed in vivo in lung metastasis model. AGPAT9 inhibited breast cancer cell proliferation, migration and invasion through, at least in part, suppressing the V-ATPase activity. In addition, increased AGPAT9 expression in MCF-7/ADR cells could increase the chemosensitivity to doxorubicin (Dox). Our findings suggest that increasing AGPAT9 expression may be a new approach that can be used for breast cancer treatment.
Collapse
Affiliation(s)
- Shao-hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yan-yan Wang
- Department of Function Examination, The First People's Hospital of Xuzhou, Jiangsu, China
| | - Zhi-yong Wu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Zi-feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Meng-qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Dong-mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Chun-hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yuan-lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
36
|
Vennin C, Herrmann D, Lucas MC, Timpson P. Intravital imaging reveals new ancillary mechanisms co-opted by cancer cells to drive tumor progression. F1000Res 2016; 5. [PMID: 27239290 PMCID: PMC4870995 DOI: 10.12688/f1000research.8090.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2016] [Indexed: 12/15/2022] Open
Abstract
Intravital imaging is providing new insights into the dynamics of tumor progression in native tissues and has started to reveal the layers of complexity found in cancer. Recent advances in intravital imaging have allowed us to look deeper into cancer behavior and to dissect the interactions between tumor cells and the ancillary host niche that promote cancer development. In this review, we provide an insight into the latest advances in cancer biology achieved by intravital imaging, focusing on recently discovered mechanisms by which tumor cells manipulate normal tissue to facilitate disease progression.
Collapse
Affiliation(s)
- Claire Vennin
- The Kinghorn Cancer Centre, Cancer Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - David Herrmann
- The Kinghorn Cancer Centre, Cancer Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Morghan C Lucas
- The Kinghorn Cancer Centre, Cancer Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Cancer Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
37
|
Suhovskih AV, Kashuba VI, Klein G, Grigorieva EV. Prostate cancer cells specifically reorganize epithelial cell-fibroblast communication through proteoglycan and junction pathways. Cell Adh Migr 2016; 11:39-53. [PMID: 27111714 DOI: 10.1080/19336918.2016.1182292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Microenvironment and stromal fibroblasts are able to inhibit tumor cell proliferation both through secreted signaling molecules and direct cell-cell interactions but molecular mechanisms of these effects remain unclear. In this study, we investigated a role of cell-cell contact-related molecules (protein ECM components, proteoglycans (PGs) and junction-related molecules) in intercellular communications between the human TERT immortalized fibroblasts (BjTERT fibroblasts) and normal (PNT2) or cancer (LNCaP, PC3, DU145) prostate epithelial cells. It was shown that BjTERT-PNT2 cell coculture resulted in significant decrease of both BjTERT and PNT2 proliferation rates and reorganization of transcriptional activity of cell-cell contact-related genes in both cell types. Immunocytochemical staining revealed redistribution of DCN and LUM in PNT2 cells and significant increase of SDC1 at the intercellular contact zones between BjTERT and PNT2 cells, suggesting active involvement of the PGs in cell-cell contacts and contact inhibition of cell proliferation. Unlike to PNT2 cells, PC3 cells did not respond to BjTERT in terms of PGs expression, moderately increased transcriptional activity of junctions-related genes (especially tight junction) and failed to establish PC3-BjTERT contacts. At the same time, PC3 cells significantly down-regulated junctions-related genes (especially focal adhesions and adherens junctions) in BjTERT fibroblasts resulting in visible preference for homotypic PC3-PC3 over heterotypic PC3-BjTERT contacts and autonomous growth of PC3 clones. Taken together, the results demonstrate that an instructing role of fibroblasts to normal prostate epithelial cells is revoked by cancer cells through deregulation of proteoglycans and junction molecules expression and overall disorganization of fibroblast-cancer cell communication.
Collapse
Affiliation(s)
- Anastasia V Suhovskih
- a MTC, Karolinska Institute , Stockholm , Sweden.,b Institute of Molecular Biology and Biophysics , Novosibirsk , Russia
| | - Vladimir I Kashuba
- a MTC, Karolinska Institute , Stockholm , Sweden.,c Institute of Molecular Biology and Genetics , Kiev , Ukraine
| | - George Klein
- a MTC, Karolinska Institute , Stockholm , Sweden
| | - Elvira V Grigorieva
- a MTC, Karolinska Institute , Stockholm , Sweden.,b Institute of Molecular Biology and Biophysics , Novosibirsk , Russia
| |
Collapse
|
38
|
Kim Y, Williams KC, Gavin CT, Jardine E, Chambers AF, Leong HS. Quantification of cancer cell extravasation in vivo. Nat Protoc 2016; 11:937-48. [PMID: 27101515 DOI: 10.1038/nprot.2016.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer cell 'invasiveness' is one of the main driving forces in cancer metastasis, and assays that quantify this key attribute of cancer cells are crucial in cancer metastasis research. The research goal of many laboratories is to elucidate the signaling pathways and effectors that are responsible for cancer cell invasion, but many of these experiments rely on in vitro methods that do not specifically simulate individual steps of the metastatic cascade. Cancer cell extravasation is arguably the most important example of invasion in the metastatic cascade, whereby a single cancer cell undergoes transendothelial migration, forming invasive processes known as invadopodia to mediate translocation of the tumor cell from the vessel lumen into tissue in vivo. We have developed a rapid, reproducible and economical technique to evaluate cancer cell invasiveness by quantifying in vivo rates of cancer cell extravasation in the chorioallantoic membrane (CAM) of chicken embryos. This technique enables the investigator to perform well-powered loss-of-function studies of cancer cell extravasation within 24 h, and it can be used to identify and validate drugs with potential antimetastatic effects that specifically target cancer cell extravasation. A key advantage of this technique over similar assays is that intravascular cancer cells within the capillary bed of the CAM are clearly distinct from extravasated cells, which makes cancer cell extravasation easy to detect. An intermediate level of experience in injections of the chorioallantoic membrane of avian embryos and cell culture techniques is required to carry out the protocol.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| | - Karla C Williams
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Breast Cancer Research Unit, London Health Sciences Centre, London, Ontario, Canada
| | - Carson T Gavin
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| | - Emily Jardine
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| | - Ann F Chambers
- Translational Breast Cancer Research Unit, London Health Sciences Centre, London, Ontario, Canada.,Department of Oncology, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Hon S Leong
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
39
|
Turley EA, Wood DK, McCarthy JB. Carcinoma Cell Hyaluronan as a "Portable" Cancerized Prometastatic Microenvironment. Cancer Res 2016; 76:2507-12. [PMID: 27197262 DOI: 10.1158/0008-5472.can-15-3114] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/14/2016] [Indexed: 12/13/2022]
Abstract
Hyaluronan (HA) is a structurally simple polysaccharide, but its ability to act as a template for organizing pericellular matrices and its regulated synthesis and degradation are key to initiating repair responses. Importantly, these HA functions are usurped by tumor cells to facilitate progression and metastasis. Recent advances have identified the functional complexities associated with the synthesis and degradation of HA-rich matrices. Three enzymes synthesize large HA polymers while multiple hyaluronidases or tissue free radicals degrade these into smaller bioactive fragments. A family of extracellular and cell-associated HA-binding proteins/receptors translates the bioinformation encrypted in this complex polymer mixture to activate signaling networks required for cell survival, proliferation, and migration in an actively remodeling microenvironment. Changes in HA metabolism within both the peritumor stroma and parenchyma are linked to tumor initiation, progression, and poor clinical outcome. We review evidence that metastatic tumor cells must acquire the capability to autonomously synthesize, assemble, and process their own "portable" HA-rich microenvironments to survive in the circulation, metastasize to ectopic sites, and escape therapeutic intervention. Strategies to disrupt the HA machinery of primary tumor and circulating tumor cells may enhance the effectiveness of current conventional and targeted therapies. Cancer Res; 76(9); 2507-12. ©2016 AACR.
Collapse
Affiliation(s)
- Eva A Turley
- Cancer Research Laboratories, London Regional Cancer Center, Victoria Hospital, London, Ontario, Canada. Departments of Oncology, Biochemistry and Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.
| | - David K Wood
- Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota. Masonic Cancer Center, Minneapolis, Minnesota
| | - James B McCarthy
- Masonic Cancer Center, Minneapolis, Minnesota. Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
40
|
Liang J, Jiang D, Noble PW. Hyaluronan as a therapeutic target in human diseases. Adv Drug Deliv Rev 2016; 97:186-203. [PMID: 26541745 PMCID: PMC4753080 DOI: 10.1016/j.addr.2015.10.017] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023]
Abstract
Accumulation and turnover of extracellular matrix is a hallmark of tissue injury, repair and remodeling in human diseases. Hyaluronan is a major component of the extracellular matrix and plays an important role in regulating tissue injury and repair, and controlling disease outcomes. The function of hyaluronan depends on its size, location, and interactions with binding partners. While fragmented hyaluronan stimulates the expression of an array of genes by a variety of cell types regulating inflammatory responses and tissue repair, cell surface hyaluronan provides protection against tissue damage from the environment and promotes regeneration and repair. The interactions of hyaluronan and its binding proteins participate in the pathogenesis of many human diseases. Thus, targeting hyaluronan and its interactions with cells and proteins may provide new approaches to developing therapeutics for inflammatory and fibrosing diseases. This review focuses on the role of hyaluronan in biological and pathological processes, and as a potential therapeutic target in human diseases.
Collapse
Affiliation(s)
- Jiurong Liang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dianhua Jiang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W Noble
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
41
|
Marcucci F, Stassi G, De Maria R. Epithelial-mesenchymal transition: a new target in anticancer drug discovery. Nat Rev Drug Discov 2016; 15:311-25. [PMID: 26822829 DOI: 10.1038/nrd.2015.13] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The conversion of cells with an epithelial phenotype into cells with a mesenchymal phenotype, referred to as epithelial-mesenchymal transition, is a critical process for embryonic development that also occurs in adult life, particularly during tumour progression. Tumour cells undergoing epithelial-mesenchymal transition acquire the capacity to disarm the body's antitumour defences, resist apoptosis and anticancer drugs, disseminate throughout the organism, and act as a reservoir that replenishes and expands the tumour cell population. Epithelial-mesenchymal transition is therefore becoming a target of prime interest for anticancer therapy. Here, we discuss the screening and classification of compounds that affect epithelial-mesenchymal transition, highlight some compounds of particular interest, and address issues related to their clinical application.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Scientific Directorate, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy. Present address: Department of Pharmacological and Biomolecular Sciences, University of Milan, via Trentacoste 2, 20133 Milan, Italy
| | - Giorgio Stassi
- Department of Surgical and Oncological Sciences, University of Palermo, Via del Vespro 131, 90127 Palermo, Italy
| | - Ruggero De Maria
- Scientific Directorate, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy
| |
Collapse
|
42
|
Veiseh M, Leith SJ, Tolg C, Elhayek SS, Bahrami SB, Collis L, Hamilton S, McCarthy JB, Bissell MJ, Turley E. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells. Front Cell Dev Biol 2015; 3:63. [PMID: 26528478 PMCID: PMC4606125 DOI: 10.3389/fcell.2015.00063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/17/2015] [Indexed: 12/31/2022] Open
Abstract
The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies.
Collapse
Affiliation(s)
- Mandana Veiseh
- Life Sciences Division, Lawrence Berkeley National LaboratoriesBerkeley, CA, USA
- Palo Alto Research Center (a Xerox Company)Palo Alto, CA, USA
| | - Sean J. Leith
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western UniversityLondon, ON, Canada
| | - Cornelia Tolg
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western UniversityLondon, ON, Canada
| | - Sallie S. Elhayek
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western UniversityLondon, ON, Canada
| | - S. Bahram Bahrami
- Life Sciences Division, Lawrence Berkeley National LaboratoriesBerkeley, CA, USA
| | - Lisa Collis
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western UniversityLondon, ON, Canada
| | - Sara Hamilton
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western UniversityLondon, ON, Canada
| | - James B. McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer Center, University of MinnesotaMinneapolis, MN, USA
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National LaboratoriesBerkeley, CA, USA
| | - Eva Turley
- Departments of Oncology/Biochemistry/Surgery, Western Schulich School of Medicine, London Regional Cancer Program, Western UniversityLondon, ON, Canada
| |
Collapse
|
43
|
Li P, Xiang T, Li H, Li Q, Yang B, Huang J, Zhang X, Shi Y, Tan J, Ren G. Hyaluronan synthase 2 overexpression is correlated with the tumorigenesis and metastasis of human breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12101-12114. [PMID: 26722395 PMCID: PMC4680340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/22/2015] [Indexed: 06/05/2023]
Abstract
Extracellular matrix (ECM) is closely correlated with the malignant behavior of breast cancer cells. Hyaluronan (HA) is one of the main components of ECM, and actively regulates cell adhesion, migration and proliferation by interacting with specific cell surface receptors such as CD44 and RHAMM. HA synthase 2 (HAS2) catalyzes the synthesis of HA, but its role in breast tumorigenesis remains unclear. This study assessed the roles of HAS2 in malignant behavior of human breast cancer and sought to provide mechanistic insights into the biological and pivotal roles of HAS2. We observed HAS2 was overexpressed in breast cancer cell lines and invasive duct cancer tissues, compared with the nonmalignant breast cell lines and normal breast tissues. In addition, a high level of HAS2 expression was statistically correlated with lymph node metastasis. Functional assays showed that knockdown of HAS2 expression inhibited breast tumor cell proliferation in vivo and in vitro, through the induction of apoptosis or cell cycle arrest. Further studies showed that the HA were elevated in breast cancer, and HAS2 could upregulate HA expression. In conclusion, HAS2-HA system influences the biological characteristics of human breast cancer cells, and HAS2 may be a potential prognostic marker and therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Peng Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Tingxiu Xiang
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Hongzhong Li
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Qianqian Li
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Bing Yang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Jing Huang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Xiang Zhang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Yuan Shi
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Jinxiang Tan
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Guosheng Ren
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| |
Collapse
|
44
|
|
45
|
Augustin F, Fiegl M, Schmid T, Pomme G, Sterlacci W, Tzankov A. Receptor for hyaluronic acid-mediated motility (RHAMM, CD168) expression is prognostically important in both nodal negative and nodal positive large cell lung cancer. J Clin Pathol 2015; 68:368-73. [DOI: 10.1136/jclinpath-2014-202819] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/03/2015] [Indexed: 12/17/2022]
|
46
|
Yan L, Zhang J, Lee CS, Chen X. Micro- and nanotechnologies for intracellular delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4487-504. [PMID: 25168360 DOI: 10.1002/smll.201401532] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/18/2014] [Indexed: 05/24/2023]
Abstract
The majority of drugs and biomolecules need to be delivered into cells to be effective. However, the cell membranes, a biological barrier, strictly resist drugs or biomolecules entering cells, resulting in significantly reduced intracellular delivery efficiency. To overcome this barrier, a variety of intracellular delivery approaches including chemical and physical ways have been developed in recent years. In this review, the focus is on summarizing the nanomaterial routes involved in making use of a collection of receptors for the targeted delivery of drugs and biomolecules and the physical ways of applying micro- and nanotechnologies for high-throughput intracellular delivery.
Collapse
Affiliation(s)
- Li Yan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, PR China
| | | | | | | |
Collapse
|
47
|
Hyaluronan and RHAMM in wound repair and the "cancerization" of stromal tissues. BIOMED RESEARCH INTERNATIONAL 2014; 2014:103923. [PMID: 25157350 PMCID: PMC4137499 DOI: 10.1155/2014/103923] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/04/2014] [Indexed: 12/12/2022]
Abstract
Tumors and wounds share many similarities including loss of tissue architecture, cell polarity and cell differentiation, aberrant extracellular matrix (ECM) remodeling (Ballard et al., 2006) increased inflammation, angiogenesis, and elevated cell migration and proliferation. Whereas these changes are transient in repairing wounds, tumors do not regain tissue architecture but rather their continued progression is fueled in part by loss of normal tissue structure. As a result tumors are often described as wounds that do not heal. The ECM component hyaluronan (HA) and its receptor RHAMM have both been implicated in wound repair and tumor progression. This review highlights the similarities and differences in their roles during these processes and proposes that RHAMM-regulated wound repair functions may contribute to “cancerization” of the tumor microenvironment.
Collapse
|
48
|
Profiling tumors with sugar. Nat Methods 2014. [DOI: 10.1038/nmeth.2980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|