1
|
Branciamore S, Rodin AS, Riggs AD. Stochastic Epigenetic Modification and Evolution of Sex Determination in Vertebrates. J Mol Evol 2024; 92:861-873. [PMID: 39565411 PMCID: PMC11646274 DOI: 10.1007/s00239-024-10213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/19/2024] [Indexed: 11/21/2024]
Abstract
In this report, we propose a novel mathematical model of the origin and evolution of sex determination in vertebrates that is based on the stochastic epigenetic modification (SEM) mechanism. We have previously shown that SEM, with rates consistent with experimental observation, can both increase the rate of gene fixation and decrease pseudogenization, thus dramatically improving the efficacy of evolution. Here, we present a conjectural model of the origin and evolution of sex determination wherein the SEM mechanism alone is sufficient to parsimoniously trigger and guide the evolution of heteromorphic sex chromosomes from the initial homomorphic chromosome configuration, without presupposing any allele frequency differences. Under this theoretical model, the SEM mechanism (i) predated vertebrate sex determination origins and evolution, (ii) has been conveniently and parsimoniously co-opted by the vertebrate sex determination systems during the evolutionary transitioning to the extant vertebrate sex determination, likely acting "on top" of these systems, and (iii) continues existing, alongside all known vertebrate sex determination systems, as a universal pan-vertebrate sex determination modulation mechanism.
Collapse
Affiliation(s)
- Sergio Branciamore
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, USA.
| | - Andrei S Rodin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, USA.
| | - Arthur D Riggs
- Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte , USA
| |
Collapse
|
2
|
Santourlidis S. Phylo-Epigenetics in Phylogeny Analyses and Evolution. Genes (Basel) 2024; 15:1198. [PMID: 39336789 PMCID: PMC11430929 DOI: 10.3390/genes15091198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Long-standing, continuous blurring and controversies in the field of phylogenetic interspecies relations, associated with insufficient explanations for dynamics and variability of speeds of evolution in mammals, hint at a crucial missing link. It has been suggested that transgenerational epigenetic inheritance and the concealed mechanisms behind play a distinct role in mammalian evolution. Here, a comprehensive sequence alignment approach in hominid species, i.e., Homo sapiens, Homo neanderthalensis, Denisovan human, Pan troglodytes, Pan paniscus, Gorilla gorilla, and Pongo pygmaeus, comprising conserved CpG islands of housekeeping genes, uncover evidence for a distinct variability of CpG dinucleotides. Applying solely these evolutionary consistent and inconsistent CpG sites in a classic phylogenetic analysis, calibrated by the divergence time point of the common chimpanzee (P. troglodytes) and the bonobo or pygmy chimpanzee (P. paniscus), a "phylo-epigenetic" tree has been generated, which precisely recapitulates branch points and branch lengths, i.e., divergence events and relations, as they have been broadly suggested in the current literature, based on comprehensive molecular phylogenomics and fossil records of many decades. It is suggested here that CpG dinucleotide changes at CpG islands are of superior importance for evolutionary developments. These changes are successfully inherited through the germ line, determining emerging methylation profiles, and they are a central component of transgenerational epigenetic inheritance. It is hidden in the DNA, what will happen on it later.
Collapse
Affiliation(s)
- Simeon Santourlidis
- Epigenetics Laboratory for Human Health and Longevity, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| |
Collapse
|
3
|
Santourlidis S. Phyloepigenetics. BIOLOGY 2022; 11:754. [PMID: 35625482 PMCID: PMC9138650 DOI: 10.3390/biology11050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Traditionally, phylogenetic interspecies relationships are estimated based on genetic diversity, since it is assumed that the more recently diverged a species, with comparable constancy of development, the more similar their genetic material and proteins should be. However, occasional controversies in the field may reflect limited resolution and accuracy of this approach. Epigenetics has, meanwhile, provided significant evidence that CpG dinucleotides (CpGs) within genetic material are of particular importance for the annotation and function of the genome and the formation of the phenotype, which is continuously shaped by evolutionary interaction with environmental factors. Based on this, it can be concluded that CpGs follow a distinct rate of evolution, compared to all other nucleotide positions. Evidence is provided that supports this conclusion. Therefore, using CpGs to fathom evolutionary relationships between species could turn out to be a valuable approach to achieve, in some cases, an improved understanding of evolutionary development.
Collapse
Affiliation(s)
- Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| |
Collapse
|
4
|
Vogt G. Epigenetic variation in animal populations: Sources, extent, phenotypic implications, and ecological and evolutionary relevance. J Biosci 2021. [DOI: 10.1007/s12038-021-00138-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Biwer C, Kawam B, Chapelle V, Silvestre F. The Role of Stochasticity in the Origin of Epigenetic Variation in Animal Populations. Integr Comp Biol 2020; 60:1544-1557. [PMID: 32470118 DOI: 10.1093/icb/icaa047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetic mechanisms such as DNA methylation modulate gene expression in a complex fashion are consequently recognized as among the most important contributors to phenotypic variation in natural populations of plants, animals, and microorganisms. Interactions between genetics and epigenetics are multifaceted and epigenetic variation stands at the crossroad between genetic and environmental variance, which make these mechanisms prominent in the processes of adaptive evolution. DNA methylation patterns depend on the genotype and can be reshaped by environmental conditions, while transgenerational epigenetic inheritance has been reported in various species. On the other hand, DNA methylation can influence the genetic mutation rate and directly affect the evolutionary potential of a population. The origin of epigenetic variance can be attributed to genetic, environmental, or stochastic factors. Generally less investigated than the first two components, variation lacking any predictable order is nevertheless present in natural populations and stochastic epigenetic variation, also referred to spontaneous epimutations, can sustain phenotypic diversity. Here, potential sources of such stochastic epigenetic variability in animals are explored, with a focus on DNA methylation. To this day, quantifying the importance of stochasticity in epigenetic variability remains a challenge. However, comparisons between the mutation and the epimutation rates showed a high level of the latter, suggesting a significant role of spontaneous epimutations in adaptation. The implications of stochastic epigenetic variability are multifold: by affecting development and subsequently phenotype, random changes in epigenetic marks may provide additional phenotypic diversity, which can help natural populations when facing fluctuating environments. In isogenic lineages and asexually reproducing organisms, poor or absent genetic diversity can hence be tolerated. Further implication of stochastic epigenetic variability in adaptation is found in bottlenecked invasive species populations and populations using a bet-hedging strategy.
Collapse
Affiliation(s)
| | | | | | - F Silvestre
- Institute of Earth, Life and Environment (ILEE), University of Namur, 61 rue de Bruxelles, Namur, 5000, Belgium
| |
Collapse
|
6
|
Julian CG. An Aptitude for Altitude: Are Epigenomic Processes Involved? Front Physiol 2019; 10:1397. [PMID: 31824328 PMCID: PMC6883803 DOI: 10.3389/fphys.2019.01397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/29/2019] [Indexed: 12/30/2022] Open
Abstract
In recent years, high-throughput genomic technologies and computational advancements have invigorated efforts to identify the molecular mechanisms regulating human adaptation to high altitude. Although exceptional progress regarding the identification of genomic regions showing evidence of recent positive selection has been made, many of the key “hypoxia tolerant” phenotypes of highland populations have not yet been linked to putative adaptive genetic variants. As a result, fundamental questions regarding the biological processes by which such adaptations are acquired remain unanswered. This Mini Review discusses the hypothesis that the epigenome works in coordination with underlying genomic sequence to govern adaptation to the chronic hypoxia of high altitude by influencing adaptive capacity and phenotypic variation under conditions of environmental hypoxia. Efforts to unravel the complex interactions between the genome, epigenome, and environmental exposures are essential to more fully appreciate the mechanisms underlying human adaptation to hypoxia.
Collapse
Affiliation(s)
- Colleen G Julian
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
7
|
Kazachenka A, Bertozzi TM, Sjoberg-Herrera MK, Walker N, Gardner J, Gunning R, Pahita E, Adams S, Adams D, Ferguson-Smith AC. Identification, Characterization, and Heritability of Murine Metastable Epialleles: Implications for Non-genetic Inheritance. Cell 2018; 175:1259-1271.e13. [PMID: 30454646 PMCID: PMC6242299 DOI: 10.1016/j.cell.2018.09.043] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/19/2018] [Accepted: 09/19/2018] [Indexed: 01/07/2023]
Abstract
Generally repressed by epigenetic mechanisms, retrotransposons represent around 40% of the murine genome. At the Agouti viable yellow (Avy) locus, an endogenous retrovirus (ERV) of the intracisternal A particle (IAP) class retrotransposed upstream of the agouti coat-color locus, providing an alternative promoter that is variably DNA methylated in genetically identical individuals. This results in variable expressivity of coat color that is inherited transgenerationally. Here, a systematic genome-wide screen identifies multiple C57BL/6J murine IAPs with Avy epigenetic properties. Each exhibits a stable methylation state within an individual but varies between individuals. Only in rare instances do they act as promoters controlling adjacent gene expression. Their methylation state is locus-specific within an individual, and their flanking regions are enriched for CTCF. Variably methylated IAPs are reprogrammed after fertilization and re-established as variable loci in the next generation, indicating reconstruction of metastable epigenetic states and challenging the generalizability of non-genetic inheritance at these regions.
Collapse
Affiliation(s)
| | - Tessa M Bertozzi
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Nic Walker
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Joseph Gardner
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Richard Gunning
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Elena Pahita
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Sarah Adams
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - David Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | |
Collapse
|
8
|
Frequent monoallelic or skewed expression for developmental genes in CNS-derived cells and evidence for balancing selection. Proc Natl Acad Sci U S A 2018; 115:E10379-E10386. [PMID: 30322913 PMCID: PMC6217436 DOI: 10.1073/pnas.1808652115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cellular mosaicism due to monoallelic autosomal expression (MAE), with cell selection during development, is becoming increasingly recognized as prevalent in mammals, leading to interest in understanding its extent and mechanism(s). We report here use of clonal cell lines derived from the CNS of adult female [Formula: see text] hybrid (C57BL/6 X JF1) mice to characterize MAE as neural stem cells (nscs) differentiate to astrocyte-like cells (asls). We found that different subsets of genes show MAE in the two populations of cells; in each case, there is strong enrichment for genes specific to the respective developmental state. Genes that exhibit MAE are 22% of nsc-specific genes and 26% of asl-specific genes. Moreover, the promoters of genes with MAE have reduced CpG dinucleotides but increased CpG differences between the two parental mouse strains. Extending the study of variability to wild populations of mice, we found evidence for balancing selection as a contributing force in evolution of those genes showing developmental specificity (i.e., expressed in either nsc or asl), not just for genes showing MAE. Furthermore, we found that genes showing skewed allelic expression (SKE) were similarly enriched among cell type-specific genes and also showed a heightened probability of balancing selection. Thus, developmental stage-specific genes and genes with MAE or SKE seem to make up overlapping classes subject to selection for increased diversity. The implications of these results for development and evolution are discussed in the context of a model with stochastic epigenetic modifications taking place only during a relatively brief developmental window.
Collapse
|
9
|
Abstract
The Modern Evolutionary Synthesis (MS) forged in the mid-twentieth century was built on a notion of heredity that excluded soft inheritance, the inheritance of the effects of developmental modifications. However, the discovery of molecular mechanisms that generate random and developmentally induced epigenetic variations is leading to a broadening of the notion of biological heredity that has consequences for ideas about evolution. After presenting some old challenges to the MS that were raised, among others, by Karl Popper, I discuss recent research on epigenetic inheritance, which provides experimental and theoretical support for these challenges. There is now good evidence that epigenetic inheritance is ubiquitous and is involved in adaptive evolution and macroevolution. I argue that the many evolutionary consequences of epigenetic inheritance open up new research areas and require the extension of the evolutionary synthesis beyond the current neo-Darwinian model.
Collapse
Affiliation(s)
- Eva Jablonka
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
10
|
Abstract
Background The studies on CpG islands (CGI) and Alu elements functions, evolution, and distribution in the genome started since the discovery in nineteen eighties (1981, 1986, correspondingly). Their highly skewed genome wide distribution implies the non-random retrotransposition pattern. Besides CGIs in gene promoters, CGIs clusters were observed in the homeobox gene regions and in the macrosatellites, but the whole picture of their distribution specifics was not grasped. Attempts to identify any causative features upon their (genome wide) distribution, such as the DNA context mediated preferred insertion sites of Alu repeats, have been made to ascribe their clusters location. Methods Recent emergence of high resolution 3D map of human genome allowed segregating the genome into the large scale chromatin domains of naturally observable nuclear subcompartments, or Topologically Associated Domains (TADs), designated by spatial chromatin distribution. We utilized the chromatin map to elucidate relations between large scale chromatin state and CpG rich elements landscape. In the course of analysis it was confirmed that genes, Alu and CGI clusters maintain obvious, albeit different in strength, preference for open chromatin. For the first time it was clearly shown that the clusters density of the Alu and CGIs monotonically depend on the chromatin accessibility rate. In particular, the highest density of these elements is found in A1 euchromatin regions characterized by a high density of small length genes replicating in the early S-phase. It implies that these elements mediate (CGIs) or are a side element (Alus) of chromatin accessibility. Results We elucidated that both methylated and non-methylated CGIs display the affinity to chromatin accessibility. As a part of comparative genomics section, we elucidated that the dog’s genome non-canonical structure, outstanding in mammals for its high CGIs abundance compared to gene number, is explained by the presence of dense tandem CGI extended hotspots (500 kb on average) in subtelomeric and pericentromeric regions with highly skewed CG content, and not by CGIs global distribution pattern shift. Conclusions The study underlines the close association of CG-rich elements distribution with the newly introduced large scale chromatin state map, proposing a refined standpoint on interrelation of aforementioned genome elements and the chromatin state. To our expertise, the TAD-associated partition model employed in the study is likely the most substantial one regarding CpG rich clusters distribution among the whole genome chromatin/isochores maps available. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0864-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vladimir N Babenko
- Institute of Cytology and Genetics SB RAS, Lavrentyeva, 10, 630090, Novosibirsk, Russia. .,Novosibirsk State University, Pirogova, 2, 630090, Novosibirsk, Russia.
| | - Irina V Chadaeva
- Institute of Cytology and Genetics SB RAS, Lavrentyeva, 10, 630090, Novosibirsk, Russia
| | - Yuriy L Orlov
- Institute of Cytology and Genetics SB RAS, Lavrentyeva, 10, 630090, Novosibirsk, Russia.,Novosibirsk State University, Pirogova, 2, 630090, Novosibirsk, Russia
| |
Collapse
|
11
|
Vogt G. Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: insights from clonal, invasive, polyploid, and domesticated animals. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx002. [PMID: 29492304 PMCID: PMC5804542 DOI: 10.1093/eep/dvx002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/28/2017] [Accepted: 02/02/2017] [Indexed: 05/13/2023]
Abstract
There is increasing evidence, particularly from plants, that epigenetic mechanisms can contribute to environmental adaptation and evolution. The present article provides an overview on this topic for animals and highlights the special suitability of clonal, invasive, hybrid, polyploid, and domesticated species for environmental and evolutionary epigenetics. Laboratory and field studies with asexually reproducing animals have shown that epigenetically diverse phenotypes can be produced from the same genome either by developmental stochasticity or environmental induction. The analysis of invasions revealed that epigenetic phenotype variation may help to overcome genetic barriers typically associated with invasions such as bottlenecks and inbreeding. Research with hybrids and polyploids established that epigenetic mechanisms are involved in consolidation of speciation by contributing to reproductive isolation and restructuring of the genome in the neo-species. Epigenetic mechanisms may even have the potential to trigger speciation but evidence is still meager. The comparison of domesticated animals and their wild ancestors demonstrated heritability and selectability of phenotype modulating DNA methylation patterns. Hypotheses, model predictions, and empirical results are presented to explain how epigenetic phenotype variation could facilitate adaptation and speciation. Clonal laboratory lineages, monoclonal invaders, and adaptive radiations of different evolutionary age seem particularly suitable to empirically test the proposed ideas. A respective research agenda is presented.
Collapse
Affiliation(s)
- Günter Vogt
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Oh G, Ebrahimi S, Wang SC, Cortese R, Kaminsky ZA, Gottesman II, Burke JR, Plassman BL, Petronis A. Epigenetic assimilation in the aging human brain. Genome Biol 2016; 17:76. [PMID: 27122015 PMCID: PMC4848814 DOI: 10.1186/s13059-016-0946-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 04/11/2016] [Indexed: 12/22/2022] Open
Abstract
Background Epigenetic drift progressively increases variation in DNA modification profiles of aging cells, but the finale of such divergence remains elusive. In this study, we explored the dynamics of DNA modification and transcription in the later stages of human life. Results We find that brain tissues of older individuals (>75 years) become more similar to each other, both epigenetically and transcriptionally, compared with younger individuals. Inter-individual epigenetic assimilation is concurrent with increasing similarity between the cerebral cortex and the cerebellum, which points to potential brain cell dedifferentiation. DNA modification analysis of twins affected with Alzheimer’s disease reveals a potential for accelerated epigenetic assimilation in neurodegenerative disease. We also observe loss of boundaries and merging of neighboring DNA modification and transcriptomic domains over time. Conclusions Age-dependent epigenetic divergence, paradoxically, changes to convergence in the later stages of life. The newly described phenomena of epigenetic assimilation and tissue dedifferentiation may help us better understand the molecular mechanisms of aging and the origins of diseases for which age is a risk factor. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0946-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriel Oh
- Krembil Family Epigenetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St. R130, Toronto, Ontario, M5T 1R8, Canada
| | - Sasha Ebrahimi
- Krembil Family Epigenetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St. R130, Toronto, Ontario, M5T 1R8, Canada
| | - Sun-Chong Wang
- Institute of Systems Biology and Bioinformatics, National Central University, Chungli, 320, Taiwan
| | - Rene Cortese
- Krembil Family Epigenetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St. R130, Toronto, Ontario, M5T 1R8, Canada.,Department of Pediatrics, University of Chicago, Chicago, Illinois, 60637, USA
| | - Zachary A Kaminsky
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21287, USA
| | - Irving I Gottesman
- Departments of Psychology and Psychiatry, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - James R Burke
- Duke University Medical Center, Duke University, Box 2900, Durham, North Carolina, 27701, USA
| | - Brenda L Plassman
- Duke University Medical Center, Duke University, Box 41, Durham, North Carolina, 27701, USA
| | - Art Petronis
- Krembil Family Epigenetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St. R130, Toronto, Ontario, M5T 1R8, Canada.
| |
Collapse
|
13
|
Junien C, Panchenko P, Pirola L, Amarger V, Kaeffer B, Parnet P, Torrisani J, Bolaños Jimenez F, Jammes H, Gabory A. [The new paradigm of the developmental origin of health and diseases (DOHaD)--Epigenetics and environment: evidence and missing links]. Med Sci (Paris) 2016; 32:27-34. [PMID: 26850604 DOI: 10.1051/medsci/20163201006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
According to the new paradigm of the Developpemental Origins of Health and Disease (DOHaD), the environmental factors to which an individual is exposed throughout his life can leave an epigenetic footprint on the genome. A crucial period is the early development, where the epigenome is particularly sensitive to the effects of the environment, and during which the individual builds up his health capital that will enable him to respond more or less well to the vagaries of life. The research challenge is to decipher the modes of action and the epigenetic mechanisms put into play by environmental factors that lead to increased disease susceptibility or resilience. The challenge for health is to translate these scientific discoveries into action through, among others, the establishment of preventive recommendations to slow down the growing incidence of non communicable diseases.
Collapse
Affiliation(s)
- Claudine Junien
- Inra, UMR1198, biologie du développement et reproduction, Domaine de Vilvert, Bâtiment 230, F-78352 Jouy-en-Josas, France
| | - Polina Panchenko
- Inra, UMR1198, biologie du développement et reproduction, Domaine de Vilvert, Bâtiment 230, F-78352 Jouy-en-Josas, France - Université Pierre et Marie Curie, F-75005 Paris, France
| | | | - Valérie Amarger
- UMR 1280 Inra université de Nantes, Institut des maladies de l'appareil digestif, Nantes, France
| | - Bertrand Kaeffer
- UMR 1280 Inra université de Nantes, Institut des maladies de l'appareil digestif, Nantes, France
| | - Patricia Parnet
- UMR 1280 Inra université de Nantes, Institut des maladies de l'appareil digestif, Nantes, France
| | - Jérôme Torrisani
- Inserm UMR1037, Centre de recherche en cancérologie de Toulouse, université de Toulouse III Paul Sabatier, F-31037 Toulouse, France
| | | | - Hélène Jammes
- Inra, UMR1198, biologie du développement et reproduction, Domaine de Vilvert, Bâtiment 230, F-78352 Jouy-en-Josas, France
| | - Anne Gabory
- Inra, UMR1198, biologie du développement et reproduction, Domaine de Vilvert, Bâtiment 230, F-78352 Jouy-en-Josas, France
| |
Collapse
|
14
|
Kim KD, El Baidouri M, Abernathy B, Iwata-Otsubo A, Chavarro C, Gonzales M, Libault M, Grimwood J, Jackson SA. A Comparative Epigenomic Analysis of Polyploidy-Derived Genes in Soybean and Common Bean. PLANT PHYSIOLOGY 2015; 168:1433-47. [PMID: 26149573 PMCID: PMC4528746 DOI: 10.1104/pp.15.00408] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/03/2015] [Indexed: 05/02/2023]
Abstract
Soybean (Glycine max) and common bean (Phaseolus vulgaris) share a paleopolyploidy (whole-genome duplication [WGD]) event, approximately 56.5 million years ago, followed by a genus Glycine-specific polyploidy, approximately 10 million years ago. Cytosine methylation is an epigenetic mark that plays an important role in the regulation of genes and transposable elements (TEs); however, the role of DNA methylation in the fate/evolution of genes following polyploidy and speciation has not been fully explored. Whole-genome bisulfite sequencing was used to produce nucleotide resolution methylomes for soybean and common bean. We found that, in soybean, CG body-methylated genes were abundant in WGD genes, which were, on average, more highly expressed than single-copy genes and had slower evolutionary rates than unmethylated genes, suggesting that WGD genes evolve more slowly than single-copy genes. CG body-methylated genes were also enriched in shared single-copy genes (single copy in both species) that may be responsible for the broad and high expression patterns of this class of genes. In addition, diverged methylation patterns in non-CG contexts between paralogs were due mostly to TEs in or near genes, suggesting a role for TEs and non-CG methylation in regulating gene expression post polyploidy. Reference methylomes for both soybean and common bean were constructed, providing resources for investigating epigenetic variation in legume crops. Also, the analysis of methylation patterns of duplicated and single-copy genes has provided insights into the functional consequences of polyploidy and epigenetic regulation in plant genomes.
Collapse
Affiliation(s)
- Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602 (K.D.K., M.E.B., B.A., A.I.-O., C.C., M.G., S.A.J.);Department of Microbiology and Plant Biology, University of Oklahoma, Noman, Oklahoma 73019 (M.L.); andHudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 (J.G.)
| | - Moaine El Baidouri
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602 (K.D.K., M.E.B., B.A., A.I.-O., C.C., M.G., S.A.J.);Department of Microbiology and Plant Biology, University of Oklahoma, Noman, Oklahoma 73019 (M.L.); andHudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 (J.G.)
| | - Brian Abernathy
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602 (K.D.K., M.E.B., B.A., A.I.-O., C.C., M.G., S.A.J.);Department of Microbiology and Plant Biology, University of Oklahoma, Noman, Oklahoma 73019 (M.L.); andHudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 (J.G.)
| | - Aiko Iwata-Otsubo
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602 (K.D.K., M.E.B., B.A., A.I.-O., C.C., M.G., S.A.J.);Department of Microbiology and Plant Biology, University of Oklahoma, Noman, Oklahoma 73019 (M.L.); andHudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 (J.G.)
| | - Carolina Chavarro
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602 (K.D.K., M.E.B., B.A., A.I.-O., C.C., M.G., S.A.J.);Department of Microbiology and Plant Biology, University of Oklahoma, Noman, Oklahoma 73019 (M.L.); andHudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 (J.G.)
| | - Michael Gonzales
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602 (K.D.K., M.E.B., B.A., A.I.-O., C.C., M.G., S.A.J.);Department of Microbiology and Plant Biology, University of Oklahoma, Noman, Oklahoma 73019 (M.L.); andHudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 (J.G.)
| | - Marc Libault
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602 (K.D.K., M.E.B., B.A., A.I.-O., C.C., M.G., S.A.J.);Department of Microbiology and Plant Biology, University of Oklahoma, Noman, Oklahoma 73019 (M.L.); andHudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 (J.G.)
| | - Jane Grimwood
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602 (K.D.K., M.E.B., B.A., A.I.-O., C.C., M.G., S.A.J.);Department of Microbiology and Plant Biology, University of Oklahoma, Noman, Oklahoma 73019 (M.L.); andHudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 (J.G.)
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602 (K.D.K., M.E.B., B.A., A.I.-O., C.C., M.G., S.A.J.);Department of Microbiology and Plant Biology, University of Oklahoma, Noman, Oklahoma 73019 (M.L.); andHudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 (J.G.)
| |
Collapse
|
15
|
Jenkins AM, Muskavitch MAT. Evolution of an epigenetic gene ensemble within the genus Anopheles. Genome Biol Evol 2015; 7:901-15. [PMID: 25724208 PMCID: PMC5322554 DOI: 10.1093/gbe/evv041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Epigenetic control of gene expression has important implications for the regulation of developmental processes, for mediating homeostasis and responses to the external environment, and for transgenerational inheritance of gene expression patterns. Genes that mediate epigenetic control have been well-characterized in Drosophila melanogaster, and we have identified and analyzed an orthologous gene ensemble in Anopheles gambiae that comprises 169 orthologs related to a 215-member epigenetic gene ensemble in D. melanogaster. We find that this ensemble is highly conserved among anopheline mosquitoes, as we identify only seven gene family expansion/contraction events within the ensemble among 12 mosquito species we have studied within the genus Anopheles. Comparative analyses of the epigenetic gene expression across the genera Drosophila and Anopheles reveal distinct tissue-associated expression patterns in the two genera, but similar temporal expression patterns. The A. gambiae complex and D. melanogaster subgroup epigenetic gene ensembles exhibit similar evolutionary rates, as assessed by their respective dN/dS values. These differences in tissue-associated expression patterns, in contrast to similarities in evolutionary rates and temporal expression patterns, may imply that some members of the epigenetic gene ensemble have been redeployed within one or both genera, in comparison to the most recent common ancestor of these two clades. Members of this epigenetic gene ensemble may constitute another set of potential targets for vector control and enable further reductions in the burden of human malaria, by analogy to recent success in development of small molecule antagonists for mammalian epigenetic machinery.
Collapse
Affiliation(s)
| | - Marc A T Muskavitch
- Department of Biology, Boston College Discovery Research, Biogen Idec, Cambridge, Massachusetts
| |
Collapse
|