1
|
Fu QM, Fang Z, Ren L, Wu QS, Zhang JB, Liu QP, Tan LT, Weng QB. Partial Alleviation of Homologous Superinfection Exclusion of SeMNPV Latently Infected Cells by G1 Phase Infection and G2/M Phase Arrest. Viruses 2024; 16:736. [PMID: 38793618 PMCID: PMC11126141 DOI: 10.3390/v16050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viral infection can regulate the cell cycle, thereby promoting viral replication. Hijacking and altering the cell cycle are important for the virus to establish and maintain a latent infection. Previously, Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV)-latently infected P8-Se301-C1 cells, which grew more slowly than Se301 cells and interfered with homologous SeMNNPV superinfection, were established. However, the effects of latent and superinfection with baculoviruses on cell cycle progression remain unknown. In this study, the cell cycle profiles of P8-Se301-C1 cells and SeMNPV or Autographa californica multiple nucleopolyhedrovirus (AcMNPV)-infected P8-Se301-C1 cells were characterized by flow cytometry. The results showed that replication-related genes MCM4, PCNA, and BAF were down-regulated (p < 0.05) in P8-Se301-C1 cells, and the S phase of P8-Se301-C1 cells was longer than that of Se301 cells. P8-Se301-C1 cells infected with SeMNPV did not arrest in the G2/M phase or affect the expression of Cyclin B and cyclin-dependent kinase 1 (CDK1). Furthermore, when P8-Se301-C1 cells were infected with SeMNPV after synchronized treatment with hydroxyurea and nocodazole, light microscopy and qRT-PCR analysis showed that, compared with unsynchronized cells and S and G2/M phase cells, SeMNPV-infected P8-Se301-C1 cells in G1 phase induced G2/M phase arrest, and the amount of virus adsorption and intracellular viral DNA replication were significantly increased (p < 0.05). In addition, budded virus (BV) production and occlusion body (OB)-containing cells were both increased at 120 h post-infection (p < 0.05). The expression of Cyclin B and CDK1 was significantly down-regulated at 48 h post-infection (p < 0.05). Finally, the arrest of SeMNPV-infected G1 phase cells in the G2/M phase increased BV production (p < 0.05) and the number of OB-containing cells. In conclusion, G1 phase infection and G2/M arrest are favorable to SeMNPV proliferation in P8-Se301-C1 cells, thereby alleviating the homologous superinfection exclusion. The results contribute to a better understanding of the relationship between baculoviruses and insect cell cycle progression and regulation.
Collapse
Affiliation(s)
- Qi-Ming Fu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Zheng Fang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Lou Ren
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Qing-Shan Wu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Jun-Bo Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Qiu-Ping Liu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Lei-Tao Tan
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Qing-Bei Weng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| |
Collapse
|
2
|
Li S, Wang M, Van Sciver N, Szymula A, Tumuluri VS, George A, Ramachandran A, Raina K, Costa CN, Zhao B, Kazemian M, Simas JP, Kaye KM. Kaposi's sarcoma herpesvirus latency-associated nuclear antigen broadly regulates viral gene expression and is essential for lytic infection. PLoS Pathog 2024; 20:e1011907. [PMID: 38232124 PMCID: PMC10793894 DOI: 10.1371/journal.ppat.1011907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is a leading cause of malignancy in AIDS and current therapies are limited. Like all herpesviruses, KSHV infection can be latent or lytic. KSHV latency-associated nuclear antigen (LANA) is essential for viral genome persistence during latent infection. LANA also maintains latency by antagonizing expression and function of the KSHV lytic switch protein, RTA. Here, we find LANA null KSHV is not capable of lytic replication, indicating a requirement for LANA. While LANA promoted both lytic and latent gene expression in cells partially permissive for lytic infection, it repressed expression in non-permissive cells. Importantly, forced RTA expression in non-permissive cells led to induction of lytic infection and LANA switched to promote, rather than repress, most lytic viral gene expression. When basal viral gene expression levels were high, LANA promoted expression, but repressed expression at low basal levels unless RTA expression was forcibly induced. LANA's effects were broad, but virus gene specific, extending to an engineered, recombinant viral GFP under control of host EF1α promoter, but not to host EF1α. Together, these results demonstrate that, in addition to its essential role in genome maintenance, LANA broadly regulates viral gene expression, and is required for high levels of lytic gene expression during lytic infection. Strategies that target LANA are expected to abolish KSHV infection.
Collapse
Affiliation(s)
- Shijun Li
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mengbo Wang
- Department of Computer Science, Purdue University, West Lafayette, Indiana
| | - Nicholas Van Sciver
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Agnieszka Szymula
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vinayak Sadasivam Tumuluri
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Athira George
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Akshaya Ramachandran
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Komal Raina
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Catarina N. Costa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research, Palma de Cima, Portugal
| | - Bo Zhao
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Majid Kazemian
- Department of Computer Science, Purdue University, West Lafayette, Indiana
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - J. Pedro Simas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research, Palma de Cima, Portugal
| | - Kenneth M. Kaye
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
3
|
Schulz TF, Freise A, Stein SC. Kaposi sarcoma-associated herpesvirus latency-associated nuclear antigen: more than a key mediator of viral persistence. Curr Opin Virol 2023; 61:101336. [PMID: 37331160 DOI: 10.1016/j.coviro.2023.101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV), or human herpesvirus-8, is an oncogenic herpesvirus. Its latency-associated nuclear antigen (LANA) is essential for the persistence of KSHV in latently infected cells. LANA mediates replication of the latent viral genome during the S phase of a dividing cell and partitions episomes to daughter cells by attaching them to mitotic chromosomes. It also mediates the establishment of latency in newly infected cells through epigenetic mechanisms and suppresses the activation of the productive replication cycle. Furthermore, LANA promotes the proliferation of infected cell by acting as a transcriptional regulator and by modulating the cellular proteome through the recruitment of several cellular ubiquitin ligases. Finally, LANA interferes with the innate and adaptive immune system to facilitate the immune escape of infected cells.
Collapse
Affiliation(s)
- Thomas F Schulz
- Institute of Virology, Hannover Medical School, Germany; Cluster of Excellence 2155 RESIST, Germany; German Center for Infection Research, Hannover-Braunschweig Site, Germany.
| | - Anika Freise
- Institute of Virology, Hannover Medical School, Germany
| | - Saskia C Stein
- Institute of Virology, Hannover Medical School, Germany; Cluster of Excellence 2155 RESIST, Germany
| |
Collapse
|
4
|
Singh RK, Bose D, Robertson ES. Epigenetic Reprogramming of Kaposi's Sarcoma-Associated Herpesvirus during Hypoxic Reactivation. Cancers (Basel) 2022; 14:5396. [PMID: 36358814 PMCID: PMC9654037 DOI: 10.3390/cancers14215396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 09/05/2023] Open
Abstract
The biphasic life cycle (latent and lytic) of Kaposi's sarcoma-associated Herpesvirus (KSHV) is regulated by epigenetic modification of its genome and its associated histone proteins. The temporal events driving epigenetic reprogramming of the KSHV genome on initial infection to establish latency has been well studied, but the reversal of these epigenetic changes during lytic replication, especially under physiological conditions such as hypoxia, has not been explored. In this study, we investigated epigenetic reprogramming of the KSHV genome during hypoxic reactivation. Hypoxia induced extensive enrichment of both transcriptional activators and repressors on the KSHV genome through H3K4Me3, H3K9Me3, and H3K27Me3, as well as histone acetylation (H3Ac) modifications. In contrast to uniform quantitative enrichment with modified histones, a distinct pattern of RTA and LANA enrichment was observed on the KSHV genome. The enrichment of modified histone proteins was due to their overall higher expression levels, which was exclusively seen in KSHV-positive cells. Multiple KSHV-encoded factors such as LANA, RTA, and vGPCR are involved in the upregulation of these modified histones. Analysis of ChIP-sequencing for the initiator DNA polymerase (DNAPol1α) combined with single molecule analysis of replicated DNA (SMARD) demonstrated the involvement of specific KSHV genomic regions that initiate replication in hypoxia.
Collapse
Affiliation(s)
| | | | - Erle S. Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Wu G, Zhou J, Zhu X, Tang X, Liu J, Zhou Q, Chen Z, Liu T, Wang W, Xiao X, Wu T. Integrative analysis of expression, prognostic significance and immune infiltration of RFC family genes in human sarcoma. Aging (Albany NY) 2022; 14:3705-3719. [PMID: 35483337 PMCID: PMC9085243 DOI: 10.18632/aging.204039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
Objective: To reveal the expression and prognostic value of replication factor C family genes (RFCs) in patients with sarcoma. Results: The results showed that the mRNA expression levels of RFC2, RFC3, RFC4, and RFC5 were increased in sarcoma tissues. In addition, Cancer Cell Line Encyclopedia (CCLE) dataset analysis indicated that RFC1, RFC2, RFC3, RFC4, and RFC5 were elevated expressed in sarcoma cell lines. Moreover, Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan-Meier Plotter showed that highly expressed RFC2-5 were associated with poor overall survival (OS) or relapse-free survival (RFS) in sarcoma patients. The results of the Tumor Immune Estimation Resource (TIMER) database indicated that the expression of RFCs was negatively correlated with the infiltration of CD4+ T cells and macrophages. Conclusions: There were significant differences in the expression of RFCs between normal tissue and sarcoma tissue, and RFC2, RFC3, RFC4, and RFC5 might be promising prognostic biomarkers for sarcoma. Methods: The expression of RFCs was analyzed using the ONCOMINE dataset and GEPIA dataset. CCLE dataset was used to assess the expression of RFCs in the cancer cell line. The prognostic value of RFCs was evaluated by GEPIA and Kaplan-Meier analysis. Furthermore, the association between RFCs and their co-expressed genes were explored via ONCOMINE and GEPIA datasets. We used the TIMER dataset to analyze the immune cell infiltration of RFCs in sarcoma.
Collapse
Affiliation(s)
- Gen Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.,Clinical Medicine Eight-Year Program, 02 Class, 2014 Grade, Central South University, Changsha 410013, Hunan Province, China
| | - Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xi Zhu
- Department of Internal Medicine III, University Hospital, Ludwig Maximilian University, Munich 81377, Germany
| | - Xianzhe Tang
- Department of Orthopedics, Chenzhou No.1 People's Hospital, Chenzhou 423000, Hunan, China
| | - Jie Liu
- Department of Cardiology, The Fourth Hospital of Changsha, Changsha 410006, Hunan, China
| | - Qiong Zhou
- Department of Cardiology, The Fourth Hospital of Changsha, Changsha 410006, Hunan, China
| | - Ziyuan Chen
- Department of Orthopedics, The First People's Hospital of Changde City, Changde 415003, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xungang Xiao
- Department of Orthopedics, Chenzhou No.1 People's Hospital, Chenzhou 423000, Hunan, China
| | - Tong Wu
- Department of Emergency, The First Hospital of Changsha, Changsha 410005, Hunan, China
| |
Collapse
|
6
|
Targeting the Nucleosome Acidic Patch by Viral Proteins: Two Birds with One Stone? mBio 2022; 13:e0173321. [PMID: 35343785 PMCID: PMC9040877 DOI: 10.1128/mbio.01733-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The past decade illuminated the H2A-H2B acidic patch as a cornerstone for both nucleosome recognition and chromatin structure regulation. Higher-order folding of chromatin arrays is mediated by interactions of histone H4 tail with an adjacent nucleosome acidic patch. Dynamic chromatin folding ensures a proper regulation of nuclear functions fundamental to cellular homeostasis. Many cellular factors have been shown to act on chromatin by tethering nucleosomes via an arginine anchor binding to the acidic patch. This tethering mechanism has also been described for several viral proteins. In this minireview, we will discuss the structural basis for acidic patch engagement by viral proteins and the implications during respective viral infections. We will also discuss a model in which acidic patch occupancy by these non-self viral proteins alters the local chromatin state by preventing H4 tail-mediated higher-order chromatin folding.
Collapse
|
7
|
Di C, Zheng G, Zhang Y, Tong E, Ren Y, Hong Y, Song Y, Chen R, Tan X, Yang L. RTA and LANA Competitively Regulate let-7a/RBPJ Signal to Control KSHV Replication. Front Microbiol 2022; 12:804215. [PMID: 35069510 PMCID: PMC8777081 DOI: 10.3389/fmicb.2021.804215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
The recombination signal binding protein for immunoglobulin kappa J region (RBPJ) has a dual effect on Kaposi's sarcoma-associated herpesvirus (KSHV) replication. RBPJ interaction with replication and transcription activator (RTA) is essential for lytic replication, while the interaction with latency-associated nuclear antigen (LANA) facilitates latent infection. Furthermore, our previous study found that LANA decreased RBPJ through upregulating miRNA let-7a. However, it is unclear whether RTA regulates the expression of RBPJ. Here, we show RTA increases RBPJ by decreasing let-7a. During KSHV replication, the RBPJ expression level was positively correlated with the RTA expression level and negatively correlated with the LANA expression level. The let-7a expression level was inverse to RBPJ. Knockdown of RBPJ inhibited the self-activation of RTA promoter and LANA promoter and weakened LANA's inhibition of RTA promoter. Collectively, these findings indicate that RTA and LANA compete for let-7a/RBPJ signal to control the KSHV replication. Regulating the RBPJ expression level by RTA and LANA plays an important role during KSHV replication.
Collapse
Affiliation(s)
- Chunhong Di
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, China.,School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Guoxia Zheng
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yunheng Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Enyu Tong
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yanli Ren
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yang Song
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Xiaohua Tan
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Lei Yang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
8
|
Tan M, Li S, Juillard F, Chitas R, Custódio TF, Xue H, Szymula A, Sun Q, Liu B, Álvarez ÁL, Chen S, Huang J, Simas JP, McVey CE, Kaye KM. MLL1 is regulated by KSHV LANA and is important for virus latency. Nucleic Acids Res 2021; 49:12895-12911. [PMID: 34850113 PMCID: PMC8682764 DOI: 10.1093/nar/gkab1094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/29/2021] [Accepted: 10/20/2021] [Indexed: 01/19/2023] Open
Abstract
Mixed lineage leukemia 1 (MLL1) is a histone methyltransferase. Kaposi's sarcoma-associated herpesvirus (KSHV) is a leading cause of malignancy in AIDS. KSHV latently infects tumor cells and its genome is decorated with epigenetic marks. Here, we show that KSHV latency-associated nuclear antigen (LANA) recruits MLL1 to viral DNA where it establishes H3K4me3 modifications at the extensive KSHV terminal repeat elements during primary infection. LANA interacts with MLL1 complex members, including WDR5, integrates into the MLL1 complex, and regulates MLL1 activity. We describe the 1.5-Å crystal structure of N-terminal LANA peptide complexed with MLL1 complex member WDR5, which reveals a potential regulatory mechanism. Disruption of MLL1 expression rendered KSHV latency establishment highly deficient. This deficiency was rescued by MLL1 but not by catalytically inactive MLL1. Therefore, MLL1 is LANA regulable and exerts a central role in virus infection. These results suggest broad potential for MLL1 regulation, including by non-host factors.
Collapse
Affiliation(s)
- Min Tan
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shijun Li
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Franceline Juillard
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rute Chitas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - Tânia F Custódio
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - Han Xue
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Agnieszka Szymula
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Qiming Sun
- Departments of Biochemistry and Cardiology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Bing Liu
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ángel L Álvarez
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - She Chen
- Proteomics Center, National Institute of Biological Sciences, Beijing 102206, China
| | - Jing Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine 200125 Shanghai, China
| | - J Pedro Simas
- Instituto de Medicina Molecular, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.,Católica Biomedical Research, Católica Medical School, Universidade Católica Portuguesa, Palma de Cima, 1649-023 Lisboa, Portugal
| | - Colin E McVey
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - Kenneth M Kaye
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
How Epstein-Barr Virus and Kaposi's Sarcoma-Associated Herpesvirus Are Maintained Together to Transform the Same B-Cell. Viruses 2021; 13:v13081478. [PMID: 34452344 PMCID: PMC8402831 DOI: 10.3390/v13081478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 11/28/2022] Open
Abstract
Epstein–Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV) independently cause human cancers, and both are maintained as plasmids in tumor cells. They differ, however, in their mechanisms of segregation; EBV partitions its genomes quasi-faithfully, while KSHV often clusters its genomes and partitions them randomly. Both viruses can infect the same B-cell to transform it in vitro and to cause primary effusion lymphomas (PELs) in vivo. We have developed simulations based on our measurements of these replicons in B-cells transformed in vitro to elucidate the synthesis and partitioning of these two viral genomes when in the same cell. These simulations successfully capture the biology of EBV and KSHV in PELs. They have revealed that EBV and KSHV replicate and partition independently, that they both contribute selective advantages to their host cell, and that KSHV pays a penalty to cluster its genomes.
Collapse
|
10
|
Structure of the human clamp loader reveals an autoinhibited conformation of a substrate-bound AAA+ switch. Proc Natl Acad Sci U S A 2020; 117:23571-23580. [PMID: 32907938 DOI: 10.1073/pnas.2007437117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DNA replication requires the sliding clamp, a ring-shaped protein complex that encircles DNA, where it acts as an essential cofactor for DNA polymerases and other proteins. The sliding clamp needs to be opened and installed onto DNA by a clamp loader ATPase of the AAA+ family. The human clamp loader replication factor C (RFC) and sliding clamp proliferating cell nuclear antigen (PCNA) are both essential and play critical roles in several diseases. Despite decades of study, no structure of human RFC has been resolved. Here, we report the structure of human RFC bound to PCNA by cryogenic electron microscopy to an overall resolution of ∼3.4 Å. The active sites of RFC are fully bound to adenosine 5'-triphosphate (ATP) analogs, which is expected to induce opening of the sliding clamp. However, we observe the complex in a conformation before PCNA opening, with the clamp loader ATPase modules forming an overtwisted spiral that is incapable of binding DNA or hydrolyzing ATP. The autoinhibited conformation observed here has many similarities to a previous yeast RFC:PCNA crystal structure, suggesting that eukaryotic clamp loaders adopt a similar autoinhibited state early on in clamp loading. Our results point to a "limited change/induced fit" mechanism in which the clamp first opens, followed by DNA binding, inducing opening of the loader to release autoinhibition. The proposed change from an overtwisted to an active conformation reveals an additional regulatory mechanism for AAA+ ATPases. Finally, our structural analysis of disease mutations leads to a mechanistic explanation for the role of RFC in human health.
Collapse
|
11
|
KSHV LANA acetylation-selective acidic domain reader sequence mediates virus persistence. Proc Natl Acad Sci U S A 2020; 117:22443-22451. [PMID: 32820070 PMCID: PMC7486799 DOI: 10.1073/pnas.2004809117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viruses modulate biochemical cellular pathways to permit infection. A recently described mechanism mediates selective protein interactions between acidic domain readers and unacetylated, lysine-rich regions, opposite of bromodomain function. Kaposi´s sarcoma (KS)-associated herpesvirus (KSHV) is tightly linked with KS, primary effusion lymphoma, and multicentric Castleman's disease. KSHV latently infects cells, and its genome persists as a multicopy, extrachromosomal episome. During latency, KSHV expresses a small subset of genes, including the latency-associated nuclear antigen (LANA), which mediates viral episome persistence. Here we show that LANA contains two tandem, partially overlapping, acidic domain sequences homologous to the SET oncoprotein acidic domain reader. This domain selectively interacts with unacetylated p53, as evidenced by reduced LANA interaction after overexpression of CBP, which acetylates p53, or with an acetylation mimicking carboxyl-terminal domain p53 mutant. Conversely, the interaction of LANA with an acetylation-deficient p53 mutant is enhanced. Significantly, KSHV LANA mutants lacking the acidic domain reader sequence are deficient for establishment of latency and persistent infection. This deficiency was confirmed under physiological conditions, on infection of mice with a murine gammaherpesvirus 68 chimera expressing LANA, where the virus was highly deficient in establishing latent infection in germinal center B cells. Therefore, LANA's acidic domain reader is critical for viral latency. These results implicate an acetylation-dependent mechanism mediating KSHV persistence and expand the role of acidic domain readers.
Collapse
|
12
|
Singh RK, Lamplugh ZL, Lang F, Yuan Y, Lieberman P, You J, Robertson ES. KSHV-encoded LANA protects the cellular replication machinery from hypoxia induced degradation. PLoS Pathog 2019; 15:e1008025. [PMID: 31479497 PMCID: PMC6743784 DOI: 10.1371/journal.ppat.1008025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/13/2019] [Accepted: 08/08/2019] [Indexed: 01/15/2023] Open
Abstract
Kaposi’s sarcoma associated herpesvirus (KSHV), like all herpesviruses maintains lifelong persistence with its host genome in latently infected cells with only a small fraction of cells showing signatures of productive lytic replication. Modulation of cellular signaling pathways by KSHV-encoded latent antigens, and microRNAs, as well as some level of spontaneous reactivation are important requirements for establishment of viral-associated diseases. Hypoxia, a prominent characteristic of the microenvironment of cancers, can exert specific effects on cell cycle control, and DNA replication through HIF1α-dependent pathways. Furthermore, hypoxia can induce lytic replication of KSHV. The mechanism by which KSHV-encoded RNAs and antigens regulate cellular and viral replication in the hypoxic microenvironment has yet to be fully elucidated. We investigated replication-associated events in the isogenic background of KSHV positive and negative cells grown under normoxic or hypoxic conditions and discovered an indispensable role of KSHV for sustained cellular and viral replication, through protection of critical components of the replication machinery from degradation at different stages of the process. These include proteins involved in origin recognition, pre-initiation, initiation and elongation of replicating genomes. Our results demonstrate that KSHV-encoded LANA inhibits hypoxia-mediated degradation of these proteins to sustain continued replication of both host and KSHV DNA. The present study provides a new dimension to our understanding of the role of KSHV in survival and growth of viral infected cells growing under hypoxic conditions and suggests potential new strategies for targeted treatment of KSHV-associated cancer. Hypoxia induces cell cycle arrest and DNA replication to minimize energy and macromolecular demands on the ATP stores of cells in this microenvironment. A select set of proteins functions as transcriptional activators in hypoxia. However, transcriptional and translational pathways are negatively regulated in response to hypoxia. This preserves ATP until the cell encounters more favorable conditions. In contrast, the genome of cancer cells replicates spontaneously under hypoxic conditions, and KSHV undergoes enhanced lytic replication. This unique feature by which KSHV genome is reactivated to induce lytic replication is important to elucidate the molecular mechanism by which cells can bypass hypoxia-mediated arrest of DNA replication in cancer cells. Here we provide data which shows that KSHV can manipulate the DNA replication machinery to support replication in hypoxia. We observed that KSHV can stabilize proteins involved in the pre-initiation, initiation and elongation steps of DNA replication. Specifically, KSHV-encoded LANA was responsible for this stabilization, and maintenance of endogenous HIF1α levels was required for stabilization of these proteins in hypoxia. Expression of LANA in KSHV negative cells confers protection of these replication proteins from hypoxia-dependent degradation, and knock-down of LANA or HIF1α showed a dramatic reduction in KSHV-dependent stabilization of replication-associated proteins in hypoxia. These data suggest a role for KSHV-encoded LANA in replication of infected cells, and provides a mechanism for sustained replication of both cellular and viral DNA in hypoxia.
Collapse
Affiliation(s)
- Rajnish Kumar Singh
- Department of Otorhinolaryngology-Head and Neck surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Zachary L. Lamplugh
- Department of Otorhinolaryngology-Head and Neck surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Fengchao Lang
- Department of Otorhinolaryngology-Head and Neck surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Yan Yuan
- Department of Microbiology, Levy Building, School of Dental Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Paul Lieberman
- Program in Gene Regulation, The Wistar Institute, Philadelphia, United States of America
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Erle S. Robertson
- Department of Otorhinolaryngology-Head and Neck surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Yan L, Majerciak V, Zheng ZM, Lan K. Towards Better Understanding of KSHV Life Cycle: from Transcription and Posttranscriptional Regulations to Pathogenesis. Virol Sin 2019; 34:135-161. [PMID: 31025296 PMCID: PMC6513836 DOI: 10.1007/s12250-019-00114-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8 (HHV-8), is etiologically linked to the development of Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. These malignancies often occur in immunosuppressed individuals, making KSHV infection-associated diseases an increasing global health concern with persistence of the AIDS epidemic. KSHV exhibits biphasic life cycles between latent and lytic infection and extensive transcriptional and posttranscriptional regulation of gene expression. As a member of the herpesvirus family, KSHV has evolved many strategies to evade the host immune response, which help the virus establish a successful lifelong infection. In this review, we summarize the current research status on the biology of latent and lytic viral infection, the regulation of viral life cycles and the related pathogenesis.
Collapse
Affiliation(s)
- Lijun Yan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Vladimir Majerciak
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Zhi-Ming Zheng
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
14
|
Minichromosome Maintenance Proteins Cooperate with LANA during the G 1/S Phase of the Cell Cycle To Support Viral DNA Replication. J Virol 2019; 93:JVI.02256-18. [PMID: 30651368 DOI: 10.1128/jvi.02256-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/13/2019] [Indexed: 12/11/2022] Open
Abstract
Latency-associated nuclear antigen (LANA) is essential for maintaining the viral genome by regulating replication and segregation of the viral episomes. The virus maintains 50 to 100 episomal copies during latency and replicates in synchrony with the cellular DNA of the infected cells. Since virus lacks its own replication machinery, it utilizes the cellular proteins for replication and maintenance, and LANA has been shown to make many of these proteins available for replication by directly recruiting them to the viral origin of replication within the terminal repeat (TR) region. Our studies identified members of the minichromosome maintenance (MCM) complex as potential LANA-interacting proteins. Here, we show that LANA specifically interacts with the components of the MCM complex, primarily during the G1/S phase of the cell cycle. MCM3 and -4 of the MCM complex specifically bound to the amino-terminal domain, while MCM6 bound to both the amino- and carboxyl-terminal domains of LANA. The MCM binding region in the N-terminal domain mapped to the chromatin binding domain (CBD). LANA with point mutations in the carboxyl-terminal domain identified an MCM6 binding domain, and overexpression of that domain (amino acids [aa] 1100 to 1150) abolished TR replication. Introduction of a peptide encompassing the LANA aa 1104 to 1123 reduced MCM6 association with LANA and TR replication. Moreover, a recombinant Kaposi's sarcoma-associated herpesvirus (KSHV) expressing LANA with a deletion of aa 1100 to 1150 (BAC16Δ1100-1150, where BAC is bacmid) showed reduced replication and persistence of viral genome copies compared to levels with the wild-type BAC16. Additionally, the role of MCMs in viral replication was confirmed by depleting MCMs and assaying transient and long-term maintenance of the viral episomes. The recruitment of MCMs to the replication origins through LANA was demonstrated through chromatin immunoprecipitation and isolation of proteins on nascent replicated DNA (iPOND). These data clearly show the role of MCMs in latent DNA replication and the potential for targeting the C-terminal domain of LANA to block viral persistence.IMPORTANCE LANA-mediated latent DNA replication is essential for efficient maintenance of KSHV episomes in the host. During latency, virus relies on the host cellular machinery for replication, which occurs in synchrony with the cellular DNA. LANA interacts with the components of multiple cellular pathways, including cellular replication machinery, and recruits them to the viral origin for DNA replication. In this study, we characterize the interactions between LANA and minichromosome maintenance (MCM) proteins, members of the cellular replication complex. We demonstrated a cell cycle-dependent interaction between LANA and MCMs and determined their importance for viral genome replication and maintenance through biochemical assays. In addition, we mapped a 50-amino acid region in LANA which was capable of abrogating the association of MCM6 with LANA and blocking DNA replication. We also detected LANA along with MCMs at the replication forks using a novel approach, isolation of proteins on nascent DNA (iPOND).
Collapse
|
15
|
Qi Y, Zheng G, Di C, Zhang J, Wang X, Hong Y, Song Y, Chen R, Yang Y, Yan Y, Xu L, Tan X, Yang L. Latency-associated nuclear antigen inhibits lytic replication of Kaposi's sarcoma-associated herpesvirus by regulating let-7a/RBPJ signaling. Virology 2019; 531:69-78. [PMID: 30856484 DOI: 10.1016/j.virol.2019.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
Latency-associated nuclear antigen (LANA) is the key factor in the establishment and maintenance of latency of Kaposi's sarcoma-associated herpesvirus (KSHV). A cellular protein, recombination signal binding protein for immunoglobulin kappa J region (RBPJ), is essential for the lytic reactivation of KSHV. However, whether RBPJ expression is regulated by KSHV is not clear. Here, we show that LANA upregulates let-7a and its primary transcripts in parallel with its reduction of RBPJ expression. An increase in notch intracellular domain (NICD) and the downregulation of NF-κB and LIN28B contribute to the upregulation of let-7a by LANA. Let-7a represses RBPJ expression by directly binding the 3' untranslated region of RBPJ. Let-7a overexpression or RBPJ knockdown led to a dose- and time-dependent inhibition of lytic reactivation of KSHV. Collectively, these findings support a model wherein LANA inhibits the lytic replication of KSHV by regulating let-7a/RBPJ signaling.
Collapse
Affiliation(s)
- Yan Qi
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Guoxia Zheng
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Chunhong Di
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Jinxia Zhang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaobo Wang
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yu Hong
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yang Song
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Rong Chen
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yi Yang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yutao Yan
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Liangwen Xu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaohua Tan
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China.
| | - Lei Yang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
16
|
Hicks JA, Trakooljul N, Liu HC. Alterations in cellular and viral microRNA and cellular gene expression in Marek's disease virus-transformed T-cell lines treated with sodium butyrate. Poult Sci 2019; 98:642-652. [PMID: 30184155 DOI: 10.3382/ps/pey412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/09/2018] [Indexed: 11/20/2022] Open
Abstract
A shared feature of herpesviruses is their ability to enter a latent state following an initially lytic infection. Marek's disease virus serotype 1 (MDV-1) is an oncogenic avian herpesvirus. Small RNA profiling studies have suggested that microRNAs (miRNAs) are involved in viral latency. Sodium butyrate treatment is known to induce herpesvirus reactivation. The present study was undertaken to determine transcriptome and miRNome changes induced by sodium butyrate in 2 MDV-transformed cell lines, RP2 and CU115. In the first 24 h post-treatment, microarray analysis of transcriptional changes in cell lines RP2 and CU115 identified 137 and 114 differentially expressed genes, respectively. Small RNA deep-sequencing analysis identified 17 cellular miRNAs that were differentially expressed. The expression of MDV-encoded miRNAs was also altered upon treatment. Many of the genes and miRNAs that are differentially expressed are involved in regulation of the cell cycle, mitosis, DNA metabolism, and lymphocyte differentiation.
Collapse
Affiliation(s)
- Julie A Hicks
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Nares Trakooljul
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
17
|
Kaposi's Sarcoma-Associated Herpesvirus LANA-Adjacent Regions with Distinct Functions in Episome Segregation or Maintenance. J Virol 2019; 93:JVI.02158-18. [PMID: 30626680 PMCID: PMC6401465 DOI: 10.1128/jvi.02158-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) is a 1,162-amino-acid protein that mediates episome persistence of viral genomes. LANA binds the KSHV terminal-repeat (TR) sequence through its carboxy-terminal domain to mediate DNA replication. LANA simultaneously binds mitotic chromosomes and TR DNA to segregate virus genomes to daughter cell nuclei. Amino-terminal LANA attaches to chromosomes by binding histones H2A/H2B, and carboxy-terminal LANA contributes to mitotic-chromosome binding. Although amino- and carboxy-terminal LANA are essential for episome persistence, they are not sufficient, since deletion of all internal LANA sequence renders LANA highly deficient for episome maintenance. Internal LANA sequence upstream of the internal repeat elements contributes to episome segregation and persistence. Here, we investigate this region with a panel of LANA deletion mutants. Mutants retained the ability to associate with mitotic chromosomes and bind TR DNA. In contrast to prior results, deletion of most of this sequence did not reduce LANA's ability to mediate DNA replication. Deletions of upstream sequence within the region compromised segregation of TR DNA to daughter cells, as assessed by retention of green fluorescent protein (GFP) expression from a replication-deficient TR plasmid. However, deletion of this upstream sequence did not reduce episome maintenance. In contrast, deletions that included an 80-amino-acid sequence immediately downstream resulted in highly deficient episome persistence. LANA with this downstream sequence deleted maintained the ability to replicate and segregate TR DNA, suggesting a unique role for the residues. Therefore, this work identifies adjacent LANA regions with distinct roles in episome segregation and persistence.IMPORTANCE KSHV LANA mediates episomal persistence of viral genomes. LANA binds the KSHV terminal-repeat (TR) sequence to mediate DNA replication and tethers KSHV DNA to mitotic chromosomes to segregate genomes to daughter cell nuclei. Here, we investigate LANA sequence upstream of the internal repeat elements that contributes to episome segregation and persistence. Mutants with deletions within this sequence maintained the ability to bind mitotic chromosomes or bind and replicate TR DNA. Deletion of upstream sequence within the region reduced segregation of TR DNA to daughter cells, but not episome maintenance. In contrast, mutants with deletions of 80 amino acids immediately downstream were highly deficient for episome persistence yet maintained the ability to replicate and segregate TR DNA, the two principal components of episome persistence, suggesting another role for the residues. In summary, this work identifies adjacent LANA sequence with distinct roles in episome segregation and persistence.
Collapse
|
18
|
Halec G, Waterboer T, Brenner N, Butt J, Hardy DW, D’Souza G, Wolinsky S, Macatangay BJ, Pawlita M, Detels R, Martínez-Maza O, Hussain SK. Serological Assessment of 18 Pathogens and Risk of AIDS-Associated Non-Hodgkin Lymphoma. J Acquir Immune Defic Syndr 2019; 80:e53-e63. [PMID: 30531297 PMCID: PMC6375787 DOI: 10.1097/qai.0000000000001916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND HIV infection is associated with increased susceptibility to common pathogens, which may trigger chronic antigenic stimulation and hyperactivation of B cells, events known to precede the development of AIDS-associated non-Hodgkin lymphoma (AIDS-NHL). METHODS To explore whether cumulative exposure to infectious agents contributes to AIDS-NHL risk, we tested sera from 199 AIDS-NHL patients (pre-NHL, average lead time 3.9 years) and 199 matched HIV-infected controls from the Multicenter AIDS Cohort Study, for anti-IgG responses to 18 pathogens using multiplex serology. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression models. RESULTS We found no association between cumulative exposure to infectious agents and AIDS-NHL risk (OR 1.01, 95% CI: 0.91 to 1.12). However, seropositivity for trichodysplasia spinulosa polyomavirus (TSPyV), defined as presence of antibodies to TSPyV capsid protein VP1, was significantly associated with a 1.6-fold increase in AIDS-NHL risk (OR 1.62, 95% CI: 1.02 to 2.57). High Epstein-Barr virus (EBV) anti-VCA p18 antibody levels closer to the time of AIDS-NHL diagnosis (<4 years) were associated with a 2.6-fold increase in AIDS-NHL risk (OR 2.59, 95% CI: 1.17 to 5.74). In addition, high EBV anti-EBNA-1 and anti-ZEBRA antibody levels were associated with 2.1-fold (OR 0.47, 95% CI: 0.26 to 0.85) and 1.6-fold (OR 0.57, 95% CI: 0.35 to 0.93) decreased risk of AIDS-NHL, respectively. CONCLUSIONS Our results do not support the hypothesis that cumulative exposure to infectious agents contributes to AIDS-NHL development. However, the observed associations with respect to TSPyV seropositivity and EBV antigen antibody levels offer additional insights into the pathogenesis of AIDS-NHL.
Collapse
Affiliation(s)
- Gordana Halec
- University of California Los Angeles (UCLA) AIDS Institute and Department of Obstetrics and Gynecology, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Tim Waterboer
- Infections and Cancer Epidemiology, Research Program Infection, Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicole Brenner
- Infections and Cancer Epidemiology, Research Program Infection, Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Butt
- Infections and Cancer Epidemiology, Research Program Infection, Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David W. Hardy
- Clinical Investigations, Whitman-Walker Health, Washington, DC
| | - Gypsyamber D’Souza
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Steven Wolinsky
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bernard J. Macatangay
- Division of Infectious Diseases, Department of Medicine, University of Pittsburg School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michael Pawlita
- Infections and Cancer Epidemiology, Research Program Infection, Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roger Detels
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Otoniel Martínez-Maza
- University of California Los Angeles (UCLA) AIDS Institute and Department of Obstetrics and Gynecology, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Shehnaz K. Hussain
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
- Samuel Oschin Comprehensive Cancer Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
19
|
Zhang F, Liang D, Lin X, Zou Z, Sun R, Wang X, Liang X, Kaye KM, Lan K. NDRG1 facilitates the replication and persistence of Kaposi's sarcoma-associated herpesvirus by interacting with the DNA polymerase clamp PCNA. PLoS Pathog 2019; 15:e1007628. [PMID: 30811506 PMCID: PMC6411202 DOI: 10.1371/journal.ppat.1007628] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/11/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) latently infects host cells and establishes lifelong persistence as an extra-chromosomal episome in the nucleus. To persist in proliferating cells, the viral genome typically replicates once per cell cycle and is distributed into daughter cells. This process involves host machinery utilized by KSHV, however the underlying mechanisms are not fully elucidated. In present study, we found that N-Myc downstream regulated gene 1 (NDRG1), a cellular gene known to be non-detectable in primary B cells and endothelial cells which are the major cell types for KSHV infection in vivo, was highly upregulated by KSHV in these cells. We further demonstrated that the high expression of NDRG1 was regulated by latency-associated nuclear antigen (LANA), the major viral latent protein which tethers the viral genome to host chromosome and plays an essential role in viral genome maintenance. Surprisingly, knockdown of NDRG1 in KSHV latently infected cells resulted in a significant decrease of viral genome copy number in these cells. Interestingly, NDRG1 can directly interact with proliferating cell nuclear antigen (PCNA), a cellular protein which functions as a DNA polymerase clamp during DNA replication. Intriguingly, we found that NDRG1 forms a complex with LANA and PCNA and serves as a scaffold protein bridging these two proteins. We further demonstrated that NDRG1 is critical for mediating LANA to recruit PCNA onto terminal repeat (TR) of KSHV genome, and facilitates viral DNA replication and episome persistence. Taken together, our findings suggest that NDRG1 plays an important role in KSHV viral genome replication, and provide new clues for understanding of KSHV persistence.
Collapse
Affiliation(s)
- Fang Zhang
- CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Deguang Liang
- CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxi Lin
- CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhe Zou
- CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Rui Sun
- CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xing Wang
- CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaozhen Liang
- CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kenneth M. Kaye
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
20
|
De Leo A, Deng Z, Vladimirova O, Chen HS, Dheekollu J, Calderon A, Myers KA, Hayden J, Keeney F, Kaufer BB, Yuan Y, Robertson E, Lieberman PM. LANA oligomeric architecture is essential for KSHV nuclear body formation and viral genome maintenance during latency. PLoS Pathog 2019; 15:e1007489. [PMID: 30682185 PMCID: PMC6364946 DOI: 10.1371/journal.ppat.1007489] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/06/2019] [Accepted: 11/27/2018] [Indexed: 12/16/2022] Open
Abstract
The molecular basis for the formation of functional, higher-ordered macro-molecular domains is not completely known. The Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) genome forms a super-molecular domain structure during latent infection that is strictly dependent on the DNA binding of the viral nuclear antigen LANA to the viral terminal repeats (TR). LANA is known to form oligomeric structures that have been implicated in viral episome maintenance. In this study, we show that the LANA oligomerization interface is required for the formation of higher-order nuclear bodies that partially colocalize with DAXX, EZH2, H3K27me3, and ORC2 but not with PML. These nuclear bodies assemble at the periphery of condensed cellular chromosomes during mitotic cell division. We demonstrate that the LANA oligomerization interface contributes to the cooperative DNA binding at the viral TR and the recruitment of ORC to the viral episome. Oligomerization mutants failed to auto-regulate LANA/ORF73 transcription, and this correlated with the loss of a chromosome conformational DNA-loop between the TR and LANA promoter. Viral genomes with LANA oligomerization mutants were subject to genome rearrangements including the loss of subgenomic DNA. Our data suggests that LANA oligomerization drives stable binding to the TR and formation of an epigenetically stable chromatin architecture resulting in higher-order LANA nuclear bodies important for viral genome integrity and long-term episome persistence. KSHV genomes persist in large nuclear bodies in latently infected cells. The KSHV encoded nuclear antigen LANA is required for the efficient replication and stable maintenance of viral genomes during latent infection. LANA is also known to form oligomeric structures, but it is not known how these structures contribute to LANA function in living cells. Here, we show that LANA oligomerization is required for cooperative binding to the KSHV terminal repeat (TR), and the recruitment of the Origin Recognition Complex (ORC) to viral TR. LANA oligomerization is required for a chromosome conformation DNA loop between TR and the LANA promoter implicated in LANA transcription autoregulation. LANA oligomerization is also required for formation of large nuclear bodies that colocalize with DAXX, EZH2, ORC2, but not PML. LANA nuclear bodies distribute along the nuclear periphery, and their arrangement is transmitted faithfully to daughter cells during mitotic cell division. Finally, we show that KSHV genomes containing mutations in the LANA oligomerization interface fail to maintain the complete viral genome, suggesting they are defective in DNA replication or repair. These findings reveal new mechanisms of LANA episome maintenance through formation of higher-order chromosome-conformations.
Collapse
Affiliation(s)
- Alessandra De Leo
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Zhong Deng
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Olga Vladimirova
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Horng-Shen Chen
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Jayaraju Dheekollu
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Abram Calderon
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Kenneth A. Myers
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - James Hayden
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Frederick Keeney
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Benedikt B. Kaufer
- Department of Virology, Institute Virology, Freie Universitat Berlin, Berlin, Germany
| | - Yan Yuan
- Department of Biochemistry, School of Dentistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle Robertson
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Paul M. Lieberman
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
21
|
Pallandre L, Lesne M, de Boisséson C, Briand FX, Charrier A, Waltzek T, Daniel P, Tragnan A, Debeuf B, Chesneau V, Bigarré L. Acipenser iridovirus-European encodes a replication factor C (RFC) sub-unit. Arch Virol 2018; 163:2985-2995. [PMID: 30054747 DOI: 10.1007/s00705-018-3963-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/10/2018] [Indexed: 11/28/2022]
Abstract
New genomic sequence data were acquired for the Acipenser iridovirus-European (AcIV-E), a virus whose complete genome and classification still remain to be elucidated. Here, we obtained the first full-length Major capsid protein (MCP) gene sequence for AcIV-E, as well as two additional open reading frames (ORFs) adjacent to the MCP gene. BLAST searches of the first ORF (α) resulted in no match to any gene or protein in the public databases. The other ORF (β) was identified as a subunit of a replication factor C (RFC), known to function as a clamp loader in eukaryotes, archae and some viruses. The presence of similar RFC genes was confirmed in two distinct, yet related, viruses, the white sturgeon iridovirus and a European variant of Namao virus. The existence of an RFC gene in AcIV-E suggests a genome size larger than that of other classifiable members of the family Iridoviridae along with a mode of replication involving an interaction between a clamp loader and a proliferating nuclear cell antigen. Sequencing and comparison of the full-length RFC gene from various sturgeon samples infected with AcIV-E revealed two distinct clusters of sequences within one particular sample in which the coexistence of two lineages had previously been predicted based on analysis of the partial MCP gene sequence. These genetic data provide further evidence of the circulation of at least two concurrent AcIV-E lineages, sometimes co-infecting cultured European sturgeon.
Collapse
Affiliation(s)
- Laurane Pallandre
- Laboratoire de Ploufragan-Plouzané, ANSES, Technopole Brest Iroise, 29280, Plouzané, France
| | - Mélanie Lesne
- Laboratoire des Pyrénées et des Landes, 40004, Mont-de-Marsan, France
| | - Claire de Boisséson
- Laboratoire de Ploufragan-Plouzané, ANSES, rue des fusillés, 22440, Ploufragan, France
| | | | - Amélie Charrier
- Laboratoire des Pyrénées et des Landes, 40004, Mont-de-Marsan, France
| | - Thomas Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Patrick Daniel
- Laboratoire des Pyrénées et des Landes, 40004, Mont-de-Marsan, France
| | - Arthur Tragnan
- Groupement de Défense Sanitaire Aquacole Aquitain, 40004, Mont-de-Marsan, France
| | | | | | - Laurent Bigarré
- Laboratoire de Ploufragan-Plouzané, ANSES, Technopole Brest Iroise, 29280, Plouzané, France.
| |
Collapse
|
22
|
Ohashi E, Tsurimoto T. Functions of Multiple Clamp and Clamp-Loader Complexes in Eukaryotic DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:135-162. [PMID: 29357057 DOI: 10.1007/978-981-10-6955-0_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) and replication factor C (RFC) were identified in the late 1980s as essential factors for replication of simian virus 40 DNA in human cells, by reconstitution of the reaction in vitro. Initially, they were only thought to be involved in the elongation stage of DNA replication. Subsequent studies have demonstrated that PCNA functions as more than a replication factor, through its involvement in multiple protein-protein interactions. PCNA appears as a functional hub on replicating and replicated chromosomal DNA and has an essential role in the maintenance genome integrity in proliferating cells.Eukaryotes have multiple paralogues of sliding clamp, PCNA and its loader, RFC. The PCNA paralogues, RAD9, HUS1, and RAD1 form the heterotrimeric 9-1-1 ring that is similar to the PCNA homotrimeric ring, and the 9-1-1 clamp complex is loaded onto sites of DNA damage by its specific loader RAD17-RFC. This alternative clamp-loader system transmits DNA-damage signals in genomic DNA to the checkpoint-activation network and the DNA-repair apparatus.Another two alternative loader complexes, CTF18-RFC and ELG1-RFC, have roles that are distinguishable from the role of the canonical loader, RFC. CTF18-RFC interacts with one of the replicative DNA polymerases, Polε, and loads PCNA onto leading-strand DNA, and ELG1-RFC unloads PCNA after ligation of lagging-strand DNA. In the progression of S phase, these alternative PCNA loaders maintain appropriate amounts of PCNA on the replicating sister DNAs to ensure that specific enzymes are tethered at specific chromosomal locations.
Collapse
Affiliation(s)
- Eiji Ohashi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Toshiki Tsurimoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
23
|
Ueda K. KSHV Genome Replication and Maintenance in Latency. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:299-320. [DOI: 10.1007/978-981-10-7230-7_14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Liao YH, Ren JT, Zhang W, Zhang ZZ, Lin Y, Su FX, Jia WH, Tang LY, Ren ZF. Polymorphisms in homologous recombination repair genes and the risk and survival of breast cancer. J Gene Med 2017; 19. [PMID: 28940489 DOI: 10.1002/jgm.2988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/23/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Immunoglobulin (Ig)A antibody of Epstein-Barr virus (EBV) was found to associate with breast cancer (BC), whereas IgA positivity was related to a series of genetic markers in the genes of homologous recombination repair system (HRRs). We assessed the associations of the polymorphisms in HRR genes with the risk and survival of BC. METHODS A case-control study was conducted with 1551 bc cases and 1605 age-matched healthy controls between October 2008 and March 2012 in the Guangzhou Breast Cancer Study (GZBCS), China, and the case population were followed up until 31 January 2016. Five single nucleotide polymorphisms of candidate genes in HRR system were genotyped. Odds ratios (ORs) and hazards ratios (HRs) were calculated using multivariate logistic regression and Cox proportional hazards regression to estimate the risk and prognostic effect, respectively. RESULTS RFC1 rs6829064 (AA) was associated with an increased BC risk [OR = 1.35; 95% confidence interval (CI) = 1.06-1.73] compared to the wild genotype (GG). NRM rs1075496 (GT/TT versus GG) was associated with a worse progression-free survival (PFS) and the HR was 1.34 (95% CI = 1.01-1.78), particularly among advanced patients. LIG3 rs1052536 (CT/TT versus CC) was associated with a better PFS and the HR was 0.70 (95% CI = 0.53-0.93). However, RAD54L rs1710286 and RPA1 rs11078676 were not observed to be associated with either the risk or survival of BC. CONCLUSIONS The findings of the present study suggest that the polymorphisms in HRR genes were associated with BC risk (RFC1 rs6829064) and prognosis (NRM rs1075496 and LIG3 rs1052536), whereas RAD54L rs1710286 and RPA1 rs11078676 had null associations with BC.
Collapse
Affiliation(s)
- Yu-Huang Liao
- The School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jun-Ting Ren
- The School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhang
- The School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zheng-Zheng Zhang
- The School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ying Lin
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng-Xi Su
- The Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei-Hua Jia
- The Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lu-Ying Tang
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ze-Fang Ren
- The School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Habison AC, de Miranda MP, Beauchemin C, Tan M, Cerqueira SA, Correia B, Ponnusamy R, Usherwood EJ, McVey CE, Simas JP, Kaye KM. Cross-species conservation of episome maintenance provides a basis for in vivo investigation of Kaposi's sarcoma herpesvirus LANA. PLoS Pathog 2017; 13:e1006555. [PMID: 28910389 PMCID: PMC5599060 DOI: 10.1371/journal.ppat.1006555] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/27/2017] [Indexed: 12/26/2022] Open
Abstract
Many pathogens, including Kaposi's sarcoma herpesvirus (KSHV), lack tractable small animal models. KSHV persists as a multi-copy, nuclear episome in latently infected cells. KSHV latency-associated nuclear antigen (kLANA) binds viral terminal repeat (kTR) DNA to mediate episome persistence. Model pathogen murine gammaherpesvirus 68 (MHV68) mLANA acts analogously on mTR DNA. kLANA and mLANA differ substantially in size and kTR and mTR show little sequence conservation. Here, we find kLANA and mLANA act reciprocally to mediate episome persistence of TR DNA. Further, kLANA rescued mLANA deficient MHV68, enabling a chimeric virus to establish latent infection in vivo in germinal center B cells. The level of chimeric virus in vivo latency was moderately reduced compared to WT infection, but WT or chimeric MHV68 infected cells had similar viral genome copy numbers as assessed by immunofluorescence of LANA intranuclear dots or qPCR. Thus, despite more than 60 Ma of evolutionary divergence, mLANA and kLANA act reciprocally on TR DNA, and kLANA functionally substitutes for mLANA, allowing kLANA investigation in vivo. Analogous chimeras may allow in vivo investigation of genes of other human pathogens.
Collapse
Affiliation(s)
- Aline C. Habison
- Departments of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marta Pires de Miranda
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Chantal Beauchemin
- Departments of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Min Tan
- Departments of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sofia A. Cerqueira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Bruno Correia
- Instituto de Tecnologia Quimica e Bioliogica Antonio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rajesh Ponnusamy
- Instituto de Tecnologia Quimica e Bioliogica Antonio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Edward J. Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Colin E. McVey
- Instituto de Tecnologia Quimica e Bioliogica Antonio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - J. Pedro Simas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- * E-mail: (KMK); (JPS)
| | - Kenneth M. Kaye
- Departments of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (KMK); (JPS)
| |
Collapse
|
26
|
Fujisawa R, Ohashi E, Hirota K, Tsurimoto T. Human CTF18-RFC clamp-loader complexed with non-synthesising DNA polymerase ε efficiently loads the PCNA sliding clamp. Nucleic Acids Res 2017; 45:4550-4563. [PMID: 28199690 PMCID: PMC5416766 DOI: 10.1093/nar/gkx096] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/08/2017] [Indexed: 12/26/2022] Open
Abstract
The alternative proliferating-cell nuclear antigen (PCNA)-loader CTF18-RFC forms a stable complex with DNA polymerase ε (Polε). We observed that, under near-physiological conditions, CTF18-RFC alone loaded PCNA inefficiently, but loaded it efficiently when complexed with Polε. During efficient PCNA loading, CTF18-RFC and Polε assembled at a 3΄ primer–template junction cooperatively, and directed PCNA to the loading site. Site-specific photo-crosslinking of directly interacting proteins at the primer–template junction showed similar cooperative binding, in which the catalytic N-terminal portion of Polε acted as the major docking protein. In the PCNA-loading intermediate with ATPγS, binding of CTF18 to the DNA structures increased, suggesting transient access of CTF18-RFC to the primer terminus. Polε placed in DNA synthesis mode using a substrate DNA with a deoxidised 3΄ primer end did not stimulate PCNA loading, suggesting that DNA synthesis and PCNA loading are mutually exclusive at the 3΄ primer–template junction. Furthermore, PCNA and CTF18-RFC–Polε complex engaged in stable trimeric assembly on the template DNA and synthesised DNA efficiently. Thus, CTF18-RFC appears to be involved in leading-strand DNA synthesis through its interaction with Polε, and can load PCNA onto DNA when Polε is not in DNA synthesis mode to restore DNA synthesis.
Collapse
Affiliation(s)
- Ryo Fujisawa
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Eiji Ohashi
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Toshiki Tsurimoto
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
27
|
Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen: Replicating and Shielding Viral DNA during Viral Persistence. J Virol 2017; 91:JVI.01083-16. [PMID: 28446671 DOI: 10.1128/jvi.01083-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) establishes lifelong latency. The viral latency-associated nuclear antigen (LANA) promotes viral persistence by tethering the viral genome to cellular chromosomes and by participating in latent DNA replication. Recently, the structure of the LANA C-terminal DNA binding domain was solved and new cytoplasmic variants of LANA were discovered. We discuss how these findings contribute to our current view of LANA structure and assembly and of its role during viral persistence.
Collapse
|
28
|
Sychev ZE, Hu A, DiMaio TA, Gitter A, Camp ND, Noble WS, Wolf-Yadlin A, Lagunoff M. Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism. PLoS Pathog 2017; 13:e1006256. [PMID: 28257516 PMCID: PMC5352148 DOI: 10.1371/journal.ppat.1006256] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/15/2017] [Accepted: 02/22/2017] [Indexed: 12/22/2022] Open
Abstract
Kaposi’s Sarcoma associated Herpesvirus (KSHV), an oncogenic, human gamma-herpesvirus, is the etiological agent of Kaposi’s Sarcoma the most common tumor of AIDS patients world-wide. KSHV is predominantly latent in the main KS tumor cell, the spindle cell, a cell of endothelial origin. KSHV modulates numerous host cell-signaling pathways to activate endothelial cells including major metabolic pathways involved in lipid metabolism. To identify the underlying cellular mechanisms of KSHV alteration of host signaling and endothelial cell activation, we identified changes in the host proteome, phosphoproteome and transcriptome landscape following KSHV infection of endothelial cells. A Steiner forest algorithm was used to integrate the global data sets and, together with transcriptome based predicted transcription factor activity, cellular networks altered by latent KSHV were predicted. Several interesting pathways were identified, including peroxisome biogenesis. To validate the predictions, we showed that KSHV latent infection increases the number of peroxisomes per cell. Additionally, proteins involved in peroxisomal lipid metabolism of very long chain fatty acids, including ABCD3 and ACOX1, are required for the survival of latently infected cells. In summary, novel cellular pathways altered during herpesvirus latency that could not be predicted by a single systems biology platform, were identified by integrated proteomics and transcriptomics data analysis and when correlated with our metabolomics data revealed that peroxisome lipid metabolism is essential for KSHV latent infection of endothelial cells. Kaposi’s Sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi’s Sarcoma, the most common tumor of AIDS patients. KSHV modulates host cell signaling and metabolism to maintain a life-long latent infection. To unravel the underlying cellular mechanisms modulated by KSHV, we used multiple global systems biology platforms to identify and integrate changes in both cellular protein expression and transcription following KSHV infection of endothelial cells, the relevant cell type for KS tumors. The analysis identified several interesting pathways including peroxisome biogenesis. Peroxisomes are small cytoplasmic organelles involved in redox reactions and lipid metabolism. KSHV latent infection increases the number of peroxisomes per cell and proteins involved in peroxisomal lipid metabolism are required for the survival of latently infected cells. In summary, through integration of multiple global systems biology analyses we were able to identify novel pathways that could not be predicted by one platform alone and found that lipid metabolism in a small cytoplasmic organelle is necessary for the survival of latent infection with a herpesvirus.
Collapse
Affiliation(s)
- Zoi E. Sychev
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Alex Hu
- Department of Genome Science, University of Washington, Seattle, Washington, United States of America
| | - Terri A. DiMaio
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison and Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Nathan D. Camp
- Department of Genome Science, University of Washington, Seattle, Washington, United States of America
| | - William S. Noble
- Department of Genome Science, University of Washington, Seattle, Washington, United States of America
| | - Alejandro Wolf-Yadlin
- Department of Genome Science, University of Washington, Seattle, Washington, United States of America
- * E-mail: (ML); (AWY)
| | - Michael Lagunoff
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (ML); (AWY)
| |
Collapse
|
29
|
McBride AA. The Promise of Proteomics in the Study of Oncogenic Viruses. Mol Cell Proteomics 2017; 16:S65-S74. [PMID: 28104704 DOI: 10.1074/mcp.o116.065201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/16/2016] [Indexed: 12/30/2022] Open
Abstract
Oncogenic viruses are responsible for about 15% human cancers. This article explores the promise and challenges of viral proteomics in the study of the oncogenic human DNA viruses, HPV, McPyV, EBV and KSHV. These viruses have coevolved with their hosts and cause persistent infections. Each virus encodes oncoproteins that manipulate key cellular pathways to promote viral replication and evade the host immune response. Viral proteomics can identify cellular pathways perturbed by viral infection, identify cellular proteins that are crucial for viral persistence and oncogenesis, and identify important diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Alison A McBride
- From the ‡Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, 33 North Drive, MSC3209, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
30
|
Latency-Associated Nuclear Antigen E3 Ubiquitin Ligase Activity Impacts Gammaherpesvirus-Driven Germinal Center B Cell Proliferation. J Virol 2016; 90:7667-83. [PMID: 27307564 DOI: 10.1128/jvi.00813-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/06/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Viruses have evolved mechanisms to hijack components of cellular E3 ubiquitin ligases, thus modulating the ubiquitination pathway. However, the biological relevance of such mechanisms for viral pathogenesis in vivo remains largely unknown. Here, we utilized murid herpesvirus 4 (MuHV-4) infection of mice as a model system to address the role of MuHV-4 latency-associated nuclear antigen (mLANA) E3 ligase activity in gammaherpesvirus latent infection. We show that specific mutations in the mLANA SOCS box (V199A, V199A/L202A, or P203A/P206A) disrupted mLANA's ability to recruit Elongin C and Cullin 5, thereby impairing the formation of the Elongin BC/Cullin 5/SOCS (EC5S(mLANA)) complex and mLANA's E3 ligase activity on host NF-κB and Myc. Although these mutations resulted in considerably reduced mLANA binding to viral terminal repeat DNA as assessed by electrophoretic mobility shift assay (EMSA), the mutations did not disrupt mLANA's ability to mediate episome persistence. In vivo, MuHV-4 recombinant viruses bearing these mLANA SOCS box mutations exhibited a deficit in latency amplification in germinal center (GC) B cells. These findings demonstrate that the E3 ligase activity of mLANA contributes to gammaherpesvirus-driven GC B cell proliferation. Hence, pharmacological inhibition of viral E3 ligase activity through targeting SOCS box motifs is a putative strategy to control gammaherpesvirus-driven lymphoproliferation and associated disease. IMPORTANCE The gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause lifelong persistent infection and play causative roles in several human malignancies. Colonization of B cells is crucial for virus persistence, and access to the B cell compartment is gained by virus-driven proliferation in germinal center (GC) B cells. Infection of B cells is predominantly latent, with the viral genome persisting as a multicopy episome and expressing only a small subset of viral genes. Here, we focused on latency-associated nuclear antigen (mLANA) encoded by murid herpesvirus-4 (MuHV-4), which exhibits homology in sequence, structure, and function to KSHV LANA (kLANA), thereby allowing the study of LANA-mediated pathogenesis in mice. Our experiments show that mLANA's E3 ubiquitin ligase activity is necessary for efficient expansion of latency in GC B cells, suggesting that the development of pharmacological inhibitors of LANA E3 ubiquitin ligase activity may allow strategies to interfere with gammaherpesvirus-driven lymphoproliferation and associated disease.
Collapse
|
31
|
Juillard F, Tan M, Li S, Kaye KM. Kaposi's Sarcoma Herpesvirus Genome Persistence. Front Microbiol 2016; 7:1149. [PMID: 27570517 PMCID: PMC4982378 DOI: 10.3389/fmicb.2016.01149] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/11/2016] [Indexed: 12/17/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) has an etiologic role in Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. These diseases are most common in immunocompromised individuals, especially those with AIDS. Similar to all herpesviruses, KSHV infection is lifelong. KSHV infection in tumor cells is primarily latent, with only a small subset of cells undergoing lytic infection. During latency, the KSHV genome persists as a multiple copy, extrachromosomal episome in the nucleus. In order to persist in proliferating tumor cells, the viral genome replicates once per cell cycle and then segregates to daughter cell nuclei. KSHV only expresses several genes during latent infection. Prominent among these genes, is the latency-associated nuclear antigen (LANA). LANA is responsible for KSHV genome persistence and also exerts transcriptional regulatory effects. LANA mediates KSHV DNA replication and in addition, is responsible for segregation of replicated genomes to daughter nuclei. LANA serves as a molecular tether, bridging the viral genome to mitotic chromosomes to ensure that KSHV DNA reaches progeny nuclei. N-terminal LANA attaches to mitotic chromosomes by binding histones H2A/H2B at the surface of the nucleosome. C-terminal LANA binds specific KSHV DNA sequence and also has a role in chromosome attachment. In addition to the essential roles of N- and C-terminal LANA in genome persistence, internal LANA sequence is also critical for efficient episome maintenance. LANA’s role as an essential mediator of virus persistence makes it an attractive target for inhibition in order to prevent or treat KSHV infection and disease.
Collapse
Affiliation(s)
- Franceline Juillard
- Departments of Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, MA, USA
| | - Min Tan
- Departments of Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, MA, USA
| | - Shijun Li
- Departments of Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, MA, USA
| | - Kenneth M Kaye
- Departments of Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, MA, USA
| |
Collapse
|
32
|
Wei F, Gan J, Wang C, Zhu C, Cai Q. Cell Cycle Regulatory Functions of the KSHV Oncoprotein LANA. Front Microbiol 2016; 7:334. [PMID: 27065950 PMCID: PMC4811921 DOI: 10.3389/fmicb.2016.00334] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/03/2016] [Indexed: 12/13/2022] Open
Abstract
Manipulation of cell cycle is a commonly employed strategy of viruses for achieving a favorable cellular environment during infection. Kaposi’s sarcoma-associated herpesvirus (KSHV), the primary etiological agent of several human malignancies including Kaposi’s sarcoma, and primary effusion lymphoma, encodes several oncoproteins that deregulate normal physiology of cell cycle machinery to persist with endothelial cells and B cells and subsequently establish a latent infection. During latency, only a small subset of viral proteins is expressed. Latency-associated nuclear antigen (LANA) is one of the latent antigens shown to be essential for transformation of endothelial cells in vitro. It has been well demonstrated that LANA is critical for the maintenance of latency, episome DNA replication, segregation and gene transcription. In this review, we summarize recent studies and address how LANA functions as an oncoprotein to steer host cell cycle-related events including proliferation and apoptosis by interacting with various cellular and viral factors, and highlight the potential therapeutic strategy of disrupting LANA-dependent signaling as targets in KSHV-associated cancers.
Collapse
Affiliation(s)
- Fang Wei
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Jin Gan
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University Shanghai, China
| | - Chong Wang
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University Shanghai, China
| | - Caixia Zhu
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University Shanghai, China
| | - Qiliang Cai
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University Shanghai, China
| |
Collapse
|
33
|
Purushothaman P, Dabral P, Gupta N, Sarkar R, Verma SC. KSHV Genome Replication and Maintenance. Front Microbiol 2016; 7:54. [PMID: 26870016 PMCID: PMC4740845 DOI: 10.3389/fmicb.2016.00054] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/12/2016] [Indexed: 12/04/2022] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV) or human herpesvirus 8 (HHV8) is a major etiological agent for multiple severe malignancies in immune-compromised patients. KSHV establishes lifetime persistence in the infected individuals and displays two distinct life cycles, generally a prolonged passive latent, and a short productive or lytic cycle. During latent phase, the viral episome is tethered to the host chromosome and replicates once during every cell division. Latency-associated nuclear antigen (LANA) is a predominant multifunctional nuclear protein expressed during latency, which plays a central role in episome tethering, replication and perpetual segregation of the episomes during cell division. LANA binds cooperatively to LANA binding sites (LBS) within the terminal repeat (TR) region of the viral episome as well as to the cellular nucleosomal proteins to tether viral episome to the host chromosome. LANA has been shown to modulate multiple cellular signaling pathways and recruits various cellular proteins such as chromatin modifying enzymes, replication factors, transcription factors, and cellular mitotic framework to maintain a successful latent infection. Although, many other regions within the KSHV genome can initiate replication, KSHV TR is important for latent DNA replication and possible segregation of the replicated episomes. Binding of LANA to LBS favors the recruitment of various replication factors to initiate LANA dependent DNA replication. In this review, we discuss the molecular mechanisms relevant to KSHV genome replication, segregation, and maintenance of latency.
Collapse
Affiliation(s)
- Pravinkumar Purushothaman
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Prerna Dabral
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Namrata Gupta
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Roni Sarkar
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Subhash C Verma
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno Reno, NV, USA
| |
Collapse
|
34
|
Long C, Guo W, Zhou H, Wang J, Wang H, Sun X. Triptolide decreases expression of latency-associated nuclear antigen 1 and reduces viral titers in Kaposi's sarcoma-associated and herpesvirus-related primary effusion lymphoma cells. Int J Oncol 2016; 48:1519-30. [PMID: 26821279 DOI: 10.3892/ijo.2016.3353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/11/2016] [Indexed: 11/06/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) can establish a life-long persistence in the host after primary infection and is associated with certain malignancies, which are resistant to conventional chemotherapeutic agents with a poor prognosis. Latency-associated nuclear antigen 1 (LANA1) encoded by KSHV is essential for segregation, replication and maintenance of viral genome. In addition, LANA1 upregulates the transcriptional activity of signal transducer and activator of transcription 3 (STAT3), which plays an important role in promoting survival of KSHV-associated primary effusion lymphoma (PEL) cells. Furthermore, LANA1 mediates transcriptional modulation of KSHV and host genome in host cells. In the present study, the antitumor effect of triptolide was assessed. CCK-8 assays were performed to demonstrate that the proliferations of PEL cells were efficiently inhibited by triptolide in a dose- and time-dependent manner. Flow cytometric results indicated that triptolide induced cell cycle arrest and apoptosis. Western blot results suggested that triptolide downregulated LANA1 expression and reduced half-life of LANA1 in the KSHV-infected malignant cells. Viral titer experiments indicated that triptolide treatment impaired the number of viral DNA copies and the production of virions in BCBL-1 cells. Triptolide also suppressed STAT3 activity and inhibited secretion of IL-6 in PEL cells. In a mouse xenograft model of primary effusion lymphoma by BCBL-1 cells, triptolide treatment significantly inhibited ascites formation and diffused organ infiltration. These results indicate that triptolide impairs the expression of LANA1 and shows antitumor activity against PEL in vitro and in vivo. Triptolide may be a potential agent for treatment of PEL.
Collapse
Affiliation(s)
- Cong Long
- Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Guo
- Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Heng Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jingchao Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Huan Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiaoping Sun
- Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
35
|
Ponnusamy R, Petoukhov MV, Correia B, Custodio TF, Juillard F, Tan M, Pires de Miranda M, Carrondo MA, Simas JP, Kaye KM, Svergun DI, McVey CE. KSHV but not MHV-68 LANA induces a strong bend upon binding to terminal repeat viral DNA. Nucleic Acids Res 2015; 43:10039-54. [PMID: 26424851 PMCID: PMC4787769 DOI: 10.1093/nar/gkv987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/16/2015] [Indexed: 12/20/2022] Open
Abstract
Latency-associated nuclear antigen (LANA) is central to episomal tethering, replication and transcriptional regulation of γ2-herpesviruses. LANA binds cooperatively to the terminal repeat (TR) region of the viral episome via adjacent LANA binding sites (LBS), but the molecular mechanism by which LANA assembles on the TR remains elusive. We show that KSHV LANA and MHV-68 LANA proteins bind LBS DNA using strikingly different modes. Solution structure of LANA complexes revealed that while kLANA tetramer is intrinsically bent both in the free and bound state to LBS1-2 DNA, mLANA oligomers instead adopt a rigid linear conformation. In addition, we report a novel non-ring kLANA structure that displays more flexibility at its assembly interface than previously demonstrated. We identified a hydrophobic pivot point located at the dimer-dimer assembly interface, which gives rotational freedom for kLANA to adopt variable conformations to accommodate both LBS1-2 and LBS2-1-3 DNA. Alterations in the arrangement of LBS within TR or at the tetramer assembly interface have a drastic effect on the ability of kLANA binding. We also show kLANA and mLANA DNA binding functions can be reciprocated. Although KSHV and MHV-68 are closely related, the findings provide new insights into how the structure, oligomerization, and DNA binding of LANA have evolved differently to assemble on the TR DNA.
Collapse
Affiliation(s)
- Rajesh Ponnusamy
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2700-157, Portugal
| | - Maxim V Petoukhov
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Hamburg 22607, Germany
| | - Bruno Correia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2700-157, Portugal
| | - Tania F Custodio
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2700-157, Portugal
| | - Franceline Juillard
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Min Tan
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Marta Pires de Miranda
- Instituto de Microbiologia e Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Maria A Carrondo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2700-157, Portugal
| | - J Pedro Simas
- Instituto de Microbiologia e Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Kenneth M Kaye
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Hamburg 22607, Germany
| | - Colin E McVey
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2700-157, Portugal
| |
Collapse
|
36
|
Li S, Tan M, Juillard F, Ponnusamy R, Correia B, Simas JP, Carrondo MA, McVey CE, Kaye KM. The Kaposi Sarcoma Herpesvirus Latency-associated Nuclear Antigen DNA Binding Domain Dorsal Positive Electrostatic Patch Facilitates DNA Replication and Episome Persistence. J Biol Chem 2015; 290:28084-28096. [PMID: 26420481 DOI: 10.1074/jbc.m115.674622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 12/15/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) has a causative role in several human malignancies. KSHV latency-associated nuclear antigen (LANA) mediates persistence of viral episomes in latently infected cells. LANA mediates KSHV DNA replication and segregates episomes to progeny nuclei. The structure of the LANA DNA binding domain was recently solved, revealing a positive electrostatic patch opposite the DNA binding surface, which is the site of BET protein binding. Here we investigate the functional role of the positive patch in LANA-mediated episome persistence. As expected, LANA mutants with alanine or glutamate substitutions in the central, peripheral, or lateral portions of the positive patch maintained the ability to bind DNA by EMSA. However, all of the substitution mutants were deficient for LANA DNA replication and episome maintenance. Mutation of the peripheral region generated the largest deficiencies. Despite these deficiencies, all positive patch mutants concentrated to dots along mitotic chromosomes in cells containing episomes, similar to LANA. The central and peripheral mutants, but not the lateral mutants, were reduced for BET protein interaction as assessed by co-immunoprecipitation. However, defects in BET protein binding were independent of episome maintenance function. Overall, the reductions in episome maintenance closely correlated with DNA replication deficiencies, suggesting that the replication defects account for the reduced episome persistence. Therefore, the electrostatic patch exerts a key role in LANA-mediated DNA replication and episome persistence and may act through a host cell partner(s) other than a BET protein or by inducing specific structures or complexes.
Collapse
Affiliation(s)
- Shijun Li
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, 02115
| | - Min Tan
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, 02115
| | - Franceline Juillard
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, 02115
| | - Rajesh Ponnusamy
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal
| | - Bruno Correia
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal
| | - J Pedro Simas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria A Carrondo
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal
| | - Colin E McVey
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal
| | - Kenneth M Kaye
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, 02115.
| |
Collapse
|
37
|
Bub1 in Complex with LANA Recruits PCNA To Regulate Kaposi's Sarcoma-Associated Herpesvirus Latent Replication and DNA Translesion Synthesis. J Virol 2015. [PMID: 26223641 DOI: 10.1128/jvi.01524-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Latent DNA replication of Kaposi's sarcoma-associated herpesvirus (KSHV) initiates at the terminal repeat (TR) element and requires trans-acting elements, both viral and cellular, such as ORCs, MCMs, and latency-associated nuclear antigen (LANA). However, how cellular proteins are recruited to the viral genome is not very clear. Here, we demonstrated that the host cellular protein, Bub1, is involved in KSHV latent DNA replication. We show that Bub1 constitutively interacts with proliferating cell nuclear antigen (PCNA) via a highly conserved PIP box motif within the kinase domain. Furthermore, we demonstrated that Bub1 can form a complex with LANA and PCNA in KSHV-positive cells. This strongly indicated that Bub1 serves as a scaffold or molecular bridge between LANA and PCNA. LANA recruited PCNA to the KSHV genome via Bub1 to initiate viral replication in S phase and interacted with PCNA to promote its monoubiquitination in response to UV-induced damage for translesion DNA synthesis. This resulted in increased survival of KSHV-infected cells. IMPORTANCE During latency in KSHV-infected cells, the viral episomal DNA replicates once each cell cycle. KSHV does not express DNA replication proteins during latency. Instead, KSHV LANA recruits the host cell DNA replication machinery to the replication origin. However, the mechanism by which LANA mediates replication is uncertain. Here, we show that LANA is able to form a complex with PCNA, a critical protein for viral DNA replication. Furthermore, our findings suggest that Bub1, a spindle checkpoint protein, serves as a scaffold or molecular bridge between LANA and PCNA. Our data further support a role for Bub1 and LANA in PCNA-mediated cellular DNA replication processes as well as monoubiquitination of PCNA in response to UV damage. These data reveal a therapeutic target for inhibition of KSHV persistence in malignant cells.
Collapse
|
38
|
A Screen for Extracellular Signal-Regulated Kinase-Primed Glycogen Synthase Kinase 3 Substrates Identifies the p53 Inhibitor iASPP. J Virol 2015; 89:9232-41. [PMID: 26109723 DOI: 10.1128/jvi.01072-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/19/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The Kaposi's sarcoma-associated herpesvirus (KSHV) LANA protein is essential for the replication and maintenance of virus genomes in latently KSHV-infected cells. LANA also drives dysregulated cell growth through a multiplicity of mechanisms that include altering the activity of the cellular kinases extracellular signal-regulated kinase (ERK) and glycogen synthase kinase 3 (GSK-3). To investigate the potential impact of these changes in enzyme activity, we used protein microarrays to identify cell proteins that were phosphorylated by the combination of ERK and GSK-3. The assays identified 58 potential ERK-primed GSK-3 substrates, of which 23 had evidence for in vivo phosphorylation in mass spectrometry databases. Two of these, SMAD4 and iASPP, were selected for further analysis and were confirmed as ERK-primed GSK-3 substrates. Cotransfection experiments revealed that iASPP, but not SMAD4, was targeted for degradation in the presence of GSK-3. iASPP interferes with apoptosis induced by p53 family members. To determine the importance of iASPP to KSHV-infected-cell growth, primary effusion lymphoma (PEL) cells were treated with an iASPP inhibitor in the presence or absence of the MDM2 inhibitor Nutlin-3. Drug inhibition of iASPP activity induced apoptosis in BC3 and BCBL1 PEL cells but did not induce poly(ADP-ribose) polymerase (PARP) cleavage in virus-negative BJAB cells. The effect of iASPP inhibition was additive with that of Nutlin-3. Interfering with iASPP function is therefore another mechanism that can sensitize KSHV-positive PEL cells to cell death. IMPORTANCE KSHV is associated with several malignancies, including primary effusion lymphoma (PEL). The KSHV-encoded LANA protein is multifunctional and promotes both cell growth and resistance to cell death. LANA is known to activate ERK and limit the activity of another kinase, GSK-3. To discover ways in which LANA manipulation of these two kinases might impact PEL cell survival, we screened a human protein microarray for ERK-primed GSK-3 substrates. One of the proteins identified, iASPP, showed reduced levels in the presence of GSK-3. Further, blocking iASPP activity increased cell death, particularly in p53 wild-type BC3 PEL cells.
Collapse
|
39
|
The 3D structure of Kaposi sarcoma herpesvirus LANA C-terminal domain bound to DNA. Proc Natl Acad Sci U S A 2015; 112:6694-9. [PMID: 25947153 DOI: 10.1073/pnas.1421804112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kaposi sarcoma herpesvirus (KSHV) persists as a latent nuclear episome in dividing host cells. This episome is tethered to host chromatin to ensure proper segregation during mitosis. For duplication of the latent genome, the cellular replication machinery is recruited. Both of these functions rely on the constitutively expressed latency-associated nuclear antigen (LANA) of the virus. Here, we report the crystal structure of the KSHV LANA DNA-binding domain (DBD) in complex with its high-affinity viral target DNA, LANA binding site 1 (LBS1), at 2.9 Å resolution. In contrast to homologous proteins such as Epstein-Barr virus nuclear antigen 1 (EBNA-1) of the related γ-herpesvirus Epstein-Barr virus, specific DNA recognition by LANA is highly asymmetric. In addition to solving the crystal structure, we found that apart from the two known LANA binding sites, LBS1 and LBS2, LANA also binds to a novel site, denoted LBS3. All three sites are located in a region of the KSHV terminal repeat subunit previously recognized as a minimal replicator. Moreover, we show that the LANA DBD can coat DNA of arbitrary sequence by virtue of a characteristic lysine patch, which is absent in EBNA-1 of the Epstein-Barr virus. Likely, these higher-order assemblies involve the self-association of LANA into supermolecular spirals. One such spiral assembly was solved as a crystal structure of 3.7 Å resolution in the absence of DNA. On the basis of our data, we propose a model for the controlled nucleation of higher-order LANA oligomers that might contribute to the characteristic subnuclear KSHV microdomains ("LANA speckles"), a hallmark of KSHV latency.
Collapse
|
40
|
Uppal T, Jha HC, Verma SC, Robertson ES. Chromatinization of the KSHV Genome During the KSHV Life Cycle. Cancers (Basel) 2015; 7:112-42. [PMID: 25594667 PMCID: PMC4381254 DOI: 10.3390/cancers7010112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/07/2015] [Indexed: 12/18/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family and is the causative agent of various lymphoproliferative diseases in humans. KSHV, like other herpesviruses, establishes life-long latent infection with the expression of a limited number of viral genes. Expression of these genes is tightly regulated by both the viral and cellular factors. Recent advancements in identifying the expression profiles of viral transcripts, using tilling arrays and next generation sequencing have identified additional coding and non-coding transcripts in the KSHV genome. Determining the functions of these transcripts will provide a better understanding of the mechanisms utilized by KSHV in altering cellular pathways involved in promoting cell growth and tumorigenesis. Replication of the viral genome is critical in maintaining the existing copies of the viral episomes during both latent and lytic phases of the viral life cycle. The replication of the viral episome is facilitated by viral components responsible for recruiting chromatin modifying enzymes and replication factors for altering the chromatin complexity and replication initiation functions, respectively. Importantly, chromatin modification of the viral genome plays a crucial role in determining whether the viral genome will persist as latent episome or undergo lytic reactivation. Additionally, chromatinization of the incoming virion DNA, which lacks chromatin structure, in the target cells during primary infection, helps in establishing latent infection. Here, we discuss the recent advancements on our understating of KSHV genome chromatinization and the consequences of chromatin modifications on viral life cycle.
Collapse
Affiliation(s)
- Timsy Uppal
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Hem C Jha
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Erle S Robertson
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Uppal T, Banerjee S, Sun Z, Verma SC, Robertson ES. KSHV LANA--the master regulator of KSHV latency. Viruses 2014; 6:4961-98. [PMID: 25514370 PMCID: PMC4276939 DOI: 10.3390/v6124961] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/16/2022] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV), like other human herpes viruses, establishes a biphasic life cycle referred to as dormant or latent, and productive or lytic phases. The latent phase is characterized by the persistence of viral episomes in a highly ordered chromatin structure and with the expression of a limited number of viral genes. Latency Associated Nuclear Antigen (LANA) is among the most abundantly expressed proteins during latency and is required for various nuclear functions including the recruitment of cellular machineries for viral DNA replication and segregation of the replicated genomes to daughter cells. LANA achieves these functions by recruiting cellular proteins including replication factors, chromatin modifying enzymes and cellular mitotic apparatus assembly. LANA directly binds to the terminal repeat region of the viral genome and associates with nucleosomal proteins to tether to the host chromosome. Binding of LANA to TR recruits the replication machinery, thereby initiating DNA replication within the TR. However, other regions of the viral genome can also initiate replication as determined by Single Molecule Analysis of the Replicated DNA (SMARD) approach. Recent, next generation sequence analysis of the viral transcriptome shows the expression of additional genes during latent phase. Here, we discuss the newly annotated latent genes and the role of major latent proteins in KSHV biology.
Collapse
Affiliation(s)
- Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Sagarika Banerjee
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Zhiguo Sun
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Erle S Robertson
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|