1
|
Dong J, Tayyab B, Wang J. A detailed review of genetically encodable RFPs and far-RFPs and their applications in advanced super-resolution imaging techniques. Biophys Chem 2025; 322:107432. [PMID: 40117991 DOI: 10.1016/j.bpc.2025.107432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/25/2025] [Accepted: 03/07/2025] [Indexed: 03/23/2025]
Abstract
The red fluorescent proteins (RFPs) and far-red fluorescent proteins (far-RFPs) that are encoded genetically can emit fluorescence within the spectral ranges of 580-680 nm when exposed to the light of appropriate wavelengths. Unlike many RFPs derived from coral species, numerous far-RFPs are optimized synthetic constructs engineered from different orange or red-emitting progenitors. Various categories have been established for the available RFPs and far-red fluorescent proteins based on their photo-chemical profile, fluorescence mechanism, and switching kinetics. Fluorescent probes (FPs) derived from these classes are extensively utilized for labelling and visualizing in vivo and in vitro specimens. Traditional optical microscopy methods generate diffraction-limited, indistinct images owing to the restricted resolution capability of light ranging from 200 to 300 nm. Since 2005, super-resolution microscopy has been a topic of great interest due to its ability to achieve imaging at spatial resolutions of less than 100 nm. The 2014 Nobel Prize in Chemistry was awarded to Eric Betzig, Stefan Hell, and William E. Moerner for their contributions to demonstrating the effectiveness of genetically encodable fluorescent proteins in visualizing biological systems through super-resolution fluorescence microscopy. This review provides a concise overview of RFPs and far-RFPs, including the involvement of surrounding residues in chromophore intactness, stability, autocatalytic maturation and switching kinetics. All the chemical pathways proposed for photoactivation, photoconversion and photoswitching mechanisms are concisely reviewed. Subsequently, a comprehensive summary was provided regarding the various types of super-resolution techniques that are commonly employed, elucidating their underlying principles of operation, as well as the potential future applications of RFPs/far-RFPs in the field of biological imaging.
Collapse
Affiliation(s)
- Jianshu Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China.
| | - Bilal Tayyab
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangyun Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
2
|
Akari AS, Narciso MR, Fagbohun EO, Ortiz PD, Botelho RJ, Impellizzeri S. Photoinduced luminescence activation of hydrophilic 'caged' carbons dots. NANOSCALE 2025. [PMID: 40354039 DOI: 10.1039/d5nr00123d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
As part of our efforts to develop nanomaterials with tunable optical properties, we devised a synthetic protocol to photoactivate the luminescence of hydrophilic carbon dots by 'caging' the nanostructures with photocleavable 2-nitrobenzyl quenchers. Photoremovable 2-nitrobenzyl groups can be attached covalently to the surface of the carbon dots via amide-bond formation. We show that 2-nitrobenzyls efficiently quench the emission intensity of the resulting nanoconstructs and that the luminescence can be activated upon ultraviolet illumination in solution. In addition, the carbon dots can be internalized by living cells and used as bioimaging agents.
Collapse
Affiliation(s)
- Aviya S Akari
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, ON, M5B 2K3, Canada.
| | - Maria R Narciso
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, ON, M5B 2K3, Canada.
| | - Emmanuel O Fagbohun
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, ON, M5B 2K3, Canada.
| | - Pedro D Ortiz
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, ON, M5B 2K3, Canada.
| | - Roberto J Botelho
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, ON, M5B 2K3, Canada.
| | - Stefania Impellizzeri
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, ON, M5B 2K3, Canada.
| |
Collapse
|
3
|
Sharrocks KL, Swaih AM, Hanyaloglu AC. Single-molecule localization microscopy as a tool to quantify di/oligomerization of receptor tyrosine kinases and G protein-coupled receptors. Mol Pharmacol 2025; 107:100033. [PMID: 40228395 PMCID: PMC12163491 DOI: 10.1016/j.molpha.2025.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Dimerization and oligomerization of membrane receptors, including G protein-coupled receptors and receptor tyrosine kinases, are fundamental for regulating cell signaling and diversifying downstream responses to mediate a range of physiological processes. Receptor di/oligomers play roles in diverse facets of receptor function. Changes in receptor di/oligomers have been implicated in a range of diseases; therefore, better understanding of the specific composition and interactions between receptors in complexes is essential, especially for the development of di/oligomer-specific drugs. Previously, different optical microscopy approaches and proximity-based biophysical assays have been used to demonstrate di/oligomerization of membrane receptors. However, in recent years, single-molecule super-resolution microscopy techniques have allowed researchers to quantify and uncover the precise dynamics and stoichiometry of specific receptor complexes. This allows the organization of membrane protein receptors to be mapped across the plasma membrane to explore the effects of factors such as ligands, effectors, membrane environment, and therapeutic agents. Quantification of receptor complexes is required to better understand the intricate balance of distinct receptor complexes in cells. In this brief review, we provide an overview of single-molecule approaches for the quantification of receptor di/oligomerization. We will discuss the techniques commonly employed to study membrane receptor di/oligomerization and their relative advantages and limitations. SIGNIFICANCE STATEMENT: Receptor di/oligomerization plays an important role in their function. For some receptors, di/oligomerization is essential for functional signaling, whereas for others, it acts as a mechanism to achieve signaling pleiotropy. Aberrant receptor di/oligomerization has been implicated in a wide range of diseases. Single-molecule super-resolution microscopy techniques provide convincing methods to precisely quantify receptor complexes at the plasma membrane. Understanding receptor complex organization in disease models can also influence the targeting of specific monomeric or oligomeric complexes in therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Aylin C Hanyaloglu
- The Francis Crick Institute, London, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
4
|
Cheng Y, Hu M, Yang B, Jensen TB, Zhang Y, Yang T, Yu R, Ma Z, Radda JSD, Jin S, Zang C, Wang S. Perturb-tracing enables high-content screening of multi-scale 3D genome regulators. Nat Methods 2025; 22:950-961. [PMID: 40211002 PMCID: PMC12074983 DOI: 10.1038/s41592-025-02652-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/07/2025] [Indexed: 04/12/2025]
Abstract
Three-dimensional (3D) genome organization becomes altered during development, aging and disease, but the factors regulating chromatin topology are incompletely understood and currently no technology can efficiently screen for new regulators of multi-scale chromatin organization. Here, we developed an image-based high-content screening platform (Perturb-tracing) that combines pooled CRISPR screens, a cellular barcode readout method (BARC-FISH) and chromatin tracing. We performed a loss-of-function screen in human cells, and visualized alterations to their 3D chromatin folding conformations, alongside perturbation-paired barcode readout in the same single cells. We discovered tens of new regulators of chromatin folding at different length scales, ranging from chromatin domains and compartments to chromosome territory. A subset of the regulators exhibited 3D genome effects associated with loop extrusion and A-B compartmentalization mechanisms, while others were largely unrelated to these known 3D genome mechanisms. Finally, we identified new regulators of nuclear architectures and found a functional link between chromatin compaction and nuclear shape. Altogether, our method enables scalable, high-content identification of chromatin and nuclear topology regulators that will stimulate new insights into the 3D genome.
Collapse
Affiliation(s)
- Yubao Cheng
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Mengwei Hu
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Bing Yang
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tyler B Jensen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- M.D.-Ph.D. Program, Yale University, New Haven, CT, USA
| | - Yuan Zhang
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tianqi Yang
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Ruihuan Yu
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Zhaoxia Ma
- Department of Genome Sciences, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Jonathan S D Radda
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Shengyan Jin
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Chongzhi Zang
- Department of Genome Sciences, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Siyuan Wang
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA.
- M.D.-Ph.D. Program, Yale University, New Haven, CT, USA.
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, USA.
- Yale Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Molecular Cell Biology, Genetics and Development Program, Yale University, New Haven, CT, USA.
- Biochemistry, Quantitative Biology, Biophysics, and Structural Biology Program, Yale University, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Spahn C, Middlemiss S, Gómez-de-Mariscal E, Henriques R, Bode HB, Holden S, Heilemann M. The nucleoid of rapidly growing Escherichia coli localizes close to the inner membrane and is organized by transcription, translation, and cell geometry. Nat Commun 2025; 16:3732. [PMID: 40253395 PMCID: PMC12009437 DOI: 10.1038/s41467-025-58723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 03/27/2025] [Indexed: 04/21/2025] Open
Abstract
Bacterial chromosomes are spatiotemporally organized and sensitive to environmental changes. However, the mechanisms underlying chromosome configuration and reorganization are not fully understood. Here, we use single-molecule localization microscopy and live-cell imaging to show that the Escherichia coli nucleoid adopts a condensed, membrane-proximal configuration during rapid growth. Drug treatment induces a rapid collapse of the nucleoid from an apparently membrane-bound state within 10 min of halting transcription and translation. This hints toward an active role of transertion (coupled transcription, translation, and membrane insertion) in nucleoid organization, while cell wall synthesis inhibitors only affect nucleoid organization during morphological changes. Further, we provide evidence that the nucleoid spatially correlates with elongasomes in unperturbed cells, suggesting that large membrane-bound complexes might be hotspots for transertion. The observed correlation diminishes in cells with changed cell geometry or upon inhibition of protein biosynthesis. Replication inhibition experiments, as well as multi-drug treatments highlight the role of entropic effects and transcription in nucleoid condensation and positioning. Thus, our results indicate that transcription and translation, possibly in the context of transertion, act as a principal organizer of the bacterial nucleoid, and show that an altered metabolic state and antibiotic treatment lead to major changes in the spatial organization of the nucleoid.
Collapse
Affiliation(s)
- Christoph Spahn
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.
- Department of Natural Products in Organismic Interaction, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| | - Stuart Middlemiss
- Centre for Bacterial Cell Biology, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Estibaliz Gómez-de-Mariscal
- Optical cell biology group, Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Optical cell biology group, Gulbenkian Institute of Molecular Medicine, Oeiras, Portugal
- AI-driven Optical Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo Henriques
- Optical cell biology group, Instituto Gulbenkian de Ciência, Oeiras, Portugal
- AI-driven Optical Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- UCL-Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Helge B Bode
- Department of Natural Products in Organismic Interaction, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Biosciences, Molecular Biotechnology, Goethe University Frankfurt, Frankfurt, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Phillips University Marburg, Marburg, Germany
- Senckenberg Gesellschaft für Naturforschung, Frankfurt, Germany
- Department of Chemistry, Phillips University Marburg, Marburg, Germany
| | - Séamus Holden
- Centre for Bacterial Cell Biology, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, UK
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
6
|
Zheng S, Shi X, Lin J, Yang Y, Xin Y, Bai X, Zhu H, Chen H, Wu J, Zheng X, Lin L, Huang Z, Yang S, Hu F, Liu W. Structural basis for the fast maturation of pcStar, a photoconvertible fluorescent protein. Acta Crystallogr D Struct Biol 2025; 81:181-195. [PMID: 40094266 DOI: 10.1107/s2059798325002141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Green-to-red photoconvertible fluorescent proteins (PCFPs) serve as key players in single-molecule localization super-resolution imaging. As an early engineered variant, mEos3.2 has limited applications, mostly due to its slow maturation rate. The recent advent of a novel variant, pcStar, obtained by the simple mutation of only three amino acids (D28E/L93M/N166G) in mEos3.2, exhibits significantly accelerated maturation and enhanced fluorescent brightness. This improvement represents an important advance in the field of biofluorescence by enabling early detection with reliable signals, essential for labelling dynamic biological processes. However, the mechanism underlying the significant improvement in fluorescent performance from mEos3.2 to pcStar remains elusive, preventing the rational design of more robust variants through mutagenesis. In this study, we determined the crystal structures of mEos3.2 and pcStar in their green states at atomic resolution and performed molecular-dynamics simulations to reveal significant divergences between the two proteins. Our structural and computational analyses revealed crucial features that are distinctively present in pcStar, including the presence of an extra solvent molecule, high conformational stability and enhanced interactions of the chromophore with its surroundings, tighter tertiary-structure packing and dynamic central-helical deformation. Resulting from the triple mutations, all of these structural features are likely to establish a mechanistic link to the greatly improved fluorescent performance of pcStar. The data described here not only provide a good example illustrating how distant amino-acid substitutions can affect the structure and bioactivity of a protein, but also give rise to strategic considerations for the future engineering of more widely applicable PCFPs.
Collapse
Affiliation(s)
- Shuping Zheng
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiangrui Shi
- Institute of Immunology, PLA, Army Medical University, Chongqing, People's Republic of China
| | - Junjin Lin
- Public Technology Service Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yiwei Yang
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, People's Republic of China
| | - Yiting Xin
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Xinru Bai
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Huachen Zhu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Hui Chen
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jiasen Wu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiaowei Zheng
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Ling Lin
- Public Technology Service Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Zhihong Huang
- Public Technology Service Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Sheng Yang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, People's Republic of China
| | - Fen Hu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Wei Liu
- Institute of Immunology, PLA, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
7
|
Streit M, Budiarta M, Jungblut M, Beliu G. Fluorescent labeling strategies for molecular bioimaging. BIOPHYSICAL REPORTS 2025; 5:100200. [PMID: 39947326 PMCID: PMC11914189 DOI: 10.1016/j.bpr.2025.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Super-resolution microscopy (SRM) has transformed biological imaging by circumventing the diffraction limit of light and enabling the visualization of cellular structures and processes at the molecular level. Central to the capabilities of SRM is fluorescent labeling, which ensures the precise attachment of fluorophores to biomolecules and has direct impact on the accuracy and resolution of imaging. Continuous innovation and optimization in fluorescent labeling are essential for the successful application of SRM in cutting-edge biological research. In this review, we discuss recent advances in fluorescent labeling strategies for molecular bioimaging, with a special focus on protein labeling. We compare different approaches, highlight technological breakthroughs, and address challenges such as linkage error and labeling density. By evaluating both established and emerging methods, we aim to guide researchers through all aspects that should be considered before opting for any labeling technique.
Collapse
Affiliation(s)
- Marcel Streit
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Made Budiarta
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Marvin Jungblut
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Gerti Beliu
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
8
|
Michel MFV, Phillips BT. SYS-1/beta-catenin inheritance and regulation by Wnt signaling during asymmetric cell division. Mol Biol Cell 2025; 36:ar25. [PMID: 39813084 PMCID: PMC11974967 DOI: 10.1091/mbc.e24-10-0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Asymmetric cell division (ACD) allows daughter cells of a polarized mother to acquire different developmental fates. In Caenorhabditis elegans, the Wnt/β-catenin Asymmetry (WβA) pathway regulates many embryonic and larval ACDs; here, a Wnt gradient induces an asymmetric distribution of Wnt signaling components within the dividing mother cell. One terminal nuclear effector of the WβA pathway is the transcriptional activator SYS-1/β-catenin. SYS-1 is sequentially negatively regulated during ACD; first by centrosomal regulation and subsequent proteasomal degradation and second by asymmetric activity of the β-catenin "destruction complex" in one of the two daughter cells, which decreases SYS-1 levels in the absence of WβA signaling. However, the extent to which mother cell SYS-1 influences cell fate decisions of the daughters is unknown. Here, we quantify inherited SYS-1 in the differentiating daughter cells and the role of SYS-1 inheritance in Wnt-directed ACD. Photobleaching experiments demonstrate the GFP::SYS-1 present in daughter cell nuclei is comprised of inherited and de novo translated SYS-1 pools. We used a photoconvertible DENDRA2::SYS-1, to directly observe the dynamics of inherited SYS-1. Photoconversion during mitosis reveals that SYS-1 clearance at the centrosome preferentially degrades older SYS-1 and that newly localized centrosomal SYS-1 depends on dynein trafficking. Photoconversion of DENDRA2::SYS-1 in the EMS cell during Wnt-driven ACD shows daughter cell inheritance of mother cell SYS-1. Additionally, disrupting centrosomal SYS-1 localization in mother cells increased inherited SYS-1 and, surprisingly, loss of centrosomal SYS-1 also resulted in increased levels of de novo SYS-1 in both EMS daughter cells. Last, we show that negative regulation of SYS-1 in daughter cells via the destruction complex member APR-1/APC is key to limit both the de novo and the inherited SYS-1 pools in both the E and the MS cells. We conclude that regulation of both inherited and newly translated SYS-1 via centrosomal processing in the mother cell and daughter cell regulation via Wnt signaling are critical to maintain sister SYS-1 asymmetry during ACD.
Collapse
Affiliation(s)
| | - Bryan T. Phillips
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242
- Department of Biology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
9
|
Racki LR, Freddolino L. Polyphosphate: The "Dark Matter" of Bacterial Chromatin Structure. Mol Microbiol 2025; 123:279-293. [PMID: 39967274 PMCID: PMC11894788 DOI: 10.1111/mmi.15350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/20/2025]
Abstract
Polyphosphate (polyP), broadly defined, consists of a chain of orthophosphate units connected by phosphoanhydride bonds. PolyP is the only universal inorganic biopolymer known to date and is present in all three domains of life. At a first approximation polyP appears to be a simple, featureless, and flexible polyanion. A growing body of evidence suggests that polyP is not as featureless as originally thought: it can form a wide variety of complexes and condensates through association with proteins, nucleic acids, and inorganic ions. It is becoming apparent that the emergent properties of the condensate superstructures it forms are both complex and dynamic. Importantly, growing evidence suggests that polyP can affect bacterial chromatin, both directly and by mediating interactions between DNA and proteins. In an increasing number of contexts, it is becoming apparent that polyP profoundly impacts both chromosomal structure and gene regulation in bacteria, thus serving as a rarely considered, but highly important, component in bacterial nucleoid biology.
Collapse
Affiliation(s)
- Lisa R. Racki
- Department of Integrative Structural and Computational BiologyScripps ResearchLa JollaCaliforniaUSA
| | - Lydia Freddolino
- Department of Biological ChemistryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Computational Medicine & BioinformaticsUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
10
|
Chen X, Guo Q, Guan J, Zhang L, Jiang T, Xie L, Fan J. Single-molecule tracking in living microbial cells. BIOPHYSICS REPORTS 2025; 11:1-11. [PMID: 40070662 PMCID: PMC11891077 DOI: 10.52601/bpr.2024.240028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/19/2024] [Indexed: 03/14/2025] Open
Abstract
Some microbes are referred to as model organisms because they are easy to study in the laboratory and hold the ability to retain their characteristics during DNA replication, DNA transcription, and other fundamental processes. Studying these microbes in living cells via single-molecule imaging allows us to better understand these processes at highly improved spatiotemporal resolution. Single particle tracking photoactivated localization microscopy (sptPALM) is a robust tool for detecting the positions and motions of individual molecules with tens of nanometers of spatial and millisecond temporal resolution in vivo, providing insights into intricate intracellular environments that traditional ensemble methods cannot. With this approach, the fluorophores are photoactivated stochastically, a series of images are recorded, and the positions of fluorophores are identified in these images, and ultimately the locations are linked together to yield trajectories of individual molecules. Quantitative kinetic and spatial information, such as reaction rates, diffusion coefficients, and localization maps, can be obtained by further analysis. Here, we present a single-molecule tracking protocol that includes sample preparation, data acquisition and brief data processing. This protocol will enable researchers to directly unveil molecular and cellular mechanisms underlying the essential biological processes.
Collapse
Affiliation(s)
- Xiaomin Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qianhong Guo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Jiexin Guan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lu Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ting Jiang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Liping Xie
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Jun Fan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, Zhejiang, China
| |
Collapse
|
11
|
Boraas LC, Hu M, Martino P, Thornton L, Vejnar CE, Zhen G, Zeng L, Parker DM, Cox AL, Giraldez AJ, Su X, Mayr C, Wang S, Nicoli S. G3BP1 ribonucleoprotein complexes regulate focal adhesion protein mobility and cell migration. Cell Rep 2025; 44:115237. [PMID: 39883578 PMCID: PMC11923778 DOI: 10.1016/j.celrep.2025.115237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/05/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025] Open
Abstract
The subcellular localization of mRNAs plays a pivotal role in biological processes, including cell migration. For instance, β-actin mRNA and its associated RNA-binding protein (RBP), ZBP1/IGF2BP1, are recruited to focal adhesions (FAs) to support localized β-actin synthesis, crucial for cell migration. However, whether other mRNAs and RBPs also localize at FAs remains unclear. Here, we identify hundreds of mRNAs that are enriched at FAs (FA-mRNAs). FA-mRNAs share characteristics with stress granule (SG) mRNAs and are found in ribonucleoprotein (RNP) complexes with the SG RBP. Mechanistically, G3BP1 binds to FA proteins in an RNA-dependent manner, and its RNA-binding and dimerization domains, essential for G3BP1 to form RNPs in SG, are required for FA localization and cell migration. We find that G3BP1 RNPs promote cell speed by enhancing FA protein mobility and FA size. These findings suggest a previously unappreciated role for G3BP1 RNPs in regulating FA function under non-stress conditions.
Collapse
Affiliation(s)
- Liana C Boraas
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Mengwei Hu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pieter Martino
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lauren Thornton
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gang Zhen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Longhui Zeng
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Dylan M Parker
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Andy L Cox
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xiaolei Su
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Siyuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Stefania Nicoli
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
12
|
Köhler S, Wojcik M, Xu K, Dernburg AF. Dynamic molecular architecture of the synaptonemal complex. SCIENCE ADVANCES 2025; 11:eadq9374. [PMID: 39841849 PMCID: PMC11753403 DOI: 10.1126/sciadv.adq9374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
During meiosis, pairing between homologous chromosomes is stabilized by the assembly of the synaptonemal complex (SC). The SC ensures the formation of crossovers between homologous chromosomes and regulates their distribution. However, how the SC regulates crossover formation remains elusive. We isolated an unusual mutation in Caenorhabditis elegans that disrupts crossover interference but not SC assembly. This mutation alters the unique C terminal domain of an essential SC protein, SYP-4, a likely ortholog of the vertebrate SC protein SIX6OS1. We use three-dimensional stochastic optical reconstruction microscopy (3D-STORM) to interrogate the molecular architecture of the SC from wild-type and mutant C. elegans animals. Using a probabilistic mapping approach to analyze super-resolution image data, we detect changes in the organization of the synaptonemal complex in wild-type animals that coincide with crossover designation. We also found that our syp-4 mutant perturbs SC architecture. Our findings add to growing evidence that the SC is an active material whose molecular organization contributes to chromosome-wide crossover regulation.
Collapse
Affiliation(s)
- Simone Köhler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | - Michal Wojcik
- Department of Chemistry, University of California, Berkeley, Berkeley CA 94720-3220, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley CA 94720-3220, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- California Institute for Quantitative Biosciences, Berkeley CA 94720, USA
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Abby F. Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
- California Institute for Quantitative Biosciences, Berkeley CA 94720, USA
| |
Collapse
|
13
|
von Diezmann L, Bristow C, Rog O. Diffusion within the synaptonemal complex can account for signal transduction along meiotic chromosomes. Mol Biol Cell 2024; 35:ar148. [PMID: 39475711 PMCID: PMC11656479 DOI: 10.1091/mbc.e24-05-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/09/2024] Open
Abstract
Meiotic chromosomes efficiently transduce information along their length to regulate the distribution of genetic exchanges (crossovers). However, the mode of signal transduction remains unknown. A conserved protein interface called the synaptonemal complex forms between the parental chromosomes. The synaptonemal complex exhibits liquid-like behaviors, suggesting that the diffusion of signaling molecules along its length could coordinate crossover formation. Here, we directly test the feasibility of such a mechanism by tracking a component of the synaptonemal complex (SYP-3) and a conserved regulator of exchanges (ZHP-3) in live Caenorhabditis elegans gonads. While we find that both proteins diffuse within the synaptonemal complex, ZHP-3 diffuses 4- and 9-fold faster than SYP-3 before and after crossover designation, respectively. We use these measurements to parameterize a physical model for signal transduction. We find that ZHP-3, but not SYP-3, can explore the lengths of chromosomes on the time scale of crossover designation, consistent with a role in the spatial regulation of exchanges. Given the conservation of ZHP-3 paralogues across eukaryotes, we propose that diffusion along the synaptonemal complex may be a conserved mechanism of meiotic regulation. More broadly, our work explores how diffusion compartmentalized by condensates could regulate crucial chromosomal functions.
Collapse
Affiliation(s)
- Lexy von Diezmann
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84114
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84114
| | - Chloe Bristow
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84114
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84114
| | - Ofer Rog
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84114
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84114
| |
Collapse
|
14
|
Altinoglu I, Carballido-Lopez R. New PALM-compatible integration vectors for use in the Gram-positive model bacterium Bacillus subtilis. Microbiol Spectr 2024; 12:e0161924. [PMID: 39494880 PMCID: PMC11619463 DOI: 10.1128/spectrum.01619-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
Improvements in super-resolution and single-molecule techniques, along with the development of new fluorescent proteins and labeling methods, have allowed super-resolution imaging of bacterial cells. Cloning vectors are important tools for engineering fluorescent fusions and perform efficient labeling. Here, we report the construction of four photoactivated localization microscopy (PALM)-compatible integration plasmids for the Gram-positive model organism Bacillus subtilis. These plasmids carry genes encoding either the photoswitchable green fluorescent protein dronPA or the photoactivatable red fluorescent protein PAmCherry1, codon-optimized or not for expression in B. subtilis. For fast and flexible cloning, multiple cloning sites were added at both the C-terminal and the N-terminal ends of the fluorescent protein genes. The plasmids replicate in Escherichia coli and allow integration at the ectopic amyE or thrC loci of B. subtilis via double homologous recombination, for stable chromosomal insertions of single copy number dronPA and PAmCherry1 fusions, respectively. Two-color imaging is accessible with the simultaneous use of both vectors. Insertion of the LacI repressor gene under control of a constitutive promoter in each plasmid yielded four derivative vectors that, combined with an array of lacO operator sites, allow fluorescent repressor-operator system localization studies. We demonstrated the effective photoactivation of the LacI-dronPA and LacI-PAmCherry1 fusions, and used them to report with nanoscale precision bacteriophage SPP1 DNA within infected B. subtilis cells, both live and fixed, as proof of concept. Our integration vectors provide a convenient and versatile workflow for qualitative and quantitative, single- and dual-color PALM studies in B. subtilis. IMPORTANCE Super-resolution microscopy techniques allow localization of proteins and cellular components in prokaryotic and eukaryotic cells with unprecedented spatial resolution. Plasmids remain a powerful approach to clone fluorescent protein fusions in bacterial cells. In the current work, we expanded the toolbox of vectors available to engineer the Gram-positive model organism Bacillus subtilis for PALM studies. Four integrative vectors in total, two carrying the gene encoding the photoswitchable green fluorescent protein dronPA and two carrying the gene encoding the photoactivatable red fluorescent protein PAmCherry1, were constructed and tested by generating translational fusions to the LacI repressor. The LacI fluorescent fusions successfully reported the subcellular localization of viral DNA in infected B. subtilis cells, either live or upon fixation, by PALM. Our dronPA and PAmCherry1 integration vectors expand the genetic toolbox for single-molecule localization microscopy studies in B. subtilis.
Collapse
Affiliation(s)
- Ipek Altinoglu
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Rut Carballido-Lopez
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
15
|
Choi JH, Kim S, Kang OY, Choi SY, Hyun JY, Lee HS, Shin I. Selective fluorescent labeling of cellular proteins and its biological applications. Chem Soc Rev 2024; 53:9446-9489. [PMID: 39109465 DOI: 10.1039/d4cs00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Proteins, which are ubiquitous in cells and critical to almost all cellular functions, are indispensable for life. Fluorescence imaging of proteins is key to understanding their functions within their native milieu, as it provides insights into protein localization, dynamics, and trafficking in living systems. Consequently, the selective labeling of target proteins with fluorophores has emerged as a highly active research area, encompassing bioorganic chemistry, chemical biology, and cell biology. Various methods for selectively labeling proteins with fluorophores in cells and tissues have been established and are continually being developed to visualize and characterize proteins. This review highlights research findings reported since 2018, with a focus on the selective labeling of cellular proteins with small organic fluorophores and their biological applications in studying protein-associated biological events. We also discuss the strengths and weaknesses of each labeling approach for their utility in living systems.
Collapse
Affiliation(s)
- Joo Hee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Sooin Kim
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - On-Yu Kang
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Seong Yun Choi
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
16
|
Liu M, Jin S, Agabiti SS, Jensen TB, Yang T, Radda JSD, Ruiz CF, Baldissera G, Rajaei M, Townsend JP, Muzumdar MD, Wang S. Tracing the evolution of single-cell cancer 3D genomes: an atlas for cancer gene discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.23.550157. [PMID: 37546882 PMCID: PMC10401964 DOI: 10.1101/2023.07.23.550157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Although three-dimensional (3D) genome structures are altered in cancer cells, little is known about how these changes evolve and diversify during cancer progression. Leveraging genome-wide chromatin tracing to visualize 3D genome folding directly in tissues, we generated 3D genome cancer atlases of murine lung and pancreatic adenocarcinoma. Our data reveal stereotypical, non-monotonic, and stage-specific alterations in 3D genome folding heterogeneity, compaction, and compartmentalization as cancers progress from normal to preinvasive and ultimately to invasive tumors, discovering a potential structural bottleneck in early tumor progression. Remarkably, 3D genome architectures distinguish histologic cancer states in single cells, despite considerable cell-to-cell heterogeneity. Gene-level analyses of evolutionary changes in 3D genome compartmentalization not only showed compartment-associated genes are more homogeneously regulated, but also elucidated prognostic and dependency genes in lung adenocarcinoma and a previously unappreciated role for polycomb-group protein Rnf2 in 3D genome regulation. Our results demonstrate the utility of mapping the single-cell cancer 3D genome in tissues and illuminate its potential to identify new diagnostic, prognostic, and therapeutic biomarkers in cancer.
Collapse
Affiliation(s)
- Miao Liu
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
| | - Shengyan Jin
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
| | - Sherry S. Agabiti
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- Yale Cancer Biology Institute, Yale University; West Haven, CT 06516, USA
| | - Tyler B. Jensen
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- M.D.-Ph.D. Program, Yale University; New Haven, CT 06510, USA
| | - Tianqi Yang
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
| | - Jonathan S. D. Radda
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
| | - Christian F. Ruiz
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- Yale Cancer Biology Institute, Yale University; West Haven, CT 06516, USA
| | - Gabriel Baldissera
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
| | - Moein Rajaei
- Department of Biostatistics, Yale School of Public Health, Yale University; New Haven, CT 06510, USA
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, Yale University; New Haven, CT 06510, USA
- Program in Computational Biology and Bioinformatics, Yale University; New Haven, CT 06510, USA
- Program in Genetics, Genomics, and Epigenetics, Yale Cancer Center, Yale University; New Haven, CT 06510, USA
| | - Mandar Deepak Muzumdar
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- Yale Cancer Biology Institute, Yale University; West Haven, CT 06516, USA
- M.D.-Ph.D. Program, Yale University; New Haven, CT 06510, USA
- Program in Genetics, Genomics, and Epigenetics, Yale Cancer Center, Yale University; New Haven, CT 06510, USA
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- Yale Combined Program in the Biological and Biomedical Sciences, Yale University; New Haven, CT 06510, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University; New Haven, CT 06510, USA
| | - Siyuan Wang
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- M.D.-Ph.D. Program, Yale University; New Haven, CT 06510, USA
- Yale Combined Program in the Biological and Biomedical Sciences, Yale University; New Haven, CT 06510, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University; New Haven, CT 06510, USA
- Department of Cell Biology, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- Biochemistry, Quantitative Biology, Biophysics, and Structural Biology Program, Yale University; New Haven, CT 06510, USA
- Yale Center for RNA Science and Medicine, Yale University School of Medicine; New Haven, CT 06510, USA
- Yale Liver Center, Yale University School of Medicine; New Haven, CT 06510, USA
| |
Collapse
|
17
|
Remmel M, Matthias J, Lincoln R, Keller-Findeisen J, Butkevich AN, Bossi ML, Hell SW. Photoactivatable Xanthone (PaX) Dyes Enable Quantitative, Dual Color, and Live-Cell MINFLUX Nanoscopy. SMALL METHODS 2024; 8:e2301497. [PMID: 38497095 DOI: 10.1002/smtd.202301497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/06/2024] [Indexed: 03/19/2024]
Abstract
The single-molecule localization concept MINFLUX has triggered a reevaluation of the features of fluorophores for attaining nanometer-scale resolution. MINFLUX nanoscopy benefits from temporally controlled fluorescence ("on"/"off") photoswitching. Combined with an irreversible switching behavior, the localization process is expected to turn highly efficient and quantitative data analysis simple. The potential in the recently reported photoactivable xanthone (PaX) dyes is recognized to extend the list of molecular switches used for MINFLUX with 561 nm excitation beyond the fluorescent protein mMaple. The MINFLUX localization success rates of PaX560, PaX+560, and mMaple are quantitatively compared by analyzing the effective labeling efficiency of endogenously tagged nuclear pore complexes. The PaX dyes prove to be superior to mMaple and on par with the best reversible molecular switches routinely used in single-molecule localization microscopy. Moreover, the rationally designed PaX595 is introduced for complementing PaX560 in dual color 561 nm MINFLUX imaging based on spectral classification and the deterministic, irreversible, and additive-independent nature of PaX photoactivation is showcased in fast live-cell MINFLUX imaging. The PaX dyes meet the demands of MINFLUX for a robust readout of each label position and fill the void of reliable fluorophores dedicated to 561 nm MINFLUX imaging.
Collapse
Affiliation(s)
- Michael Remmel
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Jessica Matthias
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Richard Lincoln
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Jan Keller-Findeisen
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Alexey N Butkevich
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Mariano L Bossi
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Stefan W Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| |
Collapse
|
18
|
Han J, Sul JH, Lee J, Kim E, Kim HK, Chae M, Lim J, Kim J, Kim C, Kim JS, Cho Y, Park JH, Cho YW, Jo DG. Engineered exosomes with a photoinducible protein delivery system enable CRISPR-Cas-based epigenome editing in Alzheimer's disease. Sci Transl Med 2024; 16:eadi4830. [PMID: 39110781 DOI: 10.1126/scitranslmed.adi4830] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 01/24/2024] [Accepted: 07/18/2024] [Indexed: 02/16/2025]
Abstract
Effective intracellular delivery of therapeutic proteins can potentially treat a wide array of diseases. However, efficient delivery of functional proteins across the cell membrane remains challenging. Exosomes are nanosized vesicles naturally secreted by various types of cells and may serve as promising nanocarriers for therapeutic biomolecules. Here, we engineered exosomes equipped with a photoinducible cargo protein release system, termed mMaple3-mediated protein loading into and release from exosome (MAPLEX), in which cargo proteins can be loaded into the exosomes by fusing them with photocleavable protein (mMaple3)-conjugated exosomal membrane markers and subsequently released from the exosomal membrane by inducing photocleavage with blue light illumination. Using this system, we first induced transcriptional regulation by delivering octamer-binding transcription factor 4 and SRY-box transcription factor 2 to fibroblasts in vitro. Second, we induced in vivo gene recombination in Cre reporter mice by delivering Cre recombinase. Last, we achieved targeted epigenome editing in the brains of 5xFAD and 3xTg-AD mice, two models of Alzheimer's disease. Administration of MAPLEXs loaded with β-site amyloid precursor protein cleaving enzyme 1 (Bace1)-targeting single guide RNA-incorporated dCas9 ribonucleoprotein complexes, coupled with the catalytic domain of DNA methyltransferase 3A, resulted in successful methylation of the targeted CpG sites within the Bace1 promoter. This approach led to a significant reduction in Bace1 expression, improved recognition memory impairment, and reduced amyloid pathology in 5xFAD and 3xTg-AD mice. These results suggest that MAPLEX is an efficient intracellular protein delivery system that can deliver diverse therapeutic proteins for multiple diseases.
Collapse
Affiliation(s)
- Jihoon Han
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Jae Hoon Sul
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Eunae Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Hark Kyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Minshik Chae
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Jeein Lim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Jongho Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Chanhee Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Jun-Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Yoonsuk Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Korea
- ExoStem Tech Inc., Ansan 15588, Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea
| | - Yong Woo Cho
- ExoStem Tech Inc., Ansan 15588, Korea
- Department of Chemical Engineering, Hanyang University, Ansan 15588, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Korea
- ExoStem Tech Inc., Ansan 15588, Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
19
|
Hustmyer CM, Landick R. Bacterial chromatin proteins, transcription, and DNA topology: Inseparable partners in the control of gene expression. Mol Microbiol 2024; 122:81-112. [PMID: 38847475 PMCID: PMC11260248 DOI: 10.1111/mmi.15283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
DNA in bacterial chromosomes is organized into higher-order structures by DNA-binding proteins called nucleoid-associated proteins (NAPs) or bacterial chromatin proteins (BCPs). BCPs often bind to or near DNA loci transcribed by RNA polymerase (RNAP) and can either increase or decrease gene expression. To understand the mechanisms by which BCPs alter transcription, one must consider both steric effects and the topological forces that arise when DNA deviates from its fully relaxed double-helical structure. Transcribing RNAP creates DNA negative (-) supercoils upstream and positive (+) supercoils downstream whenever RNAP and DNA are unable to rotate freely. This (-) and (+) supercoiling generates topological forces that resist forward translocation of DNA through RNAP unless the supercoiling is constrained by BCPs or relieved by topoisomerases. BCPs also may enhance topological stress and overall can either inhibit or aid transcription. Here, we review current understanding of how RNAP, BCPs, and DNA topology interplay to control gene expression.
Collapse
Affiliation(s)
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison
- Department of Bacteriology, University of Wisconsin-Madison
| |
Collapse
|
20
|
Aono Y, Nakajima T, Ichimiya W, Yoshida M, Sato M. Highly Efficient Fluorescent Probe to Visualize Protein Interactions at the Superresolution. ACS Chem Biol 2024; 19:1271-1279. [PMID: 38835147 DOI: 10.1021/acschembio.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Superresolution microscopy (SR microscopy) of protein-protein interactions (PPIs) occurring in subcellular structures is essential for understanding cellular functions. However, a powerful and useful technology for SR microscopy of PPIs remains elusive. Here, we develop a highly efficient photoconvertible fluorescent probe, named split-Dendra2, for SR microscopy of PPIs in the cell. We found that split-Dendra2 enables a highly efficient detection of PPIs, making it possible to perform SR microscopy of PPIs with high spatial resolution and high image reconstruction fidelity. We demonstrate the utility of split-Dendra2 by visualizing PPIs occurring in small subcellular structures at the superresolution, such as clathrin-coated pits and focal adhesions, which cannot be visualized by the existing tools. Split-Dendra2 offers a powerful and useful tool that greatly expands the possibility of SR microscopy and can contribute to revealing the function of PPIs at the nanoscale resolution.
Collapse
Affiliation(s)
- Yuki Aono
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Takahiro Nakajima
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Kanagawa Institute of Industrial Science and Technology, Kanagawa 243-0435, Japan
| | - Wataru Ichimiya
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Mayumi Yoshida
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Moritoshi Sato
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Kanagawa Institute of Industrial Science and Technology, Kanagawa 243-0435, Japan
| |
Collapse
|
21
|
Lu K, Wazawa T, Matsuda T, Shcherbakova DM, Verkhusha VV, Nagai T. Near-infrared PAINT localization microscopy via chromophore replenishment of phytochrome-derived fluorescent tag. Commun Biol 2024; 7:473. [PMID: 38637683 PMCID: PMC11026395 DOI: 10.1038/s42003-024-06169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Bacterial phytochromes are attractive molecular templates for engineering fluorescent proteins (FPs) because their near-infrared (NIR) emission significantly extends the spectral coverage of GFP-like FPs. Existing phytochrome-based FPs covalently bind heme-derived tetrapyrrole chromophores and exhibit constitutive fluorescence. Here we introduce Rep-miRFP, an NIR imaging probe derived from bacterial phytochrome, which interacts non-covalently and reversibly with biliverdin chromophore. In Rep-miRFP, the photobleached non-covalent adduct can be replenished with fresh biliverdin, restoring fluorescence. By exploiting this chromophore renewal capability, we demonstrate NIR PAINT nanoscopy in mammalian cells using Rep-miRFP.
Collapse
Affiliation(s)
- Kai Lu
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Tetsuichi Wazawa
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Tomoki Matsuda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Daria M Shcherbakova
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vladislav V Verkhusha
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
22
|
Czowski BJ, White KA. Intracellular pH regulates β-catenin with low pHi increasing adhesion and signaling functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586349. [PMID: 38585883 PMCID: PMC10996556 DOI: 10.1101/2024.03.22.586349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Intracellular pH (pHi) dynamics are linked to cell processes including proliferation, migration, and differentiation. The adherens junction (AJ) and signaling protein β-catenin has decreased abundance at high pHi due to increased proteasomal-mediated degradation. However, the effects of low pHi on β-catenin abundance and functions have not been characterized. Here, we show that low pHi stabilizes β-catenin in epithelial cells using population-level and single-cell assays. β-catenin abundance is increased at low pHi and decreased at high pHi. We also assay single-cell protein degradation rates to show that β-catenin half-life is longer at low compared to high pHi. Importantly, we show that AJs are not disrupted by β-catenin loss at high pHi due to rescue by plakoglobin. Finally, we show that low pHi increases β-catenin transcriptional activity in single cells and is indistinguishable from a Wnt-on state. This work characterizes pHi as a rheostat regulating β-catenin abundance, stability, and function and implicates β-catenin as a molecular mediator of pHi-dependent cell processes.
Collapse
Affiliation(s)
- Brandon J Czowski
- Department of Chemistry and Biochemistry, University of Notre Dame
- Harper Cancer Research Institute, University of Notre Dame
| | - Katharine A White
- Department of Chemistry and Biochemistry, University of Notre Dame
- Harper Cancer Research Institute, University of Notre Dame
| |
Collapse
|
23
|
Kuzminov A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J Bacteriol 2024; 206:e0021123. [PMID: 38358278 PMCID: PMC10994824 DOI: 10.1128/jb.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
24
|
Maity A, Wulffelé J, Ayala I, Favier A, Adam V, Bourgeois D, Brutscher B. Structural Heterogeneity in a Phototransformable Fluorescent Protein Impacts its Photochemical Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306272. [PMID: 38146132 PMCID: PMC10933604 DOI: 10.1002/advs.202306272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Indexed: 12/27/2023]
Abstract
Photoconvertible fluorescent proteins (PCFP) are important cellular markers in advanced imaging modalities such as photoactivatable localization microscopy (PALM). However, their complex photophysical and photochemical behavior hampers applications such as quantitative and single-particle-tracking PALM. This work employs multidimensional NMR combined with ensemble fluorescence measurements to show that the popular mEos4b in its Green state populates two conformations (A and B), differing in side-chain protonation of the conserved residues E212 and H62, altering the hydrogen-bond network in the chromophore pocket. The interconversion (protonation/deprotonation) between these two states, which occurs on the minutes time scale in the dark, becomes strongly accelerated in the presence of UV light, leading to a population shift. This work shows that the reversible photoswitching and Green-to-Red photoconversion properties differ between the A and B states. The chromophore in the A-state photoswitches more efficiently and is proposed to be more prone to photoconversion, while the B-state shows a higher level of photobleaching. Altogether, this data highlights the central role of conformational heterogeneity in fluorescent protein photochemistry.
Collapse
Affiliation(s)
- Arijit Maity
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Jip Wulffelé
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Isabel Ayala
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Adrien Favier
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Virgile Adam
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Dominique Bourgeois
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Bernhard Brutscher
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| |
Collapse
|
25
|
Singh MK, Kenney LJ. Visualizing the invisible: novel approaches to visualizing bacterial proteins and host-pathogen interactions. Front Bioeng Biotechnol 2024; 12:1334503. [PMID: 38415188 PMCID: PMC10898356 DOI: 10.3389/fbioe.2024.1334503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
Host-pathogen interactions play a critical role in infectious diseases, and understanding the underlying mechanisms is vital for developing effective therapeutic strategies. The visualization and characterization of bacterial proteins within host cells is key to unraveling the dynamics of these interactions. Various protein labeling strategies have emerged as powerful tools for studying host-pathogen interactions, enabling the tracking, localization, and functional analysis of bacterial proteins in real-time. However, the labeling and localization of Salmonella secreted type III secretion system (T3SS) effectors in host cells poses technical challenges. Conventional methods disrupt effector stoichiometry and often result in non-specific staining. Bulky fluorescent protein fusions interfere with effector secretion, while other tagging systems such as 4Cys-FLaSH/Split-GFP suffer from low labeling specificity and a poor signal-to-noise ratio. Recent advances in state-of-the-art techniques have augmented the existing toolkit for monitoring the translocation and dynamics of bacterial effectors. This comprehensive review delves into the bacterial protein labeling strategies and their application in imaging host-pathogen interactions. Lastly, we explore the obstacles faced and potential pathways forward in the realm of protein labeling strategies for visualizing interactions between hosts and pathogens.
Collapse
Affiliation(s)
- Moirangthem Kiran Singh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Linda J. Kenney
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
26
|
Cheng Y, Hu M, Yang B, Jensen TB, Yang T, Yu R, Ma Z, Radda JSD, Jin S, Zang C, Wang S. Perturb-tracing enables high-content screening of multiscale 3D genome regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.525983. [PMID: 36778402 PMCID: PMC9915657 DOI: 10.1101/2023.01.31.525983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three-dimensional (3D) genome organization becomes altered during development, aging, and disease1-23, but the factors regulating chromatin topology are incompletely understood and currently no technology can efficiently screen for new regulators of multiscale chromatin organization. Here, we developed an image-based high-content screening platform (Perturb-tracing) that combines pooled CRISPR screen, a new cellular barcode readout method (BARC-FISH), and chromatin tracing. We performed a loss-of-function screen in human cells, and visualized alterations to their genome organization from 13,000 imaging target-perturbation combinations, alongside perturbation-paired barcode readout in the same single cells. Using 1.4 million 3D positions along chromosome traces, we discovered tens of new regulators of chromatin folding at different length scales, ranging from chromatin domains and compartments to chromosome territory. A subset of the regulators exhibited 3D genome effects associated with loop-extrusion and A-B compartmentalization mechanisms, while others were largely unrelated to these known 3D genome mechanisms. We found that the ATP-dependent helicase CHD7, the loss of which causes the congenital neural crest syndrome CHARGE24 and a chromatin remodeler previously shown to promote local chromatin openness25-27, counter-intuitively compacts chromatin over long range in different genomic contexts and cell backgrounds including neural crest cells, and globally represses gene expression. The DNA compaction effect of CHD7 is independent of its chromatin remodeling activity and does not require other protein partners. Finally, we identified new regulators of nuclear architectures and found a functional link between chromatin compaction and nuclear shape. Altogether, our method enables scalable, high-content identification of chromatin and nuclear topology regulators that will stimulate new insights into the 3D genome functions, such as global gene and nuclear regulation, in health and disease.
Collapse
Affiliation(s)
- Yubao Cheng
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Mengwei Hu
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Bing Yang
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Tyler B Jensen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
- M.D.-Ph.D. Program, Yale University, New Haven, CT 06510, USA
| | - Tianqi Yang
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Ruihuan Yu
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Zhaoxia Ma
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jonathan S D Radda
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Shengyan Jin
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Chongzhi Zang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Siyuan Wang
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
- Yale Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT 06510, USA
- Molecular Cell Biology, Genetics and Development Program, Yale University, New Haven, CT 06510, USA
- Biochemistry, Quantitative Biology, Biophysics, and Structural Biology Program, Yale University, New Haven, CT 06510, USA
- M.D.-Ph.D. Program, Yale University, New Haven, CT 06510, USA
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Liver Center, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
27
|
Zhai F, Hao L, Chen X, Jiang T, Guo Q, Xie L, Ma Y, Du X, Zheng Z, Chen K, Fan J. Single-molecule tracking of PprI in D. radiodurans without interference of autoblinking. Front Microbiol 2023; 14:1256711. [PMID: 38029090 PMCID: PMC10652783 DOI: 10.3389/fmicb.2023.1256711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Autoblinking is a widespread phenomenon and exhibits high level of intensity in some bacteria. In Deinococcus radiodurans (D. radiodurans), strong autoblinking was found to be indistinguishable from PAmCherry and greatly prevented single-molecule tracking of proteins of interest. Here we employed the bright photoswitchable fluorescent protein mMaple3 to label PprI, one essential DNA repair factor, and characterized systematically the fluorescence intensity and bleaching kinetics of both autoblinking and PprI-mMaple3 molecules within cells grown under three different conditions. Under minimal media, we can largely separate autoblinking from mMaple3 molecules and perform reliably single-molecule tracking of PprI in D. radiodurans, by means of applying signal-to-noise ratio and constraining the minimal length for linking the trajectories. We observed three states of PprI molecules, which bear different subcellular localizations and distinct functionalities. Our strategy provides a useful means to study the dynamics and distributions of proteins of interest in bacterial cells with high level of autoblinking.
Collapse
Affiliation(s)
- Fanfan Zhai
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, Sichuan, China
| | - Li Hao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaomin Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ting Jiang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qianhong Guo
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Liping Xie
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ying Ma
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, Sichuan, China
| | - Xiaobo Du
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, Sichuan, China
| | - Zhiqin Zheng
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, Sichuan, China
- School of Biological Engineering and Wuliangye Liquor, Sichuan University of Science and Engineering, Yibin, Sichuan, China
| | - Kun Chen
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, China
| | - Jun Fan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, China
| |
Collapse
|
28
|
Barr VA, Piao J, Balagopalan L, McIntire KM, Schoenberg FP, Samelson LE. Heterogeneity of Signaling Complex Nanostructure in T Cells Activated Via the T Cell Antigen Receptor. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1503-1522. [PMID: 37488826 PMCID: PMC11230849 DOI: 10.1093/micmic/ozad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 07/26/2023]
Abstract
Activation of the T cell antigen receptor (TCR) is a key step in initiating the adaptive immune response. Single-molecule localization techniques have been used to investigate the arrangement of proteins within the signaling complexes formed around activated TCRs, but a clear picture of nanoscale organization in stimulated T cells has not emerged. Here, we have improved the examination of T cell nanostructure by visualizing individual molecules of six different proteins in a single sample of activated Jurkat T cells using the multiplexed antibody-size limited direct stochastic optical reconstruction microscopy (madSTORM) technique. We formally define irregularly shaped regions of interest, compare areas where signaling complexes are concentrated with other areas, and improve the statistical analyses of the locations of molecules. We show that nanoscale organization of proteins is mainly confined to the areas with dense concentrations of TCR-based signaling complexes. However, randomly distributed molecules are also found in some areas containing concentrated signaling complexes. These results are consistent with the view that the proteins within signaling complexes are connected by numerous weak interactions, leading to flexible, dynamic, and mutable structures which produce large variations in the nanostructure found in activated T cells.
Collapse
Affiliation(s)
- Valarie A Barr
- Laboratory of Cellular & Molecular Biology, Building 37 Room 2066, 37 Convent Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4256, USA
| | - Juan Piao
- Department of Statistics, University of California at Los Angeles, 8965 Math Sciences Building, Los Angeles, CA 90095-1554, USA
| | - Lakshmi Balagopalan
- Laboratory of Cellular & Molecular Biology, Building 37 Room 2066, 37 Convent Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4256, USA
| | - Katherine M McIntire
- Laboratory of Cellular & Molecular Biology, Building 37 Room 2066, 37 Convent Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4256, USA
| | - Frederic P Schoenberg
- Department of Statistics, University of California at Los Angeles, 8965 Math Sciences Building, Los Angeles, CA 90095-1554, USA
| | - Lawrence E Samelson
- Laboratory of Cellular & Molecular Biology, Building 37 Room 2066, 37 Convent Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4256, USA
| |
Collapse
|
29
|
Gor K, Duss O. Emerging Quantitative Biochemical, Structural, and Biophysical Methods for Studying Ribosome and Protein-RNA Complex Assembly. Biomolecules 2023; 13:866. [PMID: 37238735 PMCID: PMC10216711 DOI: 10.3390/biom13050866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Ribosome assembly is one of the most fundamental processes of gene expression and has served as a playground for investigating the molecular mechanisms of how protein-RNA complexes (RNPs) assemble. A bacterial ribosome is composed of around 50 ribosomal proteins, several of which are co-transcriptionally assembled on a ~4500-nucleotide-long pre-rRNA transcript that is further processed and modified during transcription, the entire process taking around 2 min in vivo and being assisted by dozens of assembly factors. How this complex molecular process works so efficiently to produce an active ribosome has been investigated over decades, resulting in the development of a plethora of novel approaches that can also be used to study the assembly of other RNPs in prokaryotes and eukaryotes. Here, we review biochemical, structural, and biophysical methods that have been developed and integrated to provide a detailed and quantitative understanding of the complex and intricate molecular process of bacterial ribosome assembly. We also discuss emerging, cutting-edge approaches that could be used in the future to study how transcription, rRNA processing, cellular factors, and the native cellular environment shape ribosome assembly and RNP assembly at large.
Collapse
Affiliation(s)
- Kavan Gor
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany;
- Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, 69117 Heidelberg, Germany
| | - Olivier Duss
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany;
| |
Collapse
|
30
|
Dahal L, Walther N, Tjian R, Darzacq X, Graham TG. Single-molecule tracking (SMT): a window into live-cell transcription biochemistry. Biochem Soc Trans 2023; 51:557-569. [PMID: 36876879 PMCID: PMC10212543 DOI: 10.1042/bst20221242] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/07/2023]
Abstract
How molecules interact governs how they move. Single-molecule tracking (SMT) thus provides a unique window into the dynamic interactions of biomolecules within live cells. Using transcription regulation as a case study, we describe how SMT works, what it can tell us about molecular biology, and how it has changed our perspective on the inner workings of the nucleus. We also describe what SMT cannot yet tell us and how new technical advances seek to overcome its limitations. This ongoing progress will be imperative to address outstanding questions about how dynamic molecular machines function in live cells.
Collapse
Affiliation(s)
- Liza Dahal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Nike Walther
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Thomas G.W. Graham
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| |
Collapse
|
31
|
Pecori F, Torres-Padilla ME. Dynamics of nuclear architecture during early embryonic development and lessons from liveimaging. Dev Cell 2023; 58:435-449. [PMID: 36977375 PMCID: PMC10062924 DOI: 10.1016/j.devcel.2023.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Nuclear organization has emerged as a potential key regulator of genome function. During development, the deployment of transcriptional programs must be tightly coordinated with cell division and is often accompanied by major changes in the repertoire of expressed genes. These transcriptional and developmental events are paralleled by changes in the chromatin landscape. Numerous studies have revealed the dynamics of nuclear organization underlying them. In addition, advances in live-imaging-based methodologies enable the study of nuclear organization with high spatial and temporal resolution. In this Review, we summarize the current knowledge of the changes in nuclear architecture in the early embryogenesis of various model systems. Furthermore, to highlight the importance of integrating fixed-cell and live approaches, we discuss how different live-imaging techniques can be applied to examine nuclear processes and their contribution to our understanding of transcription and chromatin dynamics in early development. Finally, we provide future avenues for outstanding questions in this field.
Collapse
Affiliation(s)
- Federico Pecori
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany; Faculty of Biology, Ludwig Maximilians University, Munich, Germany.
| |
Collapse
|
32
|
Hui J, Nakamura M, Dubrulle J, Parkhurst SM. Coordinated efforts of different actin filament populations are needed for optimal cell wound repair. Mol Biol Cell 2023; 34:ar15. [PMID: 36598808 PMCID: PMC10011732 DOI: 10.1091/mbc.e22-05-0155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cells are subjected to a barrage of daily insults that often lead to their cortices being ripped open and requiring immediate repair. An important component of the cell's repair response is the formation of an actomyosin ring at the wound periphery to mediate its closure. Here we show that inhibition of myosin or the linear actin nucleation factors Diaphanous and/or dishevelled associated activator of morphogenesis results in a disrupted contractile apparatus and delayed wound closure. We also show that the branched actin nucleators WASp and SCAR function nonredundantly as scaffolds to assemble and maintain this contractile actomyosin cable. Removing branched actin leads to the formation of smaller circular actin-myosin structures at the cell cortex and to slow wound closure. Removing linear and branched actin simultaneously results in failed wound closure. Surprisingly, removal of branched actin and myosin results in the formation of parallel linear F-actin filaments that undergo a chiral swirling movement to close the wound, uncovering a new mechanism of cell wound closure. Taken together, we demonstrate the roles of different actin substructures that are required for optimal actomyosin ring formation and the extraordinary resilience of the cell to undergo wound repair when it is unable to form different subsets of these substructures.
Collapse
Affiliation(s)
- Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | | | - Julien Dubrulle
- Cellular Imaging Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| |
Collapse
|
33
|
Wang X, Niu J, Yang Y, Wang Y, Sun Y. SMART FRAP: a robust and quantitative FRAP analysis method for phase separation. Chem Commun (Camb) 2023; 59:2307-2310. [PMID: 36748184 DOI: 10.1039/d2cc06398k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We propose SMART FRAP, a robust FRAP quantitative analysis method that is insensitive to either the shape or size of the bleached region. It can not only accurately and quantitatively determine the diffusion coefficient, but also provide other essential properties of phase separation that are unobtainable by other methods.
Collapse
Affiliation(s)
- Xiaotian Wang
- School of Life Sciences, State Key Laboratory of Membrane Biology, Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.,National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China
| | - Jiahao Niu
- School of Life Sciences, State Key Laboratory of Membrane Biology, Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.,National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China
| | - Yi Yang
- School of Life Sciences, State Key Laboratory of Membrane Biology, Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Yao Wang
- School of Life Sciences, State Key Laboratory of Membrane Biology, Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.,National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China
| | - Yujie Sun
- School of Life Sciences, State Key Laboratory of Membrane Biology, Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.,National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China
| |
Collapse
|
34
|
Virant D, Vojnovic I, Winkelmeier J, Endesfelder M, Turkowyd B, Lando D, Endesfelder U. Unraveling the kinetochore nanostructure in Schizosaccharomyces pombe using multi-color SMLM imaging. J Cell Biol 2023; 222:213836. [PMID: 36705602 PMCID: PMC9930162 DOI: 10.1083/jcb.202209096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/28/2023] Open
Abstract
The key to ensuring proper chromosome segregation during mitosis is the kinetochore (KT), a tightly regulated multiprotein complex that links the centromeric chromatin to the spindle microtubules and as such leads the segregation process. Understanding its architecture, function, and regulation is therefore essential. However, due to its complexity and dynamics, only its individual subcomplexes could be studied in structural detail so far. In this study, we construct a nanometer-precise in situ map of the human-like regional KT of Schizosaccharomyces pombe using multi-color single-molecule localization microscopy. We measure each protein of interest (POI) in conjunction with two references, cnp1CENP-A at the centromere and sad1 at the spindle pole. This allows us to determine cell cycle and mitotic plane, and to visualize individual centromere regions separately. We determine protein distances within the complex using Bayesian inference, establish the stoichiometry of each POI and, consequently, build an in situ KT model with unprecedented precision, providing new insights into the architecture.
Collapse
Affiliation(s)
- David Virant
- https://ror.org/05r7n9c40Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiologyand LOEWE Center for Synthetic Microbiology, Marburg, Germany
| | - Ilijana Vojnovic
- https://ror.org/05r7n9c40Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiologyand LOEWE Center for Synthetic Microbiology, Marburg, Germany,Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA,Institute for Microbiology and Biotechnology, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Jannik Winkelmeier
- https://ror.org/05r7n9c40Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiologyand LOEWE Center for Synthetic Microbiology, Marburg, Germany,Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA,Institute for Microbiology and Biotechnology, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Marc Endesfelder
- https://ror.org/05591te55Institute for Assyriology and Hittitology, Ludwig-Maximilians-Universität München, München, Germany
| | - Bartosz Turkowyd
- https://ror.org/05r7n9c40Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiologyand LOEWE Center for Synthetic Microbiology, Marburg, Germany,Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA,Institute for Microbiology and Biotechnology, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - David Lando
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ulrike Endesfelder
- https://ror.org/05r7n9c40Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiologyand LOEWE Center for Synthetic Microbiology, Marburg, Germany,Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA,Institute for Microbiology and Biotechnology, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, Germany,Correspondence to Ulrike Endesfelder:
| |
Collapse
|
35
|
Pandey G, Budhathoki A, Spille JH. Characterizing Properties of Biomolecular Condensates Below the Diffraction Limit In Vivo. Methods Mol Biol 2023; 2563:425-445. [PMID: 36227487 DOI: 10.1007/978-1-0716-2663-4_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fluorescence microscopy assays enable the investigation of endogenous biomolecular condensates directly in their cellular context. With appropriate experimental designs, these assays yield quantitative information on condensate material properties and inform on biophysical mechanisms of condensate formation. Single-molecule super-resolution and tracking experiments grant access to the smallest condensates and early condensation stages not resolved by conventional imaging approaches. Here, we discuss considerations for using single-molecule assays to extract quantitative information about biomolecular condensates directly in their cellular context.
Collapse
Affiliation(s)
- Ganesh Pandey
- Department of Physics, University of Illinois at Chicago, Chicago, IL, USA
| | - Alisha Budhathoki
- Department of Physics, University of Illinois at Chicago, Chicago, IL, USA
| | - Jan-Hendrik Spille
- Department of Physics, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
36
|
Gong Q, Zhang X, Li W, Guo X, Wu Q, Yu C, Jiao L, Xiao Y, Hao E. Long-Wavelength Photoconvertible Dimeric BODIPYs for Super-Resolution Single-Molecule Localization Imaging in Near-Infrared Emission. J Am Chem Soc 2022; 144:21992-21999. [PMID: 36414278 DOI: 10.1021/jacs.2c08947] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sulfoxide-bridged dimeric BODIPYs were developed as a new class of long-wavelength photoconvertible fluorophores. Upon visible-light irradiation, a sulfoxide moiety was released to generate the corresponding α,α-directly linked dimeric BODIPYs. The extrusion of SO from sulfoxides was mainly through an intramolecular fashion involving reactive triplet states. By this photoconversion, not only were more than 100 nm red shifts of absorption and emission maxima (up to 648/714 nm) achieved but also stable products with bright fluorescence were produced with high efficiency. The combination of photoactivation and red-shifted excitation/emission offered optimal contrast and eliminated the interference from biological autofluorescence. More importantly, the in situ products of these visible-light-induced reactions demonstrated ideal single-molecule fluorescence properties in the near-infrared region. Therefore, this new photoconversion could be a powerful photoactivation method achieving super-resolution single-molecule localization imaging in a living cell without using UV illumination and cell-toxic additives.
Collapse
Affiliation(s)
- Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xinfu Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Wanwan Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
37
|
Choosing the Probe for Single-Molecule Fluorescence Microscopy. Int J Mol Sci 2022; 23:ijms232314949. [PMID: 36499276 PMCID: PMC9735909 DOI: 10.3390/ijms232314949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Probe choice in single-molecule microscopy requires deeper evaluations than those adopted for less sensitive fluorescence microscopy studies. Indeed, fluorophore characteristics can alter or hide subtle phenomena observable at the single-molecule level, wasting the potential of the sophisticated instrumentation and algorithms developed for advanced single-molecule applications. There are different reasons for this, linked, e.g., to fluorophore aspecific interactions, brightness, photostability, blinking, and emission and excitation spectra. In particular, these spectra and the excitation source are interdependent, and the latter affects the autofluorescence of sample substrate, medium, and/or biological specimen. Here, we review these and other critical points for fluorophore selection in single-molecule microscopy. We also describe the possible kinds of fluorophores and the microscopy techniques based on single-molecule fluorescence. We explain the importance and impact of the various issues in fluorophore choice, and discuss how this can become more effective and decisive for increasingly demanding experiments in single- and multiple-color applications.
Collapse
|
38
|
Sanders EW, Carr AR, Bruggeman E, Körbel M, Benaissa SI, Donat RF, Santos AM, McColl J, O'Holleran K, Klenerman D, Davis SJ, Lee SF, Ponjavic A. resPAINT: Accelerating Volumetric Super-Resolution Localisation Microscopy by Active Control of Probe Emission. Angew Chem Int Ed Engl 2022; 61:e202206919. [PMID: 35876263 DOI: 10.1002/anie.202206919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 01/07/2023]
Abstract
Points for accumulation in nanoscale topography (PAINT) allows practically unlimited measurements in localisation microscopy but is limited by background fluorescence at high probe concentrations, especially in volumetric imaging. We present reservoir-PAINT (resPAINT), which combines PAINT and active control of probe photophysics. In resPAINT, an activatable probe "reservoir" accumulates on target, enabling a 50-fold increase in localisation rate versus conventional PAINT, without compromising contrast. By combining resPAINT with large depth-of-field microscopy, we demonstrate super-resolution imaging of entire cell surfaces. We generalise the approach by implementing various switching strategies and 3D imaging techniques. Finally, we use resPAINT with a Fab to image membrane proteins, extending the operating regime of PAINT to include a wider range of biological interactions.
Collapse
Affiliation(s)
- Edward W Sanders
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Alexander R Carr
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Ezra Bruggeman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Markus Körbel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Sarah I Benaissa
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Robert F Donat
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana M Santos
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - James McColl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Kevin O'Holleran
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, CB2 3DY, UK
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Simon J Davis
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Steven F Lee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Aleks Ponjavic
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
39
|
Sanders EW, Carr AR, Bruggeman E, Körbel M, Benaissa SI, Donat RF, Santos AM, McColl J, O'Holleran K, Klenerman D, Davis SJ, Lee SF, Ponjavic A. resPAINT: Accelerating Volumetric Super-Resolution Localisation Microscopy by Active Control of Probe Emission. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202206919. [PMID: 38505515 PMCID: PMC10946633 DOI: 10.1002/ange.202206919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 03/21/2024]
Abstract
Points for accumulation in nanoscale topography (PAINT) allows practically unlimited measurements in localisation microscopy but is limited by background fluorescence at high probe concentrations, especially in volumetric imaging. We present reservoir-PAINT (resPAINT), which combines PAINT and active control of probe photophysics. In resPAINT, an activatable probe "reservoir" accumulates on target, enabling a 50-fold increase in localisation rate versus conventional PAINT, without compromising contrast. By combining resPAINT with large depth-of-field microscopy, we demonstrate super-resolution imaging of entire cell surfaces. We generalise the approach by implementing various switching strategies and 3D imaging techniques. Finally, we use resPAINT with a Fab to image membrane proteins, extending the operating regime of PAINT to include a wider range of biological interactions.
Collapse
Affiliation(s)
- Edward W. Sanders
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Alexander R. Carr
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Ezra Bruggeman
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Markus Körbel
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Sarah I. Benaissa
- Cambridge Advanced Imaging CentreUniversity of CambridgeCambridgeCB2 3DYUK
| | - Robert F. Donat
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology UnitJohn Radcliffe HospitalUniversity of OxfordOxfordOX3 9DSUK
| | - Ana M. Santos
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology UnitJohn Radcliffe HospitalUniversity of OxfordOxfordOX3 9DSUK
| | - James McColl
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Kevin O'Holleran
- Cambridge Advanced Imaging CentreUniversity of CambridgeCambridgeCB2 3DYUK
| | - David Klenerman
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Simon J. Davis
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology UnitJohn Radcliffe HospitalUniversity of OxfordOxfordOX3 9DSUK
| | - Steven F. Lee
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Aleks Ponjavic
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- School of Physics and AstronomyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of Food Science and NutritionUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
40
|
Feng Z, Ducos B, Scerbo P, Aujard I, Jullien L, Bensimon D. The Development and Application of Opto-Chemical Tools in the Zebrafish. Molecules 2022; 27:6231. [PMID: 36234767 PMCID: PMC9572478 DOI: 10.3390/molecules27196231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
The zebrafish is one of the most widely adopted animal models in both basic and translational research. This popularity of the zebrafish results from several advantages such as a high degree of similarity to the human genome, the ease of genetic and chemical perturbations, external fertilization with high fecundity, transparent and fast-developing embryos, and relatively low cost-effective maintenance. In particular, body translucency is a unique feature of zebrafish that is not adequately obtained with other vertebrate organisms. The animal's distinctive optical clarity and small size therefore make it a successful model for optical modulation and observation. Furthermore, the convenience of microinjection and high embryonic permeability readily allow for efficient delivery of large and small molecules into live animals. Finally, the numerous number of siblings obtained from a single pair of animals offers large replicates and improved statistical analysis of the results. In this review, we describe the development of opto-chemical tools based on various strategies that control biological activities with unprecedented spatiotemporal resolution. We also discuss the reported applications of these tools in zebrafish and highlight the current challenges and future possibilities of opto-chemical approaches, particularly at the single cell level.
Collapse
Affiliation(s)
- Zhiping Feng
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Bertrand Ducos
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- High Throughput qPCR Core Facility, Ecole Normale Supérieure, Paris Sciences Letters University, 46 Rue d’Ulm, 75005 Paris, France
| | - Pierluigi Scerbo
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- Inovarion, 75005 Paris, France
| | - Isabelle Aujard
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - Ludovic Jullien
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - David Bensimon
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
41
|
Milstein JN, Nino DF, Zhou X, Gradinaru CC. Single-molecule counting applied to the study of GPCR oligomerization. Biophys J 2022; 121:3175-3187. [PMID: 35927960 PMCID: PMC9463696 DOI: 10.1016/j.bpj.2022.07.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022] Open
Abstract
Single-molecule counting techniques enable a precise determination of the intracellular abundance and stoichiometry of proteins and macromolecular complexes. These details are often challenging to quantitatively assess yet are essential for our understanding of cellular function. Consider G-protein-coupled receptors-an expansive class of transmembrane signaling proteins that participate in many vital physiological functions making them a popular target for drug development. While early evidence for the role of oligomerization in receptor signaling came from ensemble biochemical and biophysical assays, innovations in single-molecule measurements are now driving a paradigm shift in our understanding of its relevance. Here, we review recent developments in single-molecule counting with a focus on photobleaching step counting and the emerging technique of quantitative single-molecule localization microscopy-with a particular emphasis on the potential for these techniques to advance our understanding of the role of oligomerization in G-protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Joshua N Milstein
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| | - Daniel F Nino
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Xiaohan Zhou
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| |
Collapse
|
42
|
Parutto P, Heck J, Lu M, Kaminski C, Avezov E, Heine M, Holcman D. High-throughput super-resolution single-particle trajectory analysis reconstructs organelle dynamics and membrane reorganization. CELL REPORTS METHODS 2022; 2:100277. [PMID: 36046627 PMCID: PMC9421586 DOI: 10.1016/j.crmeth.2022.100277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/11/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
Abstract
Super-resolution imaging can generate thousands of single-particle trajectories. These data can potentially reconstruct subcellular organization and dynamics, as well as measure disease-linked changes. However, computational methods that can derive quantitative information from such massive datasets are currently lacking. We present data analysis and algorithms that are broadly applicable to reveal local binding and trafficking interactions and organization of dynamic subcellular sites. We applied this analysis to the endoplasmic reticulum and neuronal membrane. The method is based on spatiotemporal segmentation that explores data at multiple levels and detects the architecture and boundaries of high-density regions in areas measuring hundreds of nanometers. By connecting dense regions, we reconstructed the network topology of the endoplasmic reticulum (ER), as well as molecular flow redistribution and the local space explored by trajectories. The presented methods are available as an ImageJ plugin that can be applied to large datasets of overlapping trajectories offering a standard of single-particle trajectory (SPT) metrics.
Collapse
Affiliation(s)
- Pierre Parutto
- Group of Data Modeling and Computational Biology, IBENS, Ecole Normale Supérieure, 75005 Paris, France
| | - Jennifer Heck
- Research Group Functional Neurobiology at the Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Meng Lu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Clemens Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Edward Avezov
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
| | - Martin Heine
- Research Group Functional Neurobiology at the Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - David Holcman
- Group of Data Modeling and Computational Biology, IBENS, Ecole Normale Supérieure, 75005 Paris, France
- DAMPT, University of Cambridge, DAMPT and Churchill College, Cambridge CB30DS, UK
| |
Collapse
|
43
|
Super-Resolution Microscopy and Their Applications in Food Materials: Beyond the Resolution Limits of Fluorescence Microscopy. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
44
|
Recruitment of tetraspanin TSP-15 to epidermal wounds promotes plasma membrane repair in C. elegans. Dev Cell 2022; 57:1630-1642.e4. [PMID: 35777354 DOI: 10.1016/j.devcel.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/26/2022] [Accepted: 06/07/2022] [Indexed: 01/14/2023]
Abstract
Maintaining the integrity of the plasma membrane after cellular damage is essential for cell survival. However, it is unclear how cells repair large membrane injuries in vivo. Here, we report that the tetraspanin protein, TSP-15, is recruited to large membrane wounds and forms a ring-like structure in C. elegans epidermis and promotes membrane repair after an injury. TSP-15 recruits from the adjacent region underneath the plasma membrane to the wound site in a RAB-5-dependent manner upon membrane damage. Genetic and live-imaging analysis suggested that the endosomal sorting complex required for transport III (ESCRT III) is necessary for recruiting TSP-15 from the early endosome to the damaged membrane. Moreover, TSP-15 interacts with and is required for the accumulation of t-SNARE protein Syntaxin-2, which facilitates membrane repair. These findings provide valuable insights into the role of the conserved tetraspanin TSP-15 in the cellular repair of large wounds resulting from environmental insults.
Collapse
|
45
|
Imaging Minimal Bacteria at the Nanoscale: a Reliable and Versatile Process to Perform Single-Molecule Localization Microscopy in Mycoplasmas. Microbiol Spectr 2022; 10:e0064522. [PMID: 35638916 PMCID: PMC9241803 DOI: 10.1128/spectrum.00645-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mycoplasmas are the smallest free-living organisms. These bacteria are important models for both fundamental and synthetic biology, owing to their highly reduced genomes. They are also relevant in the medical and veterinary fields, as they are pathogenic to both humans and most livestock species. Mycoplasma cells have minute sizes, often in the 300- to 800-nm range. As these dimensions are close to the diffraction limit of visible light, fluorescence imaging in mycoplasmas is often poorly informative. Recently developed superresolution imaging techniques can break this diffraction limit, improving the imaging resolution by an order of magnitude and offering a new nanoscale vision of the organization of these bacteria. These techniques have, however, not been applied to mycoplasmas before. Here, we describe an efficient and reliable protocol to perform single-molecule localization microscopy (SMLM) imaging in mycoplasmas. We provide a polyvalent transposon-based system to express the photoconvertible fluorescent protein mEos3.2, enabling photo-activated localization microscopy (PALM) in most Mycoplasma species. We also describe the application of direct stochastic optical reconstruction microscopy (dSTORM). We showcase the potential of these techniques by studying the subcellular localization of two proteins of interest. Our work highlights the benefits of state-of-the-art microscopy techniques for mycoplasmology and provides an incentive to further the development of SMLM strategies to study these organisms in the future. IMPORTANCE Mycoplasmas are important models in biology, as well as highly problematic pathogens in the medical and veterinary fields. The very small sizes of these bacteria, well below a micron, limits the usefulness of traditional fluorescence imaging methods, as their resolution limit is similar to the dimensions of the cells. Here, to bypass this issue, we established a set of state-of-the-art superresolution microscopy techniques in a wide range of Mycoplasma species. We describe two strategies: PALM, based on the expression of a specific photoconvertible fluorescent protein, and dSTORM, based on fluorophore-coupled antibody labeling. With these methods, we successfully performed single-molecule imaging of proteins of interest at the surface of the cells and in the cytoplasm, at lateral resolutions well below 50 nm. Our work paves the way toward a better understanding of mycoplasma biology through imaging of subcellular structures at the nanometer scale.
Collapse
|
46
|
Nienhaus K, Nienhaus GU. Genetically encodable fluorescent protein markers in advanced optical imaging. Methods Appl Fluoresc 2022; 10. [PMID: 35767981 DOI: 10.1088/2050-6120/ac7d3f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022]
Abstract
Optical fluorescence microscopy plays a pivotal role in the exploration of biological structure and dynamics, especially on live specimens. Progress in the field relies, on the one hand, on technical advances in imaging and data processing and, on the other hand, on progress in fluorescent marker technologies. Among these, genetically encodable fluorescent proteins (FPs) are invaluable tools, as they allow facile labeling of live cells, tissues or organisms, as these produce the FP markers all by themselves after introduction of a suitable gene. Here we cover FP markers from the GFP family of proteins as well as tetrapyrrole-binding proteins, which further complement the FP toolbox in important ways. A broad range of FP variants have been endowed, by using protein engineering, with photophysical properties that are essential for specific fluorescence microscopy techniques, notably those offering nanoscale image resolution. We briefly introduce various advanced imaging methods and show how they utilize the distinct properties of the FP markers in exciting imaging applications, with the aim to guide researchers toward the design of powerful imaging experiments that are optimally suited to address their biological questions.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| | - Gerd Ulrich Nienhaus
- Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| |
Collapse
|
47
|
Wulffele J, Thédié D, Glushonkov O, Bourgeois D. mEos4b Photoconversion Efficiency Depends on Laser Illumination Conditions Used in PALM. J Phys Chem Lett 2022; 13:5075-5080. [PMID: 35653150 DOI: 10.1021/acs.jpclett.2c00933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Green-to-red photoconvertible fluorescent proteins (PCFPs) are widely employed as markers in photoactivated localization microscopy (PALM). However, their highly complex photophysical behavior complicates their usage. The fact that only a limited fraction of a PCFP ensemble can form the photoconverted state upon near-UV light illumination, termed photoconversion efficiency (PCE), lowers the achievable spatial resolution in PALM and creates undercounting errors in quantitative counting applications. Here, we show that the PCE of mEos4b is not a fixed property of this PCFP but strongly depends on illumination conditions. Attempts to reduce long-lived blinking in red mEos4b by application of 488 nm light lead to a reduction of the PCE. Furthermore, the PCE of mEos4b strongly depends on the applied 405 nm power density. A refined photophysical model of mEos4b accounts for the observed effects, involving nonlinear green-state photobleaching upon violet light illumination favored by photon absorption by a putative radical dark state.
Collapse
Affiliation(s)
- Jip Wulffele
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, F-38044 Grenoble, France
| | - Daniel Thédié
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, F-38044 Grenoble, France
- University of Edinburgh, Roger Land Building, The King's Buildings, EH9 3FF Edinburgh, United Kingdom
| | - Oleksandr Glushonkov
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, F-38044 Grenoble, France
| | - Dominique Bourgeois
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, F-38044 Grenoble, France
| |
Collapse
|
48
|
Carpousis AJ, Campo N, Hadjeras L, Hamouche L. Compartmentalization of RNA Degradosomes in Bacteria Controls Accessibility to Substrates and Ensures Concerted Degradation of mRNA to Nucleotides. Annu Rev Microbiol 2022; 76:533-552. [PMID: 35671533 DOI: 10.1146/annurev-micro-041020-113308] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA degradosomes are multienzyme complexes composed of ribonucleases, RNA helicases, and metabolic enzymes. RNase E-based degradosomes are widespread in Proteobacteria. The Escherichia coli RNA degradosome is sequestered from transcription in the nucleoid and translation in the cytoplasm by localization to the inner cytoplasmic membrane, where it forms short-lived clusters that are proposed to be sites of mRNA degradation. In Caulobacter crescentus, RNA degradosomes localize to ribonucleoprotein condensates in the interior of the cell [bacterial ribonucleoprotein-bodies (BR-bodies)], which have been proposed to drive the concerted degradation of mRNA to nucleotides. The turnover of mRNA in growing cells is important for maintaining pools of nucleotides for transcription and DNA replication. Membrane attachment of the E. coli RNA degradosome is necessary to avoid wasteful degradation of intermediates in ribosome assembly. Sequestering RNA degradosomes to C. crescentus BR-bodies, which exclude structured RNA, could have a similar role in protecting intermediates in ribosome assembly from degradation. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Agamemnon J Carpousis
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France; , , .,TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Nathalie Campo
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France; , ,
| | - Lydia Hadjeras
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France; , , .,Current affiliation: IMIB, University of Würzburg, Würzburg, Germany;
| | - Lina Hamouche
- LMGM, Université de Toulouse, CNRS, UPS, CBI, Toulouse, France; , ,
| |
Collapse
|
49
|
Chen N, Zhang Y, Adel M, Kuklin EA, Reed ML, Mardovin JD, Bakthavachalu B, VijayRaghavan K, Ramaswami M, Griffith LC. Local translation provides the asymmetric distribution of CaMKII required for associative memory formation. Curr Biol 2022; 32:2730-2738.e5. [PMID: 35545085 DOI: 10.1016/j.cub.2022.04.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/18/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
How compartment-specific local proteomes are generated and maintained is inadequately understood, particularly in neurons, which display extreme asymmetries. Here we show that local enrichment of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in axons of Drosophila mushroom body neurons is necessary for cellular plasticity and associative memory formation. Enrichment is achieved via enhanced axoplasmic translation of CaMKII mRNA, through a mechanism requiring the RNA-binding protein Mub and a 23-base Mub-recognition element in the CaMKII 3' UTR. Perturbation of either dramatically reduces axonal, but not somatic, CaMKII protein without altering the distribution or amount of mRNA in vivo, and both are necessary and sufficient to enhance axonal translation of reporter mRNA. Together, these data identify elevated levels of translation of an evenly distributed mRNA as a novel strategy for generating subcellular biochemical asymmetries. They further demonstrate the importance of distributional asymmetry in the computational and biological functions of neurons.
Collapse
Affiliation(s)
- Nannan Chen
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Yunpeng Zhang
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Mohamed Adel
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Elena A Kuklin
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Martha L Reed
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Jacob D Mardovin
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Baskar Bakthavachalu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India; School of Basic Science, Indian Institute of Technology Mandi, Mandi, India
| | - K VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India; School of Basic Science, Indian Institute of Technology Mandi, Mandi, India
| | - Mani Ramaswami
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology and School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India; School of Basic Science, Indian Institute of Technology Mandi, Mandi, India
| | - Leslie C Griffith
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA.
| |
Collapse
|
50
|
You L, Su PR, Betjes M, Rad RG, Chou TC, Beerens C, van Oosten E, Leufkens F, Gasecka P, Muraro M, van Tol R, van Steenderen D, Farooq S, Hardillo JAU, de Jong RB, Brinks D, Chien MP. Linking the genotypes and phenotypes of cancer cells in heterogenous populations via real-time optical tagging and image analysis. Nat Biomed Eng 2022; 6:667-675. [PMID: 35301448 DOI: 10.1038/s41551-022-00853-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
Linking single-cell genomic or transcriptomic profiles to functional cellular characteristics, in particular time-varying phenotypic changes, could help unravel molecular mechanisms driving the growth of tumour-cell subpopulations. Here we show that a custom-built optical microscope with an ultrawide field of view, fast automated image analysis and a dye activatable by visible light enables the screening and selective photolabelling of cells of interest in large heterogeneous cell populations on the basis of specific functional cellular dynamics, such as fast migration, morphological variation, small-molecule uptake or cell division. Combining such functional single-cell selection with single-cell RNA sequencing allowed us to (1) functionally annotate the transcriptomic profiles of fast-migrating and spindle-shaped MCF10A cells, of fast-migrating MDA-MB-231 cells and of patient-derived head-and-neck squamous carcinoma cells, and (2) identify critical genes and pathways driving aggressive migration and mesenchymal-like morphology in these cells. Functional single-cell selection upstream of single-cell sequencing does not depend on molecular biomarkers, allows for the enrichment of sparse subpopulations of cells, and can facilitate the identification and understanding of the molecular mechanisms underlying functional phenotypes.
Collapse
Affiliation(s)
- Li You
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Pin-Rui Su
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands.,Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Max Betjes
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Reza Ghadiri Rad
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ting-Chun Chou
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Cecile Beerens
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Eva van Oosten
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Felix Leufkens
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Paulina Gasecka
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands.,Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Mauro Muraro
- Single Cell Discoveries, Utrecht, The Netherlands
| | - Ruud van Tol
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Debby van Steenderen
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Shazia Farooq
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jose Angelito U Hardillo
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert Baatenburg de Jong
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Daan Brinks
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands. .,Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands.
| | - Miao-Ping Chien
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands. .,Erasmus MC Cancer Institute, Rotterdam, The Netherlands. .,Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|