1
|
Budelli G, Ferreiro MJ, Bolatto C. Taking flight, the use of Drosophila melanogaster for neuroscience research in Uruguay. Neuroscience 2025; 573:104-119. [PMID: 40058485 DOI: 10.1016/j.neuroscience.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
The Sociedad de Neurociencias del Uruguay is celebrating its 30th anniversary, sustained by more than a century of neuroscience research in the country. During this time, different approaches and experimental organisms have been incorporated to study diverse aspects of neurobiology. One of these experimental animals, successfully used in a variety of biological fields, is the fruit fly Drosophila melanogaster. Although Drosophila has been a model organism for neuroscience research worldwide for many decades, its use in Uruguay for that purpose is relatively new and just taking flight. In this special issue article, we will describe some of the research lines that are currently using Drosophila for neuroscience studies, questioning a wide range of issues including thermoreception, neurodegenerative diseases such as Parkinson's, screening of bioactive compounds with a neuroprotective effect, and gene/protein function during development of the nervous system. The consolidation of these research lines has been achieved due to unique features of D. melanogaster as an experimental model. We will review the advantages of using Drosophila to study neurobiology and describe some of its useful genetic tools. Advantages such as having powerful genetics, highly conserved disease pathways, a complete connectome, very low comparative costs, easy maintenance, and the support of a collaborative community allowing access to a vast toolkit, all make D. melanogaster an ideal model organism for neuroscientists in countries with low levels of investment in research and development. This review focuses on the strengths and description of useful techniques to study neurobiology using Drosophila, from the perspective of a Latin-American experience.
Collapse
Affiliation(s)
- Gonzalo Budelli
- Unidad Académica de Biofísica, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay.
| | - María José Ferreiro
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Ministerio de Educación y Cultura (MEC), Montevideo, Uruguay
| | - Carmen Bolatto
- Unidad Académica de Histología y Embriología, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay; Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Ministerio de Educación y Cultura (MEC), Montevideo, Uruguay
| |
Collapse
|
2
|
Amin F, König C, Zhang J, Kalinichenko LS, Königsmann S, Brunsberg V, Riemensperger TD, Müller CP, Gerber B. Compromising Tyrosine Hydroxylase Function Extends and Blunts the Temporal Profile of Reinforcement by Dopamine Neurons in Drosophila. J Neurosci 2025; 45:e1498242024. [PMID: 39753299 PMCID: PMC11905344 DOI: 10.1523/jneurosci.1498-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/17/2024] [Accepted: 12/04/2024] [Indexed: 03/14/2025] Open
Abstract
For a proper representation of the causal structure of the world, it is adaptive to consider both evidence for and evidence against causality. To take punishment as an example, the causality of a stimulus is unlikely if there is a temporal gap before punishment is received, but causality is credible if the stimulus immediately precedes punishment. In contrast, causality can be ruled out if the punishment occurred first. At the behavioral level, this is reflected in the associative principle of timing-dependent valence reversal: aversive memories are formed when a stimulus occurs before the punishment, whereas memories of appetitive valence are formed when a stimulus is presented upon the relieving termination of punishment. We map the temporal profile of memories induced by optogenetic activation of the PPL1-01 neuron in the fly Drosophila melanogaster (of either sex) and find that compromising tyrosine hydroxylase function, either acutely by pharmacological methods or by cell-specific RNAi, extends and blunts this profile. Specifically, it (1) enhances learning with a time gap between the stimulus and PPL1-01 punishment (better trace conditioning), (2) impairs learning when the stimulus immediately precedes PPL1-01 punishment (worse delay conditioning), and (3) prevents learning about a stimulus presented after PPL1-01 punishment has ceased (worse relief conditioning). Under conditions of low dopamine, we furthermore observe a role for serotonin that is pronounced in trace conditioning, weaker in delay conditioning, and absent in relief conditioning. We discuss the psychiatric implications if related alterations in the temporal profile of reinforcement were to occur in humans.
Collapse
Affiliation(s)
- Fatima Amin
- Department of Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Magdeburg 39118, Germany
| | - Christian König
- Department of Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Magdeburg 39118, Germany
| | - Jiajun Zhang
- Institute of Zoology, University of Cologne, Cologne 50923, Germany
| | - Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, University Clinic, Erlangen 91054, Germany
| | - Svea Königsmann
- Department of Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Magdeburg 39118, Germany
| | - Vivian Brunsberg
- Department of Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Magdeburg 39118, Germany
| | | | - Christian P Müller
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, University Clinic, Erlangen 91054, Germany
- Faculty of Medicine Mannheim, Central Institute of Mental Health, Institute of Psychopharmacology, University of Heidelberg, Heidelberg 68159, Germany
| | - Bertram Gerber
- Department of Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Magdeburg 39118, Germany
- Institute for Biology, Otto-von-Guericke University, Magdeburg 39120, Germany
- Center for Brain and Behavioral Sciences (CBBS), Otto-von-Guericke University, Magdeburg 39106, Germany
| |
Collapse
|
3
|
Duan X, Zhang C, Wu Y, Ju J, Xu Z, Li X, Liu Y, Ohdah S, Constantin OM, Pan Y, Lu Z, Wang C, Chen X, Gee CE, Nagel G, Hou ST, Gao S, Song K. Suppression of epileptic seizures by transcranial activation of K +-selective channelrhodopsin. Nat Commun 2025; 16:559. [PMID: 39789018 PMCID: PMC11718177 DOI: 10.1038/s41467-025-55818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
Optogenetics is a valuable tool for studying the mechanisms of neurological diseases and is now being developed for therapeutic applications. In rodents and macaques, improved channelrhodopsins have been applied to achieve transcranial optogenetic stimulation. While transcranial photoexcitation of neurons has been achieved, noninvasive optogenetic inhibition for treating hyperexcitability-induced neurological disorders has remained elusive. There is a critical need for effective inhibitory optogenetic tools that are highly light-sensitive and capable of suppressing neuronal activity in deep brain tissue. In this study, we developed a highly sensitive moderately K+-selective channelrhodopsin (HcKCR1-hs) by molecular engineering of the recently discovered Hyphochytrium catenoides kalium (potassium) channelrhodopsin 1. Transcranial activation of HcKCR1-hs significantly prolongs the time to the first seizure, increases survival, and decreases seizure activity in several status epilepticus mouse models. Our approach for transcranial optogenetic inhibition of neural hyperactivity may be adapted for cell type-specific neuromodulation in both basic and preclinical settings.
Collapse
Affiliation(s)
- Xiaodong Duan
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Chong Zhang
- Department of Neurophysiology, Institute of Physiology, University Würzburg, Würzburg, Germany
| | - Yujie Wu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jun Ju
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhe Xu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xuanyi Li
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yao Liu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Schugofa Ohdah
- Institute for Synaptic Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Oana M Constantin
- Institute for Synaptic Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Yifan Pan
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhonghua Lu
- Research Center for Primate Neuromodulation and Neuroimaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cheng Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaojing Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Christine E Gee
- Institute for Synaptic Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Georg Nagel
- Department of Neurophysiology, Institute of Physiology, University Würzburg, Würzburg, Germany
| | - Sheng-Tao Hou
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Shiqiang Gao
- Department of Neurophysiology, Institute of Physiology, University Würzburg, Würzburg, Germany.
| | - Kun Song
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
4
|
Renault AD. Optogenetic control of Drosophila neurons: a laboratory practical for undergraduates and outreach. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2024; 25:e0008624. [PMID: 39225469 PMCID: PMC11636384 DOI: 10.1128/jmbe.00086-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Teaching aspects of neuroscience to large undergraduate classes can be difficult in terms of the cost of equipment involved such as microscopes and electrophysiology equipment, the time taken to master techniques such as dissection or intracellular recording, and ethical concerns when using vertebrates. Here, I describe a practical that uses behavioral readouts and optogenetics on Drosophila that can be implemented with minimal cost as well as reduced ethical concerns and uses mostly observational techniques. The practical can be used to teach aspects of genetics and the tools for manipulating neuronal activity for ascribing neuronal function. The practical can be customized to fit different undergraduate levels and learning objectives.
Collapse
Affiliation(s)
- Andrew D. Renault
- School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
5
|
Sitaraman D, Vecsey CG, Koochagian C. Activity Monitoring for Analysis of Sleep in Drosophila melanogaster. Cold Spring Harb Protoc 2024; 2024:pdb.top108095. [PMID: 38336390 PMCID: PMC11827337 DOI: 10.1101/pdb.top108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Sleep is important for survival, and the need for sleep is conserved across species. In the past two decades, the fruit fly Drosophila melanogaster has emerged as a promising system in which to study the genetic, neural, and physiological bases of sleep. Through significant advances in our understanding of the regulation of sleep in flies, the field is poised to address several open questions about sleep, such as how the need for sleep is encoded, how molecular regulators of sleep are situated within brain networks, and what the functions of sleep are. Here, we describe key findings, open questions, and commonly used methods that have been used to inform existing theories and develop new ways of thinking about the function, regulation, and adaptability of sleep behavior.
Collapse
Affiliation(s)
- Divya Sitaraman
- Department of Psychology, College of Science, California State University, Hayward, California 94542, USA
| | | | - Casey Koochagian
- Neuroscience Program, Skidmore College, Saratoga Springs, New York 12866, USA
| |
Collapse
|
6
|
Zheng T, Wei H, Zhao C. Characterization of the tail current of Channelrhodopsin-2 variants. Biochem Biophys Rep 2024; 39:101787. [PMID: 39886620 PMCID: PMC11780329 DOI: 10.1016/j.bbrep.2024.101787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 02/01/2025] Open
Abstract
Our study focused on specific ChR2 variants, particularly those with the Step function Opsins (SFO) mutation at the D156-C128 gate. These are widely used in optogenetics due to their heightened sensitivity to light and bi-stable prolonged activation. However, in some ChR2 variants, specifically D156 mutants, a tail current occurs when continuous light exposure is stopped. We specifically examined the D156H-T159S ChR2 variant, which demonstrated a tail current that was somewhat responsive to light and voltage, with a single-channel current of around 9fA, similar to wt-ChR2 as determined by stationary noise analysis. To further investigate, we used nonstationary noise analysis in cell-attached patching mode, which revealed that the tail current's single-channel current falls within the same range as the peak current, albeit with mild contamination from adaptation and desensitization. This finding strongly supports the notion that a portion of the ChR2 molecules open or re-open at the end of illumination, leading to further membrane depolarization.
Collapse
Affiliation(s)
- TiShang Zheng
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, 400065, Chongqing, PR China
| | - HengQi Wei
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, 400065, Chongqing, PR China
| | - CongJian Zhao
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, 400065, Chongqing, PR China
| |
Collapse
|
7
|
Inaba M. Optogenetic techniques for understanding the gut peristalsis during chicken embryonic development. Biochem Soc Trans 2024; 52:1727-1735. [PMID: 39051133 DOI: 10.1042/bst20231337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Gut peristaltic movements transport ingested materials along the gut axis, which is critical for food digestion and nutrient absorption. While a large amount of studies have been devoted to analyzing the physiological functions of peristalsis in adults, little is known about how the peristaltic system is established during embryogenesis. In recent years, the chicken developing gut has emerged as an excellent model, in which specific sites along the gut axis can be genetically labeled enabling live imaging and optogenetic analyses. This review provides an overview of recent progress in optogenetic studies of gut peristalsis. Analyses with an improved channelrhodopsin-2 variant demonstrated that the peristalsis can artificially be generated in the developing gut. These studies unveiled novel functional coordination between different regions along the gut axis. In addition, imaging with GCaMP6s, a genetically encoded calcium indicator, enabled a fine mapping of developmental changes in the peristaltic patterns as Ca2+ signals. These advanced techniques will broaden our knowledge of how embryonic peristalsis is established at the cellular and molecular level, leading to the understanding of physiological and pathological processes in adult peristalsis.
Collapse
Affiliation(s)
- Masafumi Inaba
- Department of Zoology, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
8
|
Bidell D, Feige ND, Triphan T, Müller C, Pauls D, Helfrich-Förster C, Selcho M. Photoreceptors for immediate effects of light on circadian behavior. iScience 2024; 27:109819. [PMID: 38770135 PMCID: PMC11103378 DOI: 10.1016/j.isci.2024.109819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/12/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Animals need to sharpen their behavioral output in order to adapt to a variable environment. Hereby, light is one of the most pivotal environmental signals and thus behavioral plasticity in response to light can be observed in diurnal animals, including humans. Furthermore, light is the main entraining signal of the clock, yet immediate effects of light enhance or overwrite circadian output and thereby mask circadian behavior. In Drosophila, such masking effects are most evident as a lights-on response in two behavioral rhythms - the emergence of the adult insect from the pupa, called eclosion, and the diurnal rhythm of locomotor activity. Here, we show that the immediate effect of light on eclosion depends solely on R8 photoreceptors of the eyes. In contrast, the increase in activity by light at night is triggered by different cells and organs that seem to compensate for the loss of each other, potentially to ensure behavioral plasticity.
Collapse
Affiliation(s)
- Daniel Bidell
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Natalie-Danielle Feige
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Tilman Triphan
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Claudia Müller
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Dennis Pauls
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | | | - Mareike Selcho
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
9
|
Rohrbach EW, Knapp EM, Deshpande SA, Krantz DE. Expression and potential regulatory functions of Drosophila octopamine receptors in the female reproductive tract. G3 (BETHESDA, MD.) 2024; 14:jkae012. [PMID: 38244217 PMCID: PMC10917510 DOI: 10.1093/g3journal/jkae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/02/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Aminergic signaling is known to play a critical role in regulating female reproductive processes in both mammals and insects. In Drosophila, the ortholog of noradrenaline, octopamine, is required for ovulation as well as several other female reproductive processes. Two octopamine receptors have already been shown to be expressed in the Drosophila reproductive tract and to be required for egg-laying: OAMB and Octβ2R. The Drosophila genome contains 4 additional octopamine receptors-Octα2R, Octβ1R, Octβ3R, and Oct-TyrR-but their cellular patterns of expression in the reproductive tract and potential contribution(s) to egg-laying are not known. In addition, the mechanisms by which OAMB and Octβ2R regulate reproduction are incompletely understood. Using a panel of MiMIC Gal4 lines, we show that Octα2R, Octβ1R, Octβ3R, and Oct-TyrR receptors are not detectable in either epithelium or muscle but are clearly expressed in neurons within the female fly reproductive tract. Optogenetic activation of neurons that express at least 3 types of octopamine receptors stimulates contractions in the lateral oviduct. We also find that octopamine stimulates calcium transients in the sperm storage organs and that its effects in spermathecal, secretory cells, can be blocked by knock-down of OAMB. These data extend our understanding of the pathways by which octopamine regulates egg-laying in Drosophila and raise the possibility that multiple octopamine receptor subtypes could play a role in this process.
Collapse
Affiliation(s)
- Ethan W Rohrbach
- Interdepartmental Program in Neuroscience, Brain Research Institute, Gonda (Goldschmied) Neuroscience and Genetics Research Center, UCLA, Los Angeles, CA 90095, USA
| | - Elizabeth M Knapp
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Sonali A Deshpande
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - David E Krantz
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Wang J, Platz-Baudin E, Noetzel E, Offenhäusser A, Maybeck V. Expressing Optogenetic Actuators Fused to N-terminal Mucin Motifs Delivers Targets to Specific Subcellular Compartments in Polarized Cells. Adv Biol (Weinh) 2024; 8:e2300428. [PMID: 38015104 DOI: 10.1002/adbi.202300428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Optogenetics is a powerful approach in neuroscience research. However, other tissues of the body may benefit from controlled ion currents and neuroscience may benefit from more precise optogenetic expression. The present work constructs three subcellularly-targeted optogenetic actuators based on the channelrhodopsin ChR2-XXL, utilizing 5, 10, or 15 tandem repeats (TR) from mucin as N-terminal targeting motifs and evaluates expression in several polarized and non-polarized cell types. The modified channelrhodopsin maintains its electrophysiological properties, which can be used to produce continuous membrane depolarization, despite the expected size of the repeats. This work then shows that these actuators are subcellularly localized in polarized cells. In polarized epithelial cells, all three actuators localize to just the lateral membrane. The TR-tagged constructs also express subcellularly in cortical neurons, where TR5-ChR2XXL and TR10-ChR2XXL mainly target the somatodendrites. Moreover, the transfection efficiencies are shown to be dependent on cell type and tandem repeat length. Overall, this work verifies that the targeting motifs from epithelial cells can be used to localize optogenetic actuators in both epithelia and neurons, opening epithelia processes to optogenetic manipulation and providing new possibilities to target optogenetic tools.
Collapse
Affiliation(s)
- Jiali Wang
- Institute of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062, Aachen, Germany
| | - Eric Platz-Baudin
- Institute of Biological Information Processing IBI-2, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Erik Noetzel
- Institute of Biological Information Processing IBI-2, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062, Aachen, Germany
| | - Vanessa Maybeck
- Institute of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| |
Collapse
|
11
|
Junge S, Ricci Signorini ME, Al Masri M, Gülink J, Brüning H, Kasperek L, Szepes M, Bakar M, Gruh I, Heisterkamp A, Torres-Mapa ML. A micro-LED array based platform for spatio-temporal optogenetic control of various cardiac models. Sci Rep 2023; 13:19490. [PMID: 37945622 PMCID: PMC10636122 DOI: 10.1038/s41598-023-46149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Optogenetics relies on dynamic spatial and temporal control of light to address emerging fundamental and therapeutic questions in cardiac research. In this work, a compact micro-LED array, consisting of 16 × 16 pixels, is incorporated in a widefield fluorescence microscope for controlled light stimulation. We describe the optical design of the system that allows the micro-LED array to fully cover the field of view regardless of the imaging objective used. Various multicellular cardiac models are used in the experiments such as channelrhodopsin-2 expressing aggregates of cardiomyocytes, termed cardiac bodies, and bioartificial cardiac tissues derived from human induced pluripotent stem cells. The pacing efficiencies of the cardiac bodies and bioartificial cardiac tissues were characterized as a function of illumination time, number of switched-on pixels and frequency of stimulation. To demonstrate dynamic stimulation, steering of calcium waves in HL-1 cell monolayer expressing channelrhodopsin-2 was performed by applying different configurations of patterned light. This work shows that micro-LED arrays are powerful light sources for optogenetic control of contraction and calcium waves in cardiac monolayers, multicellular bodies as well as three-dimensional artificial cardiac tissues.
Collapse
Affiliation(s)
- Sebastian Junge
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, 30167, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany
| | - Maria Elena Ricci Signorini
- Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625, Hannover, Germany
| | - Masa Al Masri
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, 30167, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany
| | - Jan Gülink
- QubeDot GmbH, Wilhelmsgarten 3, 38100, Brunswick, Germany
| | - Heiko Brüning
- QubeDot GmbH, Wilhelmsgarten 3, 38100, Brunswick, Germany
| | - Leon Kasperek
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, 30167, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany
| | - Monika Szepes
- Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625, Hannover, Germany
| | - Mine Bakar
- Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625, Hannover, Germany
| | - Ina Gruh
- Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625, Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, 30167, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany
| | - Maria Leilani Torres-Mapa
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, 30167, Hannover, Germany.
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany.
| |
Collapse
|
12
|
Mancini N, Thoener J, Tafani E, Pauls D, Mayseless O, Strauch M, Eichler K, Champion A, Kobler O, Weber D, Sen E, Weiglein A, Hartenstein V, Chytoudis-Peroudis CC, Jovanic T, Thum AS, Rohwedder A, Schleyer M, Gerber B. Rewarding Capacity of Optogenetically Activating a Giant GABAergic Central-Brain Interneuron in Larval Drosophila. J Neurosci 2023; 43:7393-7428. [PMID: 37734947 PMCID: PMC10621887 DOI: 10.1523/jneurosci.2310-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/19/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
Larvae of the fruit fly Drosophila melanogaster are a powerful study case for understanding the neural circuits underlying behavior. Indeed, the numerical simplicity of the larval brain has permitted the reconstruction of its synaptic connectome, and genetic tools for manipulating single, identified neurons allow neural circuit function to be investigated with relative ease and precision. We focus on one of the most complex neurons in the brain of the larva (of either sex), the GABAergic anterior paired lateral neuron (APL). Using behavioral and connectomic analyses, optogenetics, Ca2+ imaging, and pharmacology, we study how APL affects associative olfactory memory. We first provide a detailed account of the structure, regional polarity, connectivity, and metamorphic development of APL, and further confirm that optogenetic activation of APL has an inhibiting effect on its main targets, the mushroom body Kenyon cells. All these findings are consistent with the previously identified function of APL in the sparsening of sensory representations. To our surprise, however, we found that optogenetically activating APL can also have a strong rewarding effect. Specifically, APL activation together with odor presentation establishes an odor-specific, appetitive, associative short-term memory, whereas naive olfactory behavior remains unaffected. An acute, systemic inhibition of dopamine synthesis as well as an ablation of the dopaminergic pPAM neurons impair reward learning through APL activation. Our findings provide a study case of complex circuit function in a numerically simple brain, and suggest a previously unrecognized capacity of central-brain GABAergic neurons to engage in dopaminergic reinforcement.SIGNIFICANCE STATEMENT The single, identified giant anterior paired lateral (APL) neuron is one of the most complex neurons in the insect brain. It is GABAergic and contributes to the sparsening of neuronal activity in the mushroom body, the memory center of insects. We provide the most detailed account yet of the structure of APL in larval Drosophila as a neurogenetically accessible study case. We further reveal that, contrary to expectations, the experimental activation of APL can exert a rewarding effect, likely via dopaminergic reward pathways. The present study both provides an example of unexpected circuit complexity in a numerically simple brain, and reports an unexpected effect of activity in central-brain GABAergic circuits.
Collapse
Affiliation(s)
- Nino Mancini
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Juliane Thoener
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Esmeralda Tafani
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Dennis Pauls
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Oded Mayseless
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Martin Strauch
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, 52074, Germany
| | - Katharina Eichler
- Institute of Neurobiology, University of Puerto Rico Medical Science Campus, Old San Juan, Puerto Rico, 00901
| | - Andrew Champion
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, CB2 3EL, United Kingdom
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, Virginia
| | - Oliver Kobler
- Leibniz Institute for Neurobiology, Combinatorial Neuroimaging Core Facility, Magdeburg, 39118, Germany
| | - Denise Weber
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Edanur Sen
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Aliće Weiglein
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Volker Hartenstein
- University of California, Department of Molecular, Cell and Developmental Biology, Los Angeles, California 90095-1606
| | | | - Tihana Jovanic
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut des neurosciences Paris-Saclay, Saclay, 91400, France
| | - Andreas S Thum
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Astrid Rohwedder
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Michael Schleyer
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Bertram Gerber
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
- Center for Behavioral Brain Sciences, Magdeburg, 39106, Germany
- Institute for Biology, Otto von Guericke University, Magdeburg, 39120, Germany
| |
Collapse
|
13
|
Cano-Ferrer X, Roberts RJ, French AS, de Folter J, Gong H, Nightingale L, Strange A, Imbert A, Prieto-Godino LL. OptoPi: An open source flexible platform for the analysis of small animal behaviour. HARDWAREX 2023; 15:e00443. [PMID: 37795340 PMCID: PMC10545942 DOI: 10.1016/j.ohx.2023.e00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/24/2023] [Accepted: 06/11/2023] [Indexed: 10/06/2023]
Abstract
Behaviour is the ultimate output of neural circuit computations, and therefore its analysis is a cornerstone of neuroscience research. However, every animal and experimental paradigm requires different illumination conditions to capture and, in some cases, manipulate specific behavioural features. This means that researchers often develop, from scratch, their own solutions and experimental set-ups. Here, we present OptoPi, an open source, affordable (∼ £600), behavioural arena with accompanying multi-animal tracking software. The system features highly customisable and reproducible visible and infrared illumination and allows for optogenetic stimulation. OptoPi acquires images using a Raspberry Pi camera, features motorised LED-based illumination, Arduino control, as well as irradiance monitoring to fine-tune illumination conditions with real time feedback. Our open-source software (BioImageProcessing) can be used to simultaneously track multiple unmarked animals both in on-line and off-line modes. We demonstrate the functionality of OptoPi by recording and tracking under different illumination conditions the spontaneous behaviour of larval zebrafish as well as adult Drosophila flies and their first instar larvae, an experimental animal that due to its small size and transparency has classically been hard to track. Further, we showcase OptoPi's optogenetic capabilities through a series of experiments using transgenic Drosophila larvae.
Collapse
Affiliation(s)
| | | | | | | | - Hui Gong
- The Francis Crick Institute, London NW1 1BF, United Kingdom
| | | | - Amy Strange
- The Francis Crick Institute, London NW1 1BF, United Kingdom
| | - Albane Imbert
- The Francis Crick Institute, London NW1 1BF, United Kingdom
| | | |
Collapse
|
14
|
Hürkey S, Niemeyer N, Schleimer JH, Ryglewski S, Schreiber S, Duch C. Gap junctions desynchronize a neural circuit to stabilize insect flight. Nature 2023:10.1038/s41586-023-06099-0. [PMID: 37225999 DOI: 10.1038/s41586-023-06099-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Insect asynchronous flight is one of the most prevalent forms of animal locomotion used by more than 600,000 species. Despite profound insights into the motor patterns1, biomechanics2,3 and aerodynamics underlying asynchronous flight4,5, the architecture and function of the central-pattern-generating (CPG) neural network remain unclear. Here, on the basis of an experiment-theory approach including electrophysiology, optophysiology, Drosophila genetics and mathematical modelling, we identify a miniaturized circuit solution with unexpected properties. The CPG network consists of motoneurons interconnected by electrical synapses that, in contrast to doctrine, produce network activity splayed out in time instead of synchronized across neurons. Experimental and mathematical evidence support a generic mechanism for network desynchronization that relies on weak electrical synapses and specific excitability dynamics of the coupled neurons. In small networks, electrical synapses can synchronize or desynchronize network activity, depending on the neuron-intrinsic dynamics and ion channel composition. In the asynchronous flight CPG, this mechanism translates unpatterned premotor input into stereotyped neuronal firing with fixed sequences of cell activation that ensure stable wingbeat power and, as we show, is conserved across multiple species. Our findings prove a wider functional versatility of electrical synapses in the dynamic control of neural circuits and highlight the relevance of detecting electrical synapses in connectomics.
Collapse
Affiliation(s)
- Silvan Hürkey
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nelson Niemeyer
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Stefanie Ryglewski
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susanne Schreiber
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
| | - Carsten Duch
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
15
|
Tsukamoto H, Kubo Y. A self-inactivating invertebrate opsin optically drives biased signaling toward Gβγ-dependent ion channel modulation. Proc Natl Acad Sci U S A 2023; 120:e2301269120. [PMID: 37186850 PMCID: PMC10214182 DOI: 10.1073/pnas.2301269120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Animal opsins, light-sensitive G protein-coupled receptors, have been used for optogenetic tools to control G protein-dependent signaling pathways. Upon G protein activation, the Gα and Gβγ subunits drive different intracellular signaling pathways, leading to complex cellular responses. For some purposes, Gα- and Gβγ-dependent signaling needs to be separately modulated, but these responses are simultaneously evoked due to the 1:1 stoichiometry of Gα and Gβγ Nevertheless, we show temporal activation of G protein using a self-inactivating invertebrate opsin, Platynereis c-opsin1, drives biased signaling for Gβγ-dependent GIRK channel activation in a light-dependent manner by utilizing the kinetic difference between Gβγ-dependent and Gα-dependent responses. The opsin-induced transient Gi/o activation preferentially causes activation of the kinetically fast Gβγ-dependent GIRK channels rather than slower Gi/oα-dependent adenylyl cyclase inhibition. Although similar Gβγ-biased signaling properties were observed in a self-inactivating vertebrate visual pigment, Platynereis c-opsin1 requires fewer retinal molecules to evoke cellular responses. Furthermore, the Gβγ-biased signaling properties of Platynereis c-opsin1 are enhanced by genetically fusing with RGS8 protein, which accelerates G protein inactivation. The self-inactivating invertebrate opsin and its RGS8-fusion protein can function as optical control tools biased for Gβγ-dependent ion channel modulation.
Collapse
Affiliation(s)
- Hisao Tsukamoto
- Department of Biology, Kobe University, Kobe657-8501, Japan
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Okazaki444-8585, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi 332-0012, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki444-8585, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama240-0193, Japan
| |
Collapse
|
16
|
Konrad KR, Gao S, Zurbriggen MD, Nagel G. Optogenetic Methods in Plant Biology. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:313-339. [PMID: 37216203 DOI: 10.1146/annurev-arplant-071122-094840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Optogenetics is a technique employing natural or genetically engineered photoreceptors in transgene organisms to manipulate biological activities with light. Light can be turned on or off, and adjusting its intensity and duration allows optogenetic fine-tuning of cellular processes in a noninvasive and spatiotemporally resolved manner. Since the introduction of Channelrhodopsin-2 and phytochrome-based switches nearly 20 years ago, optogenetic tools have been applied in a variety of model organisms with enormous success, but rarely in plants. For a long time, the dependence of plant growth on light and the absence of retinal, the rhodopsin chromophore, prevented the establishment of plant optogenetics until recent progress overcame these difficulties. We summarize the recent results of work in the field to control plant growth and cellular motion via green light-gated ion channels and present successful applications to light-control gene expression with single or combined photoswitches in plants. Furthermore, we highlight the technical requirements and options for future plant optogenetic research.
Collapse
Affiliation(s)
- Kai R Konrad
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, University of Würzburg, Würzburg, Germany;
| | - Shiqiang Gao
- Department of Neurophysiology, Institute of Physiology, Biocenter, University of Würzburg, Würzburg, Germany; ,
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, Germany;
| | - Georg Nagel
- Department of Neurophysiology, Institute of Physiology, Biocenter, University of Würzburg, Würzburg, Germany; ,
| |
Collapse
|
17
|
Mohamed A, Malekou I, Sim T, O'Kane CJ, Maait Y, Scullion B, Masuda-Nakagawa LM. Mushroom body output neurons MBON-a1/a2 define an odor intensity channel that regulates behavioral odor discrimination learning in larval Drosophila. Front Physiol 2023; 14:1111244. [PMID: 37256074 PMCID: PMC10225628 DOI: 10.3389/fphys.2023.1111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
The sensitivity of animals to sensory input must be regulated to ensure that signals are detected and also discriminable. However, how circuits regulate the dynamic range of sensitivity to sensory stimuli is not well understood. A given odor is represented in the insect mushroom bodies (MBs) by sparse combinatorial coding by Kenyon cells (KCs), forming an odor quality representation. To address how intensity of sensory stimuli is processed at the level of the MB input region, the calyx, we characterized a set of novel mushroom body output neurons that respond preferentially to high odor concentrations. We show that a pair of MB calyx output neurons, MBON-a1/2, are postsynaptic in the MB calyx, where they receive extensive synaptic inputs from KC dendrites, the inhibitory feedback neuron APL, and octopaminergic sVUM1 neurons, but relatively few inputs from projection neurons. This pattern is broadly consistent in the third-instar larva as well as in the first instar connectome. MBON-a1/a2 presynaptic terminals innervate a region immediately surrounding the MB medial lobe output region in the ipsilateral and contralateral brain hemispheres. By monitoring calcium activity using jRCamP1b, we find that MBON-a1/a2 responses are odor-concentration dependent, responding only to ethyl acetate (EA) concentrations higher than a 200-fold dilution, in contrast to MB neurons which are more concentration-invariant and respond to EA dilutions as low as 10-4. Optogenetic activation of the calyx-innervating sVUM1 modulatory neurons originating in the SEZ (Subesophageal zone), did not show a detectable effect on MBON-a1/a2 odor responses. Optogenetic activation of MBON-a1/a2 using CsChrimson impaired odor discrimination learning compared to controls. We propose that MBON-a1/a2 form an output channel of the calyx, summing convergent sensory and modulatory input, firing preferentially to high odor concentration, and might affect the activity of downstream MB targets.
Collapse
|
18
|
Shikaya Y, Inaba M, Tadokoro R, Utsunomiya S, Takahashi Y. Optogenetic control of gut movements reveals peristaltic wave-mediated induction of cloacal contractions and reactivation of impaired gut motility. Front Physiol 2023; 14:1175951. [PMID: 37293264 PMCID: PMC10245550 DOI: 10.3389/fphys.2023.1175951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Gut peristalsis, recognized as a wave-like progression along the anterior-posterior gut axis, plays a pivotal role in the transportation, digestion, and absorption of ingested materials. The embryonic gut, which has not experienced ingested materials, undergoes peristalsis offering a powerful model for studying the intrinsic mechanisms underlying the gut motility. It has previously been shown in chicken embryos that acute contractions of the cloaca (an anus-like structure) located at the posterior end of the hindgut are tightly coupled with the arrival of hindgut-derived waves. To further scrutinize the interactions between hindgut and cloaca, we here developed an optogenetic method that produced artificial waves in the hindgut. A variant form of channelrhodopsin-2 (ChR2(D156C)), permitting extremely large photocurrents, was expressed in the muscle component of the hindgut of chicken embryos using Tol2-mediated gene transfer and in ovo electroporation techniques. The D156C-expressing hindgut responded efficiently to local pulses of blue light: local contractions emerge at an ectopic site in the hindgut, which were followed by peristaltic waves that reached to the endpoint of the hindgut. Markedly, the arrival of the optogenetically induced waves caused concomitant contractions of the cloaca, revealing that the hindgut-cloaca coordination is mediated by signals triggered by peristaltic waves. Moreover, a cloaca undergoing pharmacologically provoked aberrant contractions could respond to pulsed blue light irradiation. Together, the optogenetic technology developed in this study for inducing gut peristalsis paves the way to study the gut movement and also to explore therapeutic methodology for peristaltic disorders.
Collapse
|
19
|
Hososhima S, Ueno S, Okado S, Inoue KI, Konno M, Yamauchi Y, Inoue K, Terasaki H, Kandori H, Tsunoda SP. A light-gated cation channel with high reactivity to weak light. Sci Rep 2023; 13:7625. [PMID: 37165048 PMCID: PMC10172181 DOI: 10.1038/s41598-023-34687-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
The cryptophyte algae, Guillardia theta, possesses 46 genes that are homologous to microbial rhodopsins. Five of them are functionally light-gated cation channelrhodopsins (GtCCR1-5) that are phylogenetically distinct from chlorophyte channelrhodopsins (ChRs) such as ChR2 from Chlamydomonas reinhardtii. In this study, we report the ion channel properties of these five CCRs and compared them with ChR2 and other ChRs widely used in optogenetics. We revealed that light sensitivity varied among GtCCR1-5, in which GtCCR1-3 exhibited an apparent EC50 of 0.21-1.16 mW/mm2, similar to that of ChR2, whereas GtCCR4 and GtCCR5 possess two EC50s, one of which is significantly small (0.025 and 0.032 mW/mm2). GtCCR4 is able to trigger action potentials in high temporal resolution, similar to ChR2, but requires lower light power, when expressed in cortical neurons. Moreover, a high light-sensitive response was observed when GtCCR4 was introduced into blind retina ganglion cells of rd1, a mouse model of retinitis pigmentosa. Thus, GtCCR4 provides optogenetic neuronal activation with high light sensitivity and temporal precision.
Collapse
Affiliation(s)
- Shoko Hososhima
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Department of Ophthalmology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Satoshi Okado
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Ken-Ichi Inoue
- Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Masae Konno
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yumeka Yamauchi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan.
| | - Satoshi P Tsunoda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan.
| |
Collapse
|
20
|
Rohrbach EW, Knapp EM, Deshpande SA, Krantz DE. Drosophila cells that express octopamine receptors can either inhibit or promote oviposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539296. [PMID: 37205438 PMCID: PMC10187210 DOI: 10.1101/2023.05.03.539296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Adrenergic signaling is known to play a critical role in regulating female reproductive processes in both mammals and insects. In Drosophila , the ortholog of noradrenaline, octopamine (Oa), is required for ovulation as well as several other female reproductive processes. Loss of function studies using mutant alleles of receptors, transporters, and biosynthetic enzymes for Oa have led to a model in which disruption of octopaminergic pathways reduces egg laying. However, neither the complete expression pattern in the reproductive tract nor the role of most octopamine receptors in oviposition is known. We show that all six known Oa receptors are expressed in peripheral neurons at multiple sites within in the female fly reproductive tract as well as in non-neuronal cells within the sperm storage organs. The complex pattern of Oa receptor expression in the reproductive tract suggests the potential for influencing multiple regulatory pathways, including those known to inhibit egg-laying in unmated flies. Indeed, activation of some neurons that express Oa receptors inhibits oviposition, and neurons that express different subtypes of Oa receptor can affect different stages of egg laying. Stimulation of some Oa receptor expressing neurons (OaRNs) also induces contractions in lateral oviduct muscle and activation of non-neuronal cells in the sperm storage organs by Oa generates OAMB-dependent intracellular calcium release. Our results are consistent with a model in which adrenergic pathways play a variety of complex roles in the fly reproductive tract that includes both the stimulation and inhibition of oviposition.
Collapse
|
21
|
Porta-de-la-Riva M, Gonzalez AC, Sanfeliu-Cerdán N, Karimi S, Malaiwong N, Pidde A, Morales-Curiel LF, Fernandez P, González-Bolívar S, Hurth C, Krieg M. Neural engineering with photons as synaptic transmitters. Nat Methods 2023; 20:761-769. [PMID: 37024651 DOI: 10.1038/s41592-023-01836-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/03/2023] [Indexed: 04/08/2023]
Abstract
Neuronal computation is achieved through connections of individual neurons into a larger network. To expand the repertoire of endogenous cellular communication, we developed a synthetic, photon-assisted synaptic transmission (PhAST) system. PhAST is based on luciferases and channelrhodopsins that enable the transmission of a neuronal state across space, using photons as neurotransmitters. PhAST overcomes synaptic barriers and rescues the behavioral deficit of a glutamate mutant with conditional, calcium-triggered photon emission between two neurons of the Caenorhabditis elegans nociceptive avoidance circuit. To demonstrate versatility and flexibility, we generated de novo synaptic transmission between two unconnected cells in a sexually dimorphic neuronal circuit, suppressed endogenous nocifensive response through activation of an anion channelrhodopsin and switched attractive to aversive behavior in an olfactory circuit. Finally, we applied PhAST to dissect the calcium dynamics of the temporal pattern generator in a motor circuit for ovipositioning. In summary, we established photon-based synaptic transmission that facilitates the modification of animal behavior.
Collapse
Affiliation(s)
| | | | | | - Shadi Karimi
- Institut de Ciències Fotòniques, Castelldefels, Spain
| | | | | | | | | | | | - Cedric Hurth
- Institut de Ciències Fotòniques, Castelldefels, Spain
| | - Michael Krieg
- Institut de Ciències Fotòniques, Castelldefels, Spain.
| |
Collapse
|
22
|
Thane M, Paisios E, Stöter T, Krüger AR, Gläß S, Dahse AK, Scholz N, Gerber B, Lehmann DJ, Schleyer M. High-resolution analysis of individual Drosophila melanogaster larvae uncovers individual variability in locomotion and its neurogenetic modulation. Open Biol 2023; 13:220308. [PMID: 37072034 PMCID: PMC10113034 DOI: 10.1098/rsob.220308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/05/2023] [Indexed: 04/20/2023] Open
Abstract
Neuronally orchestrated muscular movement and locomotion are defining faculties of multicellular animals. Due to its simple brain and genetic accessibility, the larva of the fruit fly Drosophila melanogaster allows one to study these processes at tractable levels of complexity. However, although the faculty of locomotion clearly pertains to the individual, most studies of locomotion in larvae use measurements aggregated across animals, or animals tested one by one, an extravagance for larger-scale analyses. This prevents grasping the inter- and intra-individual variability in locomotion and its neurogenetic determinants. Here, we present the IMBA (individual maggot behaviour analyser) for analysing the behaviour of individual larvae within groups, reliably resolving individual identity across collisions. We use the IMBA to systematically describe the inter- and intra-individual variability in locomotion of wild-type animals, and how the variability is reduced by associative learning. We then report a novel locomotion phenotype of an adhesion GPCR mutant. We further investigated the modulation of locomotion across repeated activations of dopamine neurons in individual animals, and the transient backward locomotion induced by brief optogenetic activation of the brain-descending 'mooncrawler' neurons. In summary, the IMBA is an easy-to-use toolbox allowing an unprecedentedly rich view of the behaviour and its variability of individual larvae, with utility in multiple biomedical research contexts.
Collapse
Affiliation(s)
- Michael Thane
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Simulation and Graphics, Otto von Guerike University, Magdeburg, Germany
| | - Emmanouil Paisios
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Torsten Stöter
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anna-Rosa Krüger
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Sebastian Gläß
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anne-Kristin Dahse
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Nicole Scholz
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Bertram Gerber
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Dirk J. Lehmann
- Department of Simulation and Graphics, Otto von Guerike University, Magdeburg, Germany
- Department for Information Engineering, Faculty of Computer Science, Ostfalia University of Applied Science, Brunswick-Wolfenbuettel, Germany
| | - Michael Schleyer
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
23
|
Govorunova EG, Sineshchekov OA, Spudich JL. Potassium-selective channelrhodopsins. Biophys Physicobiol 2023; 20:e201011. [PMID: 38362336 PMCID: PMC10865875 DOI: 10.2142/biophysico.bppb-v20.s011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/03/2023] [Indexed: 02/05/2023] Open
Abstract
Since their discovery 21 years ago, channelrhodopsins have come of age and have become indispensable tools for optogenetic control of excitable cells such as neurons and myocytes. Potential therapeutic utility of channelrhodopsins has been proven by partial vision restoration in a human patient. Previously known channelrhodopsins are either proton channels, non-selective cation channels almost equally permeable to Na+ and K+ besides protons, or anion channels. Two years ago, we discovered a group of channelrhodopsins that exhibit over an order of magnitude higher selectivity for K+ than for Na+. These proteins, known as "kalium channelrhodopsins" or KCRs, lack the canonical tetrameric selectivity filter found in voltage- and ligand-gated K+ channels, and use a unique selectivity mechanism intrinsic to their individual protomers. Mutant analysis has revealed that the key residues responsible for K+ selectivity in KCRs are located at both ends of the putative cation conduction pathway, and their role has been confirmed by high-resolution KCR structures. Expression of KCRs in mouse neurons and human cardiomyocytes enabled optical inhibition of these cells' electrical activity. In this minireview we briefly discuss major results of KCR research obtained during the last two years and suggest some directions of future research.
Collapse
Affiliation(s)
- Elena G. Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Oleg A. Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
24
|
Mrestani A, Lichter K, Sirén AL, Heckmann M, Paul MM, Pauli M. Single-Molecule Localization Microscopy of Presynaptic Active Zones in Drosophila melanogaster after Rapid Cryofixation. Int J Mol Sci 2023; 24:ijms24032128. [PMID: 36768451 PMCID: PMC9917252 DOI: 10.3390/ijms24032128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Single-molecule localization microscopy (SMLM) greatly advances structural studies of diverse biological tissues. For example, presynaptic active zone (AZ) nanotopology is resolved in increasing detail. Immunofluorescence imaging of AZ proteins usually relies on epitope preservation using aldehyde-based immunocompetent fixation. Cryofixation techniques, such as high-pressure freezing (HPF) and freeze substitution (FS), are widely used for ultrastructural studies of presynaptic architecture in electron microscopy (EM). HPF/FS demonstrated nearer-to-native preservation of AZ ultrastructure, e.g., by facilitating single filamentous structures. Here, we present a protocol combining the advantages of HPF/FS and direct stochastic optical reconstruction microscopy (dSTORM) to quantify nanotopology of the AZ scaffold protein Bruchpilot (Brp) at neuromuscular junctions (NMJs) of Drosophila melanogaster. Using this standardized model, we tested for preservation of Brp clusters in different FS protocols compared to classical aldehyde fixation. In HPF/FS samples, presynaptic boutons were structurally well preserved with ~22% smaller Brp clusters that allowed quantification of subcluster topology. In summary, we established a standardized near-to-native preparation and immunohistochemistry protocol for SMLM analyses of AZ protein clusters in a defined model synapse. Our protocol could be adapted to study protein arrangements at single-molecule resolution in other intact tissue preparations.
Collapse
Affiliation(s)
- Achmed Mrestani
- Department of Neurophysiology, Institute for Physiology, University of Würzburg, 97070 Würzburg, Germany
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Katharina Lichter
- Department of Neurophysiology, Institute for Physiology, University of Würzburg, 97070 Würzburg, Germany
- Department of Neurosurgery, University Hospital of Würzburg, 97080 Würzburg, Germany
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Anna-Leena Sirén
- Department of Neurophysiology, Institute for Physiology, University of Würzburg, 97070 Würzburg, Germany
- Department of Neurosurgery, University Hospital of Würzburg, 97080 Würzburg, Germany
- Correspondence:
| | - Manfred Heckmann
- Department of Neurophysiology, Institute for Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Mila M. Paul
- Department of Neurophysiology, Institute for Physiology, University of Würzburg, 97070 Würzburg, Germany
- Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Würzburg, 97080 Wurzburg, Germany
| | - Martin Pauli
- Department of Neurophysiology, Institute for Physiology, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
25
|
Ghosh AC, Hu Y, Tattikota SG, Liu Y, Comjean A, Perrimon N. Modeling exercise using optogenetically contractible Drosophila larvae. BMC Genomics 2022; 23:623. [PMID: 36042416 PMCID: PMC9425970 DOI: 10.1186/s12864-022-08845-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
The pathophysiological effects of a number of metabolic and age-related disorders can be prevented to some extent by exercise and increased physical activity. However, the molecular mechanisms that contribute to the beneficial effects of muscle activity remain poorly explored. Availability of a fast, inexpensive, and genetically tractable model system for muscle activity and exercise will allow the rapid identification and characterization of molecular mechanisms that mediate the beneficial effects of exercise. Here, we report the development and characterization of an optogenetically-inducible muscle contraction (OMC) model in Drosophila larvae that we used to study acute exercise-like physiological responses. To characterize muscle-specific transcriptional responses to acute exercise, we performed bulk mRNA-sequencing, revealing striking similarities between acute exercise-induced genes in flies and those previously identified in humans. Our larval muscle contraction model opens a path for rapid identification and characterization of exercise-induced factors.
Collapse
Affiliation(s)
- Arpan C Ghosh
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
26
|
Thoener J, Weiglein A, Gerber B, Schleyer M. Optogenetically induced reward and 'frustration' memory in larval Drosophila. J Exp Biol 2022; 225:276423. [PMID: 35924545 DOI: 10.1242/jeb.244565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Humans and animals alike form oppositely valenced memories for stimuli that predict the occurrence versus the termination of a reward: appetitive 'reward' memory for stimuli associated with the occurrence of a reward and aversive 'frustration' memory for stimuli that are associated with its termination. We characterize these memories in larval Drosophila using a combination of Pavlovian conditioning, optogenetic activation of the dopaminergic central-brain DAN-i1864 neuron, and high-resolution video-tracking. This reveals their dependency on the number of training trials and the duration of DAN-i1864 activation, their temporal stability, and the parameters of locomotion that are modulated during memory expression. Together with previous results on 'punishment' versus 'relief' learning by DAN-f1 neuron activation, this reveals a 2x2 matrix of timing-dependent memory valence for the occurrence/ termination of reward/ punishment. These findings should aid the understanding and modelling of how brains decipher the predictive, causal structure of events around a target reinforcing occurrence.
Collapse
Affiliation(s)
- Juliane Thoener
- Leibniz Institute for Neurobiology, Department of Genetics, Magdeburg, Germany
| | - Aliće Weiglein
- Leibniz Institute for Neurobiology, Department of Genetics, Magdeburg, Germany
| | - Bertram Gerber
- Leibniz Institute for Neurobiology, Department of Genetics, Magdeburg, Germany.,Institute of Biology, Otto von Guericke University Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Michael Schleyer
- Leibniz Institute for Neurobiology, Department of Genetics, Magdeburg, Germany
| |
Collapse
|
27
|
Sebesta C, Torres Hinojosa D, Wang B, Asfouri J, Li Z, Duret G, Jiang K, Xiao Z, Zhang L, Zhang Q, Colvin VL, Goetz SM, Peterchev AV, Dierick HA, Bao G, Robinson JT. Subsecond multichannel magnetic control of select neural circuits in freely moving flies. NATURE MATERIALS 2022; 21:951-958. [PMID: 35761060 PMCID: PMC10965118 DOI: 10.1038/s41563-022-01281-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Precisely timed activation of genetically targeted cells is a powerful tool for the study of neural circuits and control of cell-based therapies. Magnetic control of cell activity, or 'magnetogenetics', using magnetic nanoparticle heating of temperature-sensitive ion channels enables remote, non-invasive activation of neurons for deep-tissue applications and freely behaving animal studies. However, the in vivo response time of thermal magnetogenetics is currently tens of seconds, which prevents precise temporal modulation of neural activity. Moreover, magnetogenetics has yet to achieve in vivo multiplexed stimulation of different groups of neurons. Here we produce subsecond behavioural responses in Drosophila melanogaster by combining magnetic nanoparticles with a rate-sensitive thermoreceptor (TRPA1-A). Furthermore, by tuning magnetic nanoparticles to respond to different magnetic field strengths and frequencies, we achieve subsecond, multichannel stimulation. These results bring magnetogenetics closer to the temporal resolution and multiplexed stimulation possible with optogenetics while maintaining the minimal invasiveness and deep-tissue stimulation possible only by magnetic control.
Collapse
Affiliation(s)
- Charles Sebesta
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Boshuo Wang
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Joseph Asfouri
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Zhongxi Li
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC, USA
| | - Guillaume Duret
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Kaiyi Jiang
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhen Xiao
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Linlin Zhang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Qingbo Zhang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Vicki L Colvin
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Stefan M Goetz
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, USA
- Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Engineering, School of Technology, University of Cambridge, Cambridge, UK
| | - Angel V Peterchev
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC, USA
| | - Herman A Dierick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jacob T Robinson
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
28
|
Validation of an Optogenetic Approach to the Study of Olfactory Behavior in the T-Maze of Drosophila melanogaster Adults. INSECTS 2022; 13:insects13080662. [PMID: 35893017 PMCID: PMC9330658 DOI: 10.3390/insects13080662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary The fruit fly (Drosophila melanogaster) has been used as a model organism to study the olfactory system of insects thanks to the wide range of genetic tools available in this species. Among these tools, optogenetics allows the immediate alteration of the functioning of certain cells with light by the targeted expression of light receptor proteins in these cells. Thus, by successively expressing these receptors in different elements of the behavioral circuit, it is possible to evaluate their effect on the final behavior of the organism. However, the use of optogenetics to dissect the receptor elements of adult olfactory behavior presents a challenge because most odorants elicit gradual attraction or avoidance depending on their concentration, complicating the representative substitution of odor by light. In this work, we explore a dual excitation model in which the subject responds to various odorant concentrations while the olfactory receptor neurons are activated by light. The dose–response curve in these flies remains odorant concentration dependent, but with reduced sensitivity compared to olfactory stimulation alone. The existence of an effect associated with each of the two stimuli, odor and light, allows us to explore the quantitative contribution of the receptor elements to olfactory behavior also by optogenetics. Abstract Optogenetics enables the alteration of neural activity using genetically targeted expression of light activated proteins for studying behavioral circuits in several species including Drosophila. The main idea behind this approach is to replace the native behavioral stimulus by the light-induced electrical activation of different points of the circuit. Therefore, its effects on subsequent steps of the circuit or on the final behavior can be analyzed. However, the use of optogenetics to dissect the receptor elements of the adult olfactory behavior presents a challenge due to one additional factor: Most odorants elicit attraction or avoidance depending on their concentration; this complicates the representative replacement of odor activation of olfactory sensory neurons (OSNs) by light. Here, we explore a dual excitation model where the subject is responding to odors while the OSNs are optogenetically activated. Thereby, we can assess if and how the olfactory behavior is modified. We measure the effects of light excitation on the response to several odorant concentrations. The dose-response curve of these flies still depends on odor concentration but with reduced sensitivity compared to olfactory stimulation alone. These results are consistent with behavioral tests performed with a background odor and suggest an additive effect of light and odor excitation on OSNs.
Collapse
|
29
|
Emiliani V, Entcheva E, Hedrich R, Hegemann P, Konrad KR, Lüscher C, Mahn M, Pan ZH, Sims RR, Vierock J, Yizhar O. Optogenetics for light control of biological systems. NATURE REVIEWS. METHODS PRIMERS 2022; 2:55. [PMID: 37933248 PMCID: PMC10627578 DOI: 10.1038/s43586-022-00136-4] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/08/2023]
Abstract
Optogenetic techniques have been developed to allow control over the activity of selected cells within a highly heterogeneous tissue, using a combination of genetic engineering and light. Optogenetics employs natural and engineered photoreceptors, mostly of microbial origin, to be genetically introduced into the cells of interest. As a result, cells that are naturally light-insensitive can be made photosensitive and addressable by illumination and precisely controllable in time and space. The selectivity of expression and subcellular targeting in the host is enabled by applying control elements such as promoters, enhancers and specific targeting sequences to the employed photoreceptor-encoding DNA. This powerful approach allows precise characterization and manipulation of cellular functions and has motivated the development of advanced optical methods for patterned photostimulation. Optogenetics has revolutionized neuroscience during the past 15 years and is primed to have a similar impact in other fields, including cardiology, cell biology and plant sciences. In this Primer, we describe the principles of optogenetics, review the most commonly used optogenetic tools, illumination approaches and scientific applications and discuss the possibilities and limitations associated with optogenetic manipulations across a wide variety of optical techniques, cells, circuits and organisms.
Collapse
Affiliation(s)
- Valentina Emiliani
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Rainer Hedrich
- Julius-von-Sachs Institute for Biosciences, Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Kai R. Konrad
- Julius-von-Sachs Institute for Biosciences, Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland
| | - Mathias Mahn
- Department of Neurobiology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Zhuo-Hua Pan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ruth R. Sims
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Johannes Vierock
- Institute for Biology, Experimental Biophysics, Humboldt-Universitaet zu Berlin, Berlin, Germany
- Neuroscience Research Center, Charité – Universitaetsmedizin Berlin, Berlin, Germany
| | - Ofer Yizhar
- Departments of Brain Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
30
|
Rodriguez-Rozada S, Wietek J, Tenedini F, Sauter K, Dhiman N, Hegemann P, Soba P, Wiegert JS. Aion is a bistable anion-conducting channelrhodopsin that provides temporally extended and reversible neuronal silencing. Commun Biol 2022; 5:687. [PMID: 35810216 PMCID: PMC9271052 DOI: 10.1038/s42003-022-03636-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Optogenetic silencing allows to reveal the necessity of selected neuronal populations for various neurophysiological functions. These range from synaptic transmission and coordinated neuronal network activity to control of specific behaviors. An ideal single-component optogenetic silencing tool should be switchable between active and inactive states with precise timing while preserving its activity in the absence of light until switched to an inactive state. Although bistable anion-conducting channelrhodopsins (ACRs) were previously engineered to reach this goal, their conducting state lifetime was limited to only a few minutes and some ACRs were not fully switchable. Here we report Aion, a bistable ACR displaying a long-lasting open state with a spontaneous closing time constant close to 15 min. Moreover, Aion can be switched between the open and closed state with millisecond precision using blue and orange light, respectively. The long conducting state enables overnight silencing of neurons with minimal light exposure. We further generated trafficking-optimized versions of Aion, which show enhanced membrane localization and allow precisely timed, long-lasting all-optical control of nociceptive responses in larvae of Drosophila melanogaster. Thus, Aion is an optogenetic silencing tool for inhibition of neuronal activity over many hours which can be switched between an active and inactive state with millisecond precision. Aion is an anion-conducting, bistable channelrhodopsin that enables long-term silencing of neuronal networks, as demonstrated in organotypic hippocampal cultures and Drosophila melanogaster larvae.
Collapse
Affiliation(s)
- Silvia Rodriguez-Rozada
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Jonas Wietek
- Institute for Biology, Experimental Biophysics, Humboldt University Berlin, D-10115, Berlin, Germany.,Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.,Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Federico Tenedini
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Kathrin Sauter
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Neena Dhiman
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, 53115, Bonn, Germany.,Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt University Berlin, D-10115, Berlin, Germany
| | - Peter Soba
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, 53115, Bonn, Germany.,Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
31
|
Deshpande SA, Rohrbach EW, Asuncion JD, Harrigan J, Eamani A, Schlingmann EH, Suto DJ, Lee PT, Schweizer FE, Bellen HJ, Krantz DE. Regulation of Drosophila oviduct muscle contractility by octopamine. iScience 2022; 25:104697. [PMID: 35880044 PMCID: PMC9307614 DOI: 10.1016/j.isci.2022.104697] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 04/21/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Octopamine is essential for egg-laying in Drosophila melanogaster, but the neuronal pathways and receptors by which it regulates visceral muscles in the reproductive tract are not known. We find that the two octopamine receptors that have been previously implicated in egg-laying–OAMB and Octβ2R-are expressed in octopaminergic and glutamatergic neurons that project to the reproductive tract, peripheral ppk(+) neurons within the reproductive tract and epithelial cells that line the lumen of the oviducts. Further optogenetic and mutational analyses indicate that octopamine regulates both oviduct contraction and relaxation via Octβ2 and OAMB respectively. Interactions with glutamatergic pathways modify the effects of octopamine. Octopaminergic activation of Octβ2R on glutamatergic processes provides a possible mechanism by which octopamine initiates lateral oviduct contractions. We speculate that aminergic pathways in the oviposition circuit may be comparable to some of the mechanisms that regulate visceral muscle contractility in mammals. The receptors Octβ2 and OAMB mediate oviduct muscle contraction and relaxation The receptors are detectably expressed in neurons and epithelia but not muscle cells The control of visceral muscles in flies and mammals may share common features
Collapse
Affiliation(s)
- Sonali A. Deshpande
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Gonda (Goldschmied) Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ethan W. Rohrbach
- Interdepartmental Program in Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - James D. Asuncion
- Medical Scientist Training Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jenna Harrigan
- Interdepartmental Program in Molecular Toxicology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Aditya Eamani
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Gonda (Goldschmied) Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ellery H. Schlingmann
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Gonda (Goldschmied) Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Daniel J. Suto
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Gonda (Goldschmied) Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Pei-Tseng Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Felix E. Schweizer
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Department of Neuroscience, Baylor College of Medicine, Howard Hughes Medical Institute, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - David E. Krantz
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Gonda (Goldschmied) Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Corresponding author
| |
Collapse
|
32
|
Zanon M, Zanini D, Haase A. All-optical manipulation of the Drosophila olfactory system. Sci Rep 2022; 12:8506. [PMID: 35595846 PMCID: PMC9123005 DOI: 10.1038/s41598-022-12237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
Thanks to its well-known neuroanatomy, limited brain size, complex behaviour, and the extensive genetic methods, Drosophila has become an indispensable model in neuroscience. A vast number of studies have focused on its olfactory system and the processing of odour information. Optogenetics is one of the recently developed genetic tools that significantly advance this field of research, allowing to replace odour stimuli by direct neuronal activation with light. This becomes a universal all-optical toolkit when spatially selective optogenetic activation is combined with calcium imaging to read out neuronal responses. Initial experiments showed a successful implementation to study the olfactory system in fish and mice, but the olfactory system of Drosophila has been so far precluded from an application. To fill this gap, we present here optogenetic tools to selectively stimulate functional units in the Drosophila olfactory system, combined with two-photon calcium imaging to read out the activity patterns elicited by these stimuli at different levels of the brain. This method allows to study the spatial and temporal features of the information flow and reveals the functional connectivity in the olfactory network.
Collapse
Affiliation(s)
- Mirko Zanon
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
- Department of Physics, University of Trento, Trento, Italy.
| | - Damiano Zanini
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Albrecht Haase
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
- Department of Physics, University of Trento, Trento, Italy.
| |
Collapse
|
33
|
Honda T. Optogenetic and thermogenetic manipulation of defined neural circuits and behaviors in Drosophila. Learn Mem 2022; 29:100-109. [PMID: 35332066 PMCID: PMC8973390 DOI: 10.1101/lm.053556.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/06/2022] [Indexed: 11/25/2022]
Abstract
Neural network dynamics underlying flexible animal behaviors remain elusive. The fruit fly Drosophila melanogaster is considered an excellent model in behavioral neuroscience because of its simple neuroanatomical architecture and the availability of various genetic methods. Moreover, Drosophila larvae's transparent body allows investigators to use optical methods on freely moving animals, broadening research directions. Activating or inhibiting well-defined events in excitable cells with a fine temporal resolution using optogenetics and thermogenetics led to the association of functions of defined neural populations with specific behavioral outputs such as the induction of associative memory. Furthermore, combining optogenetics and thermogenetics with state-of-the-art approaches, including connectome mapping and machine learning-based behavioral quantification, might provide a complete view of the experience- and time-dependent variations of behavioral responses. These methodologies allow further understanding of the functional connections between neural circuits and behaviors such as chemosensory, motivational, courtship, and feeding behaviors and sleep, learning, and memory.
Collapse
Affiliation(s)
- Takato Honda
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| |
Collapse
|
34
|
Zhang L, Wang K, Ning S, Pedersen PA, Duelli AS, Gourdon PE. Isolation and Crystallization of the D156C form of Optogenetic ChR2. Cells 2022; 11:cells11050895. [PMID: 35269517 PMCID: PMC8909857 DOI: 10.3390/cells11050895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/07/2023] Open
Abstract
Channelrhodopsins (ChRs) are light-gated ion channels that are receiving increasing attention as optogenetic tools. Despite extensive efforts to gain understanding of how these channels function, the molecular events linking light absorption of the retinal cofactor to channel opening remain elusive. While dark-state structures of ChR2 or chimeric proteins have demonstrated the architecture of non-conducting states, there is a need for open- and desensitized-state structures to uncover the mechanistic principles underlying channel activity. To facilitate comprehensive structural studies of ChR2 in non-closed states, we report a production and purification procedure of the D156C form of ChR2, which displays prolonged channel opening compared to the wild type. We demonstrate considerable yields (0.45 mg/g fermenter cell culture) of recombinantly produced protein using S. cerevisiae, which is purified to high homogeneity both as opsin (retinal-free) and as functional ChR2 with added retinal. We also develop conditions that enable the growth of ChR2 crystals that scatter X-rays to 6 Å, and identify a molecular replacement solution that suggests that the packing is different from published structures. Consequently, our cost-effective production and purification pipeline opens the way for downstream structural studies of different ChR2 states, which may provide a foundation for further adaptation of this protein for optogenetic applications.
Collapse
Affiliation(s)
- Liying Zhang
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200 Copenhagen, Denmark; (L.Z.); (K.W.); (A.S.D.)
| | - Kaituo Wang
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200 Copenhagen, Denmark; (L.Z.); (K.W.); (A.S.D.)
| | - Shuo Ning
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China;
| | - Per Amstrup Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark;
| | - Annette Susanne Duelli
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200 Copenhagen, Denmark; (L.Z.); (K.W.); (A.S.D.)
| | - Pontus Emanuel Gourdon
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200 Copenhagen, Denmark; (L.Z.); (K.W.); (A.S.D.)
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84 Lund, Sweden
- Correspondence: ; Tel.: +45-50339990
| |
Collapse
|
35
|
The gut hormone Allatostatin C/Somatostatin regulates food intake and metabolic homeostasis under nutrient stress. Nat Commun 2022; 13:692. [PMID: 35121731 PMCID: PMC8816919 DOI: 10.1038/s41467-022-28268-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
AbstractThe intestine is a central regulator of metabolic homeostasis. Dietary inputs are absorbed through the gut, which senses their nutritional value and relays hormonal information to other organs to coordinate systemic energy balance. However, the gut-derived hormones affecting metabolic and behavioral responses are poorly defined. Here we show that the endocrine cells of the Drosophila gut sense nutrient stress through a mechanism that involves the TOR pathway and in response secrete the peptide hormone allatostatin C, a Drosophila somatostatin homolog. Gut-derived allatostatin C induces secretion of glucagon-like adipokinetic hormone to coordinate food intake and energy mobilization. Loss of gut Allatostatin C or its receptor in the adipokinetic-hormone-producing cells impairs lipid and sugar mobilization during fasting, leading to hypoglycemia. Our findings illustrate a nutrient-responsive endocrine mechanism that maintains energy homeostasis under nutrient-stress conditions, a function that is essential to health and whose failure can lead to metabolic disorders.
Collapse
|
36
|
Optogenetic and Chemical Induction Systems for Regulation of Transgene Expression in Plants: Use in Basic and Applied Research. Int J Mol Sci 2022; 23:ijms23031737. [PMID: 35163658 PMCID: PMC8835832 DOI: 10.3390/ijms23031737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Continuous and ubiquitous expression of foreign genes sometimes results in harmful effects on the growth, development and metabolic activities of plants. Tissue-specific promoters help to overcome this disadvantage, but do not allow one to precisely control transgene expression over time. Thus, inducible transgene expression systems have obvious benefits. In plants, transcriptional regulation is usually driven by chemical agents under the control of chemically-inducible promoters. These systems are diverse, but usually contain two elements, the chimeric transcription factor and the reporter gene. The commonly used chemically-induced expression systems are tetracycline-, steroid-, insecticide-, copper-, and ethanol-regulated. Unlike chemical-inducible systems, optogenetic tools enable spatiotemporal, quantitative and reversible control over transgene expression with light, overcoming limitations of chemically-inducible systems. This review updates and summarizes optogenetic and chemical induction methods of transgene expression used in basic plant research and discusses their potential in field applications.
Collapse
|
37
|
Characterization and Modification of Light-Sensitive Phosphodiesterases from Choanoflagellates. Biomolecules 2022; 12:biom12010088. [PMID: 35053236 PMCID: PMC8774190 DOI: 10.3390/biom12010088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Enzyme rhodopsins, including cyclase opsins (Cyclops) and rhodopsin phosphodiesterases (RhoPDEs), were recently discovered in fungi, algae and protists. In contrast to the well-developed light-gated guanylyl/adenylyl cyclases as optogenetic tools, ideal light-regulated phosphodiesterases are still in demand. Here, we investigated and engineered the RhoPDEs from Salpingoeca rosetta, Choanoeca flexa and three other protists. All the RhoPDEs (fused with a cytosolic N-terminal YFP tag) can be expressed in Xenopus oocytes, except the AsRhoPDE that lacks the retinal-binding lysine residue in the last (8th) transmembrane helix. An N296K mutation of YFP::AsRhoPDE enabled its expression in oocytes, but this mutant still has no cGMP hydrolysis activity. Among the RhoPDEs tested, SrRhoPDE, CfRhoPDE1, 4 and MrRhoPDE exhibited light-enhanced cGMP hydrolysis activity. Engineering SrRhoPDE, we obtained two single point mutants, L623F and E657Q, in the C-terminal catalytic domain, which showed ~40 times decreased cGMP hydrolysis activity without affecting the light activation ratio. The molecular characterization and modification will aid in developing ideal light-regulated phosphodiesterase tools in the future.
Collapse
|
38
|
Bergs A, Henss T, Glock C, Nagpal J, Gottschalk A. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior. Methods Mol Biol 2022; 2468:89-115. [PMID: 35320562 DOI: 10.1007/978-1-0716-2181-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past 15 years, optogenetic methods have revolutionized neuroscientific and cell biological research, also in the nematode Caenorhabditis elegans. In this chapter, we give an update about current optogenetic tools and methods to address neuronal activity and inhibition, as well as second messenger signaling, based on microbial rhodopsins. We address channelrhodopsins and variants thereof, which conduct cations or anions, for depolarization and hyperpolarization of the membrane potential. Also, we cover ion pumping rhodopsins, like halorhodopsin, Mac, and Arch. A recent addition to rhodopsin-based optogenetics is voltage imaging tools that allow fluorescent readout of membrane voltage (directly, via fluorescence of the rhodopsin chromophore retinal, or indirectly, via electrochromic FRET). Last, we report on a new addition to the optogenetic toolbox, which is rhodopsin guanylyl cyclases, as well as mutated variants with specificity for cyclic AMP. These can be used to regulate intracellular levels of cGMP and cAMP, which are important second messengers in sensory and other neurons. We further show how they can be combined with cyclic nucleotide-gated channels in two-component optogenetics, for depolarization or hyperpolarization of membrane potential. For all tools, we present protocols for straightforward experimentation to address neuronal activation and inhibition, particularly at the neuromuscular junction, and for combined optogenetic actuation and Ca2+ imaging. We also provide protocols for usage of rhodopsin guanylyl and adenylyl cyclases. Finally, we list a number of points to consider when designing and conducting rhodopsin-based optogenetic experiments.
Collapse
Affiliation(s)
- Amelie Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Thilo Henss
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Caspar Glock
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
- Max-Planck-Institute for Brain Research, Frankfurt, Germany
| | - Jatin Nagpal
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.
| |
Collapse
|
39
|
Sauvola CW, Akbergenova Y, Cunningham KL, Aponte-Santiago NA, Littleton JT. The decoy SNARE Tomosyn sets tonic versus phasic release properties and is required for homeostatic synaptic plasticity. eLife 2021; 10:e72841. [PMID: 34713802 PMCID: PMC8612732 DOI: 10.7554/elife.72841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
Synaptic vesicle (SV) release probability (Pr) is a key presynaptic determinant of synaptic strength established by cell-intrinsic properties and further refined by plasticity. To characterize mechanisms that generate Pr heterogeneity between distinct neuronal populations, we examined glutamatergic tonic (Ib) and phasic (Is) motoneurons in Drosophila with stereotyped differences in Pr and synaptic plasticity. We found the decoy soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) Tomosyn is differentially expressed between these motoneuron subclasses and contributes to intrinsic differences in their synaptic output. Tomosyn expression enables tonic release in Ib motoneurons by reducing SNARE complex formation and suppressing Pr to generate decreased levels of SV fusion and enhanced resistance to synaptic fatigue. In contrast, phasic release dominates when Tomosyn expression is low, enabling high intrinsic Pr at Is terminals at the expense of sustained release and robust presynaptic potentiation. In addition, loss of Tomosyn disrupts the ability of tonic synapses to undergo presynaptic homeostatic potentiation.
Collapse
Affiliation(s)
- Chad W Sauvola
- Department of Brain and Cognitive Sciences, The Picower Institute of Learning and Memory, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Yulia Akbergenova
- Department of Brain and Cognitive Sciences, The Picower Institute of Learning and Memory, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Karen L Cunningham
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | | | - J Troy Littleton
- Department of Brain and Cognitive Sciences, The Picower Institute of Learning and Memory, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
40
|
Zhou Y, Ding M, Nagel G, Konrad KR, Gao S. Advances and prospects of rhodopsin-based optogenetics in plant research. PLANT PHYSIOLOGY 2021; 187:572-589. [PMID: 35237820 PMCID: PMC8491038 DOI: 10.1093/plphys/kiab338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/05/2021] [Indexed: 05/20/2023]
Abstract
Microbial rhodopsins have advanced optogenetics since the discovery of channelrhodopsins almost two decades ago. During this time an abundance of microbial rhodopsins has been discovered, engineered, and improved for studies in neuroscience and other animal research fields. Optogenetic applications in plant research, however, lagged largely behind. Starting with light-regulated gene expression, optogenetics has slowly expanded into plant research. The recently established all-trans retinal production in plants now enables the use of many microbial opsins, bringing extra opportunities to plant research. In this review, we summarize the recent advances of rhodopsin-based plant optogenetics and provide a perspective for future use, combined with fluorescent sensors to monitor physiological parameters.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Meiqi Ding
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Georg Nagel
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Kai R. Konrad
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Shiqiang Gao
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Wuerzburg, Wuerzburg 97070, Germany
| |
Collapse
|
41
|
Weiss S, Clamon LC, Manoim JE, Ormerod KG, Parnas M, Littleton JT. Glial ER and GAP junction mediated Ca 2+ waves are crucial to maintain normal brain excitability. Glia 2021; 70:123-144. [PMID: 34528727 DOI: 10.1002/glia.24092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/08/2022]
Abstract
Astrocytes play key roles in regulating multiple aspects of neuronal function from invertebrates to humans and display Ca2+ fluctuations that are heterogeneously distributed throughout different cellular microdomains. Changes in Ca2+ dynamics represent a key mechanism for how astrocytes modulate neuronal activity. An unresolved issue is the origin and contribution of specific glial Ca2+ signaling components at distinct astrocytic domains to neuronal physiology and brain function. The Drosophila model system offers a simple nervous system that is highly amenable to cell-specific genetic manipulations to characterize the role of glial Ca2+ signaling. Here we identify a role for ER store-operated Ca2+ entry (SOCE) pathway in perineurial glia (PG), a glial population that contributes to the Drosophila blood-brain barrier. We show that PG cells display diverse Ca2+ activity that varies based on their locale within the brain. Ca2+ signaling in PG cells does not require extracellular Ca2+ and is blocked by inhibition of SOCE, Ryanodine receptors, or gap junctions. Disruption of these components triggers stimuli-induced seizure-like episodes. These findings indicate that Ca2+ release from internal stores and its propagation between neighboring glial cells via gap junctions are essential for maintaining normal nervous system function.
Collapse
Affiliation(s)
- Shirley Weiss
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lauren C Clamon
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Julia E Manoim
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kiel G Ormerod
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Moshe Parnas
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
42
|
Koopman M, Janssen L, Nollen EAA. An economical and highly adaptable optogenetics system for individual and population-level manipulation of Caenorhabditis elegans. BMC Biol 2021; 19:170. [PMID: 34429103 PMCID: PMC8386059 DOI: 10.1186/s12915-021-01085-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Optogenetics allows the experimental manipulation of excitable cells by a light stimulus without the need for technically challenging and invasive procedures. The high degree of spatial, temporal, and intensity control that can be achieved with a light stimulus, combined with cell type-specific expression of light-sensitive ion channels, enables highly specific and precise stimulation of excitable cells. Optogenetic tools have therefore revolutionized the study of neuronal circuits in a number of models, including Caenorhabditis elegans. Despite the existence of several optogenetic systems that allow spatial and temporal photoactivation of light-sensitive actuators in C. elegans, their high costs and low flexibility have limited wide access to optogenetics. Here, we developed an inexpensive, easy-to-build, modular, and adjustable optogenetics device for use on different microscopes and worm trackers, which we called the OptoArm. Results The OptoArm allows for single- and multiple-worm illumination and is adaptable in terms of light intensity, lighting profiles, and light color. We demonstrate OptoArm’s power in a population-based multi-parameter study on the contributions of motor circuit cells to age-related motility decline. We found that individual components of the neuromuscular system display different rates of age-dependent deterioration. The functional decline of cholinergic neurons mirrors motor decline, while GABAergic neurons and muscle cells are relatively age-resilient, suggesting that rate-limiting cells exist and determine neuronal circuit ageing. Conclusion We have assembled an economical, reliable, and highly adaptable optogenetics system which can be deployed to address diverse biological questions. We provide a detailed description of the construction as well as technical and biological validation of our set-up. Importantly, use of the OptoArm is not limited to C. elegans and may benefit studies in multiple model organisms, making optogenetics more accessible to the broader research community. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01085-2.
Collapse
Affiliation(s)
- M Koopman
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - L Janssen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - E A A Nollen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
43
|
Endocrine signals fine-tune daily activity patterns in Drosophila. Curr Biol 2021; 31:4076-4087.e5. [PMID: 34329588 DOI: 10.1016/j.cub.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/24/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
Animals need to balance competitive behaviors to maintain internal homeostasis. The underlying mechanisms are complex but typically involve neuroendocrine signaling. Using Drosophila, we systematically manipulated signaling between energy-mobilizing endocrine cells producing adipokinetic hormone (AKH), octopaminergic neurons, and the energy-storing fat body to assess whether this neuroendocrine axis involved in starvation-induced hyperactivity also balances activity levels under ad libitum access to food. Our results suggest that AKH signals via two divergent pathways that are mutually competitive in terms of activity and rest. AKH increases activity via the octopaminergic system during the day, while it prevents high activity levels during the night by signaling to the fat body. This regulation involves feedback signaling from octopaminergic neurons to AKH-producing cells (APCs). APCs are known to integrate a multitude of metabolic and endocrine signals. Our results add a new facet to the versatile regulatory functions of APCs by showing that their output contributes to shape the daily activity pattern under ad libitum access to food.
Collapse
|
44
|
Chen YCD, Menon V, Joseph RM, Dahanukar AA. Control of Sugar and Amino Acid Feeding via Pharyngeal Taste Neurons. J Neurosci 2021; 41:5791-5808. [PMID: 34031164 PMCID: PMC8265808 DOI: 10.1523/jneurosci.1794-20.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
Insect gustatory systems comprise multiple taste organs for detecting chemicals that signal palatable or noxious quality. Although much is known about how taste neurons sense various chemicals, many questions remain about how individual taste neurons in each taste organ control feeding. Here, we use the Drosophila pharynx as a model to investigate how taste information is encoded at the cellular level to regulate consumption of sugars and amino acids. We first generate taste-blind animals and establish a critical role for pharyngeal input in food selection. We then investigate feeding behavior of both male and female flies in which only selected classes of pharyngeal neurons are restored via binary choice feeding preference assays as well as Fly Liquid-Food Interaction Counter assays. We find instances of integration as well as redundancy in how pharyngeal neurons control behavioral responses to sugars and amino acids. Additionally, we find that pharyngeal neurons drive sugar feeding preference based on sweet taste but not on nutritional value. Finally, we demonstrate functional specialization of pharyngeal and external neurons using optogenetic activation. Overall, our genetic taste neuron protection system in a taste-blind background provides a powerful approach to elucidate principles of pharyngeal taste coding and demonstrates functional overlap and subdivision among taste neurons.SIGNIFICANCE STATEMENT Dietary intake of nutritious chemicals such as sugars and amino acids is essential for the survival of an animal. In insects, distinct classes of taste neurons control acceptance or rejection of food sources. Here, we develop a genetic system to investigate how individual taste neurons in the Drosophila pharynx encode specific tastants, focusing on sugars and amino acids. By examining flies in which only a single class of taste neurons is active, we find evidence for functional overlap as well as redundancy in responses to sugars and amino acids. We also uncover a functional subdivision between pharyngeal and external neurons in driving feeding responses. Overall, we find that different pharyngeal neurons act together to control intake of the two categories of appetitive tastants.
Collapse
Affiliation(s)
- Yu-Chieh David Chen
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, California 92521
| | - Vaibhav Menon
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, California 92521
| | - Ryan Matthew Joseph
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, California 92521
| | - Anupama Arun Dahanukar
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, California 92521
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, California 92521
| |
Collapse
|
45
|
Wiggin TD, Hsiao Y, Liu JB, Huber R, Griffith LC. Rest Is Required to Learn an Appetitively-Reinforced Operant Task in Drosophila. Front Behav Neurosci 2021; 15:681593. [PMID: 34220464 PMCID: PMC8250850 DOI: 10.3389/fnbeh.2021.681593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Maladaptive operant conditioning contributes to development of neuropsychiatric disorders. Candidate genes have been identified that contribute to this maladaptive plasticity, but the neural basis of operant conditioning in genetic model organisms remains poorly understood. The fruit fly Drosophila melanogaster is a versatile genetic model organism that readily forms operant associations with punishment stimuli. However, operant conditioning with a food reward has not been demonstrated in flies, limiting the types of neural circuits that can be studied. Here we present the first sucrose-reinforced operant conditioning paradigm for flies. In the paradigm, flies walk along a Y-shaped track with reward locations at the terminus of each hallway. When flies turn in the reinforced direction at the center of the track, they receive a sucrose reward at the end of the hallway. Only flies that rest early in training learn the reward contingency normally. Flies rewarded independently of their behavior do not form a learned association but have the same amount of rest as trained flies, showing that rest is not driven by learning. Optogenetically-induced sleep does not promote learning, indicating that sleep itself is not sufficient for learning the operant task. We validated the sensitivity of this assay to detect the effect of genetic manipulations by testing the classic learning mutant dunce. Dunce flies are learning-impaired in the Y-Track task, indicating a likely role for cAMP in the operant coincidence detector. This novel training paradigm will provide valuable insight into the molecular mechanisms of disease and the link between sleep and learning.
Collapse
Affiliation(s)
- Timothy D. Wiggin
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Yungyi Hsiao
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Jeffrey B. Liu
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Robert Huber
- Radcliffe Institute for Advanced Studies, Harvard University, Cambridge, MA, United States
- Juvatech, Toledo, MA, United States
| | - Leslie C. Griffith
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| |
Collapse
|
46
|
Thoener J, König C, Weiglein A, Toshima N, Mancini N, Amin F, Schleyer M. Associative learning in larval and adult Drosophila is impaired by the dopamine-synthesis inhibitor 3-Iodo-L-tyrosine. Biol Open 2021; 10:269081. [PMID: 34106227 PMCID: PMC8214425 DOI: 10.1242/bio.058198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/04/2021] [Indexed: 11/30/2022] Open
Abstract
Across the animal kingdom, dopamine plays a crucial role in conferring reinforcement signals that teach animals about the causal structure of the world. In the fruit fly Drosophila melanogaster, dopaminergic reinforcement has largely been studied using genetics, whereas pharmacological approaches have received less attention. Here, we apply the dopamine-synthesis inhibitor 3-Iodo-L-tyrosine (3IY), which causes acute systemic inhibition of dopamine signaling, and investigate its effects on Pavlovian conditioning. We find that 3IY feeding impairs sugar-reward learning in larvae while leaving task-relevant behavioral faculties intact, and that additional feeding of a precursor of dopamine (L-3,4-dihydroxyphenylalanine, L-DOPA), rescues this impairment. Concerning a different developmental stage and for the aversive valence domain. Moreover, we demonstrate that punishment learning by activating the dopaminergic neuron PPL1-γ1pedc in adult flies is also impaired by 3IY feeding, and can likewise be rescued by L-DOPA. Our findings exemplify the advantages of using a pharmacological approach in combination with the genetic techniques available in D. melanogaster to manipulate neuronal and behavioral function. Summary: We surveyed the effects of a dopamine-synthesis inhibitor on associative learning in larval and adult Drosophila. This approach can supplement genetic tools in investigating the conserved reinforcing function of dopamine.
Collapse
Affiliation(s)
- Juliane Thoener
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| | - Christian König
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| | - Aliće Weiglein
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| | - Naoko Toshima
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| | - Nino Mancini
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| | - Fatima Amin
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| | - Michael Schleyer
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| |
Collapse
|
47
|
Weiglein A, Thoener J, Feldbruegge I, Warzog L, Mancini N, Schleyer M, Gerber B. Aversive teaching signals from individual dopamine neurons in larval Drosophila show qualitative differences in their temporal "fingerprint". J Comp Neurol 2021; 529:1553-1570. [PMID: 32965036 DOI: 10.1002/cne.25037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/07/2022]
Abstract
Dopamine serves many functions, and dopamine neurons are correspondingly diverse. We use a combination of optogenetics, behavioral experiments, and high-resolution video-tracking to probe for the functional capacities of two single, identified dopamine neurons in larval Drosophila. The DAN-f1 and the DAN-d1 neuron were recently found to carry aversive teaching signals during Pavlovian olfactory learning. We enquire into a fundamental feature of these teaching signals, namely their temporal "fingerprint". That is, receiving punishment feels bad, whereas being relieved from it feels good, and animals and humans alike learn with opposite valence about the occurrence and the termination of punishment (the same principle applies in the appetitive domain, with opposite sign). We find that DAN-f1 but not DAN-d1 can mediate such timing-dependent valence reversal: presenting an odor before DAN-f1 activation leads to learned avoidance of the odor (punishment memory), whereas presenting the odor upon termination of DAN-f1 activation leads to learned approach (relief memory). In contrast, DAN-d1 confers punishment memory only. These effects are further characterized in terms of the impact of the duration of optogenetic activation, the temporal stability of the memories thus established, and the specific microbehavioral patterns of locomotion through which they are expressed. Together with recent findings in the appetitive domain and from adult Drosophila, our results suggest that heterogeneity in the temporal fingerprint of teaching signals might be a more general principle of reinforcement processing through dopamine neurons.
Collapse
Affiliation(s)
- Aliće Weiglein
- Department of Genetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Juliane Thoener
- Department of Genetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Irina Feldbruegge
- Department of Genetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Louisa Warzog
- Department of Genetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Nino Mancini
- Department of Genetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael Schleyer
- Department of Genetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Bertram Gerber
- Department of Genetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Biology, Otto von Guericke University Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
48
|
Zhou Y, Ding M, Duan X, Konrad KR, Nagel G, Gao S. Extending the Anion Channelrhodopsin-Based Toolbox for Plant Optogenetics. MEMBRANES 2021; 11:membranes11040287. [PMID: 33919843 PMCID: PMC8070814 DOI: 10.3390/membranes11040287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022]
Abstract
Optogenetics was developed in the field of neuroscience and is most commonly using light-sensitive rhodopsins to control the neural activities. Lately, we have expanded this technique into plant science by co-expression of a chloroplast-targeted β-carotene dioxygenase and an improved anion channelrhodopsin GtACR1 from the green alga Guillardia theta. The growth of Nicotiana tabacum pollen tube can then be manipulated by localized green light illumination. To extend the application of analogous optogenetic tools in the pollen tube system, we engineered another two ACRs, GtACR2, and ZipACR, which have different action spectra, light sensitivity and kinetic features, and characterized them in Xenopus laevis oocytes, Nicotiana benthamiana leaves and N. tabacum pollen tubes. We found that the similar molecular engineering method used to improve GtACR1 also enhanced GtACR2 and ZipACR performance in Xenopus laevis oocytes. The ZipACR1 performed in N. benthamiana mesophyll cells and N. tabacum pollen tubes with faster kinetics and reduced light sensitivity, allowing for optogenetic control of anion fluxes with better temporal resolution. The reduced light sensitivity would potentially facilitate future application in plants, grown under low ambient white light, combined with an optogenetic manipulation triggered by stronger green light.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Wuerzburg, 97070 Wuerzburg, Germany; (Y.Z.); (X.D.); (G.N.)
| | - Meiqi Ding
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, 97082 Wuerzburg, Germany; (M.D.); (K.R.K.)
| | - Xiaodong Duan
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Wuerzburg, 97070 Wuerzburg, Germany; (Y.Z.); (X.D.); (G.N.)
- Department of Biology, College of Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Kai R. Konrad
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, 97082 Wuerzburg, Germany; (M.D.); (K.R.K.)
| | - Georg Nagel
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Wuerzburg, 97070 Wuerzburg, Germany; (Y.Z.); (X.D.); (G.N.)
| | - Shiqiang Gao
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Wuerzburg, 97070 Wuerzburg, Germany; (Y.Z.); (X.D.); (G.N.)
- Correspondence:
| |
Collapse
|
49
|
Structure-Function Relationship of Channelrhodopsins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:35-53. [PMID: 33398806 DOI: 10.1007/978-981-15-8763-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Ion-translocating rhodopsins, especially channelrhodopsins (ChRs), have attracted broad attention as a powerful tool to modulate the membrane potential of cells with light (optogenetics). Because of recent biophysical, spectroscopic, and computational studies, including the structural determination of cation and anion ChRs, our understanding of the molecular mechanism underlying light-gated ion conduction has been greatly advanced. In this chapter, I first describe the background of rhodopsin family proteins including ChR, and how the optogenetics technology has been established from the discovery of first ChR in 2002. I later introduce the recent findings of the structure-function relationship of ChR by comparing the crystal structures of cation and anion ChRs. I further discuss the future goal in the fields of ChR research and optogenetic tool development.
Collapse
|
50
|
Zhou Y, Ding M, Gao S, Yu-Strzelczyk J, Krischke M, Duan X, Leide J, Riederer M, Mueller MJ, Hedrich R, Konrad KR, Nagel G. Optogenetic control of plant growth by a microbial rhodopsin. NATURE PLANTS 2021; 7:144-151. [PMID: 33594268 DOI: 10.1038/s41477-021-00853-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
While rhodopsin-based optogenetics has revolutionized neuroscience1,2, poor expression of opsins and the absence of the essential cofactor all-trans-retinal has complicated the application of rhodopsins in plants. Here, we demonstrate retinal production in plants and improved rhodopsin targeting for green light manipulation of plant cells using the Guillardia theta light-gated anion channelrhodopsin GtACR13. Green light induces a massive increase in anion permeability and pronounced membrane potential changes when GtACR1 is expressed, enabling non-invasive manipulation of plant growth and leaf development. Using light-driven anion loss, we could mimic drought conditions and bring about leaf wilting despite sufficient water supply. Expressed in pollen tubes, global GtACR1 activation triggers membrane potential depolarizations due to large anion currents. While global illumination was associated with a reversible growth arrest, local GtACR1 activation at the flanks of the apical dome steers growth direction away from the side with increased anion conductance. These results suggest a crucial role of anion permeability for the guidance of pollen tube tip growth. This plant optogenetic approach could be expanded to create an entire pallet of rhodopsin-based tools4, greatly facilitating dissection of plant ion-signalling pathways.
Collapse
Affiliation(s)
- Yang Zhou
- Physiological Institute, Department of Neurophysiology, University of Wuerzburg, Wuerzburg, Germany
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Meiqi Ding
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Shiqiang Gao
- Physiological Institute, Department of Neurophysiology, University of Wuerzburg, Wuerzburg, Germany.
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany.
| | - Jing Yu-Strzelczyk
- Physiological Institute, Department of Neurophysiology, University of Wuerzburg, Wuerzburg, Germany
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Markus Krischke
- Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Xiaodong Duan
- Physiological Institute, Department of Neurophysiology, University of Wuerzburg, Wuerzburg, Germany
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- Department of Biology, College of Science, Southern University of Science and Technology (SUSTech), Shenzhen, P. R. China
| | - Jana Leide
- Department of Botany II - Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Markus Riederer
- Department of Botany II - Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Martin J Mueller
- Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Kai R Konrad
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany.
| | - Georg Nagel
- Physiological Institute, Department of Neurophysiology, University of Wuerzburg, Wuerzburg, Germany.
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|