1
|
Zhu X, Cao Z, Liu H, Zheng S. Utilizing hybridization effects to tune morphology and electron mobility of Y6 through asymmetric small- and large-scale modifications of terminal groups. J Chem Phys 2025; 162:164104. [PMID: 40260799 DOI: 10.1063/5.0255271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
While exploring molecular modifications of the high-performance acceptor Y6 with an A-DA'D-A framework, researchers have discovered that asymmetric modification of terminal groups (TGs) appears to be a promising approach as it frequently enhances the photovoltaic performance of organic solar cells (OSCs) effectively. However, the underlying mechanism about how asymmetric TG modifications influence morphology and charge carrier mobility remains unclear. We have conducted a systematic study in this work to investigate the morphology and electron mobility of two asymmetric Y6 derivatives with the A1-DA'D-A2 framework: Y6-asym-IM2O (A1 = IM-2F and A2 = IM2O, representing small-scale TG modification) and Y6-asym-BR (A1 = IM-2F and A2 = BR, representing large-scale TG modification), along with their symmetric counterparts (A1 = A2 = IM-2F/BR/IM2O). The results demonstrate that small-scale asymmetric TG modifications such as Y6-asym-IM2O fine-tune molecular packing, while large-scale modifications such as Y6-asym-BR drastically alter stacking patterns. In addition, hybridization effects are found in the frontier molecular orbital energy, electrostatic potential, and electron mobility of the asymmetric molecules, which fall between the values of their symmetric counterparts. In particular, the results of small-scale asymmetric modification of Y6 reveal that the introduction of promising TGs in an asymmetric manner can further improve electron mobility by tuning reorganization energy and morphology, and vice versa. While previous studies focused on symmetric modifications, this work systematically investigates asymmetric substitution patterns and further elucidates the impact of these methods on charge transfer for the first time. These discoveries underscore the potential of utilizing asymmetric modification of TGs as a quantitative means to regulate electron mobility in Y6-based OSCs.
Collapse
Affiliation(s)
- Xiping Zhu
- School of Materials and Energy, Southwest University, Chongqing, China
| | - Zhijun Cao
- School of Materials and Energy, Southwest University, Chongqing, China
| | - Huake Liu
- School of Materials and Energy, Southwest University, Chongqing, China
| | - Shaohui Zheng
- School of Materials and Energy, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Coker JF, Moro S, Gertsen AS, Shi X, Pearce D, van der Schelling MP, Xu Y, Zhang W, Andreasen JW, Snyder CR, Richter LJ, Bird MJ, McCulloch I, Costantini G, Frost JM, Nelson J. Perpendicular crossing chains enable high mobility in a noncrystalline conjugated polymer. Proc Natl Acad Sci U S A 2024; 121:e2403879121. [PMID: 39226361 PMCID: PMC11406284 DOI: 10.1073/pnas.2403879121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
The nature of interchain π-system contacts, and their relationship to hole transport, are elucidated for the high-mobility, noncrystalline conjugated polymer C16-IDTBT by the application of scanning tunneling microscopy, molecular dynamics, and quantum chemical calculations. The microstructure is shown to favor an unusual packing motif in which paired chains cross-over one another at near-perpendicular angles. By linking to mesoscale microstructural features, revealed by coarse-grained molecular dynamics and previous studies, and performing simulations of charge transport, it is demonstrated that the high mobility of C16-IDTBT can be explained by the promotion of a highly interconnected transport network, stemming from the adoption of perpendicular contacts at the nanoscale, in combination with fast intrachain transport.
Collapse
Affiliation(s)
- Jack F Coker
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stefania Moro
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Anders S Gertsen
- Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Xingyuan Shi
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Drew Pearce
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Martin P van der Schelling
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - Yucheng Xu
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Weimin Zhang
- King Abdullah University of Science and Technology Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Kingdom of Saudi Arabia
| | - Jens W Andreasen
- Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Chad R Snyder
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Lee J Richter
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Matthew J Bird
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Giovanni Costantini
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jarvist M Frost
- Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| | - Jenny Nelson
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
3
|
Hwang W, Kwon S, Lee WB, Kim Y. Self-assembly prediction of architecture-controlled bottlebrush copolymers in solution using graph convolutional networks. SOFT MATTER 2024; 20:4905-4915. [PMID: 38867573 DOI: 10.1039/d4sm00453a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The investigation of bottlebrush copolymer self-assembly in solution involves a comprehensive approach integrating simulation and experimental research, due to their unique physical characteristics. However, the intricate architecture of bottlebrush copolymers and the diverse solvent conditions introduce a wide range of parameter spaces. In this study, we investigated the solution self-assembly behavior of bottlebrush copolymers by combining dissipative particle dynamics (DPD) simulation results and machine learning (ML) including graph convolutional networks (GCNs). The architecture of bottlebrush copolymers is encoded by graphs including connectivity, side chain length, bead types, and interaction parameters of DPD simulation. Using GCN, we accurately predicted the single chain properties of bottlebrush copolymers with over 95% accuracy. Furthermore, phase behavior was precisely predicted using these single chain properties. Shapley additive explanations (SHAP) values of single chain properties to the various self-assembly morphologies were calculated to investigate the correlation between single chain properties and morphologies. In addition, we analyzed single chain properties and phase behavior as a function of DPD interaction parameters, extracting relevant physical properties for vesicle morphology formation. This work paves the way for tailored design in solution of self-assembled nanostructures of bottlebrush copolymers, offering a GCN framework for precise prediction of self-assembly morphologies under various chain architectures and solvent conditions.
Collapse
Affiliation(s)
- Wooseop Hwang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Sangwoo Kwon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - YongJoo Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Cao Z, Zheng S. The effects of side chain engineering on the morphology and charge transport of the A-DA 1D-A type of non-fullerene acceptor: a multiscale study. Phys Chem Chem Phys 2024; 26:2666-2677. [PMID: 38175164 DOI: 10.1039/d3cp05066a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The appearance of the A-DA1D-A type of non-fullerene acceptor Y6 and its derivatives significantly improves the power conversion efficiency of organic solar cells. However, the effects of the modulation of the side chains of Y6 on its morphology and charge transport in organic thin films are still not well understood. In this work, we have systematically studied the effects of symmetric modifications of the length of alkyl side chains and the types, such as branched or straight alkyl chains, and the introduction of heteroatoms to side chains on these properties. A multiscale study, including density functional theory and classical molecular dynamics simulations, has been used to answer this open question. We find that face-on configurations are generally dominant for the AA, A1A1, and DD stacking of molecular pairs. With respect to prototype Y6, the introduction of oxygen atoms to outer alkyl side chains could enhance AA stacking but worsen the electrical network and enlarge the reorganization energy during electron transfer, and changing outer side straight alkyl chains to branched chains ruins π-π stacking of all units significantly. Finally, we discover that shortening outer alkyl side chains appropriately or changing inner branched chains to straight chains with the same number of carbon atoms is a good strategy to improve the molecular π-π stacking and electron mobility of Y6 while changing outer straight side chains to branched chains or introducing oxygen atoms to outer straight chains is the opposite. This study provides a new insight into the relationship between morphology and electron mobility and will be helpful for the design of future high-performance non-fullerene acceptors.
Collapse
Affiliation(s)
- Zhijun Cao
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, China.
| | - Shaohui Zheng
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, China.
| |
Collapse
|
5
|
Siemons N, Pearce D, Yu H, Tuladhar SM, LeCroy GS, Sheelamanthula R, Hallani RK, Salleo A, McCulloch I, Giovannitti A, Frost JM, Nelson J. Controlling swelling in mixed transport polymers through alkyl side-chain physical cross-linking. Proc Natl Acad Sci U S A 2023; 120:e2306272120. [PMID: 37603750 PMCID: PMC10467570 DOI: 10.1073/pnas.2306272120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 08/23/2023] Open
Abstract
Semiconducting conjugated polymers bearing glycol side chains can simultaneously transport both electronic and ionic charges with high charge mobilities, making them ideal electrode materials for a range of bioelectronic devices. However, heavily glycolated conjugated polymer films have been observed to swell irreversibly when subjected to an electrochemical bias in an aqueous electrolyte. The excessive swelling can lead to the degradation of their microstructure, and subsequently reduced device performance. An effective strategy to control polymer film swelling is to copolymerize glycolated repeat units with a fraction of monomers bearing alkyl side chains, although the microscopic mechanism that constrains swelling is unknown. Here we investigate, experimentally and computationally, a series of archetypal mixed transporting copolymers with varying ratios of glycolated and alkylated repeat units. Experimentally we observe that exchanging 10% of the glycol side chains for alkyl leads to significantly reduced film swelling and an increase in electrochemical stability. Through molecular dynamics simulation of the amorphous phase of the materials, we observe the formation of polymer networks mediated by alkyl side-chain interactions. When in the presence of water, the network becomes increasingly connected, counteracting the volumetric expansion of the polymer film.
Collapse
Affiliation(s)
- Nicholas Siemons
- Department of Physics, Imperial College, London, South Kensington, LondonSW7 2AZ, United Kingdom
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305
| | - Drew Pearce
- Department of Physics, Imperial College, London, South Kensington, LondonSW7 2AZ, United Kingdom
| | - Hang Yu
- Department of Physics, Imperial College, London, South Kensington, LondonSW7 2AZ, United Kingdom
| | - Sachetan M. Tuladhar
- Department of Physics, Imperial College, London, South Kensington, LondonSW7 2AZ, United Kingdom
| | - Garrett S. LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305
| | - Rajendar Sheelamanthula
- King Abdullah University of Science and Technology Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Rawad K. Hallani
- King Abdullah University of Science and Technology Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305
| | - Iain McCulloch
- King Abdullah University of Science and Technology Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Alexander Giovannitti
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg412 96, Sweden
| | - Jarvist M. Frost
- Department of Chemistry, Imperial College, London, South Kensington, LondonSW7 2AZ, United Kingdom
| | - Jenny Nelson
- Department of Physics, Imperial College, London, South Kensington, LondonSW7 2AZ, United Kingdom
| |
Collapse
|
6
|
Han G, Zhang Y, Zheng W, Yi Y. Electron Transport in Organic Photovoltaic Acceptor Materials: Improving the Carrier Mobilities by Intramolecular and Intermolecular Modulations. J Phys Chem Lett 2023; 14:4497-4503. [PMID: 37156008 DOI: 10.1021/acs.jpclett.3c00844] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
High carrier mobility is beneficial to increase the active-layer thickness while maintaining a high fill factor, which is crucial to further improve the light harvesting and organic photovoltaic efficiency. The aim of this Perspective is to elucidate the electron transport mechanisms in prototypical non-fullerene (NF) acceptors through our recent theoretical studies. The electron transport in A-D-A small-molecule acceptors (SMAs), e.g., ITIC and Y6, is mainly determined by end-group π-π stacking. Relative to ITIC, the angular backbone along with more flexible side chains leads to Y6 having a closer stacking and enhanced intermolecular electronic connectivity. For polymerized rylene diimide acceptors, to achieve high electron mobilities, they need to simultaneously increase intramolecular and intermolecular connectivity. Finally, finely tuning the π-bridge modes to enhance intramolecular superexchange coupling is essential to develop novel polymerized A-D-A SMAs.
Collapse
Affiliation(s)
- Guangchao Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yaogang Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Wenyu Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Willson JT, Liu W, Balzer D, Kassal I. Jumping Kinetic Monte Carlo: Fast and Accurate Simulations of Partially Delocalized Charge Transport in Organic Semiconductors. J Phys Chem Lett 2023; 14:3757-3764. [PMID: 37044057 DOI: 10.1021/acs.jpclett.3c00388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Developing devices using disordered organic semiconductors requires accurate and practical models of charge transport. In these materials, charge transport occurs through partially delocalized states in an intermediate regime between localized hopping and delocalized band conduction. Partial delocalization can increase mobilities by orders of magnitude compared to those with conventional hopping, making it important for the design of materials and devices. Although delocalization, disorder, and polaron formation can be described using delocalized kinetic Monte Carlo (dKMC), it is a computationally expensive method. Here, we develop jumping kinetic Monte Carlo (jKMC), a model that approaches the accuracy of dKMC for modest amounts of delocalization (such as those found in disordered organic semiconductors), with a computational cost comparable to that of conventional hopping. jKMC achieves its computational performance by modeling conduction using identical spherical polarons, yielding a simple delocalization correction to the Marcus hopping rate that allows polarons to jump over their nearest neighbors. jKMC can be used in regimes of partial delocalization inaccessible to dKMC to show that modest delocalization can increase mobilities by as much as 2 orders of magnitude.
Collapse
Affiliation(s)
- Jacob T Willson
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - William Liu
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Daniel Balzer
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Ivan Kassal
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Ma L, Zhang S, Ren J, Wang G, Li J, Chen Z, Yao H, Hou J. Design of a Fully Non-Fused Bulk Heterojunction toward Efficient and Low-Cost Organic Photovoltaics. Angew Chem Int Ed Engl 2023; 62:e202214088. [PMID: 36448216 DOI: 10.1002/anie.202214088] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
To modulate the miscibility between donor and acceptor materials both possessing fully non-fused ring structures, a series of electron acceptors (A4T-16, A4T-31 and A4T-32) with different polar functional substituents were synthesized and investigated. The three acceptors show good planarity, high conformational stability, complementary absorption and energy levels with the non-fused polymer donor (PTVT-BT). Among them, A4T-32 possesses the strongest polar functional group and shows the highest surface energy, which facilitates morphological modulation in the bulk heterojunction (BHJ) blend. Benefiting from the proper morphology control method, an impressive power conversion efficiency (PCE) of approaching 16.0 % and a superior fill factor over 0.795 are achieved in the PTVT-BT : A4T-32-based organic photovoltaic cells with superior photoactive materials price advantage, which represent the highest value for the cells based on the non-fused blend films. Notably, this cell maintains ≈84 % of its initial PCE after nearly 2000 h under the continuous simulated 1-sun-illumination. In addition, the flexible PTVT-BT : A4T-32-based cells were fabricated and delivered a decent PCE of 14.6 %. This work provides an effective molecular design strategy for the non-fused non-fullerene acceptors (NFAs) from the aspect of bulk morphology control in fully non-fused BHJ layers, which is crucial for their practical applications.
Collapse
Affiliation(s)
- Lijiao Ma
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shaoqing Zhang
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Junzhen Ren
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanlin Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiayao Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhihao Chen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huifeng Yao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Zeman CJ, Kang G, Kohlstedt KL. Controlling Aggregation-Induced Two-Photon Absorption Enhancement via Intermolecular Interactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45644-45657. [PMID: 36191092 DOI: 10.1021/acsami.2c12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Historically, two-photon absorption (2PA) cross sections reported in the literature have been derived from solution-phase measurements. However, such techniques fail to grasp the implications of how these cross sections can be impacted by varying degrees of aggregation or in the condensed phase as bulk solids or thin films. For a precise determination of how aggregation impacts 2PA at a molecular level, computational methods present themselves as ideal. Herein, a series of quadrupolar π-conjugated dyes were simulated by molecular dynamics (MD) in the gas phase and condensed phase. In the condensed phase, their intermolecular interactions and electronic coupling behavior were fully characterized, both quantitatively and qualitatively. Using quadratic-response time-dependent density functional theory, 2PA cross sections of structures derived from MD trajectories were calculated. Comparisons are made between gas-phase and condensed-phase results, and enhancement factors are defined to show how certain dyes may experience changes in their respective 2PA cross sections as a function of aggregation. It was found that these cross sections depend heavily on conformational locking in the condensed phase and relative stacking arrangements. J-aggregates were associated with enhanced 2PA and H-aggregates with quenched 2PA activity. However, in a highly disordered aggregate, the effects of these stacking arrangements are averaged out of the bulk result, and the effects of conformational locking dominate.
Collapse
Affiliation(s)
- Charles J Zeman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| | - Gyeongwon Kang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| | - Kevin L Kohlstedt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| |
Collapse
|
10
|
Khot A, Savoie BM. How
side‐chain
hydrophilicity modulates morphology and charge transport in mixed conducting polymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Aditi Khot
- Davidson School of Chemical Engineering Purdue University West Lafayette Indiana USA
| | - Brett M. Savoie
- Davidson School of Chemical Engineering Purdue University West Lafayette Indiana USA
| |
Collapse
|
11
|
Zozoulenko I, Franco-Gonzalez JF, Gueskine V, Mehandzhiyski A, Modarresi M, Rolland N, Tybrandt K. Electronic, Optical, Morphological, Transport, and Electrochemical Properties of PEDOT: A Theoretical Perspective. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Igor Zozoulenko
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | | | - Viktor Gueskine
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | | | - Mohsen Modarresi
- Department of Physics, Ferdowsi University of Mashhad, Mashhad, PO Box 91775-1436, Iran
| | - Nicolas Rolland
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| |
Collapse
|
12
|
Li G, Zhang X, Jones LO, Alzola JM, Mukherjee S, Feng LW, Zhu W, Stern CL, Huang W, Yu J, Sangwan VK, DeLongchamp DM, Kohlstedt KL, Wasielewski MR, Hersam MC, Schatz GC, Facchetti A, Marks TJ. Systematic Merging of Nonfullerene Acceptor π-Extension and Tetrafluorination Strategies Affords Polymer Solar Cells with >16% Efficiency. J Am Chem Soc 2021; 143:6123-6139. [PMID: 33848146 DOI: 10.1021/jacs.1c00211] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The end-capping group (EG) is the essential electron-withdrawing component of nonfullerene acceptors (NFAs) in bulk heterojunction (BHJ) organic solar cells (OSCs). To systematically probe the impact of two frequent EG functionalization strategies, π-extension and halogenation, in A-DAD-A type NFAs, we synthesized and characterized four such NFAs: BT-BIC, LIC, L4F, and BO-L4F. To assess the relative importance of these strategies, we contrast these NFAs with the baseline acceptors, Y5 and Y6. Up to 16.6% power conversion efficiency (PCE) in binary inverted OSCs with BT-BO-L4F combining π-extension and halogenation was achieved. When these two factors are combined, the effect on optical absorption is cumulative. Single-crystal π-π stacking distances are similar for the EG strategies of π-extension. Increasing the alkyl substituent length from BT-L4F to BT-BO-L4F significantly alters the packing motif and eliminates the EG core interactions of BT-L4F. Electronic structure computations reveal some of the largest NFA π-π electronic couplings observed to date, 103.8 meV in BT-L4F and 47.5 meV in BT-BO-L4F. Computed electronic reorganization energies, 132 and 133 meV for BT-L4F and BT-BO-L4F, respectively, are also lower than Y6 (150 meV). BHJ blends show preferential π-face-on orientation, and both fluorination and π-extension increase NFA crystallinity. Femto/nanosecond transient absorption spectroscopy (fs/nsTA) and integrated photocurrent device analysis (IPDA) indicate that π-extension modifies the phase separation to enhance film ordering and carrier mobility, while fluorination suppresses unimolecular recombination. This systematic study highlights the synergistic effects of NFA π-extension and fluorination in affording efficient OSCs and provides insights into designing next-generation materials.
Collapse
Affiliation(s)
- Guoping Li
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiaohua Zhang
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, P.R. China
| | - Leighton O Jones
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joaquin M Alzola
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Subhrangsu Mukherjee
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Liang-Wen Feng
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Weigang Zhu
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences (TJ-MOS), Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Charlotte L Stern
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wei Huang
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, P.R. China
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Dean M DeLongchamp
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kevin L Kohlstedt
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Antonio Facchetti
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Flexterra Corporation, 8025 Lamon Avenue, Skokie, Illinois 60077, United States
| | - Tobin J Marks
- Department of Chemistry, the Center for Light Energy Activated Redox Processes (LEAP), and the Materials Research Center (MRC), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Quan L, Lee SS, Kalyon DM. Dynamics of the sub-ambient gelation and shearing of solutions of P3HT and P3HT blends towards active layer formation in bulk heterojunction organic solar cells. SOFT MATTER 2021; 17:1642-1654. [PMID: 33367403 DOI: 10.1039/d0sm01759k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic solar cells (OSCs) containing an active layer consisting of a nanostructured blend of a conjugated polymer like poly(3-hexylthiophene) (P3HT) and an electron acceptor have the potential of competing against silicon-based photovoltaic panels. However, this potential is largely unfulfilled first due to interrelated production and stability issues of organic solar cells and second due to the unscalable nature of the generally employed spin coating process used for the fabrication of organic solar cells. Furthermore, alternatives to spin coating, especially relying on continuous polymer processing methods like extrusion and coating, cannot be readily applied due to the typically low shear viscosity and elasticity of polymer solutions making up the active layer. Recently, He et al. have reported that the gelation of P3HT with [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) under sub-ambient conditions can provide a new route to the processing of the active layers of bulk heterojunction solar cells. Furthermore, increases in power conversion efficiencies (PCEs) of the P3HT/PC60BM active layer were determined to be possible under certain shearing and thermal histories of the P3HT/PC60BM gels. Here oscillatory and steady torsional flows were used to investigate the gel formation dynamics of P3HT with a recently proposed non-fullerene acceptor o-IDTBR under sub-ambient conditions and compared with the gelation behavior of P3HT/PC60BM blends. The rheological material functions as well as the gel strengths defined on the basis of linear viscoelastic material functions, characterized via small-amplitude oscillatory shearing, were observed to be functions of the P3HT and o-IDTBR concentrations, the solvent used and the shearing conditions. Overall, the P3HT gels which formed upon quenching to sub-zero temperatures were found to be stable during small-amplitude oscillatory shear (linear viscoelastic range) but broke down even at the relatively low shear rates associated with steady torsional flows, suggesting that the shearing conditions used during the processing of gels of P3HT and blends of P3HT with small molecule acceptors can alter the gel structure, possibly leading to changes in the resulting active layer performance.
Collapse
Affiliation(s)
- Li Quan
- Chemical Engineering and Materials Science, Stevens Institute of Technology, Castle Point St., Hoboken, NJ 07030, USA.
| | - Stephanie S Lee
- Chemical Engineering and Materials Science, Stevens Institute of Technology, Castle Point St., Hoboken, NJ 07030, USA.
| | - Dilhan M Kalyon
- Chemical Engineering and Materials Science, Stevens Institute of Technology, Castle Point St., Hoboken, NJ 07030, USA.
| |
Collapse
|
14
|
Banin U, Waiskopf N, Hammarström L, Boschloo G, Freitag M, Johansson EMJ, Sá J, Tian H, Johnston MB, Herz LM, Milot RL, Kanatzidis MG, Ke W, Spanopoulos I, Kohlstedt KL, Schatz GC, Lewis N, Meyer T, Nozik AJ, Beard MC, Armstrong F, Megarity CF, Schmuttenmaer CA, Batista VS, Brudvig GW. Nanotechnology for catalysis and solar energy conversion. NANOTECHNOLOGY 2021; 32:042003. [PMID: 33155576 DOI: 10.1088/1361-6528/abbce8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This roadmap on Nanotechnology for Catalysis and Solar Energy Conversion focuses on the application of nanotechnology in addressing the current challenges of energy conversion: 'high efficiency, stability, safety, and the potential for low-cost/scalable manufacturing' to quote from the contributed article by Nathan Lewis. This roadmap focuses on solar-to-fuel conversion, solar water splitting, solar photovoltaics and bio-catalysis. It includes dye-sensitized solar cells (DSSCs), perovskite solar cells, and organic photovoltaics. Smart engineering of colloidal quantum materials and nanostructured electrodes will improve solar-to-fuel conversion efficiency, as described in the articles by Waiskopf and Banin and Meyer. Semiconductor nanoparticles will also improve solar energy conversion efficiency, as discussed by Boschloo et al in their article on DSSCs. Perovskite solar cells have advanced rapidly in recent years, including new ideas on 2D and 3D hybrid halide perovskites, as described by Spanopoulos et al 'Next generation' solar cells using multiple exciton generation (MEG) from hot carriers, described in the article by Nozik and Beard, could lead to remarkable improvement in photovoltaic efficiency by using quantization effects in semiconductor nanostructures (quantum dots, wires or wells). These challenges will not be met without simultaneous improvement in nanoscale characterization methods. Terahertz spectroscopy, discussed in the article by Milot et al is one example of a method that is overcoming the difficulties associated with nanoscale materials characterization by avoiding electrical contacts to nanoparticles, allowing characterization during device operation, and enabling characterization of a single nanoparticle. Besides experimental advances, computational science is also meeting the challenges of nanomaterials synthesis. The article by Kohlstedt and Schatz discusses the computational frameworks being used to predict structure-property relationships in materials and devices, including machine learning methods, with an emphasis on organic photovoltaics. The contribution by Megarity and Armstrong presents the 'electrochemical leaf' for improvements in electrochemistry and beyond. In addition, biohybrid approaches can take advantage of efficient and specific enzyme catalysts. These articles present the nanoscience and technology at the forefront of renewable energy development that will have significant benefits to society.
Collapse
Affiliation(s)
- U Banin
- The Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - N Waiskopf
- The Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - L Hammarström
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - G Boschloo
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - M Freitag
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - E M J Johansson
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - J Sá
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - H Tian
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - M B Johnston
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - L M Herz
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - R L Milot
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - M G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America
| | - W Ke
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America
| | - I Spanopoulos
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America
| | - K L Kohlstedt
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America
| | - G C Schatz
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America
| | - N Lewis
- Division of Chemistry and Chemical Engineering, and Beckman Institute, 210 Noyes Laboratory, 127-72 California Institute of Technology, Pasadena, CA 91125, United States of America
| | - T Meyer
- University of North Carolina at Chapel Hill, Department of Chemistry, United States of America
| | - A J Nozik
- National Renewable Energy Laboratory, United States of America
- University of Colorado, Boulder, CO, Department of Chemistry, 80309, United States of America
| | - M C Beard
- National Renewable Energy Laboratory, United States of America
| | - F Armstrong
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - C F Megarity
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - C A Schmuttenmaer
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, 06520-8107, United States of America
| | - V S Batista
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, 06520-8107, United States of America
| | - G W Brudvig
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, 06520-8107, United States of America
| |
Collapse
|
15
|
Balzer D, Smolders TJAM, Blyth D, Hood SN, Kassal I. Delocalised kinetic Monte Carlo for simulating delocalisation-enhanced charge and exciton transport in disordered materials. Chem Sci 2020; 12:2276-2285. [PMID: 34163994 PMCID: PMC8179315 DOI: 10.1039/d0sc04116e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023] Open
Abstract
Charge transport is well understood in both highly ordered materials (band conduction) or highly disordered ones (hopping conduction). In moderately disordered materials-including many organic semiconductors-the approximations valid in either extreme break down, making it difficult to accurately model the conduction. In particular, describing wavefunction delocalisation requires a quantum treatment, which is difficult in disordered materials that lack periodicity. Here, we present the first three-dimensional model of partially delocalised charge and exciton transport in materials in the intermediate disorder regime. Our approach is based on polaron-transformed Redfield theory, but overcomes several computational roadblocks by mapping the quantum-mechanical techniques onto kinetic Monte Carlo. Our theory, delocalised kinetic Monte Carlo (dKMC), shows that the fundamental physics of transport in moderately disordered materials is that of charges hopping between partially delocalised electronic states. Our results reveal why standard kinetic Monte Carlo can dramatically underestimate mobilities even in disordered organic semiconductors, where even a little delocalisation can substantially enhance mobilities, as well as showing that three-dimensional calculations capture important delocalisation effects neglected in lower-dimensional approximations.
Collapse
Affiliation(s)
- Daniel Balzer
- School of Chemistry and University of Sydney Nano Institute, University of Sydney NSW 2006 Australia
| | - Thijs J A M Smolders
- School of Chemistry and University of Sydney Nano Institute, University of Sydney NSW 2006 Australia
- Institute for Molecules and Materials, Radboud University 6525 AJ Nijmegen The Netherlands
| | - David Blyth
- School of Mathematics and Physics, University of Queensland St. Lucia QLD 4072 Australia
| | - Samantha N Hood
- School of Mathematics and Physics, University of Queensland St. Lucia QLD 4072 Australia
| | - Ivan Kassal
- School of Chemistry and University of Sydney Nano Institute, University of Sydney NSW 2006 Australia
| |
Collapse
|
16
|
Lin KH, Corminboeuf C. FB-ECDA: Fragment-based Electronic Coupling Decomposition Analysis for Organic Amorphous Semiconductors. J Phys Chem A 2020; 124:10624-10634. [DOI: 10.1021/acs.jpca.0c09743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kun-Han Lin
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Leonard AA, Mosquera MA, Jones LO, Cai Z, Fauvell TJ, Kirschner MS, Gosztola DJ, Schatz GC, Schaller RD, Yu L, Chen LX. Photophysical implications of ring fusion, linker length, and twisting angle in a series of perylenediimide-thienoacene dimers. Chem Sci 2020; 11:7133-7143. [PMID: 33209244 PMCID: PMC7654190 DOI: 10.1039/d0sc02862b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/17/2020] [Indexed: 01/05/2023] Open
Abstract
Perylenediimide (PDI) derivatives have been widely studied as electron acceptor alternatives to fullerenes in organic photovoltaics (OPVs) because of their tunable absorption in the visible range, inexpensive synthesis, and photochemical stability. A common motif for improving device efficiency involves joining multiple PDIs together through electron-rich linkers to form a twisted acceptor-donor-acceptor molecule. Molecular features such as ring fusion are further employed to modify the structure locally and in films. These synthetic efforts have greatly enhanced OPV device efficiencies, however it remains unclear how the increasingly elaborate structural modifications affect the photophysical processes integral to efficient photon-to-charge conversion. Here we carry out a systematic study of a series of PDI dimers with thienoacene linkers in which the twist angle, linker length, and degree of ring fusion are varied to investigate the effects of these structural features on the molecular excited states and exciton recombination dynamics. Spectroscopic characterization of the dimers suggest that ring fusion causes greater coupling between the donor and acceptor components and greatly enhances the lifetime of a thienoacene to PDI charge transfer state. The lifetime of this CT state also correlates well with the linker-PDI dihedral angle, with smaller dihedral angle resulting in longer lifetime. DFT and two-photon absorption TDDFT calculations were developed in-house to model the ground state and excited transitions, providing theoretical insight into the reasons for the observed photophysical properties and identifying the charge transfer state in the excited state absorption spectra. These results highlight how the longevity of the excited state species, important for the efficient conversion of excitons to free carriers in OPV devices, can be chemically tuned by controlling ring fusion and by using steric effects to control the relative orientations of the molecular fragments. The results provide a successful rationalization of the behavior of solar cells involving these acceptor molecules.
Collapse
Affiliation(s)
- Ariel A Leonard
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| | - Martín A Mosquera
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| | - Leighton O Jones
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications , School of Materials Science & Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Thomas J Fauvell
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| | - Matthew S Kirschner
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| | - David J Gosztola
- Center for Nanoscale Materials , Argonne National Laboratory , 9700 South Cass Avenue Lemont , Illinois 60439 , USA
| | - George C Schatz
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| | - Richard D Schaller
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
- Center for Nanoscale Materials , Argonne National Laboratory , 9700 South Cass Avenue Lemont , Illinois 60439 , USA
| | - Luping Yu
- Department of Chemistry and James Frank Institute , The University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , USA
| | - Lin X Chen
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
- Chemical Sciences and Engineering Division , Argonne National Laboratory , 9700 South Cass Avenue, Lemont , Illinois 60439 , USA .
| |
Collapse
|
18
|
Swick SM, Gebraad T, Jones L, Fu B, Aldrich TJ, Kohlstedt KL, Schatz GC, Facchetti A, Marks TJ. Building Blocks for High‐Efficiency Organic Photovoltaics: Interplay of Molecular, Crystal, and Electronic Properties in Post‐Fullerene ITIC Ensembles. Chemphyschem 2019; 20:2608-2626. [DOI: 10.1002/cphc.201900793] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/13/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Steven M. Swick
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- Center for Light Energy Activated Redox Processes Evanston Illinois 60208 United States
| | - Tim Gebraad
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- Center for Light Energy Activated Redox Processes Evanston Illinois 60208 United States
| | - Leighton Jones
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- Center for Light Energy Activated Redox Processes Evanston Illinois 60208 United States
| | - Bo Fu
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- Center for Light Energy Activated Redox Processes Evanston Illinois 60208 United States
| | - Thomas J. Aldrich
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- Center for Light Energy Activated Redox Processes Evanston Illinois 60208 United States
| | - Kevin L. Kohlstedt
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- Center for Light Energy Activated Redox Processes Evanston Illinois 60208 United States
| | - George C. Schatz
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- Center for Light Energy Activated Redox Processes Evanston Illinois 60208 United States
| | - Antonio Facchetti
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- Center for Light Energy Activated Redox Processes Evanston Illinois 60208 United States
| | - Tobin J. Marks
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- Center for Light Energy Activated Redox Processes Evanston Illinois 60208 United States
| |
Collapse
|
19
|
Koçak O, Duru IP, Yavuz I. Charge Transfer and Interface Effects in Co‐Assembled Circular Donor/Acceptor Complexes for Organic Photovoltaics. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201800194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Olkan Koçak
- Department of PhysicsMarmara University 34722 Ziverbey Istanbul Turkey
| | - Izzet Paruğ Duru
- Department of PhysicsMarmara University 34722 Ziverbey Istanbul Turkey
| | - Ilhan Yavuz
- Department of PhysicsMarmara University 34722 Ziverbey Istanbul Turkey
| |
Collapse
|
20
|
Stoppiello CT, Isla H, Martínez-Abadía M, Fay MW, Parmenter CDJ, Roe MJ, Lerma-Berlanga B, Martí-Gastaldo C, Mateo-Alonso A, Khlobystov AN. Three dimensional nanoscale analysis reveals aperiodic mesopores in a covalent organic framework and conjugated microporous polymer. NANOSCALE 2019; 11:2848-2854. [PMID: 30681119 DOI: 10.1039/c8nr10086a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The integrated analytical approach developed in this study offers a powerful methodology for the structural characterisation of complex molecular nanomaterials. Structures of a covalent organic framework based on boronate esters (COF-5) and a conjugated microporous polymer (Aza-CMP) have been investigated by a combination of several electron microscopy techniques elucidating the three-dimensional topology of the complex polycrystalline (COF) and non-crystalline (CMP) materials. Unexpected, aperiodic mesoporous channels of 20-50 nm in diameter were found to be penetrating the COF and CMP particles, which cannot be detected by X-ray diffraction techniques. The mesopores appear to be stable under a range of different conditions and accessible to gas molecules, exhibiting a particular bonding capability with CO2 in the case of the CMP. The mesoporosity is unrelated to the intrinsic chemical structures of the COF or CMP but rather it reflects the mechanisms of polymer particle formation in a polycondensation reaction. The mesopores may be templated by clusters of solvent molecules during the COF or CMP synthesis, leaving cavities within the polymer particles. The unexpected mesoporosity discovered in COF and CMP materials begs for re-assessment of the nature of framework materials and may open new opportunities for applications of these molecular materials in gas sorption or catalysis.
Collapse
Affiliation(s)
- Craig T Stoppiello
- The School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Negre CFA, Morzan UN, Hendrickson HP, Pal R, Lisi GP, Loria JP, Rivalta I, Ho J, Batista VS. Eigenvector centrality for characterization of protein allosteric pathways. Proc Natl Acad Sci U S A 2018; 115:E12201-E12208. [PMID: 30530700 PMCID: PMC6310864 DOI: 10.1073/pnas.1810452115] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Determining the principal energy-transfer pathways responsible for allosteric communication in biomolecules remains challenging, partially due to the intrinsic complexity of the systems and the lack of effective characterization methods. In this work, we introduce the eigenvector centrality metric based on mutual information to elucidate allosteric mechanisms that regulate enzymatic activity. Moreover, we propose a strategy to characterize the range of correlations that underlie the allosteric processes. We use the V-type allosteric enzyme imidazole glycerol phosphate synthase (IGPS) to test the proposed methodology. The eigenvector centrality method identifies key amino acid residues of IGPS with high susceptibility to effector binding. The findings are validated by solution NMR measurements yielding important biological insights, including direct experimental evidence for interdomain motion, the central role played by helix h[Formula: see text], and the short-range nature of correlations responsible for the allosteric mechanism. Beyond insights on IGPS allosteric pathways and the nature of residues that could be targeted by therapeutic drugs or site-directed mutagenesis, the reported findings demonstrate the eigenvector centrality analysis as a general cost-effective methodology to gain fundamental understanding of allosteric mechanisms at the molecular level.
Collapse
Affiliation(s)
- Christian F A Negre
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545;
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
- Energy Sciences Institute, Yale University, West Haven, CT 06516-7394
| | - Uriel N Morzan
- Department of Chemistry, Yale University, New Haven, CT 06520-8107;
- Energy Sciences Institute, Yale University, West Haven, CT 06516-7394
| | - Heidi P Hendrickson
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
- Energy Sciences Institute, Yale University, West Haven, CT 06516-7394
- Department of Chemistry, Lafayette College, Easton, PA 18042
| | - Rhitankar Pal
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
- Energy Sciences Institute, Yale University, West Haven, CT 06516-7394
| | - George P Lisi
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02903
| | - J Patrick Loria
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Ivan Rivalta
- Université de Lyon, École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, Lyon, France;
- Dipartimento di Chimica Industriale "Toso Montanari," Università degli Studi di Bologna, Viale del Risorgimento, 4I-40136 Bologna, Italy
| | - Junming Ho
- School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520-8107;
- Energy Sciences Institute, Yale University, West Haven, CT 06516-7394
| |
Collapse
|
22
|
Bowen AS, Jackson NE, Reid DR, de Pablo JJ. Structural Correlations and Percolation in Twisted Perylene Diimides Using a Simple Anisotropic Coarse-Grained Model. J Chem Theory Comput 2018; 14:6495-6504. [PMID: 30407817 DOI: 10.1021/acs.jctc.8b00742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Large, twisted, and fused conjugated molecular architectures have begun to appear more prominently in the organic semiconductor literature. From a modeling perspective, such structures present a challenge to conventional simulation techniques; atomistic resolutions are computationally inefficient, while traditional isotropic coarse-grained models do not capture the inherent anisotropies of the molecules. In this work, we develop a simple coarse-grained model that explicitly incorporates the anisotropy of these molecular architectures, thereby providing a route toward analyzing π-stacking, and thus qualitative electronic structure, at a computationally efficient coarse-grained resolution. Our simple coarse-grained model maintains relative orientations of conjugated rings, as well as inter-ring dihedrals, that are critical for understanding electronic and excitonic transport in bulk systems. We apply this model to understand structural correlations in several recently synthesized perylene diimide (PDI)-based organic semiconductors. Twisted and nonplanar molecular architectures are found to promote amorphous morphologies while maintaining local π-stacking. A graph theoretical network analysis demonstrates that these twisted molecules are more likely to form percolating three-dimensional pathways for charge motion than strictly planar molecules, which show connectivity in only one dimension.
Collapse
Affiliation(s)
- Alec S Bowen
- Institute for Molecular Engineering, University of Chicago , Chicago , Illinois 60615 , United States
| | - Nicholas E Jackson
- Institute for Molecular Engineering, University of Chicago , Chicago , Illinois 60615 , United States.,Argonne National Laboratory , Lemont , Illinois 06349 , United States
| | - Daniel R Reid
- Institute for Molecular Engineering, University of Chicago , Chicago , Illinois 60615 , United States
| | - Juan J de Pablo
- Institute for Molecular Engineering, University of Chicago , Chicago , Illinois 60615 , United States.,Argonne National Laboratory , Lemont , Illinois 06349 , United States
| |
Collapse
|
23
|
Rice B, Guilbert AAY, Frost JM, Nelson J. Polaron States in Fullerene Adducts Modeled by Coarse-Grained Molecular Dynamics and Tight Binding. J Phys Chem Lett 2018; 9:6616-6623. [PMID: 30380880 DOI: 10.1021/acs.jpclett.8b02320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Strong electron-phonon coupling leads to polaron localization in molecular semiconductor materials and influences charge transport, but it is expensive to calculate atomistically. Here, we propose a simple and efficient model to determine the energy and spatial extent of polaron states within a coarse-grained representation of a disordered molecular film. We calculate the electronic structure of the molecular assembly using a tight-binding Hamiltonian and determine the polaron state self-consistently by perturbing the site energies by the dielectric response of the surrounding medium to the charge. When applied to fullerene derivatives, the method shows that polarons extend over multiple molecules in C60 but localize on single molecules in higher adducts of phenyl-C61-butyric-acid-methyl-ester (PCBM) because of packing disorder and the polar side chains. In PCBM, polarons localize on single molecules only when energetic disorder is included or when the fullerene is dispersed in a blend. The method helps to establish the conditions under which a hopping transport model is justified.
Collapse
Affiliation(s)
- Beth Rice
- Department of Physics , Imperial College London , London SW7 2BZ , U.K
| | - Anne A Y Guilbert
- Department of Physics , Imperial College London , London SW7 2BZ , U.K
| | - Jarvist M Frost
- Department of Physics , Imperial College London , London SW7 2BZ , U.K
- Department of Physics , King's College London , London WC2R 2LS , U.K
| | - Jenny Nelson
- Department of Physics , Imperial College London , London SW7 2BZ , U.K
| |
Collapse
|
24
|
Shi L, Willard AP. Modeling the effects of molecular disorder on the properties of Frenkel excitons in organic molecular semiconductors. J Chem Phys 2018; 149:094110. [DOI: 10.1063/1.5044553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Liang Shi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Adam P. Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
25
|
Franco-Gonzalez JF, Rolland N, Zozoulenko IV. Substrate-Dependent Morphology and Its Effect on Electrical Mobility of Doped Poly(3,4-ethylenedioxythiophene) (PEDOT) Thin Films. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29115-29126. [PMID: 30070463 DOI: 10.1021/acsami.8b08774] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Deposition dynamics, crystallization, molecular packing, and electronic mobility of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films are affected by the nature of the substrate. Computational microscopy has been carried out to reveal the morphology-substrate dependence for PEDOT thin films doped with molecular tosylate deposited on different substrates including graphite, Si3N4, silicon, and amorphous SiO2. It is shown that the substrate is instrumental in formation of the lamellar structure. PEDOT films on the ordered substrates (graphite, Si3N4, and silicon) exhibit preferential face-on orientation, with graphite showing the most ordered and pronounced face-on packing. In contrast, PEDOT on amorphous SiO2 exhibits the dominant edge-on orientation, except in the dry state where both packings are equally presented. The role of water and the porosity of the substrate in formation of the edge-on structure on SiO2 is outlined. On the basis of the calculated morphology, the multiscale calculations of the electronic transport and percolative analysis are performed outlining how the character of the substrate affects the electron mobility. It is demonstrated that good crystallinity (PEDOT on graphite substrate) and high content of edge-on (PEDOT on SiO2 substrate) are not enough to achieve the highest electrical in-plane mobility. Instead, the least ordered material with lower degree of the edge-on content (PEDOT on silicon substrate) provides the highest mobility because it exhibits an efficient network of π-π stacked chain extending throughout the entire sample.
Collapse
Affiliation(s)
- Juan Felipe Franco-Gonzalez
- Laboratory of Organic Electronics, Department of Science and Technology , Linköping University , SE-601 74 Norrköping , Sweden
| | - Nicolas Rolland
- Laboratory of Organic Electronics, Department of Science and Technology , Linköping University , SE-601 74 Norrköping , Sweden
| | - Igor V Zozoulenko
- Laboratory of Organic Electronics, Department of Science and Technology , Linköping University , SE-601 74 Norrköping , Sweden
| |
Collapse
|
26
|
Closely packed, low reorganization energy π-extended postfullerene acceptors for efficient polymer solar cells. Proc Natl Acad Sci U S A 2018; 115:E8341-E8348. [PMID: 30127011 DOI: 10.1073/pnas.1807535115] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
New organic semiconductors are essential for developing inexpensive, high-efficiency, solution-processable polymer solar cells (PSCs). PSC photoactive layers are typically fabricated by film-casting a donor polymer and a fullerene acceptor blend, with ensuing solvent evaporation and phase separation creating discrete conduits for photogenerated holes and electrons. Until recently, n-type fullerene acceptors dominated the PSC literature; however, indacenodithienothiophene (IDTT)-based acceptors have recently enabled remarkable PSC performance metrics, for reasons that are not entirely obvious. We report two isomeric IDTT-based acceptors 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-benz-(5, 6)indanone))-5,5,11,11-tetrakis(4-nonylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']di-thiophene (ITN-C9) and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-benz(6,7)indanone))-5,5,11,11-tetrakis(4-nonylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITzN-C9) that shed light on the exceptional IDTT properties vis-à-vis fullerenes. The neat acceptors and blends with fluoropolymer donor poly{[4,8-bis[5-(2- ethylhexyl)-4-fluoro-2-thienyl]benzo[1,2-b:4,5-b']dithiophene2,6-diyl]-alt-[2,5-thiophenediyl[5,7-bis(2-ethylhexyl)-4,8-dioxo4H,8H-benzo[1,2-c:4,5-c']dithiophene-1,3-diyl]]} (PBDB-TF) are investigated by optical spectroscopy, cyclic voltammetry, thermogravimetric analysis, differential scanning calorimetry, single-crystal X-ray diffraction, photovoltaic response, space-charge-limited current transport, atomic force microscopy, grazing incidence wide-angle X-ray scattering, and density functional theory-level quantum chemical analysis. The data reveal that ITN-C9 and ITzN-C9 organize such that the lowest unoccupied molecular orbital-rich end groups have intermolecular π-π distances as close as 3.31(1) Å, with electronic coupling integrals as large as 38 meV, and internal reorganization energies as small as 0.133 eV, comparable to or superior to those in fullerenes. ITN-C9 and ITzN-C9 have broad solar-relevant optical absorption, and, when blended with PBDB-TF, afford devices with power conversion efficiencies near 10%. Performance differences between ITN-C9 and ITzN-C9 are understandable in terms of molecular and electronic structure distinctions via the influences on molecular packing and orientation with respect to the electrode.
Collapse
|
27
|
Tsuji Y, Estrada E, Movassagh R, Hoffmann R. Quantum Interference, Graphs, Walks, and Polynomials. Chem Rev 2018; 118:4887-4911. [DOI: 10.1021/acs.chemrev.7b00733] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuta Tsuji
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ernesto Estrada
- Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G11HX, United Kingdom
| | - Ramis Movassagh
- IBM Research, MIT-IBM A.I. Lab, Cambridge, Massachusetts 02142, United States
| | - Roald Hoffmann
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
28
|
Craven GT, Nitzan A. Electrothermal Transistor Effect and Cyclic Electronic Currents in Multithermal Charge Transfer Networks. PHYSICAL REVIEW LETTERS 2017; 118:207201. [PMID: 28581803 DOI: 10.1103/physrevlett.118.207201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Indexed: 06/07/2023]
Abstract
A theory is developed to describe the coupled transport of energy and charge in networks of electron donor-acceptor sites which are seated in a thermally heterogeneous environment, where the transfer kinetics are dominated by Marcus-type hopping rates. It is found that the coupling of heat and charge transfer in such systems gives rise to exotic transport phenomena which are absent in thermally homogeneous systems and cannot be described by standard thermoelectric relations. Specifically, the directionality and extent of thermal transistor amplification and cyclical electronic currents in a given network can be controlled by tuning the underlying temperature gradient in the system. The application of these findings toward the optimal control of multithermal currents is illustrated on a paradigmatic nanostructure.
Collapse
Affiliation(s)
- Galen T Craven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
29
|
Jakowetz AC, Böhm ML, Sadhanala A, Huettner S, Rao A, Friend RH. Visualizing excitations at buried heterojunctions in organic semiconductor blends. NATURE MATERIALS 2017; 16:551-557. [PMID: 28218921 DOI: 10.1038/nmat4865] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/19/2017] [Indexed: 05/28/2023]
Abstract
Interfaces play a crucial role in semiconductor devices, but in many device architectures they are nanostructured, disordered and buried away from the surface of the sample. Conventional optical, X-ray and photoelectron probes often fail to provide interface-specific information in such systems. Here we develop an all-optical time-resolved method to probe the local energetic landscape and electronic dynamics at such interfaces, based on the Stark effect caused by electron-hole pairs photo-generated across the interface. Using this method, we found that the electronically active sites at the polymer/fullerene interfaces in model bulk-heterojunction blends fall within the low-energy tail of the absorption spectrum. This suggests that these sites are highly ordered compared with the bulk of the polymer film, leading to large wavefunction delocalization and low site energies. We also detected a 100 fs migration of holes from higher- to lower-energy sites, consistent with these charges moving ballistically into more ordered polymer regions. This ultrafast charge motion may be key to separating electron-hole pairs into free charges against the Coulomb interaction.
Collapse
Affiliation(s)
- Andreas C Jakowetz
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Marcus L Böhm
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Aditya Sadhanala
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Sven Huettner
- Fakultät für Biologie, Chemie und Geowissenschaften, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Akshay Rao
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Richard H Friend
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| |
Collapse
|
30
|
Groves C. Simulating charge transport in organic semiconductors and devices: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:026502. [PMID: 27991440 DOI: 10.1088/1361-6633/80/2/026502] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Charge transport simulation can be a valuable tool to better understand, optimise and design organic transistors (OTFTs), photovoltaics (OPVs), and light-emitting diodes (OLEDs). This review presents an overview of common charge transport and device models; namely drift-diffusion, master equation, mesoscale kinetic Monte Carlo and quantum chemical Monte Carlo, and a discussion of the relative merits of each. This is followed by a review of the application of these models as applied to charge transport in organic semiconductors and devices, highlighting in particular the insights made possible by modelling. The review concludes with an outlook for charge transport modelling in organic electronics.
Collapse
Affiliation(s)
- C Groves
- Durham University, School of Engineering and Computing Sciences, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
31
|
Gagorik AG, Savoie B, Jackson N, Agrawal A, Choudhary A, Ratner MA, Schatz GC, Kohlstedt KL. Improved Scaling of Molecular Network Calculations: The Emergence of Molecular Domains. J Phys Chem Lett 2017; 8:415-421. [PMID: 28036172 DOI: 10.1021/acs.jpclett.6b02921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The design of materials needed for the storage, delivery, and conversion of (re)useable energy is still hindered by the lack of new, hierarchical molecular screening methodologies that encode information on more than one length scale. Using a molecular network theory as a foundation, we show that to describe charge transport in disordered materials the network methodology must be scaled-up. We detail the scale-up through the use of adjacency lists and depth first search algorithms for during operations on the adjacency matrix. We consider two types of electronic acceptors, perylenediimide (PDI) and the fullerene derivative phenyl-C61-butyric acid methyl ester (PCBM), and we demonstrate that the method is scalable to length scales relevant to grain boundary and trap formations. Such boundaries lead to a decrease in the percolation ratio of PDI with system size, while the ratio for PCBM remains constant, further quantifying the stable, diverse transport pathways of PCBM and its success as a charge-accepting material.
Collapse
Affiliation(s)
- Adam G Gagorik
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Brett Savoie
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Nick Jackson
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Ankit Agrawal
- Department of Electrical Engineering and Computer Science, Northwestern University , Evanston Illinois 60208, United States
| | - Alok Choudhary
- Department of Electrical Engineering and Computer Science, Northwestern University , Evanston Illinois 60208, United States
| | - Mark A Ratner
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Kevin L Kohlstedt
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
32
|
Jackson NE, Kohlstedt KL, Chen LX, Ratner MA. A n-vector model for charge transport in molecular semiconductors. J Chem Phys 2016; 145:204102. [PMID: 27908101 DOI: 10.1063/1.4967865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nicholas E. Jackson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, USA
| | - Kevin L. Kohlstedt
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, USA
| | - Lin X. Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Mark A. Ratner
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, USA
| |
Collapse
|
33
|
Jakowetz AC, Böhm ML, Zhang J, Sadhanala A, Huettner S, Bakulin AA, Rao A, Friend RH. What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends. J Am Chem Soc 2016; 138:11672-9. [DOI: 10.1021/jacs.6b05131] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Andreas C. Jakowetz
- Cavendish
Laboratory, Department of Physics, University of Cambridge, J J Thomson
Avenue, Cambridge CB3 0HE, United Kingdom
| | - Marcus L. Böhm
- Cavendish
Laboratory, Department of Physics, University of Cambridge, J J Thomson
Avenue, Cambridge CB3 0HE, United Kingdom
| | - Jiangbin Zhang
- Cavendish
Laboratory, Department of Physics, University of Cambridge, J J Thomson
Avenue, Cambridge CB3 0HE, United Kingdom
| | - Aditya Sadhanala
- Cavendish
Laboratory, Department of Physics, University of Cambridge, J J Thomson
Avenue, Cambridge CB3 0HE, United Kingdom
| | - Sven Huettner
- Fakultät
für Biologie, Chemie und Geowissenschaften, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Artem A. Bakulin
- Cavendish
Laboratory, Department of Physics, University of Cambridge, J J Thomson
Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Akshay Rao
- Cavendish
Laboratory, Department of Physics, University of Cambridge, J J Thomson
Avenue, Cambridge CB3 0HE, United Kingdom
| | - Richard H. Friend
- Cavendish
Laboratory, Department of Physics, University of Cambridge, J J Thomson
Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
34
|
Shen XX, Han GC, Yi YP. Multiscale description of molecular packing and electronic processes in small-molecule organic solar cells. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.05.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Abstract
Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, [Formula: see text] Simulations reveal the relevant timescale for local transfer integral decorrelation to be [Formula: see text]100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive with charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed.
Collapse
|
36
|
Li G, Govind N, Ratner MA, Cramer CJ, Gagliardi L. Influence of Coherent Tunneling and Incoherent Hopping on the Charge Transfer Mechanism in Linear Donor-Bridge-Acceptor Systems. J Phys Chem Lett 2015; 6:4889-4897. [PMID: 26554424 DOI: 10.1021/acs.jpclett.5b02154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The mechanism of charge transfer has been observed to change from tunneling to hopping with increasing numbers of DNA base pairs in polynucleotides and with the length of molecular wires. The aim of this paper is to investigate this transition by examining the population dynamics using a tight-binding Hamiltonian with model parameters to describe a linear donor-bridge-acceptor (D-B-A) system. The model includes a primary vibration and an electron-vibration coupling at each site. A further coupling of the primary vibration with a secondary phonon bath allows the system to dissipate energy to the environment and reach a steady state. We apply the quantum master equation (QME) approach, based on second-order perturbation theory in a quantum dissipative system, to examine the dynamical processes involved in charge-transfer and follow the population transfer rate at the acceptor, ka, to shed light on the transition from tunneling to hopping. With a small tunneling parameter, V, the on-site population tends to localize and form polarons, and the hopping mechanism dominates the transfer process. With increasing V, the population tends to be delocalized and the tunneling mechanism dominates. The competition between incoherent hopping and coherent tunneling governs the mechanism of charge transfer. By varying V and the total number of sites, we also examine the onset of the transition from tunneling to hopping with increasing length.
Collapse
Affiliation(s)
- Guangqi Li
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Niranjan Govind
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Mark A Ratner
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Christopher J Cramer
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
37
|
Zhong Y, Trinh MT, Chen R, Purdum GE, Khlyabich PP, Sezen M, Oh S, Zhu H, Fowler B, Zhang B, Wang W, Nam CY, Sfeir MY, Black CT, Steigerwald ML, Loo YL, Ng F, Zhu XY, Nuckolls C. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells. Nat Commun 2015; 6:8242. [PMID: 26382113 PMCID: PMC4595599 DOI: 10.1038/ncomms9242] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/29/2015] [Indexed: 12/25/2022] Open
Abstract
Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.
Collapse
Affiliation(s)
- Yu Zhong
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, MC3130, New York, New York 10027, USA
| | - M Tuan Trinh
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, MC3130, New York, New York 10027, USA
| | - Rongsheng Chen
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, MC3130, New York, New York 10027, USA.,School of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Geoffrey E Purdum
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Petr P Khlyabich
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Melda Sezen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Seokjoon Oh
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, MC3130, New York, New York 10027, USA
| | - Haiming Zhu
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, MC3130, New York, New York 10027, USA
| | - Brandon Fowler
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, MC3130, New York, New York 10027, USA
| | - Boyuan Zhang
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, MC3130, New York, New York 10027, USA
| | - Wei Wang
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, MC3130, New York, New York 10027, USA
| | - Chang-Yong Nam
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, New York 11973, USA
| | - Matthew Y Sfeir
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, New York 11973, USA
| | - Charles T Black
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, New York 11973, USA
| | - Michael L Steigerwald
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, MC3130, New York, New York 10027, USA
| | - Yueh-Lin Loo
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Fay Ng
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, MC3130, New York, New York 10027, USA
| | - X-Y Zhu
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, MC3130, New York, New York 10027, USA
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, MC3130, New York, New York 10027, USA
| |
Collapse
|
38
|
Jackson NE, Savoie BM, Chen LX, Ratner MA. A Simple Index for Characterizing Charge Transport in Molecular Materials. J Phys Chem Lett 2015; 6:1018-1021. [PMID: 26262862 DOI: 10.1021/acs.jpclett.5b00135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
While advances in quantum chemistry have rendered the accurate prediction of band alignment relatively straightforward, the ability to forecast a noncrystalline, multimolecule system's conductivity possesses no simple computational form. Adapting the theory of classical resistor networks, we develop an index for quantifying charge transport in bulk molecular materials, without the requirement of crystallinity. The basic behavior of this index is illustrated through its application to simple lattices and clusters of common organic photovoltaic molecules, where it is shown to reproduce experimentally known performances for these materials. This development provides a quantitative computational means for determining a priori the bulk charge transport properties of molecular materials.
Collapse
Affiliation(s)
- Nicholas E Jackson
- †Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Brett M Savoie
- †Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Lin X Chen
- †Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- ‡Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Mark A Ratner
- †Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
39
|
Shoaee S, Deledalle F, Shakya Tuladhar P, Shivanna R, Rajaram S, Narayan KS, Durrant JR. A Comparison of Charge Separation Dynamics in Organic Blend Films Employing Fullerene and Perylene Diimide Electron Acceptors. J Phys Chem Lett 2015; 6:201-205. [PMID: 26263114 DOI: 10.1021/jz502385n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report a comparison of charge carrier dynamics and device performance for low band gap polymer PBDTTT-CT in blends with the fullerene acceptor PC71BM and a PDI derivative with similar electron affinities. Charge separation and recombination dynamics are found to be remarkably similar for these two acceptors, with both blends exhibiting efficient, ultrafast charge separation (time constants of 1.6 and 1.4 ps, respectively). The lower device performance for the PDI acceptor (1.75% compared to 3.5% for the equivalent PC71BM device) is shown to result from slower charge transport, increasing nongeminate recombination losses during charge collection.
Collapse
Affiliation(s)
- Safa Shoaee
- †Centre for Plastic Electronics, Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Florent Deledalle
- †Centre for Plastic Electronics, Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Pabitra Shakya Tuladhar
- †Centre for Plastic Electronics, Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ravichandran Shivanna
- ‡Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Sridhar Rajaram
- §International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - K S Narayan
- ‡Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - James R Durrant
- †Centre for Plastic Electronics, Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|