1
|
Windsor P, Ouyang H, G da Costa JA, Rama Damodaran A, Chen Y, Bhagi-Damodaran A. Gas Tunnel Engineering of Prolyl Hydroxylase Reprograms Hypoxia Signaling in Cells. Angew Chem Int Ed Engl 2024; 63:e202409234. [PMID: 39168829 DOI: 10.1002/anie.202409234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/02/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Cells have evolved intricate mechanisms for recognizing and responding to changes in oxygen (O2) concentrations. Here, we have reprogrammed cellular hypoxia (low O2) signaling via gas tunnel engineering of prolyl hydroxylase 2 (PHD2), a non-heme iron dependent O2 sensor. Using computational modeling and protein engineering techniques, we identify a gas tunnel and critical residues therein that limit the flow of O2 to PHD2's catalytic core. We show that systematic modification of these residues can open the constriction topology of PHD2's gas tunnel. Using kinetic stopped-flow measurements with NO as a surrogate diatomic gas, we demonstrate up to 3.5-fold enhancement in its association rate to the iron center of tunnel-engineered mutants. Our most effectively designed mutant displays 9-fold enhanced catalytic efficiency (kcat/KM=830±40 M-1 s-1) in hydroxylating a peptide mimic of hypoxia inducible transcription factor HIF-1α, as compared to WT PHD2 (kcat/KM=90±9 M-1 s-1). Furthermore, transfection of plasmids that express designed PHD2 mutants in HEK-293T mammalian cells reveal significant reduction of HIF-1α and downstream hypoxia response transcripts under hypoxic conditions of 1 % O2. Overall, these studies highlight activation of PHD2 as a new pathway to reprogram hypoxia responses and HIF signaling in cells.
Collapse
Affiliation(s)
- Peter Windsor
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| | - Haiping Ouyang
- Department of Biochemistry and Molecular Biology, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| | - Joseph A G da Costa
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| | - Anoop Rama Damodaran
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| | - Yue Chen
- Department of Biochemistry and Molecular Biology, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| |
Collapse
|
2
|
Nahid DS, Coffey KA, Bei AK, Cordy RJ. Understanding the significance of oxygen tension on the biology of Plasmodium falciparum blood stages: From the human body to the laboratory. PLoS Pathog 2024; 20:e1012514. [PMID: 39298535 DOI: 10.1371/journal.ppat.1012514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Plasmodium falciparum undergoes sequestration within deep tissues of the human body, spanning multiple organ systems with differing oxygen (O2) concentrations. The parasite is exposed to an even greater range of O2 concentrations as it transitions from the human to the mosquito host, suggesting a high level of plasticity as it navigates these different environments. In this review, we explore factors that may contribute to the parasite's response to different environmental O2 concentrations, recognizing that there are likely multiple pieces to this puzzle. We first review O2-sensing mechanisms, which exist in other apicomplexans such as Toxoplasma gondii and consider whether similar systems could exist in Plasmodium. Next, we review morphological and functional changes in P. falciparum's mitochondrion during the asexual-to-sexual stage transition and discuss how these changes overlap with the parasite's access to O2. We then delve into reactive oxygen species (ROS) as ROS production is influenced by O2 availability and oxidative stress impacts Plasmodium intraerythrocytic development. Lastly, given that the primary role of the red blood cell (RBC) is to deliver O2 throughout the body, we discuss how changes in the oxygenation status of hemoglobin, the RBC's O2-carrying protein and key nutrient for Plasmodium, could also potentially impact the parasite's growth during intraerythrocytic development. This review also highlights studies that have investigated P. falciparum biology under varying O2 concentrations and covers technical aspects related to P. falciparum cultivation in the lab, focusing on sources of technical variation that could alter the amount of dissolved O2 encountered by cells during in vitro experiments. Lastly, we discuss how culture systems can better replicate in vivo heterogeneity with respect to O2 gradients, propose ideas for further research in this area, and consider translational implications related to O2 and malaria.
Collapse
Affiliation(s)
- Dinah S Nahid
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Kevin A Coffey
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Amy K Bei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Regina Joice Cordy
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
3
|
Wu H, Murray J, Ishisoko N, Frommlet A, Deshmukh G, DiPasquale A, Mulvihill MM, Zhang D, Quinn JG, Blake RA, Fairbrother WJ, Fuhrmann J. Potency-Enhanced Peptidomimetic VHL Ligands with Improved Oral Bioavailability. J Med Chem 2024; 67:8585-8608. [PMID: 38809766 DOI: 10.1021/acs.jmedchem.3c02203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The von Hippel-Lindau (VHL) protein plays a pivotal role in regulating the hypoxic stress response and has been extensively studied and utilized in the targeted protein degradation field, particularly in the context of bivalent degraders. In this study, we present a comprehensive peptidomimetic structure-activity relationship (SAR) approach, combined with cellular NanoBRET target engagement assays to enhance the existing VHL ligands. Through systematic modifications of the molecule, we identified the 1,2,3-triazole group as an optimal substitute of the left-hand side amide bond that yields 10-fold higher binding activity. Moreover, incorporating conformationally constrained alterations on the methylthiazole benzylamine moiety led to the development of highly potent VHL ligands with picomolar binding affinity and significantly improved oral bioavailability. We anticipate that our optimized VHL ligand, GNE7599, will serve as a valuable tool compound for investigating the VHL pathway and advancing the field of targeted protein degradation.
Collapse
Affiliation(s)
- Hao Wu
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeremy Murray
- Department of Structural Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Noriko Ishisoko
- Department of Biochemical & Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Alexandra Frommlet
- Department of Biochemical & Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Gauri Deshmukh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Antonio DiPasquale
- Department of Small Molecule Pharmaceutical Sciences, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Melinda M Mulvihill
- Department of Biochemical & Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - John G Quinn
- Department of Biochemical & Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert A Blake
- Department of Biochemical & Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Wayne J Fairbrother
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Jakob Fuhrmann
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
- Department of Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
4
|
Windsor P, Ouyang H, da Costa JAG, Damodaran AR, Chen Y, Bhagi-Damodaran A. Gas tunnel engineering of prolyl hydroxylase reprograms hypoxia signaling in cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.07.552357. [PMID: 37609209 PMCID: PMC10441328 DOI: 10.1101/2023.08.07.552357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Cells have evolved intricate mechanisms for recognizing and responding to changes in oxygen (O2) concentrations. Here, we have reprogrammed cellular hypoxia (low O2) signaling via gas tunnel engineering of prolyl hydroxylase 2 (PHD2), a non-heme iron dependent O2 sensor. Using computational modeling and protein engineering techniques, we identify a gas tunnel and critical residues therein that limit the flow of O2 to PHD2's catalytic core. We show that systematic modification of these residues can open the constriction topology of PHD2's gas tunnel. Using kinetic stopped-flow measurements with NO as a surrogate diatomic gas, we demonstrate up to 3.5-fold enhancement in its association rate to the iron center of tunnel-engineered mutants. Our most effectively designed mutant displays 9-fold enhanced catalytic efficiency (kcat/KM = 830 ± 40 M-1 s-1) in hydroxylating a peptide mimic of hypoxia inducible transcription factor HIF-1α, as compared to WT PHD2 (kcat/KM = 90 ± 9 M-1 s-1). Furthermore, transfection of plasmids that express designed PHD2 mutants in HEK-293T mammalian cells reveal significant reduction of HIF-1α and downstream hypoxia response transcripts under hypoxic conditions of 1% O2. Overall, these studies highlight activation of PHD2 as a new pathway to reprogram hypoxia responses and HIF signaling in cells.
Collapse
Affiliation(s)
- Peter Windsor
- Department of Chemistry University of Minnesota, Twin Cities Minneapolis, MN, 55455, United States
| | - Haiping Ouyang
- Department of Biochemistry and Molecular Biology University of Minnesota, Twin Cities Minneapolis, MN, 55455, United States
| | - Joseph A G da Costa
- Department of Chemistry University of Minnesota, Twin Cities Minneapolis, MN, 55455, United States
| | - Anoop Rama Damodaran
- Department of Chemistry University of Minnesota, Twin Cities Minneapolis, MN, 55455, United States
| | - Yue Chen
- Department of Biochemistry and Molecular Biology University of Minnesota, Twin Cities Minneapolis, MN, 55455, United States
| | - Ambika Bhagi-Damodaran
- Department of Chemistry University of Minnesota, Twin Cities Minneapolis, MN, 55455, United States
| |
Collapse
|
5
|
Fang N, Wu L, Duan S, Li J. The Structural and Molecular Mechanisms of Mycobacterium tuberculosis Translational Elongation Factor Proteins. Molecules 2024; 29:2058. [PMID: 38731549 PMCID: PMC11085428 DOI: 10.3390/molecules29092058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Targeting translation factor proteins holds promise for developing innovative anti-tuberculosis drugs. During protein translation, many factors cause ribosomes to stall at messenger RNA (mRNA). To maintain protein homeostasis, bacteria have evolved various ribosome rescue mechanisms, including the predominant trans-translation process, to release stalled ribosomes and remove aberrant mRNAs. The rescue systems require the participation of translation elongation factor proteins (EFs) and are essential for bacterial physiology and reproduction. However, they disappear during eukaryotic evolution, which makes the essential proteins and translation elongation factors promising antimicrobial drug targets. Here, we review the structural and molecular mechanisms of the translation elongation factors EF-Tu, EF-Ts, and EF-G, which play essential roles in the normal translation and ribosome rescue mechanisms of Mycobacterium tuberculosis (Mtb). We also briefly describe the structure-based, computer-assisted study of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Ning Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| | - Lingyun Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| | - Shuyan Duan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| |
Collapse
|
6
|
Fiorini G, Schofield CJ. Biochemistry of the hypoxia-inducible factor hydroxylases. Curr Opin Chem Biol 2024; 79:102428. [PMID: 38330792 DOI: 10.1016/j.cbpa.2024.102428] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
The hypoxia-inducible factors are α,β-heterodimeric transcription factors that mediate the chronic response to hypoxia in humans and other animals. Protein hydroxylases belonging to two different structural subfamilies of the Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase superfamily modify HIFα. HIFα prolyl-hydroxylation, as catalysed by the PHDs, regulates HIFα levels and, consequently, α,β-HIF levels. HIFα asparaginyl-hydroxylation, as catalysed by factor inhibiting HIF (FIH), regulates the transcriptional activity of α,β-HIF. The activities of the PHDs and FIH are regulated by O2 availability, enabling them to act as hypoxia sensors. We provide an overview of the biochemistry of the HIF hydroxylases, discussing evidence that their kinetic and structural properties may be tuned to their roles in the HIF system. Avenues for future research and therapeutic modulation are discussed.
Collapse
Affiliation(s)
- Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom.
| |
Collapse
|
7
|
Figg WD, Fiorini G, Chowdhury R, Nakashima Y, Tumber A, McDonough MA, Schofield CJ. Structural basis for binding of the renal carcinoma target hypoxia-inducible factor 2α to prolyl hydroxylase domain 2. Proteins 2023; 91:1510-1524. [PMID: 37449559 PMCID: PMC10952196 DOI: 10.1002/prot.26541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023]
Abstract
The hypoxia-inducible factor (HIF) prolyl-hydroxylases (human PHD1-3) catalyze prolyl hydroxylation in oxygen-dependent degradation (ODD) domains of HIFα isoforms, modifications that signal for HIFα proteasomal degradation in an oxygen-dependent manner. PHD inhibitors are used for treatment of anemia in kidney disease. Increased erythropoietin (EPO) in patients with familial/idiopathic erythrocytosis and pulmonary hypertension is associated with mutations in EGLN1 (PHD2) and EPAS1 (HIF2α); a drug inhibiting HIF2α activity is used for clear cell renal cell carcinoma (ccRCC) treatment. We report crystal structures of PHD2 complexed with the C-terminal HIF2α-ODD in the presence of its 2-oxoglutarate cosubstrate or N-oxalylglycine inhibitor. Combined with the reported PHD2.HIFα-ODD structures and biochemical studies, the results inform on the different PHD.HIFα-ODD binding modes and the potential effects of clinically observed mutations in HIFα and PHD2 genes. They may help enable new therapeutic avenues, including PHD isoform-selective inhibitors and sequestration of HIF2α by the PHDs for ccRCC treatment.
Collapse
Affiliation(s)
- William D. Figg
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
| | - Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
| | - Yu Nakashima
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
- Institute of Natural Medicine, University of ToyamaToyamaJapan
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
| | - Michael A. McDonough
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
| |
Collapse
|
8
|
Song B, Modjewski LD, Kapust N, Mizrahi I, Martin WF. The origin and distribution of the main oxygen sensing mechanism across metazoans. Front Physiol 2022; 13:977391. [PMID: 36324306 PMCID: PMC9618697 DOI: 10.3389/fphys.2022.977391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Oxygen sensing mechanisms are essential for metazoans, their origin and evolution in the context of oxygen in Earth history are of interest. To trace the evolution of a main oxygen sensing mechanism among metazoans, the hypoxia induced factor, HIF, we investigated the phylogenetic distribution and phylogeny of 11 of its components across 566 eukaryote genomes. The HIF based oxygen sensing machinery in eukaryotes can be traced as far back as 800 million years (Ma) ago, likely to the last metazoan common ancestor (LMCA), and arose at a time when the atmospheric oxygen content corresponded roughly to the Pasteur point, or roughly 1% of present atmospheric level (PAL). By the time of the Cambrian explosion (541–485 Ma) as oxygen levels started to approach those of the modern atmosphere, the HIF system with its key components HIF1α, HIF1β, PHD1, PHD4, FIH and VHL was well established across metazoan lineages. HIF1α is more widely distributed and therefore may have evolved earlier than HIF2α and HIF3α, and HIF1β and is more widely distributed than HIF2β in invertebrates. PHD1, PHD4, FIH, and VHL appear in all 13 metazoan phyla. The O2 consuming enzymes of the pathway, PHDs and FIH, have a lower substrate affinity, Km, for O2 than terminal oxidases in the mitochondrial respiratory chain, in line with their function as an environmental signal to switch to anaerobic energy metabolic pathways. The ancient HIF system has been conserved and widespread during the period when metazoans evolved and diversified together with O2 during Earth history.
Collapse
Affiliation(s)
- Bing Song
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Luca David Modjewski
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nils Kapust
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Be’er-Sheva, Israel
| | - William F. Martin
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- *Correspondence: William F. Martin,
| |
Collapse
|
9
|
Leissing TM, Hardy AP, Chan H, Wang Y, Tumber A, Chowdhury R, Feng T, Coleman ML, Cockman ME, Kramer HB, Berridge G, Fischer R, Kessler BM, Ratcliffe PJ, Lu X, Schofield CJ. Factor inhibiting HIF can catalyze two asparaginyl hydroxylations in VNVN motifs of ankyrin fold proteins. J Biol Chem 2022; 298:102020. [PMID: 35537551 PMCID: PMC9189129 DOI: 10.1016/j.jbc.2022.102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/28/2022] [Accepted: 04/15/2022] [Indexed: 10/28/2022] Open
Abstract
The aspariginyl hydroxylase human factor inhibiting hypoxia-inducible factor (FIH) is an important regulator of the transcriptional activity of hypoxia-inducible factor. FIH also catalyzes the hydroxylation of asparaginyl and other residues in ankyrin repeat domain-containing proteins, including apoptosis stimulating of p53 protein (ASPP) family members. ASPP2 is reported to undergo a single FIH-catalyzed hydroxylation at Asn-986. We report biochemical and crystallographic evidence showing that FIH catalyzes the unprecedented post-translational hydroxylation of both asparaginyl residues in "VNVN" and related motifs of ankyrin repeat domains in ASPPs (i.e., ASPP1, ASPP2, and iASPP) and the related ASB11 and p18-INK4C proteins. Our biochemical results extend the substrate scope of FIH catalysis and may have implications for its biological roles, including in the hypoxic response and ASPP family function.
Collapse
Affiliation(s)
- Thomas M Leissing
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Adam P Hardy
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Hokfung Chan
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Yihua Wang
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Tianshu Feng
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom; NDM Research Building, University of Oxford, Oxford, United Kingdom
| | - Mathew L Coleman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Matthew E Cockman
- The Francis Crick Institute, Ratcliffe Laboratory, London, United Kingdom
| | - Holger B Kramer
- MRC London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | | | - Roman Fischer
- NDM Research Building, University of Oxford, Oxford, United Kingdom
| | | | - Peter J Ratcliffe
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom; The Francis Crick Institute, Ratcliffe Laboratory, London, United Kingdom.
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
10
|
Kaur S, Tam NY, McDonough MA, Schofield CJ, Aik W. Mechanisms of substrate recognition and N6-methyladenosine demethylation revealed by crystal structures of ALKBH5-RNA complexes. Nucleic Acids Res 2022; 50:4148-4160. [PMID: 35333330 PMCID: PMC9023255 DOI: 10.1093/nar/gkac195] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 01/12/2023] Open
Abstract
AlkB homologue 5 (ALKBH5) is a ferrous iron and 2-oxoglutarate dependent oxygenase that demethylates RNA N6-methyladenosine (m6A), a post-transcriptional RNA modification with an emerging set of regulatory roles. Along with the fat mass and obesity-associated protein (FTO), ALKBH5 is one of only two identified human m6A RNA oxidizing enzymes and is a potential target for cancer treatment. Unlike FTO, ALKBH5 efficiently catalyzes fragmentation of its proposed nascent hemiaminal intermediate to give formaldehyde and a demethylated nucleoside. A detailed analysis of the molecular mechanisms used by ALKBH5 for substrate recognition and m6A demethylation is lacking. We report three crystal structures of ALKBH5 in complex with an m6A-ssRNA 8-mer substrate and supporting biochemical analyses. Strikingly, the single-stranded RNA substrate binds to the active site of ALKBH5 in a 5'-3' orientation that is opposite to single-stranded or double-stranded DNA substrates observed for other AlkB subfamily members, including single-stranded DNA bound to FTO. The combined structural and biochemical results provide insight into the preference of ALKBH5 for substrates containing a (A/G)m6AC consensus sequence motif. The results support a mechanism involving formation of an m6A hemiaminal intermediate, followed by efficient ALKBH5 catalyzed demethylation, enabled by a proton shuttle network involving Lys132 and Tyr139.
Collapse
Affiliation(s)
- Simranjeet Kaur
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Nok Yin Tam
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Michael A McDonough
- The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Christopher J Schofield
- The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Wei Shen Aik
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
11
|
Hammarlund EU, Flashman E, Mohlin S, Licausi F. Oxygen-sensing mechanisms across eukaryotic kingdoms and their roles in complex multicellularity. Science 2020; 370:370/6515/eaba3512. [PMID: 33093080 DOI: 10.1126/science.aba3512] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022]
Abstract
Oxygen-sensing mechanisms of eukaryotic multicellular organisms coordinate hypoxic cellular responses in a spatiotemporal manner. Although this capacity partly allows animals and plants to acutely adapt to oxygen deprivation, its functional and historical roots in hypoxia emphasize a broader evolutionary role. For multicellular life-forms that persist in settings with variable oxygen concentrations, the capacity to perceive and modulate responses in and between cells is pivotal. Animals and higher plants represent the most complex life-forms that ever diversified on Earth, and their oxygen-sensing mechanisms demonstrate convergent evolution from a functional perspective. Exploring oxygen-sensing mechanisms across eukaryotic kingdoms can inform us on biological innovations to harness ever-changing oxygen availability at the dawn of complex life and its utilization for their organismal development.
Collapse
Affiliation(s)
- Emma U Hammarlund
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Scheelevägen 8, 223 81 Lund, Sweden. .,Nordic Center for Earth Evolution, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
| | - Emily Flashman
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Sofie Mohlin
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Scheelevägen 8, 223 81 Lund, Sweden.,Division of Pediatrics, Department of Clinical Sciences, Lund University, 221 00 Lund, Sweden
| | - Francesco Licausi
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK. .,PlantLab, Institute of Life Sciences, Scuola Superiore, Sant'Anna, 56124 Pisa, Italy.,Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
12
|
Wrande M, Vestö K, Puiac Banesaru S, Anwar N, Nordfjell J, Liu L, McInerney GM, Rhen M. Replication of Salmonella enterica serovar Typhimurium in RAW264.7 Phagocytes Correlates With Hypoxia and Lack of iNOS Expression. Front Cell Infect Microbiol 2020; 10:537782. [PMID: 33330118 PMCID: PMC7734562 DOI: 10.3389/fcimb.2020.537782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Salmonella infection associates with tissue hypoxia, while inducible nitric oxide synthase (iNOS), relying for its activity on molecular oxygen, stands as a central host defence measure in murine salmonellosis. Here, we have detailed hypoxia and iNOS responses of murine macrophage-like RAW264.7 cells upon infection with Salmonella enterica serovar Typhimurium. We noted that only a proportion of the infected RAW264.7 cells became hypoxic or expressed iNOS. Heavily infected cells became hypoxic, while in parallel such cells tended not to express iNOS. While a proportion of the infected RAW264.7 cells revealed shutdown of protein synthesis, this was only detectable after 12 h post infection and after iNOS expression was induced in the cell culture. Our data implicate an intrinsic heterogeneity with regard to hypoxia and iNOS expression in a cell culture-based infection setting.
Collapse
Affiliation(s)
- Marie Wrande
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kim Vestö
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Speranta Puiac Banesaru
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Naeem Anwar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johan Nordfjell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lifeng Liu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
Liu T, Abboud MI, Chowdhury R, Tumber A, Hardy AP, Lippl K, Lohans CT, Pires E, Wickens J, McDonough MA, West CM, Schofield CJ. Biochemical and biophysical analyses of hypoxia sensing prolyl hydroxylases from Dictyostelium discoideum and Toxoplasma gondii. J Biol Chem 2020; 295:16545-16561. [PMID: 32934009 PMCID: PMC7864055 DOI: 10.1074/jbc.ra120.013998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/14/2020] [Indexed: 12/30/2022] Open
Abstract
In animals, the response to chronic hypoxia is mediated by prolyl hydroxylases (PHDs) that regulate the levels of hypoxia-inducible transcription factor α (HIFα). PHD homologues exist in other types of eukaryotes and prokaryotes where they act on non HIF substrates. To gain insight into the factors underlying different PHD substrates and properties, we carried out biochemical and biophysical studies on PHD homologues from the cellular slime mold, Dictyostelium discoideum, and the protozoan parasite, Toxoplasma gondii, both lacking HIF. The respective prolyl-hydroxylases (DdPhyA and TgPhyA) catalyze prolyl-hydroxylation of S-phase kinase-associated protein 1 (Skp1), a reaction enabling adaptation to different dioxygen availability. Assays with full-length Skp1 substrates reveal substantial differences in the kinetic properties of DdPhyA and TgPhyA, both with respect to each other and compared with human PHD2; consistent with cellular studies, TgPhyA is more active at low dioxygen concentrations than DdPhyA. TgSkp1 is a DdPhyA substrate and DdSkp1 is a TgPhyA substrate. No cross-reactivity was detected between DdPhyA/TgPhyA substrates and human PHD2. The human Skp1 E147P variant is a DdPhyA and TgPhyA substrate, suggesting some retention of ancestral interactions. Crystallographic analysis of DdPhyA enables comparisons with homologues from humans, Trichoplax adhaerens, and prokaryotes, informing on differences in mobile elements involved in substrate binding and catalysis. In DdPhyA, two mobile loops that enclose substrates in the PHDs are conserved, but the C-terminal helix of the PHDs is strikingly absent. The combined results support the proposal that PHD homologues have evolved kinetic and structural features suited to their specific sensing roles.
Collapse
Affiliation(s)
- Tongri Liu
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Martine I Abboud
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | | | - Anthony Tumber
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Adam P Hardy
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Kerstin Lippl
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | | | - Elisabete Pires
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - James Wickens
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | | | - Christopher M West
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
14
|
Mechanisms controlling bacterial infection in myeloid cells under hypoxic conditions. Cell Mol Life Sci 2020; 78:1887-1907. [PMID: 33125509 PMCID: PMC7966188 DOI: 10.1007/s00018-020-03684-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 09/08/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
Various factors of the tissue microenvironment such as the oxygen concentration influence the host-pathogen interaction. During the past decade, hypoxia-driven signaling via hypoxia-inducible factors (HIF) has emerged as an important factor that affects both the pathogen and the host. In this chapter, we will review the current knowledge of this complex interplay, with a particular emphasis given to the impact of hypoxia and HIF on the inflammatory and antimicrobial activity of myeloid cells, the bacterial responses to hypoxia and the containment of bacterial infections under oxygen-limited conditions. We will also summarize how low oxygen concentrations influence the metabolism of neutrophils, macrophages and dendritic cells. Finally, we will discuss the consequences of hypoxia and HIFα activation for the invading pathogen, with a focus on Pseudomonas aeruginosa, Mycobacterium tuberculosis, Coxiella burnetii, Salmonella enterica and Staphylococcus aureus. This includes a description of the mechanisms and microbial factors, which the pathogens use to sense and react to hypoxic conditions.
Collapse
|
15
|
Abstract
Fluorochemicals are a widely distributed class of compounds and have been utilized across a wide range of industries for decades. Given the environmental toxicity and adverse health threats of some fluorochemicals, the development of new methods for their decomposition is significant to public health. However, the carbon-fluorine (C-F) bond is among the most chemically robust bonds; consequently, the degradation of fluorinated hydrocarbons is exceptionally difficult. Here, metalloenzymes that catalyze the cleavage of this chemically challenging bond are reviewed. These enzymes include histidine-ligated heme-dependent dehaloperoxidase and tyrosine hydroxylase, thiolate-ligated heme-dependent cytochrome P450, and four nonheme oxygenases, namely, tetrahydrobiopterin-dependent aromatic amino acid hydroxylase, 2-oxoglutarate-dependent hydroxylase, Rieske dioxygenase, and thiol dioxygenase. While much of the literature regarding the aforementioned enzymes highlights their ability to catalyze C-H bond activation and functionalization, in many cases, the C-F bond cleavage has been shown to occur on fluorinated substrates. A copper-dependent laccase-mediated system representing an unnatural radical defluorination approach is also described. Detailed discussions on the structure-function relationships and catalytic mechanisms provide insights into biocatalytic defluorination, which may inspire drug design considerations and environmental remediation of halogenated contaminants.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA.
| | | |
Collapse
|
16
|
Legendre F, MacLean A, Appanna VP, Appanna VD. Biochemical pathways to α-ketoglutarate, a multi-faceted metabolite. World J Microbiol Biotechnol 2020; 36:123. [PMID: 32686016 DOI: 10.1007/s11274-020-02900-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 11/26/2022]
Abstract
α-Ketoglutarate (AKG) also known as 2-oxoglutarate is an essential metabolite in virtually all organisms as it participates in a variety of biological processes including anti-oxidative defence, energy production, signalling modules, and genetic modification. This keto-acid also possesses immense commercial value as it is utilized as a nutritional supplement, a therapeutic agent, and a precursor to a variety of value-added products such as ethylene and heterocyclic compounds. Hence, the generation of KG in a sustainable and environmentally-neutral manner is a major ongoing research endeavour. In this mini-review, the enzymatic systems and the metabolic networks mediating the synthesis of AKG will be described. The importance of such enzymes as isocitrate dehydrogenase (ICDH), glutamate dehydrogenase (GDH), succinate semialdehyde dehydrogenase (SSADH) and transaminases that directly contribute to the formation of KG will be emphasized. The efficacy of microbial systems in providing an effective platform to generate this moiety and the molecular strategies involving genetic manipulation, abiotic stress and nutrient supplementation that result in the optimal production of AKG will be evaluated. Microbial systems and their components acting via the metabolic networks and the resident enzymes are well poised to provide effective biotechnological tools that can supply renewable AKG globally.
Collapse
Affiliation(s)
- F Legendre
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - A MacLean
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - V P Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - V D Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
17
|
Abstract
Oxygen is essential for many organisms who have therefore evolved mechanisms to enable survival during hypoxia. A new study describes how a well-known bacterial surfactant, called surfactin, facilitates bacterial viability when oxygen becomes limiting by reducing oxygen consumption.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
18
|
Domene C, Jorgensen C, Schofield CJ. Mechanism of Molecular Oxygen Diffusion in a Hypoxia-Sensing Prolyl Hydroxylase Using Multiscale Simulation. J Am Chem Soc 2020; 142:2253-2263. [DOI: 10.1021/jacs.9b09236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carmen Domene
- Chemistry Research Laboratory, Mansfield Road, University of Oxford, Oxford OX1 3TA, United Kingdom
- Department of Chemistry, Britannia House, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
- Department of Chemistry, University of Bath, Claverton Down Bath BA2 7AY, United Kingdom
| | - Christian Jorgensen
- Department of Chemistry, Britannia House, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Mansfield Road, University of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
19
|
Onisko BC. The Hydroxyproline Proteome of HeLa Cells with Emphasis on the Active Sites of Protein Disulfide Isomerases. J Proteome Res 2020; 19:756-768. [DOI: 10.1021/acs.jproteome.9b00625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Schaible B, Crifo B, Schaffer K, Taylor CT. The putative bacterial oxygen sensor Pseudomonas prolyl hydroxylase (PPHD) suppresses antibiotic resistance and pathogenicity in Pseudomonas aeruginosa. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49879-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
21
|
Schaible B, Crifo B, Schaffer K, Taylor CT. The putative bacterial oxygen sensor Pseudomonas prolyl hydroxylase (PPHD) suppresses antibiotic resistance and pathogenicity in Pseudomonas aeruginosa. J Biol Chem 2019; 295:1195-1201. [PMID: 31826919 DOI: 10.1074/jbc.ra119.010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/01/2019] [Indexed: 01/27/2023] Open
Abstract
Pseudomonas aeruginosa is an extracellular opportunistic bacterial pathogen commonly associated with infectious complications in susceptible individuals, such as those with underlying diseases including HIV/AIDS and cystic fibrosis. Antibiotic resistance in multiple strains of P. aeruginosa is a rapidly developing clinical problem. We have previously demonstrated that the oxygen levels at the site of P. aeruginosa infection can strongly influence virulence and antibiotic resistance in this pathogen, although the oxygen-sensing and -signaling mechanisms underpinning this response have remained unknown. In this study, we investigated the potential role of the putative oxygen sensor Pseudomonas prolyl hydroxylase (PPHD) in the control of virulence and antibiotic resistance in P. aeruginosa We found that a P. aeruginosa strain lacking PPHD (PAO310) exhibits increased virulence associated with increased bacterial motility. Furthermore, PPHD-deficient P. aeruginosa displayed enhanced antibiotic resistance against tetracycline through increased expression of the xenobiotic transporters mexEF-oprN and MexXY. Of note, the effect of the PPHD knockout on antibiotic resistance was phenocopied in bacteria exposed to atmospheric hypoxia. We conclude that PPHD is a putative bacterial oxygen sensor that may link microenvironmental oxygen levels to virulence and antibiotic resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Bettina Schaible
- Conway Institute, Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Bianca Crifo
- Conway Institute, Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kirsten Schaffer
- Department of Clinical Microbiology, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Cormac T Taylor
- Conway Institute, Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
22
|
Smart TJ, Hamed RB, Claridge TDW, Schofield CJ. Studies on the selectivity of proline hydroxylases reveal new substrates including bicycles. Bioorg Chem 2019; 94:103386. [PMID: 31706681 PMCID: PMC6958525 DOI: 10.1016/j.bioorg.2019.103386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 11/25/2022]
Abstract
Studies on proline hydroxylase selectivity reveals new products. Proline hydroxylases can produce dihydroxylated 5-, 6-, and 7-membered ring products. Proline hydroxylases can accept bicyclic substrates. Bicyclic products arise via bifurcation: two C-H bonds are accessible to the reactive oxidising species. The results have implications for other oxygenases, including those catalysing protein modifications. The results highlight the potential for amino acid hydroxylases in biocatalysis.
Studies on the substrate selectivity of recombinant ferrous-iron- and 2-oxoglutarate-dependent proline hydroxylases (PHs) reveal that they can catalyse the production of dihydroxylated 5-, 6-, and 7-membered ring products, and can accept bicyclic substrates. Ring-substituted substrate analogues (such hydroxylated and fluorinated prolines) are accepted in some cases. The results highlight the considerable, as yet largely untapped, potential for amino acid hydroxylases and other 2OG oxygenases in biocatalysis.
Collapse
Affiliation(s)
- Tristan J Smart
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Refaat B Hamed
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom; School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom
| | - Timothy D W Claridge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
23
|
Cockman ME, Lippl K, Tian YM, Pegg HB, Figg WD, Abboud MI, Heilig R, Fischer R, Myllyharju J, Schofield CJ, Ratcliffe PJ. Lack of activity of recombinant HIF prolyl hydroxylases (PHDs) on reported non-HIF substrates. eLife 2019; 8:e46490. [PMID: 31500697 PMCID: PMC6739866 DOI: 10.7554/elife.46490] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Human and other animal cells deploy three closely related dioxygenases (PHD 1, 2 and 3) to signal oxygen levels by catalysing oxygen regulated prolyl hydroxylation of the transcription factor HIF. The discovery of the HIF prolyl-hydroxylase (PHD) enzymes as oxygen sensors raises a key question as to the existence and nature of non-HIF substrates, potentially transducing other biological responses to hypoxia. Over 20 such substrates are reported. We therefore sought to characterise their reactivity with recombinant PHD enzymes. Unexpectedly, we did not detect prolyl-hydroxylase activity on any reported non-HIF protein or peptide, using conditions supporting robust HIF-α hydroxylation. We cannot exclude PHD-catalysed prolyl hydroxylation occurring under conditions other than those we have examined. However, our findings using recombinant enzymes provide no support for the wide range of non-HIF PHD substrates that have been reported.
Collapse
Affiliation(s)
| | - Kerstin Lippl
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Ya-Min Tian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | | | - William D Figg
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Martine I Abboud
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Raphael Heilig
- Target Discovery Institute, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Peter J Ratcliffe
- The Francis Crick InstituteLondonUnited Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
24
|
Langley GW, Abboud MI, Lohans CT, Schofield CJ. Inhibition of a viral prolyl hydroxylase. Bioorg Med Chem 2019; 27:2405-2412. [PMID: 30737136 DOI: 10.1016/j.bmc.2019.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 12/20/2022]
Abstract
The hydroxylation of prolyl-residues in eukaryotes is important in collagen biosynthesis and in hypoxic signalling. The hypoxia inducible factor (HIF) prolyl hydroxylases (PHDs) are drug targets for the treatment of anaemia, while the procollagen prolyl hydroxylases and other 2-oxoglutarate dependent oxygenases are potential therapeutic targets for treatment of cancer, fibrotic disease, and infection. We describe assay development and inhibition studies for a procollagen prolyl hydroxylase from Paramecium bursaria chlorella virus 1 (vCPH). The results reveal HIF PHD inhibitors in clinical trials also inhibit vCPH. Implications for the targeting of the human PHDs and microbial prolyl hydroxylases are discussed.
Collapse
Affiliation(s)
- Gareth W Langley
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Martine I Abboud
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher T Lohans
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
25
|
Florimond C, Cordonnier C, Taujale R, van der Wel H, Kannan N, West CM, Blader IJ. A Toxoplasma Prolyl Hydroxylase Mediates Oxygen Stress Responses by Regulating Translation Elongation. mBio 2019; 10:e00234-19. [PMID: 30914506 PMCID: PMC6437050 DOI: 10.1128/mbio.00234-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 02/08/2019] [Indexed: 02/08/2023] Open
Abstract
As the protozoan parasite Toxoplasma gondii disseminates through its host, it responds to environmental changes by altering its gene expression, metabolism, and other processes. Oxygen is one variable environmental factor, and properly adapting to changes in oxygen levels is critical to prevent the accumulation of reactive oxygen species and other cytotoxic factors. Thus, oxygen-sensing proteins are important, and among these, 2-oxoglutarate-dependent prolyl hydroxylases are highly conserved throughout evolution. Toxoplasma expresses two such enzymes, TgPHYa, which regulates the SCF-ubiquitin ligase complex, and TgPHYb. To characterize TgPHYb, we created a Toxoplasma strain that conditionally expresses TgPHYb and report that TgPHYb is required for optimal parasite growth under normal growth conditions. However, exposing TgPHYb-depleted parasites to extracellular stress leads to severe decreases in parasite invasion, which is likely due to decreased abundance of parasite adhesins. Adhesin protein abundance is reduced in TgPHYb-depleted parasites as a result of inactivation of the protein synthesis elongation factor eEF2 that is accompanied by decreased rates of translational elongation. In contrast to most other oxygen-sensing proteins that mediate cellular responses to low O2, TgPHYb is specifically required for parasite growth and protein synthesis at high, but not low, O2 tensions as well as resistance to reactive oxygen species. In vivo, reduced TgPHYb expression leads to lower parasite burdens in oxygen-rich tissues. Taken together, these data identify TgPHYb as a sensor of high O2 levels, in contrast to TgPHYa, which supports the parasite at low O2IMPORTANCE Because oxygen plays a key role in the growth of many organisms, cells must know how much oxygen is available. O2-sensing proteins are therefore critical cellular factors, and prolyl hydroxylases are the best-studied type of O2-sensing proteins. In general, prolyl hydroxylases trigger cellular responses to decreased oxygen availability. But, how does a cell react to high levels of oxygen? Using the protozoan parasite Toxoplasma gondii, we discovered a prolyl hydroxylase that allows the parasite to grow at elevated oxygen levels and does so by regulating protein synthesis. Loss of this enzyme also reduces parasite burden in oxygen-rich tissues, indicating that sensing both high and low levels of oxygen impacts the growth and physiology of Toxoplasma.
Collapse
Affiliation(s)
- Celia Florimond
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Charlotte Cordonnier
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Rahil Taujale
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Hanke van der Wel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Christopher M West
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Ira J Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| |
Collapse
|
26
|
Hydroxylation of protein constituents of the human translation system: structural aspects and functional assignments. Future Med Chem 2019; 11:357-369. [PMID: 30802140 DOI: 10.4155/fmc-2018-0317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the current decade, data on the post-translational hydroxylation of specific amino acid residues of some ribosomal proteins and translation factors in both eukaryotes and eubacteria have accumulated. The reaction is catalyzed by dedicated oxygenases (so-called ribosomal oxygenases), whose action is impaired under hypoxia conditions. The modification occurs at amino acid residues directly involved in the formation of the main functional sites of ribosomes and factors. This review summarizes currently available data on the specific hydroxylation of protein constituents of eukaryotic and eubacterial translation systems with a special emphasis on the human system, as well as on the links between hypoxia impacts on the operation of ribosomal oxygenases, the functioning of the translational apparatus and human health problems.
Collapse
|
27
|
Yang J, Hong J, Luo L, Liu K, Meng C, Ji ZL, Lin D. Biophysical characterization and ligand-binding properties of the elongation factor Tu from Mycobacterium tuberculosis. Acta Biochim Biophys Sin (Shanghai) 2019; 51:139-149. [PMID: 30615070 DOI: 10.1093/abbs/gmy164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the key devastating bacterial pathogen responsible for tuberculosis. Increasing emergence of multi-drug-resistant, extensively drug-resistant, and rifampicin/isoniazid-resistant strains of Mtb makes the discovery of validated drug targets an urgent priority. As a vital translational component of the protein biosynthesis system, elongation factor Tu (EF-Tu) is an important molecular switch responsible for selection and binding of the cognate aminoacyl-tRNA to the acceptor site on the ribosome. In addition, EF-Tu from Mtb (MtbEF-Tu) is involved in the initial step of trans-translation which is an effective system for rescuing the stalled ribosomes from non-stop translation complexes under stress conditions. Given its crucial role in protein biosynthesis, EF-Tu is identified as an excellent molecular target for drug design. Here, we reported the recombinant expression, purification, biophysical characterization, and structural modeling of the MtbEF-Tu protein. Our results demonstrated that prokaryotic expression plasmids of pET28a-MtbEF-Tu could be expressed efficiently in Escherichia coli. We successfully purified the 6× His-tagged proteins with a yield of 16.8 mg from 1 l of Luria Bertani medium. Dynamic light scattering experiments showed that MtbEF-Tu existed in a monomeric form, and circular dichroism experiments indicated that MtbEF-Tu was well structured. Moreover, isothermal titration calorimetry experiments displayed that the purified MtbEF-Tu protein possessed intermediate binding affinities for guanosine-5'-triphosphate (GTP) and GDP. The GTP/GDP-binding sites were predicted by flexible molecular docking approach which reveals that GTP/GDP binds to MtbEF-Tu mainly through hydrogen bonds. Our work lays the essential basis for further structural and functional studies of MtbEF-Tu as well as MtbEF-Tu-related novel drug developments.
Collapse
Affiliation(s)
- Juanjuan Yang
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, China
| | - Jing Hong
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, China
| | - Ling Luo
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, China
| | - Ke Liu
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chun Meng
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, China
| | - Zhi-liang Ji
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Donghai Lin
- High-Field NMR Center, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
28
|
|
29
|
Song W, Yang C, Zhu C, Morris PF, Zhang X. Crystal structure and expression patterns of prolyl 4-hydroxylases from Phytophthora capsici. Biochem Biophys Res Commun 2018; 508:1011-1017. [PMID: 30551874 DOI: 10.1016/j.bbrc.2018.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 11/19/2022]
Abstract
Prolyl 4-hydroxylases (P4Hs) are members of the Fe2+ and 2-oxoglutarate- dependent oxygenases family, which play central roles in the collagen stabilization, hypoxia sensing, and translational regulation in eukaryotes. Thus far, nothing is known about the role of P4Hs in development and pathogenesis in oomycetes. Here we show that the Phytophthora capsici genome contains five putative prolyl 4-hydroxylases. In mycelia, all P4Hs were downregulated in response to hypoxia, but the expression of PcP4H1 was most affected. Strikingly, Pc4H1 was upregulated more than 110 fold at the onset of infection, and Pc4H5 was upregulated seven fold, while the expression of other P4H's were unchanged. Similar to well-characterized P4H proteins, the crystallographic structure of PcP4H1 contains a highly conserved double-stranded β-helix core fold and catalytic residues. However, the binding affinity of 2-oxoglutarate to PcP4H1 is very low. The extended C-terminal α-helix bundle and longer β2-β3 disordered substrate binding loop may help in confirming the peptide target of this enzyme.
Collapse
Affiliation(s)
- Weiwei Song
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
| | - Cancan Yang
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
| | - Chunyuan Zhu
- College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Paul F Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Xiuguo Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
30
|
Walport LJ, Schofield CJ. Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis. CHEM REC 2018; 18:1760-1781. [PMID: 30151867 DOI: 10.1002/tcr.201800056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022]
Abstract
The 2-oxoglutarate (2OG) dependent oxygenases were first identified as having roles in the post-translational modification of procollagen in animals. Subsequently in plants and microbes, they were shown to have roles in the biosynthesis of many secondary metabolites, including signalling molecules and the penicillin/cephalosporin antibiotics. Crystallographic studies of microbial 2OG oxygenases and related enzymes, coupled to DNA sequence analyses, led to the prediction that 2OG oxygenases are widely distributed in aerobic biology. This personal account begins with examples of the roles of 2OG oxygenases in antibiotic biosynthesis, and then describes efforts to assign functions to other predicted 2OG oxygenases. In humans, 2OG oxygenases have been found to have roles in small molecule metabolism, as well as in the epigenetic regulation of protein and nucleic acid biosynthesis and function. The roles and functions of human 2OG oxygenases are compared, focussing on discussion of their substrate and product selectivities. The account aims to emphasize how scoping the substrate selectivity of, sometimes promiscuous, enzymes can provide insights into their functions and so enable therapeutic work.
Collapse
Affiliation(s)
- Louise J Walport
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
31
|
Lippl K, Boleininger A, McDonough MA, Abboud MI, Tarhonskaya H, Chowdhury R, Loenarz C, Schofield CJ. Born to sense: biophysical analyses of the oxygen sensing prolyl hydroxylase from the simplest animal Trichoplax adhaerens. HYPOXIA 2018; 6:57-71. [PMID: 30519597 PMCID: PMC6235002 DOI: 10.2147/hp.s174655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background In humans and other animals, the chronic hypoxic response is mediated by hypoxia inducible transcription factors (HIFs) which regulate the expression of genes that counteract the effects of limiting oxygen. Prolyl hydroxylases (PHDs) act as hypoxia sensors for the HIF system in organisms ranging from humans to the simplest animal Trichoplax adhaerens. Methods We report structural and biochemical studies on the T. adhaerens HIF prolyl hydroxylase (TaPHD) that inform about the evolution of hypoxia sensing in animals. Results High resolution crystal structures (≤1.3 Å) of TaPHD, with and without its HIFα substrate, reveal remarkable conservation of key active site elements between T. adhaerens and human PHDs, which also manifest in kinetic comparisons. Conclusion Conserved structural features of TaPHD and human PHDs include those apparently enabling the slow binding/reaction of oxygen with the active site Fe(II), the formation of a stable 2-oxoglutarate complex, and a stereoelectronically promoted change in conformation of the hydroxylated proline-residue. Comparison of substrate selectivity between the human PHDs and TaPHD provides insights into the selectivity determinants of HIF binding by the PHDs, and into the evolution of the multiple HIFs and PHDs present in higher animals.
Collapse
Affiliation(s)
- Kerstin Lippl
- Chemistry Research Laboratory, University of Oxford, Oxford, UK,
| | - Anna Boleininger
- Chemistry Research Laboratory, University of Oxford, Oxford, UK,
| | | | - Martine I Abboud
- Chemistry Research Laboratory, University of Oxford, Oxford, UK,
| | | | | | | | | |
Collapse
|
32
|
Barth C, Weiss MC, Roettger M, Martin WF, Unden G. Origin and phylogenetic relationships of [4Fe-4S]-containing O 2 sensors of bacteria. Environ Microbiol 2018; 20:4567-4586. [PMID: 30225854 DOI: 10.1111/1462-2920.14411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/10/2018] [Indexed: 11/28/2022]
Abstract
The advent of environmental O2 about 2.5 billion years ago forced microbes to metabolically adapt and to develop mechanisms for O2 sensing. Sensing of O2 by [4Fe-4S]2+ to [2Fe-2S]2+ cluster conversion represents an ancient mechanism that is used by FNREc (Escherichia coli), FNRBs (Bacillus subtilis), NreBSa (Staphylococcus aureus) and WhiB3Mt (Mycobacterium tuberculosis). The phylogenetic relationship of these sensors was investigated. FNREc homologues are restricted to the proteobacteria and a few representatives from other phyla. Homologues of FNRBs and NreBSa are located within the bacilli, of WhiB3 within the actinobacteria. Archaea contain no homologues. The data reveal no similarity between the FNREc , FNRBs , NreBSa and WhiB3 sensor families on the sequence and structural levels. These O2 sensor families arose independently in phyla that were already present at the time O2 appeared, their members were subsequently distributed by lateral gene transfer. The chemistry of [4Fe-4S] and [2Fe-2S] cluster formation and interconversion appears to be shared by the sensor protein families. The type of signal output is, however, family specific. The homologues of FNREc and NreBSa vary with regard to the number of Cys residues that coordinate the cluster. It is suggested that the variants derive from lateral gene transfer and gained other functions.
Collapse
Affiliation(s)
- C Barth
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - M C Weiss
- Institute for Molecular Evolution, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - M Roettger
- Institute for Molecular Evolution, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - W F Martin
- Institute for Molecular Evolution, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - G Unden
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
33
|
Markolovic S, Zhuang Q, Wilkins SE, Eaton CD, Abboud MI, Katz MJ, McNeil HE, Leśniak RK, Hall C, Struwe WB, Konietzny R, Davis S, Yang M, Ge W, Benesch JLP, Kessler BM, Ratcliffe PJ, Cockman ME, Fischer R, Wappner P, Chowdhury R, Coleman ML, Schofield CJ. The Jumonji-C oxygenase JMJD7 catalyzes (3S)-lysyl hydroxylation of TRAFAC GTPases. Nat Chem Biol 2018; 14:688-695. [PMID: 29915238 PMCID: PMC6027965 DOI: 10.1038/s41589-018-0071-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/03/2018] [Indexed: 11/14/2022]
Abstract
Biochemical, structural and cellular studies reveal Jumonji-C (JmjC) domain-containing 7 (JMJD7) to be a 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes (3S)-lysyl hydroxylation. Crystallographic analyses reveal JMJD7 to be more closely related to the JmjC hydroxylases than to the JmjC demethylases. Biophysical and mutation studies show that JMJD7 has a unique dimerization mode, with interactions between monomers involving both N- and C-terminal regions and disulfide bond formation. A proteomic approach identifies two related members of the translation factor (TRAFAC) family of GTPases, developmentally regulated GTP-binding proteins 1 and 2 (DRG1/2), as activity-dependent JMJD7 interactors. Mass spectrometric analyses demonstrate that JMJD7 catalyzes Fe(II)- and 2OG-dependent hydroxylation of a highly conserved lysine residue in DRG1/2; amino-acid analyses reveal that JMJD7 catalyzes (3S)-lysyl hydroxylation. The functional assignment of JMJD7 will enable future studies to define the role of DRG hydroxylation in cell growth and disease.
Collapse
Affiliation(s)
- Suzana Markolovic
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Qinqin Zhuang
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Sarah E Wilkins
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Charlotte D Eaton
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Martine I Abboud
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Helen E McNeil
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Robert K Leśniak
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Charlotte Hall
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Weston B Struwe
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Simon Davis
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Ming Yang
- Target Discovery Institute, University of Oxford, Oxford, UK
- The Francis Crick Institute, London, UK
| | - Wei Ge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Justin L P Benesch
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Peter J Ratcliffe
- Target Discovery Institute, University of Oxford, Oxford, UK
- The Francis Crick Institute, London, UK
| | - Matthew E Cockman
- Target Discovery Institute, University of Oxford, Oxford, UK
- The Francis Crick Institute, London, UK
| | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford, UK
| | | | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Clark Center, Stanford, CA, USA.
| | - Mathew L Coleman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | | |
Collapse
|
34
|
Huang YY, Martínez-del Campo A, Balskus EP. Anaerobic 4-hydroxyproline utilization: Discovery of a new glycyl radical enzyme in the human gut microbiome uncovers a widespread microbial metabolic activity. Gut Microbes 2018; 9:437-451. [PMID: 29405826 PMCID: PMC6219649 DOI: 10.1080/19490976.2018.1435244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The discovery of enzymes responsible for previously unappreciated microbial metabolic pathways furthers our understanding of host-microbe and microbe-microbe interactions. We recently identified and characterized a new gut microbial glycyl radical enzyme (GRE) responsible for anaerobic metabolism of trans-4-hydroxy-l-proline (Hyp). Hyp dehydratase (HypD) catalyzes the removal of water from Hyp to generate Δ1-pyrroline-5-carboxylate (P5C). This enzyme is encoded in the genomes of a diverse set of gut anaerobes and is prevalent and abundant in healthy human stool metagenomes. Here, we discuss the roles HypD may play in different microbial metabolic pathways as well as the potential implications of this activity for colonization resistance and pathogenesis within the human gut. Finally, we present evidence of anaerobic Hyp metabolism in sediments through enrichment culturing of Hyp-degrading bacteria, highlighting the wide distribution of this pathway in anoxic environments beyond the human gut.
Collapse
Affiliation(s)
- Yolanda Y. Huang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA,CONTACT Emily P. Balskus Commense Inc., 100 Edwin H. Land Blvd, Cambridge, MA 02142
| |
Collapse
|
35
|
Herr CQ, Hausinger RP. Amazing Diversity in Biochemical Roles of Fe(II)/2-Oxoglutarate Oxygenases. Trends Biochem Sci 2018; 43:517-532. [PMID: 29709390 DOI: 10.1016/j.tibs.2018.04.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/21/2018] [Accepted: 04/01/2018] [Indexed: 12/13/2022]
Abstract
Since their discovery in the 1960s, the family of Fe(II)/2-oxoglutarate-dependent oxygenases has undergone a tremendous expansion to include enzymes catalyzing a vast diversity of biologically important reactions. Recent examples highlight roles in controlling chromatin modification, transcription, mRNA demethylation, and mRNA splicing. Others generate modifications in tRNA, translation factors, ribosomes, and other proteins. Thus, oxygenases affect all components of molecular biology's central dogma, in which information flows from DNA to RNA to proteins. These enzymes also function in biosynthesis and catabolism of cellular metabolites, including antibiotics and signaling molecules. Due to their critical importance, ongoing efforts have targeted family members for the development of specific therapeutics. This review provides a general overview of recently characterized oxygenase reactions and their key biological roles.
Collapse
Affiliation(s)
- Caitlyn Q Herr
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert P Hausinger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
36
|
Talavera A, Hendrix J, Versées W, Jurėnas D, Van Nerom K, Vandenberk N, Singh RK, Konijnenberg A, De Gieter S, Castro-Roa D, Barth A, De Greve H, Sobott F, Hofkens J, Zenkin N, Loris R, Garcia-Pino A. Phosphorylation decelerates conformational dynamics in bacterial translation elongation factors. SCIENCE ADVANCES 2018; 4:eaap9714. [PMID: 29546243 PMCID: PMC5851678 DOI: 10.1126/sciadv.aap9714] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Bacterial protein synthesis is intricately connected to metabolic rate. One of the ways in which bacteria respond to environmental stress is through posttranslational modifications of translation factors. Translation elongation factor Tu (EF-Tu) is methylated and phosphorylated in response to nutrient starvation upon entering stationary phase, and its phosphorylation is a crucial step in the pathway toward sporulation. We analyze how phosphorylation leads to inactivation of Escherichia coli EF-Tu. We provide structural and biophysical evidence that phosphorylation of EF-Tu at T382 acts as an efficient switch that turns off protein synthesis by decoupling nucleotide binding from the EF-Tu conformational cycle. Direct modifications of the EF-Tu switch I region or modifications in other regions stabilizing the β-hairpin state of switch I result in an effective allosteric trap that restricts the normal dynamics of EF-Tu and enables the evasion of the control exerted by nucleotides on G proteins. These results highlight stabilization of a phosphorylation-induced conformational trap as an essential mechanism for phosphoregulation of bacterial translation and metabolism. We propose that this mechanism may lead to the multisite phosphorylation state observed during dormancy and stationary phase.
Collapse
Affiliation(s)
- Ariel Talavera
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
| | - Jelle Hendrix
- Molecular Imaging and Photonics, University of Leuven, B-3001 Leuven, Belgium
- Biomedical Research Institute, Hasselt University, B-3590 Hasselt, Belgium
| | - Wim Versées
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
| | - Dukas Jurėnas
- Cellular and Molecular Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Katleen Van Nerom
- Cellular and Molecular Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Niels Vandenberk
- Molecular Imaging and Photonics, University of Leuven, B-3001 Leuven, Belgium
| | - Ranjan Kumar Singh
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
| | - Albert Konijnenberg
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
| | - Steven De Gieter
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
| | - Daniel Castro-Roa
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Anders Barth
- Fluorescence Applications in Biology Laboratory, Department of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Henri De Greve
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Johan Hofkens
- Molecular Imaging and Photonics, University of Leuven, B-3001 Leuven, Belgium
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Remy Loris
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
37
|
Abstract
2-Oxoglutarate (2OG)-dependent oxygenases (2OGXs) catalyze a remarkably diverse range of oxidative reactions. In animals, these comprise hydroxylations and N-demethylations proceeding via hydroxylation; in plants and microbes, they catalyze a wider range including ring formations, rearrangements, desaturations, and halogenations. The catalytic flexibility of 2OGXs is reflected in their biological functions. After pioneering work identified the roles of 2OGXs in collagen biosynthesis, research revealed they also function in plant and animal development, transcriptional regulation, nucleic acid modification/repair, fatty acid metabolism, and secondary metabolite biosynthesis, including of medicinally important antibiotics. In plants, 2OGXs are important agrochemical targets and catalyze herbicide degradation. Human 2OGXs, particularly those regulating transcription, are current therapeutic targets for anemia and cancer. Here, we give an overview of the biochemistry of 2OGXs, providing examples linking to biological function, and outline how knowledge of their enzymology is being exploited in medicine, agrochemistry, and biocatalysis.
Collapse
Affiliation(s)
- Md Saiful Islam
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Thomas M Leissing
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Rasheduzzaman Chowdhury
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Richard J Hopkinson
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom; .,Current affiliation for Richard J. Hopkinson: Leicester Institute of Structural and Chemical Biology and Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom;
| | - Christopher J Schofield
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| |
Collapse
|
38
|
Abstract
The biology of sponges provides clues about how early animals may have dealt with low levels of oxygen.
Collapse
Affiliation(s)
- Kalle T Rytkönen
- Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland
| |
Collapse
|
39
|
Dickinson RS, Murphy F, Doherty C, Williams S, Mirchandani A, Willson J, Scotti JS, Preston G, Schofield CJ, Whyte MK, Walmsley SR. Pseudomonas expression of an oxygen sensing prolyl hydroxylase homologue regulates neutrophil host responses in vitro and in vivo. Wellcome Open Res 2017; 2:104. [PMID: 29387803 PMCID: PMC5701443 DOI: 10.12688/wellcomeopenres.12871.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2017] [Indexed: 12/13/2022] Open
Abstract
Background: Pseudomonas species are adapted to evade innate immune responses and can persist at sites of relative tissue hypoxia, including the mucus-plugged airways of patients with cystic fibrosis and bronchiectasis. The ability of these bacteria to directly sense and respond to changes in local oxygen availability is in part consequent upon expression of the 2-oxoglutarate oxygenase, Pseudomonas prolyl hydroxylase (PPHD), which acts on elongation factor Tu (EF-Tu), and is homologous with the human hypoxia inducible factor (HIF) prolyl hydroxylases. We report that PPHD expression regulates the neutrophil response to acute pseudomonal infection. Methods:In vitro co-culture experiments were performed with human neutrophils and PPHD-deficient and wild-type bacteria and supernatants, with viable neutrophil counts determined by flow cytometry. In vivo consequences of infection with PPHD deficient P. aeruginosa were determined in an acute pneumonia mouse model following intra-tracheal challenge. Results: Supernatants of PPHD-deficient bacterial cultures contained higher concentrations of the phenazine exotoxin pyocyanin and induced greater acceleration of neutrophil apoptosis than wild-type PAO1 supernatants in vitro. In vivo infection with PPHD mutants compared to wild-type PAO1 controls resulted in increased levels of neutrophil apoptosis and impaired control of infection, with higher numbers of P. aeruginosa recovered from the lungs of mice infected with the PPHD-deficient strain. This resulted in an overall increase in mortality in mice infected with the PPHD-deficient strain. Conclusions: Our data show that Pseudomonas expression of its prolyl hydroxylase influences the outcome of host-pathogen interactions in vitro and in vivo, demonstrating the importance of considering how both host and pathogen adaptations to hypoxia together define outcomes of infection. Given that inhibitors for the HIF prolyl hydroxylases are in late stage trials for the treatment of anaemia and that the active sites of PPHD and human HIF prolyl hydroxylases are closely related, the results are of current clinical interest.
Collapse
Affiliation(s)
- Rebecca S. Dickinson
- MRC/University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Fiona Murphy
- MRC/University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Catherine Doherty
- MRC/University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Sam Williams
- MRC/University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Ananda Mirchandani
- MRC/University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Joseph Willson
- MRC/University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - John S. Scotti
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Gail Preston
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Moira K.B. Whyte
- MRC/University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Sarah R. Walmsley
- MRC/University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
40
|
Schnicker NJ, Razzaghi M, Guha Thakurta S, Chakravarthy S, Dey M. Bacillus anthracis Prolyl 4-Hydroxylase Interacts with and Modifies Elongation Factor Tu. Biochemistry 2017; 56:5771-5785. [PMID: 28981257 DOI: 10.1021/acs.biochem.7b00601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prolyl hydroxylation is a very common post-translational modification and plays many roles in eukaryotes such as collagen stabilization, hypoxia sensing, and controlling protein transcription and translation. There is a growing body of evidence that suggests that prokaryotes contain prolyl 4-hydroxylases (P4Hs) homologous to the hypoxia-inducible factor (HIF) prolyl hydroxylase domain (PHD) enzymes that act on elongation factor Tu (EFTu) and are likely involved in the regulation of bacterial translation. Recent biochemical and structural studies with a PHD from Pseudomonas putida (PPHD) determined that it forms a complex with EFTu and hydroxylates a prolyl residue of EFTu. Moreover, while animal, plant, and viral P4Hs act on peptidyl proline, most prokaryotic P4Hs have been known to target free l-proline; the exceptions include PPHD and a P4H from Bacillus anthracis (BaP4H) that modifies collagen-like proline-rich peptides. Here we use biophysical and mass spectrometric methods to demonstrate that BaP4H recognizes full-length BaEFTu and a BaEFTu 9-mer peptide for site-specific proline hydroxylation. Using size-exclusion chromatography coupled small-angle X-ray scattering (SEC-SAXS) and binding studies, we determined that BaP4H forms a 1:1 heterodimeric complex with BaEFTu. The SEC-SAXS studies reveal dissociation of BaP4H dimeric subunits upon interaction with BaEFTu. While BaP4H is unusual within bacteria in that it is structurally and functionally similar to the animal PHDs and collagen P4Hs, respectively, this work provides further evidence of its promiscuous substrate recognition. It is possible that the enzyme might have evolved to hydroxylate a universally conserved protein in prokaryotes, similar to the PHDs, and implies a functional role in B. anthracis.
Collapse
Affiliation(s)
- Nicholas J Schnicker
- Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| | - Mortezaali Razzaghi
- Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| | - Sanjukta Guha Thakurta
- Department of Cell Biology, Harvard Medical School , 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Mishtu Dey
- Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
41
|
Schaible B, Rodriguez J, Garcia A, von Kriegsheim A, McClean S, Hickey C, Keogh CE, Brown E, Schaffer K, Broquet A, Taylor CT. Hypoxia Reduces the Pathogenicity of Pseudomonas aeruginosa by Decreasing the Expression of Multiple Virulence Factors. J Infect Dis 2017; 215:1459-1467. [PMID: 28368464 DOI: 10.1093/infdis/jix139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/17/2017] [Indexed: 12/16/2023] Open
Abstract
Our understanding of how the course of opportunistic bacterial infection is influenced by the microenvironment is limited. We demonstrate that the pathogenicity of Pseudomonas aeruginosa strains derived from acute clinical infections is higher than that of strains derived from chronic infections, where tissues are hypoxic. Exposure to hypoxia attenuated the pathogenicity of strains from acute (but not chronic) infections, implicating a role for hypoxia in regulating bacterial virulence. Mass spectrometric analysis of the secretome of P. aeruginosa derived from an acute infection revealed hypoxia-induced repression of multiple virulence factors independent of altered bacterial growth. Pseudomonas aeruginosa lacking the Pseudomonas prolyl-hydroxylase domain-containing protein, which has been implicated in bacterial oxygen sensing, displays reduced virulence factor expression. Furthermore, pharmacological hydroxylase inhibition reduces virulence factor expression and pathogenicity in a murine model of pneumonia. We hypothesize that hypoxia reduces P. aeruginosa virulence at least in part through the regulation of bacterial hydroxylases.
Collapse
Affiliation(s)
| | | | - Amaya Garcia
- Systems Biology Ireland, University College Dublin
| | | | - Siobhán McClean
- Centre for Microbial Host Interactions, Department of Science, Institute of Technology Tallaght-Dublin, and
| | | | | | | | - Kirsten Schaffer
- Department of Clinical Microbiology, St Vincent's University Hospital, Dublin, Ireland; and
| | | | - Cormac T Taylor
- Conway Institute and
- Systems Biology Ireland, University College Dublin
| |
Collapse
|
42
|
Kwok J, O'Shea M, Hume DA, Lengeling A. Jmjd6, a JmjC Dioxygenase with Many Interaction Partners and Pleiotropic Functions. Front Genet 2017; 8:32. [PMID: 28360925 PMCID: PMC5352680 DOI: 10.3389/fgene.2017.00032] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/27/2017] [Indexed: 12/20/2022] Open
Abstract
Lysyl hydroxylation and arginyl demethylation are post-translational events that are important for many cellular processes. The jumonji domain containing protein 6 (JMJD6) has been reported to catalyze both lysyl hydroxylation and arginyl demethylation on diverse protein substrates. It also interacts directly with RNA. This review summarizes knowledge of JMJD6 functions that have emerged in the last 15 years and considers how a single Jumonji C (JmjC) domain-containing enzyme can target so many different substrates. New links and synergies between the three main proposed functions of Jmjd6 in histone demethylation, promoter proximal pause release of polymerase II and RNA splicing are discussed. The physiological context of the described molecular functions is considered and recently described novel roles for JMJD6 in cancer and immune biology are reviewed. The increased knowledge of JMJD6 functions has wider implications for our general understanding of the JmjC protein family of which JMJD6 is a member.
Collapse
Affiliation(s)
- Janice Kwok
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Edinburgh, UK
| | - Marie O'Shea
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Edinburgh, UK
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Edinburgh, UK
| | - Andreas Lengeling
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Edinburgh, UK
| |
Collapse
|
43
|
Abstract
Investigation into the regulation of the erythropoietin gene by oxygen led to the discovery of a process of direct oxygen sensing that transduces many cellular and systemic responses to hypoxia. The oxygen-sensitive signal is generated through the catalytic action of a series of 2-oxoglutarate-dependent oxygenases that regulate the transcription factor hypoxia-inducible factor (HIF) by the post-translational hydroxylation of specific amino acid residues. Here we review the implications of the unforeseen complexity of the HIF transcriptional cascade for the physiology and pathophysiology of hypoxia, and consider the origins of post-translational hydroxylation as a signaling process.
Collapse
|
44
|
Integrative view of 2-oxoglutarate/Fe(II)-dependent oxygenase diversity and functions in bacteria. Biochim Biophys Acta Gen Subj 2017; 1861:323-334. [DOI: 10.1016/j.bbagen.2016.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/09/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022]
|
45
|
Kirkegaard JB, Bouillant A, Marron AO, Leptos KC, Goldstein RE. Aerotaxis in the closest relatives of animals. eLife 2016; 5. [PMID: 27882869 PMCID: PMC5122458 DOI: 10.7554/elife.18109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/17/2016] [Indexed: 12/19/2022] Open
Abstract
As the closest unicellular relatives of animals, choanoflagellates serve as useful model organisms for understanding the evolution of animal multicellularity. An important factor in animal evolution was the increasing ocean oxygen levels in the Precambrian, which are thought to have influenced the emergence of complex multicellular life. As a first step in addressing these conditions, we study here the response of the colony-forming choanoflagellate Salpingoeca rosetta to oxygen gradients. Using a microfluidic device that allows spatio-temporal variations in oxygen concentrations, we report the discovery that S. rosetta displays positive aerotaxis. Analysis of the spatial population distributions provides evidence for logarithmic sensing of oxygen, which enhances sensing in low oxygen neighborhoods. Analysis of search strategy models on the experimental colony trajectories finds that choanoflagellate aerotaxis is consistent with stochastic navigation, the statistics of which are captured using an effective continuous version based on classical run-and-tumble chemotaxis. DOI:http://dx.doi.org/10.7554/eLife.18109.001 Most animals are made up of millions of cells, yet all animals evolved from ancestors that spent their whole lives as single cells. Today the closest single-celled relatives of animals are a group of aquatic organisms called choanoflagellates. Certain species of choanoflagellates can also form swimming colonies. This kind of multicellularity might resemble that seen in the earliest of animals. As such, studies into modern-day choanoflagellates can give insights into how the first animals to evolve might have behaved. Many organisms can find their way towards favorable areas using different strategies. For instance, bacteria can bias their tumbling to gradually swim towards food, and algae can turn and move directly towards light. While choanoflagellates require oxygen, it was not known if they could also actively navigate towards it, or any other resource. Now, Kirkegaard et al. find that the choanoflagellate Salpingoeca rosetta can indeed navigate towards oxygen – an ability called aerotaxis. This was true for both individual cells and for colonies made up of many cells. This discovery suggests that the transition from living as a single cell to living as a simple multicellular organism could still have allowed the earliest animals to seek out and move towards resource-rich areas. Aerotaxis requires cells to both sense oxygen and react appropriately to changes in its concentration. Kirkegaard et al. watched choanoflagellate colonies swimming under controlled conditions and varied the oxygen concentration in the water over time. These experiments revealed that the colonies navigate based on the logarithm of the oxygen concentration, so that at low oxygen levels the cells were even more sensitive to small changes in oxygen concentration. This type of ‘logarithmic sensing’ is similar to how our ears sense sounds and our eyes sense light. Kirkegaard et al. went on to conclude that the colonies were not actively steering in the correct direction directly. Instead, the colonies appeared to choose directions at random and later decide whether such a turn was correct. It remains unclear whether the common ancestor of animals and choanoflagellates could also perform aerotaxis, and if so what mechanisms this involved. Further studies to compare aerotaxis and aerotaxis-related genes in simple animals and other single-celled relatives of animals would be needed to illuminate this. Future studies could also explore the maximum and minimum oxygen concentrations that choanoflagellates can detect, and how well they navigate at these upper and lower limits. DOI:http://dx.doi.org/10.7554/eLife.18109.002
Collapse
Affiliation(s)
- Julius B Kirkegaard
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ambre Bouillant
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alan O Marron
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Kyriacos C Leptos
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
Katz MJ, Gándara L, De Lella Ezcurra AL, Wappner P. Hydroxylation and translational adaptation to stress: some answers lie beyond the STOP codon. Cell Mol Life Sci 2016; 73:1881-93. [PMID: 26874685 PMCID: PMC11108485 DOI: 10.1007/s00018-016-2160-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 01/08/2023]
Abstract
Regulation of protein synthesis contributes to maintenance of homeostasis and adaptation to environmental changes. mRNA translation is controlled at various levels including initiation, elongation and termination, through post-transcriptional/translational modifications of components of the protein synthesis machinery. Recently, protein and RNA hydroxylation have emerged as important enzymatic modifications of tRNAs, elongation and termination factors, as well as ribosomal proteins. These modifications enable a correct STOP codon recognition, ensuring translational fidelity. Recent studies are starting to show that STOP codon read-through is related to the ability of the cell to cope with different types of stress, such as oxidative and chemical insults, while correlations between defects in hydroxylation of protein synthesis components and STOP codon read-through are beginning to emerge. In this review we will discuss our current knowledge of protein synthesis regulation through hydroxylation of components of the translation machinery, with special focus on STOP codon recognition. We speculate on the possibility that programmed STOP codon read-through, modulated by hydroxylation of components of the protein synthesis machinery, is part of a concerted cellular response to stress.
Collapse
Affiliation(s)
- M J Katz
- Instituto Leloir, Buenos Aires, Argentina
| | - L Gándara
- Instituto Leloir, Buenos Aires, Argentina
| | | | - P Wappner
- Instituto Leloir, Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular, y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
47
|
Schnicker NJ, Dey M. Bacillus anthracis Prolyl 4-Hydroxylase Modifies Collagen-like Substrates in Asymmetric Patterns. J Biol Chem 2016; 291:13360-74. [PMID: 27129244 DOI: 10.1074/jbc.m116.725432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 11/06/2022] Open
Abstract
Proline hydroxylation is the most prevalent post-translational modification in collagen. The resulting product trans-4-hydroxyproline (Hyp) is of critical importance for the stability and thus function of collagen, with defects leading to several diseases. Prolyl 4-hydroxylases (P4Hs) are mononuclear non-heme iron α-ketoglutarate (αKG)-dependent dioxygenases that catalyze Hyp formation. Although animal and plant P4Hs target peptidyl proline, prokaryotes have been known to use free l-proline as a precursor to form Hyp. The P4H from Bacillus anthracis (BaP4H) has been postulated to act on peptidyl proline in collagen peptides, making it unusual within the bacterial clade, but its true physiological substrate remains enigmatic. Here we use mass spectrometry, fluorescence binding, x-ray crystallography, and docking experiments to confirm that BaP4H recognizes and acts on peptidyl substrates but not free l-proline, using elements characteristic of an Fe(II)/αKG-dependent dioxygenases. We further show that BaP4H can hydroxylate unique peptidyl proline sites in collagen-derived peptides with asymmetric hydroxylation patterns. The cofactor-bound crystal structures of BaP4H reveal active site conformational changes that define open and closed forms and mimic "ready" and "product-released" states of the enzyme in the catalytic cycle. These results help to clarify the role of BaP4H as well as provide broader insights into human collagen P4H and proteins with poly-l-proline type II helices.
Collapse
Affiliation(s)
- Nicholas J Schnicker
- From the Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1727
| | - Mishtu Dey
- From the Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1727
| |
Collapse
|
48
|
Wilkins SE, Abboud MI, Hancock RL, Schofield CJ. Targeting Protein-Protein Interactions in the HIF System. ChemMedChem 2016; 11:773-86. [PMID: 26997519 PMCID: PMC4848768 DOI: 10.1002/cmdc.201600012] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/24/2016] [Indexed: 12/18/2022]
Abstract
Animals respond to chronic hypoxia by increasing the levels of a transcription factor known as the hypoxia-inducible factor (HIF). HIF upregulates multiple genes, the products of which work to ameliorate the effects of limited oxygen at cellular and systemic levels. Hypoxia sensing by the HIF system involves hydroxylase-catalysed post-translational modifications of the HIF α-subunits, which 1) signal for degradation of HIF-α and 2) limit binding of HIF to transcriptional coactivator proteins. Because the hypoxic response is relevant to multiple disease states, therapeutic manipulation of the HIF-mediated response has considerable medicinal potential. In addition to modulation of catalysis by the HIF hydroxylases, the HIF system manifests other possibilities for therapeutic intervention involving protein-protein and protein-nucleic acid interactions. Recent advances in our understanding of the structural biology and biochemistry of the HIF system are facilitating medicinal chemistry efforts. Herein we give an overview of the HIF system, focusing on structural knowledge of protein-protein interactions and how this might be used to modulate the hypoxic response for therapeutic benefit.
Collapse
Affiliation(s)
- Sarah E Wilkins
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Martine I Abboud
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Rebecca L Hancock
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
49
|
Waypa GB, Smith KA, Schumacker PT. O2 sensing, mitochondria and ROS signaling: The fog is lifting. Mol Aspects Med 2016; 47-48:76-89. [PMID: 26776678 DOI: 10.1016/j.mam.2016.01.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 12/14/2022]
Abstract
Mitochondria are responsible for the majority of oxygen consumption in cells, and thus represent a conceptually appealing site for cellular oxygen sensing. Over the past 40 years, a number of mechanisms to explain how mitochondria participate in oxygen sensing have been proposed. However, no consensus has been reached regarding how mitochondria could regulate transcriptional and post-translational responses to hypoxia. Nevertheless, a growing body of data continues to implicate a role for increased reactive oxygen species (ROS) signals from the electron transport chain (ETC) in triggering responses to hypoxia in diverse cell types. The present article reviews our progress in understanding this field and considers recent advances that provide new insight, helping to lift the fog from this complex topic.
Collapse
Affiliation(s)
- Gregory B Waypa
- Department of Pediatrics, Division of Neonatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Kimberly A Smith
- Department of Pediatrics, Division of Neonatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Paul T Schumacker
- Department of Pediatrics, Division of Neonatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
50
|
Longbotham JE, Levy C, Johannissen LO, Tarhonskaya H, Jiang S, Loenarz C, Flashman E, Hay S, Schofield CJ, Scrutton NS. Structure and Mechanism of a Viral Collagen Prolyl Hydroxylase. Biochemistry 2015; 54:6093-105. [PMID: 26368022 PMCID: PMC4613865 DOI: 10.1021/acs.biochem.5b00789] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The
Fe(II)- and 2-oxoglutarate (2-OG)-dependent dioxygenases comprise
a large and diverse enzyme superfamily the members of which have multiple
physiological roles. Despite this diversity, these enzymes share a
common chemical mechanism and a core structural fold, a double-stranded
β-helix (DSBH), as well as conserved active site residues. The
prolyl hydroxylases are members of this large superfamily. Prolyl
hydroxylases are involved in collagen biosynthesis and oxygen sensing
in mammalian cells. Structural–mechanistic studies with prolyl
hydroxylases have broader implications for understanding mechanisms
in the Fe(II)- and 2-OG-dependent dioxygenase superfamily. Here, we
describe crystal structures of an N-terminally truncated viral collagen
prolyl hydroxylase (vCPH). The crystal structure shows that vCPH contains
the conserved DSBH motif and iron binding active site residues of
2-OG oxygenases. Molecular dynamics simulations are used to delineate
structural changes in vCPH upon binding its substrate. Kinetic investigations
are used to report on reaction cycle intermediates and compare them
to the closest homologues of vCPH. The study highlights the utility
of vCPH as a model enzyme for broader mechanistic analysis of Fe(II)-
and 2-OG-dependent dioxygenases, including those of biomedical interest.
Collapse
Affiliation(s)
- James E Longbotham
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Colin Levy
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Linus O Johannissen
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Hanna Tarhonskaya
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Shuo Jiang
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christoph Loenarz
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Emily Flashman
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Sam Hay
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Nigel S Scrutton
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester , Manchester M1 7DN, United Kingdom
| |
Collapse
|