1
|
Desbois M, Grill B. Molecular regulation of axon termination in mechanosensory neurons. Development 2024; 151:dev202945. [PMID: 39268828 PMCID: PMC11698068 DOI: 10.1242/dev.202945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Spatially and temporally accurate termination of axon outgrowth, a process called axon termination, is required for efficient, precise nervous system construction and wiring. The mechanosensory neurons that sense low-threshold mechanical stimulation or gentle touch have proven exceptionally valuable for studying axon termination over the past 40 years. In this Review, we discuss progress made in deciphering the molecular and genetic mechanisms that govern axon termination in touch receptor neurons. Findings across model organisms, including Caenorhabditis elegans, Drosophila, zebrafish and mice, have revealed that complex signaling is required for termination with conserved principles and players beginning to surface. A key emerging theme is that axon termination is mediated by complex signaling networks that include ubiquitin ligase signaling hubs, kinase cascades, transcription factors, guidance/adhesion receptors and growth factors. Here, we begin a discussion about how these signaling networks could represent termination codes that trigger cessation of axon outgrowth in different species and types of mechanosensory neurons.
Collapse
Affiliation(s)
- Muriel Desbois
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98101, USA
| |
Collapse
|
2
|
Nakamura A, Sakai S, Taketomi Y, Tsuyama J, Miki Y, Hara Y, Arai N, Sugiura Y, Kawaji H, Murakami M, Shichita T. PLA2G2E-mediated lipid metabolism triggers brain-autonomous neural repair after ischemic stroke. Neuron 2023; 111:2995-3010.e9. [PMID: 37490917 DOI: 10.1016/j.neuron.2023.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/08/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023]
Abstract
The brain is generally resistant to regeneration after damage. The cerebral endogenous mechanisms triggering brain self-recovery have remained unclarified to date. We here discovered that the secreted phospholipase PLA2G2E from peri-infarct neurons generated dihomo-γ-linolenic acid (DGLA) as necessary for triggering brain-autonomous neural repair after ischemic brain injury. Pla2g2e deficiency diminished the expression of peptidyl arginine deiminase 4 (Padi4), a global transcriptional regulator in peri-infarct neurons. Single-cell RNA sequencing (scRNA-seq) and epigenetic analysis demonstrated that neuronal PADI4 had the potential for the transcriptional activation of genes associated with recovery processes after ischemic stroke through histone citrullination. Among various DGLA metabolites, we identified 15-hydroxy-eicosatrienoic acid (15-HETrE) as the cerebral metabolite that induced PADI4 in peri-infarct-surviving neurons. Administration of 15-HETrE enhanced functional recovery after ischemic stroke. Thus, our research clarifies the promising potential of brain-autonomous neural repair triggered by the specialized lipids that initiate self-recovery processes after brain injury.
Collapse
Affiliation(s)
- Akari Nakamura
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Seiichiro Sakai
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Jun Tsuyama
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuichiro Hara
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Nobutaka Arai
- Laboratory for Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan.
| |
Collapse
|
3
|
Katsura M, Urade Y, Nansai H, Kobayashi M, Taguchi A, Ishikawa Y, Ito T, Fukunaga H, Tozawa H, Chikaoka Y, Nakaki R, Echigo A, Kohro T, Sone H, Wada Y. Low-dose radiation induces unstable gene expression in developing human iPSC-derived retinal ganglion organoids. Sci Rep 2023; 13:12888. [PMID: 37558727 PMCID: PMC10412642 DOI: 10.1038/s41598-023-40051-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023] Open
Abstract
The effects of low-dose radiation on undifferentiated cells carry important implications. However, the effects on developing retinal cells remain unclear. Here, we analyzed the gene expression characteristics of neuronal organoids containing immature human retinal cells under low-dose radiation and predicted their changes. Developing retinal cells generated from human induced pluripotent stem cells (iPSCs) were irradiated with either 30 or 180 mGy on days 4-5 of development for 24 h. Genome-wide gene expression was observed until day 35. A knowledge-based pathway analysis algorithm revealed fluctuations in Rho signaling and many other pathways. After a month, the levels of an essential transcription factor of eye development, the proportion of paired box 6 (PAX6)-positive cells, and the proportion of retinal ganglion cell (RGC)-specific transcription factor POU class 4 homeobox 2 (POU4F2)-positive cells increased with 30 mGy of irradiation. In contrast, they decreased after 180 mGy of irradiation. Activation of the "development of neurons" pathway after 180 mGy indicated the dedifferentiation and development of other neural cells. Fluctuating effects after low-dose radiation exposure suggest that developing retinal cells employ hormesis and dedifferentiation mechanisms in response to stress.
Collapse
Affiliation(s)
- Mari Katsura
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
- Reiwa Eye Clinic, Hatsukaichi, Hiroshima, Japan
| | - Yoshihiro Urade
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Hiroko Nansai
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mika Kobayashi
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Akashi Taguchi
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yukiko Ishikawa
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Ito
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Hisako Fukunaga
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideto Tozawa
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoko Chikaoka
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | | | | | - Takahide Kohro
- Department of Clinical Informatics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hideko Sone
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
- Environmental Health and Prevention Research Unit, Yokohama University of Pharmacy, Yokohama, Japan.
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Huang J, Qu Q, Dai Y, Ren D, Qian J, Ge J. Detrimental Role of PDZ-RhoGEF in Pathological Cardiac Hypertrophy. Hypertension 2023; 80:403-415. [PMID: 36448462 DOI: 10.1161/hypertensionaha.122.19142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND Postsynaptic density 95/disk-large/ZO-1 Rho guanine nucleotide exchange factor (PDZ-RhoGEF, PRG) functions as a RhoGEF for activated Gα13 and transmits activation signals to downstream signaling pathways in various pathological processes. Although the prohypertrophic effect of activated Gα13 (guanine nucleotide binding protein alpha 13; a heterotrimeric G protein) is well-established, the role of PDZ-RhoGEF in pathological cardiac hypertrophy is still obscure. METHODS Genetically engineered mice and neonatal rat ventricular myocytes were generated to investigate the function of PRG in pathological myocardial hypertrophy. The prohypertrophic stimuli-induced alternations in the morphology and intracellular signaling were measured in myocardium and neonatal rat ventricular myocytes. Furthermore, multiple molecular methodologies were used to identify the precise molecular mechanisms underlying PDZ-RhoGEF function. RESULTS Increased PDZ-RhoGEF expression was documented in both hypertrophied hearts and neonatal rat ventricular myocytes. Upon prohypertrophic stimuli, the PDZ-RhoGEF-deficient hearts displayed alleviated cardiomyocyte enlargement and attenuated collagen deposition with improved cardiac function, whereas the adverse hypertrophic responses in hearts and neonatal rat ventricular myocytes were markedly exaggerated by PDZ-RhoGEF overexpression. Mechanistically, RhoA (ras homolog family member A)-dependent signaling pathways may function as the downstream effectors of PDZ-RhoGEF in hypertrophic remodeling, as confirmed by rescue experiments using a RhoA inhibitor and dominant-negative RhoA. Furthermore, PDZ-RhoGEF is associated with activated Gα13 and contributes to Gα13-mediated activation of RhoA-dependent signaling. CONCLUSIONS Our data provide the first evidence that PDZ-RhoGEF promotes pathological cardiac hypertrophy by linking activated Gα13 to RhoA-dependent signaling pathways. Therefore, PDZ-RhoGEF has the potential to be a diagnostic marker or therapeutic target for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Jia Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China and National Clinical Research Center for Interventional Medicine (J.H., Y.D., D.R., J.Q., J.G.)
| | - Qingrong Qu
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China and Shanghai Clinical Research Center for Tuberculosis, Shanghai, China (Q.Q.)
| | - Yuxiang Dai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China and National Clinical Research Center for Interventional Medicine (J.H., Y.D., D.R., J.Q., J.G.)
| | - Daoyuan Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China and National Clinical Research Center for Interventional Medicine (J.H., Y.D., D.R., J.Q., J.G.)
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China and National Clinical Research Center for Interventional Medicine (J.H., Y.D., D.R., J.Q., J.G.)
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China and National Clinical Research Center for Interventional Medicine (J.H., Y.D., D.R., J.Q., J.G.)
| |
Collapse
|
5
|
Avivi Kela S, Sethi K, Tan PY, Suresh D, Ong HT, Castaneda PG, Amin MR, Laviv T, Cram EJ, Faix J, Zaidel-Bar R. Tension-dependent RHGF-1 recruitment to stress fibers drives robust spermathecal tissue contraction. J Cell Biol 2022; 222:213784. [PMID: 36574264 PMCID: PMC9798103 DOI: 10.1083/jcb.202203105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/03/2022] [Accepted: 11/08/2022] [Indexed: 12/28/2022] Open
Abstract
Contractile epithelial tubes are found in various organs, such as lung airways and blood capillaries. Their ability to sense luminal pressure and respond with adequate contractility is essential for their physiology, and its mis-regulation results in diseases such as asthma and hypertension. Here, we describe a mechanoresponsive regulatory pathway downstream of tissue stretching that controls contraction of the C. elegans spermatheca, a tubular structure where fertilization occurs. Using live-imaging, we show that ovulation-induced stretching of spermathecal cells leads to recruitment of the RhoGEF RHGF-1 to stress fibers, which activates RHO-1 and myosin II in a positive feedback loop. Through deletion analysis, we identified the PDZ domain of RHGF-1 as responsible for F-actin binding, and genetic epistasis analysis with the RhoGAP spv-1 demonstrated that tension-dependent recruitment of RHGF-1 to F-actin is required for robust spermathecal contractility. Our study illustrates how mechanosensitive regulators of Rho GTPases provide epithelial tubes the ability to tune their contractility in response to internal pressure.
Collapse
Affiliation(s)
- Shiri Avivi Kela
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kriti Sethi
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Pei Yi Tan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Danesha Suresh
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | | | - Mustafi R. Amin
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Tal Laviv
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Erin J. Cram
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Correspondence to Ronen Zaidel-Bar:
| |
Collapse
|
6
|
O'Hagan R, Avrutis A, Ramicevic E. Functions of the tubulin code in the C. elegans nervous system. Mol Cell Neurosci 2022; 123:103790. [PMID: 36368428 DOI: 10.1016/j.mcn.2022.103790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Due to their elongated and polarized morphology, neurons rely on the microtubule (MT) cytoskeleton for their shape, as well as for efficient intracellular transport that maintains neuronal function, survival, and connectivity. Although all MTs are constructed from α- and β-tubulins that are highly conserved throughout eukaryotes, different MT networks within neurons exhibit different dynamics and functions. For example, molecular motors must be able to differentially recognize the axonal and dendritic MTs to deliver appropriate cargos to sensory endings and synaptic regions. The Tubulin Code hypothesis proposes that MTs can be specialized in form and function by chemical differences in their composition by inclusion of different α- and β-tubulins into the MT lattice, as well as differences in post-translational enzymatic modifications. The chemical differences encode information that allow MTs to regulate interactions with various microtubule-based molecular motors such as kinesins and dyneins as well as with structural microtubule-associated proteins (MAPs), which can, in turn, modify the function or stability of MTs. Here, we review studies involving C. elegans, a model organism with a relatively simple nervous system that is amenable to genetic analysis, that have contributed to our understanding of how the Tubulin Code can specialize neuronal MT networks to establish differences in neuronal morphology and function. Such studies have revealed molecules and mechanisms that are conserved in vertebrates and have the potential to inform our understanding of neurological diseases involving defects in the cytoskeleton and intracellular transport.
Collapse
Affiliation(s)
- Robert O'Hagan
- formerly at Biology Dept., Montclair State University, Montclair, NJ 07043, United States of America.
| | - Alexandra Avrutis
- formerly at Biology Dept., Montclair State University, Montclair, NJ 07043, United States of America
| | - Ema Ramicevic
- formerly at Biology Dept., Montclair State University, Montclair, NJ 07043, United States of America
| |
Collapse
|
7
|
Synaptic branch stability is mediated by non-enzymatic functions of MEC-17/αTAT1 and ATAT-2. Sci Rep 2022; 12:14003. [PMID: 35977998 PMCID: PMC9385713 DOI: 10.1038/s41598-022-18333-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/09/2022] [Indexed: 11/08/2022] Open
Abstract
Microtubules are fundamental elements of neuronal structure and function. They are dynamic structures formed from protofilament chains of α- and β-tubulin heterodimers. Acetylation of the lysine 40 (K40) residue of α-tubulin protects microtubules from mechanical stresses by imparting structural elasticity. The enzyme responsible for this acetylation event is MEC-17/αTAT1. Despite its functional importance, however, the consequences of altered MEC-17/αTAT1 levels on neuronal structure and function are incompletely defined. Here we demonstrate that overexpression or loss of MEC-17, or of its functional paralogue ATAT-2, causes a delay in synaptic branch extension, and defective synaptogenesis in the mechanosensory neurons of Caenorhabditis elegans. Strikingly, by adulthood, the synaptic branches in these animals are lost, while the main axon shaft remains mostly intact. We show that MEC-17 and ATAT-2 regulate the stability of the synaptic branches largely independently from their acetyltransferase domains. Genetic analyses reveals novel interactions between both mec-17 and atat-2 with the focal adhesion gene zyx-1/Zyxin, which has previously been implicated in actin remodelling. Together, our results reveal new, acetylation-independent roles for MEC-17 and ATAT-2 in the development and maintenance of neuronal architecture.
Collapse
|
8
|
Srivastava P, Kane A, Harrison C, Levin M. A Meta-Analysis of Bioelectric Data in Cancer, Embryogenesis, and Regeneration. Bioelectricity 2021; 3:42-67. [PMID: 34476377 DOI: 10.1089/bioe.2019.0034] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developmental bioelectricity is the study of the endogenous role of bioelectrical signaling in all cell types. Resting potentials and other aspects of ionic cell physiology are known to be important regulatory parameters in embryogenesis, regeneration, and cancer. However, relevant quantitative measurement and genetic phenotyping data are distributed throughout wide-ranging literature, hampering experimental design and hypothesis generation. Here, we analyze published studies on bioelectrics and transcriptomic and genomic/phenotypic databases to provide a novel synthesis of what is known in three important aspects of bioelectrics research. First, we provide a comprehensive list of channelopathies-ion channel and pump gene mutations-in a range of important model systems with developmental patterning phenotypes, illustrating the breadth of channel types, tissues, and phyla (including man) in which bioelectric signaling is a critical endogenous aspect of embryogenesis. Second, we perform a novel bioinformatic analysis of transcriptomic data during regeneration in diverse taxa that reveals an electrogenic protein to be the one common factor specifically expressed in regeneration blastemas across Kingdoms. Finally, we analyze data on distinct Vmem signatures in normal and cancer cells, revealing a specific bioelectrical signature corresponding to some types of malignancies. These analyses shed light on fundamental questions in developmental bioelectricity and suggest new avenues for research in this exciting field.
Collapse
Affiliation(s)
- Pranjal Srivastava
- Rye High School, Rye, New York, USA; Current Affiliation: College of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Anna Kane
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| | - Christina Harrison
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
9
|
Jin Y, Zheng B. Multitasking: Dual Leucine Zipper-Bearing Kinases in Neuronal Development and Stress Management. Annu Rev Cell Dev Biol 2020; 35:501-521. [PMID: 31590586 DOI: 10.1146/annurev-cellbio-100617-062644] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The dual leucine zipper-bearing kinase (DLK) and leucine zipper-bearing kinase (LZK) are evolutionarily conserved MAPKKKs of the mixed-lineage kinase family. Acting upstream of stress-responsive JNK and p38 MAP kinases, DLK and LZK have emerged as central players in neuronal responses to a variety of acute and traumatic injuries. Recent studies also implicate their function in astrocytes, microglia, and other nonneuronal cells, reflecting their expanding roles in the multicellular response to injury and in disease. Of particular note is the potential link of these kinases to neurodegenerative diseases and cancer. It is thus critical to understand the physiological contexts under which these kinases are activated, as well as the signal transduction mechanisms that mediate specific functional outcomes. In this review we first provide a historical overview of the biochemical and functional dissection of these kinases. We then discuss recent findings on regulating their activity to enhance cellular protection following injury and in disease, focusing on but not limited to the nervous system.
Collapse
Affiliation(s)
- Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; .,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA; .,VA San Diego Healthcare System, San Diego, California 92161, USA
| |
Collapse
|
10
|
Gujar MR, Stricker AM, Lundquist EA. RHO-1 and the Rho GEF RHGF-1 interact with UNC-6/Netrin signaling to regulate growth cone protrusion and microtubule organization in Caenorhabditis elegans. PLoS Genet 2019; 15:e1007960. [PMID: 31233487 PMCID: PMC6611649 DOI: 10.1371/journal.pgen.1007960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/05/2019] [Accepted: 05/31/2019] [Indexed: 01/02/2023] Open
Abstract
UNC-6/Netrin is a conserved axon guidance cue that directs growth cone migrations in the dorsal-ventral axis of C. elegans and in the vertebrate spinal cord. UNC-6/Netrin is expressed in ventral cells, and growth cones migrate ventrally toward or dorsally away from UNC-6/Netrin. Recent studies of growth cone behavior during outgrowth in vivo in C. elegans have led to a polarity/protrusion model in directed growth cone migration away from UNC-6/Netrin. In this model, UNC-6/Netrin first polarizes the growth cone via the UNC-5 receptor, leading to dorsally biased protrusion and F-actin accumulation. UNC-6/Netrin then regulates protrusion based on this polarity. The receptor UNC-40/DCC drives protrusion dorsally, away from the UNC-6/Netrin source, and the UNC-5 receptor inhibits protrusion ventrally, near the UNC-6/Netrin source, resulting in dorsal migration. UNC-5 inhibits protrusion in part by excluding microtubules from the growth cone, which are pro-protrusive. Here we report that the RHO-1/RhoA GTPase and its activator GEF RHGF-1 inhibit growth cone protrusion and MT accumulation in growth cones, similar to UNC-5. However, growth cone polarity of protrusion and F-actin were unaffected by RHO-1 and RHGF-1. Thus, RHO-1 signaling acts specifically as a negative regulator of protrusion and MT accumulation, and not polarity. Genetic interactions are consistent with RHO-1 and RHGF-1 acting with UNC-5, as well as with a parallel pathway, to regulate protrusion. The cytoskeletal interacting molecule UNC-33/CRMP was required for RHO-1 activity to inhibit MT accumulation, suggesting that UNC-33/CRMP might act downstream of RHO-1. In sum, these studies describe a new role of RHO-1 and RHGF-1 in regulation of growth cone protrusion by UNC-6/Netrin.
Collapse
Affiliation(s)
- Mahekta R. Gujar
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, University of Kansas, Lawrence, KS, United States of America
| | - Aubrie M. Stricker
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, University of Kansas, Lawrence, KS, United States of America
| | - Erik A. Lundquist
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, University of Kansas, Lawrence, KS, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
How the nervous system is wired has been a central question of neuroscience since the inception of the field, and many of the foundational discoveries and conceptual advances have been made through the study of invertebrate experimental organisms, including Caenorhabditis elegans and Drosophila melanogaster. Although many guidance molecules and receptors have been identified, recent experiments have shed light on the many modes of action for these pathways. Here, we summarize the recent progress in determining how the physical and temporal constraints of the surrounding environment provide instructive regulations in nervous system wiring. We use Netrin and its receptors as an example to analyze the complexity of how they guide neurite outgrowth. In neurite repair, conserved injury detection and response-signaling pathways regulate gene expression and cytoskeletal dynamics. We also describe recent developments in the research on molecular mechanisms of neurite regeneration in worms and flies.
Collapse
Affiliation(s)
- Claire E Richardson
- Department of Biology, Stanford University, Stanford, California 94305, USA;
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, California 94305, USA; .,Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
12
|
Borgen MA, Giles AC, Wang D, Grill B. Synapse maintenance is impacted by ATAT-2 tubulin acetyltransferase activity and the RPM-1 signaling hub. eLife 2019; 8:44040. [PMID: 30652969 PMCID: PMC6355192 DOI: 10.7554/elife.44040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022] Open
Abstract
Synapse formation is comprised of target cell recognition, synapse assembly, and synapse maintenance. Maintaining established synaptic connections is essential for generating functional circuitry and synapse instability is a hallmark of neurodegenerative disease. While many molecules impact synapse formation generally, we know little about molecules that affect synapse maintenance in vivo. Using genetics and developmental time course analysis in C.elegans, we show that the α-tubulin acetyltransferase ATAT-2 and the signaling hub RPM-1 are required presynaptically to maintain stable synapses. Importantly, the enzymatic acetyltransferase activity of ATAT-2 is required for synapse maintenance. Our analysis revealed that RPM-1 is a hub in a genetic network composed of ATAT-2, PTRN-1 and DLK-1. In this network, ATAT-2 functions independent of the DLK-1 MAPK and likely acts downstream of RPM-1. Thus, our study reveals an important role for tubulin acetyltransferase activity in presynaptic maintenance, which occurs via the RPM-1/ATAT-2 pathway.
Collapse
Affiliation(s)
- Melissa A Borgen
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Andrew C Giles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Dandan Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|
13
|
Mao S, Zhang S, Zhou Z, Shi X, Huang T, Feng W, Yao C, Gu X, Yu B. Alternative RNA splicing associated with axon regeneration after rat peripheral nerve injury. Exp Neurol 2018; 308:80-89. [DOI: 10.1016/j.expneurol.2018.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/11/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
|
14
|
Asghari Adib E, Smithson LJ, Collins CA. An axonal stress response pathway: degenerative and regenerative signaling by DLK. Curr Opin Neurobiol 2018; 53:110-119. [PMID: 30053694 DOI: 10.1016/j.conb.2018.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/02/2018] [Indexed: 02/08/2023]
Abstract
Signaling through the dual leucine zipper-bearing kinase (DLK) is required for injured neurons to initiate new axonal growth; however, activation of this kinase also leads to neuronal degeneration and death in multiple models of injury and neurodegenerative diseases. This has spurred current consideration of DLK as a candidate therapeutic target, and raises a vital question: in what context is DLK a friend or foe to neurons? Here, we review our current understanding of DLK's function and mechanisms in regulating both regenerative and degenerative responses to axonal damage and stress in the nervous system.
Collapse
Affiliation(s)
- Elham Asghari Adib
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Laura J Smithson
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Catherine A Collins
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| |
Collapse
|
15
|
Manjunath GP, Ramanujam PL, Galande S. Structure function relations in PDZ-domain-containing proteins: Implications for protein networks in cellular signalling. J Biosci 2018; 43:155-171. [PMID: 29485124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein scaffolds as essential backbones for organization of supramolecular signalling complexes are a recurrent theme in several model systems. Scaffold proteins preferentially employ linear peptide binding motifs for recruiting their interaction partners. PDZ domains are one of the more commonly encountered peptide binding domains in several proteins including those involved in scaffolding functions. This domain is known for its promiscuity both in terms of ligand selection, mode of interaction with its ligands as well as its association with other protein interaction domains. PDZ domains are subject to several means of regulations by virtue of their functional diversity. Additionally, the PDZ domains are refractive to the effect of mutations and maintain their three-dimensional architecture under extreme mutational load. The biochemical and biophysical basis for this selectivity as well as promiscuity has been investigated and reviewed extensively. The present review focuses on the plasticity inherent in PDZ domains and its implications for modular organization as well as evolution of cellular signalling pathways in higher eukaryotes.
Collapse
Affiliation(s)
- G P Manjunath
- Indian Institute of Science Education and Research, Pune 411 008, India
| | | | | |
Collapse
|
16
|
Structure function relations in PDZ-domain-containing proteins: Implications for protein networks in cellular signalling. J Biosci 2017. [DOI: 10.1007/s12038-017-9727-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Crawley O, Giles AC, Desbois M, Kashyap S, Birnbaum R, Grill B. A MIG-15/JNK-1 MAP kinase cascade opposes RPM-1 signaling in synapse formation and learning. PLoS Genet 2017; 13:e1007095. [PMID: 29228003 PMCID: PMC5754208 DOI: 10.1371/journal.pgen.1007095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 01/04/2018] [Accepted: 11/01/2017] [Indexed: 12/18/2022] Open
Abstract
The Pam/Highwire/RPM-1 (PHR) proteins are conserved intracellular signaling hubs that regulate synapse formation and axon termination. The C. elegans PHR protein, called RPM-1, acts as a ubiquitin ligase to inhibit the DLK-1 and MLK-1 MAP kinase pathways. We have identified several kinases that are likely to form a new MAP kinase pathway that suppresses synapse formation defects, but not axon termination defects, in the mechanosensory neurons of rpm-1 mutants. This pathway includes: MIG-15 (MAP4K), NSY-1 (MAP3K), JKK-1 (MAP2K) and JNK-1 (MAPK). Transgenic overexpression of kinases in the MIG-15/JNK-1 pathway is sufficient to impair synapse formation in wild-type animals. The MIG-15/JNK-1 pathway functions cell autonomously in the mechanosensory neurons, and these kinases localize to presynaptic terminals providing further evidence of a role in synapse development. Loss of MIG-15/JNK-1 signaling also suppresses defects in habituation to repeated mechanical stimuli in rpm-1 mutants, a behavioral deficit that is likely to arise from impaired glutamatergic synapse formation. Interestingly, habituation results are consistent with the MIG-15/JNK-1 pathway functioning as a parallel opposing pathway to RPM-1. These findings indicate the MIG-15/JNK-1 pathway can restrict both glutamatergic synapse formation and short-term learning.
Collapse
Affiliation(s)
- Oliver Crawley
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Andrew C. Giles
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Muriel Desbois
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Sudhanva Kashyap
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Rayna Birnbaum
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States of America
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| |
Collapse
|
18
|
Borgen MA, Wang D, Grill B. RPM-1 regulates axon termination by affecting growth cone collapse and microtubule stability. Development 2017; 144:4658-4672. [PMID: 29084805 DOI: 10.1242/dev.154187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/21/2017] [Indexed: 12/14/2022]
Abstract
Axon termination is essential for efficient and accurate nervous system construction. At present, relatively little is known about how growth cone collapse occurs prior to axon termination in vivo Using the mechanosensory neurons of C. elegans, we found collapse prior to axon termination is protracted, with the growth cone transitioning from a dynamic to a static state. Growth cone collapse prior to termination is facilitated by the signaling hub RPM-1. Given the prominence of the cytoskeleton in growth cone collapse, we assessed the relationship between RPM-1 and regulators of actin dynamics and microtubule stability. Our results reveal several important findings about how axon termination is orchestrated: (1) RPM-1 functions in parallel to RHO-1 and CRMP/UNC-33, but is suppressed by the Rac isoform MIG-2; (2) RPM-1 opposes the function of microtubule stabilizers, including tubulin acetyltransferases; and (3) genetic epistasis suggests the microtubule-stabilizing protein Tau/PTL-1 potentially inhibits RPM-1. These findings provide insight into how growth cone collapse is regulated during axon termination in vivo, and suggest that RPM-1 signaling destabilizes microtubules to facilitate growth cone collapse and axon termination.
Collapse
Affiliation(s)
- Melissa A Borgen
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Dandan Wang
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| |
Collapse
|
19
|
Lee LC, Goh MQL, Koo EH. Transcriptional regulation of APP by apoE: To boldly go where no isoform has gone before: ApoE, APP transcription and AD: Hypothesised mechanisms and existing knowledge gaps. Bioessays 2017; 39. [PMID: 28731260 DOI: 10.1002/bies.201700062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia that gradually disrupts the brain network to impair memory, language and cognition. While the amyloid hypothesis remains the leading proposed mechanism to explain AD pathophysiology, anti-amyloid therapeutic strategies have yet to translate into useful therapies, suggesting that amyloid β-protein and its precursor, the amyloid precursor protein (APP) are but a part of the disease cascade. Further, risk of AD can be modulated by a number of factors, the most impactful being the ɛ4 isoform of apolipoprotein E (apoE). A recent study reported a novel isoform-dependent transcriptional regulation of APP by apoE. These interesting new results add to the myriad of mechanisms that have been proposed to explain how apoE4 enhances AD risk, highlighting the complexities of not only apoE and AD pathophysiology, but also of disease itself. Also see the video abstract here: https://youtu.be/yd14MBdPkCY.
Collapse
Affiliation(s)
- Liying Corinne Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Michele Q L Goh
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Edward H Koo
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore.,Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Chen CH, He CW, Liao CP, Pan CL. A Wnt-planar polarity pathway instructs neurite branching by restricting F-actin assembly through endosomal signaling. PLoS Genet 2017; 13:e1006720. [PMID: 28384160 PMCID: PMC5398721 DOI: 10.1371/journal.pgen.1006720] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/20/2017] [Accepted: 03/29/2017] [Indexed: 02/01/2023] Open
Abstract
Spatial arrangement of neurite branching is instructed by both attractive and repulsive cues. Here we show that in C. elegans, the Wnt family of secreted glycoproteins specify neurite branching sites in the PLM mechanosensory neurons. Wnts function through MIG-1/Frizzled and the planar cell polarity protein (PCP) VANG-1/Strabismus/Vangl2 to restrict the formation of F-actin patches, which mark branching sites in nascent neurites. We find that VANG-1 promotes Wnt signaling by facilitating Frizzled endocytosis and genetically acts in a common pathway with arr-1/β-arrestin, whose mutation results in defective PLM branching and F-actin patterns similar to those in the Wnt, mig-1 or vang-1 mutants. On the other hand, the UNC-6/Netrin pathway intersects orthogonally with Wnt-PCP signaling to guide PLM branch growth along the dorsal-ventral axis. Our study provides insights for how attractive and repulsive signals coordinate to sculpt neurite branching patterns, which are critical for circuit connectivity.
Collapse
Affiliation(s)
- Chun-Hao Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Wei He
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Po Liao
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
21
|
Brace EJ, DiAntonio A. Models of axon regeneration in Drosophila. Exp Neurol 2017; 287:310-317. [PMID: 26996133 PMCID: PMC5026866 DOI: 10.1016/j.expneurol.2016.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
Maintaining neuronal connectivity in the face of injury and disease is a major challenge for the nervous system. The great length of axons makes them particularly vulnerable to insult with dire consequences for neuronal function. In the peripheral nervous system there is a program of axonal regeneration that can reestablish connectivity. In the mammalian central nervous system, however, injured axons have little or no capacity to regenerate. The molecular mechanisms that promote axon regeneration have begun to be identified and many of the implicated pathways are evolutionarily conserved. Here we discuss Drosophila models of axonal regrowth, describe insights derived from these studies, and highlight future directions in the use of the fly for dissecting the mechanisms of axonal regeneration.
Collapse
Affiliation(s)
- E J Brace
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA, 63110
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA, 63110.
| |
Collapse
|
22
|
Byrne AB, Hammarlund M. Axon regeneration in C. elegans: Worming our way to mechanisms of axon regeneration. Exp Neurol 2016; 287:300-309. [PMID: 27569538 DOI: 10.1016/j.expneurol.2016.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022]
Abstract
How axons repair themselves after injury is a fundamental question in neurobiology. With its conserved genome, relatively simple nervous system, and transparent body, C. elegans has recently emerged as a productive model to uncover the cellular mechanisms that regulate and execute axon regeneration. In this review, we discuss the strengths and weaknesses of the C. elegans model of regeneration. We explore the technical advances that enable the use of C. elegans for in vivo regeneration studies, review findings in C. elegans that have contributed to our understanding of the regeneration response across species, discuss the potential of C. elegans research to provide insight into mechanisms that function in the injured mammalian nervous system, and present potential future directions of axon regeneration research using C. elegans.
Collapse
Affiliation(s)
- Alexandra B Byrne
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Marc Hammarlund
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
23
|
Dubey J, Ratnakaran N, Koushika SP. Neurodegeneration and microtubule dynamics: death by a thousand cuts. Front Cell Neurosci 2015; 9:343. [PMID: 26441521 PMCID: PMC4563776 DOI: 10.3389/fncel.2015.00343] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022] Open
Abstract
Microtubules form important cytoskeletal structures that play a role in establishing and maintaining neuronal polarity, regulating neuronal morphology, transporting cargo, and scaffolding signaling molecules to form signaling hubs. Within a neuronal cell, microtubules are found to have variable lengths and can be both stable and dynamic. Microtubule associated proteins, post-translational modifications of tubulin subunits, microtubule severing enzymes, and signaling molecules are all known to influence both stable and dynamic pools of microtubules. Microtubule dynamics, the process of interconversion between stable and dynamic pools, and the proportions of these two pools have the potential to influence a wide variety of cellular processes. Reduced microtubule stability has been observed in several neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), and tauopathies like Progressive Supranuclear Palsy. Hyperstable microtubules, as seen in Hereditary Spastic Paraplegia (HSP), also lead to neurodegeneration. Therefore, the ratio of stable and dynamic microtubules is likely to be important for neuronal function and perturbation in microtubule dynamics might contribute to disease progression.
Collapse
Affiliation(s)
- Jyoti Dubey
- Department of Biological Sciences, Tata Institute of Fundamental Research Mumbai, India ; InStem Bangalore, India
| | - Neena Ratnakaran
- Department of Biological Sciences, Tata Institute of Fundamental Research Mumbai, India
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research Mumbai, India
| |
Collapse
|
24
|
Bearce EA, Erdogan B, Lowery LA. TIPsy tour guides: how microtubule plus-end tracking proteins (+TIPs) facilitate axon guidance. Front Cell Neurosci 2015; 9:241. [PMID: 26175669 PMCID: PMC4485311 DOI: 10.3389/fncel.2015.00241] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/15/2015] [Indexed: 01/01/2023] Open
Abstract
The growth cone is a dynamic cytoskeletal vehicle, which drives the end of a developing axon. It serves to interpret and navigate through the complex landscape and guidance cues of the early nervous system. The growth cone’s distinctive cytoskeletal organization offers a fascinating platform to study how extracellular cues can be translated into mechanical outgrowth and turning behaviors. While many studies of cell motility highlight the importance of actin networks in signaling, adhesion, and propulsion, both seminal and emerging works in the field have highlighted a unique and necessary role for microtubules (MTs) in growth cone navigation. Here, we focus on the role of singular pioneer MTs, which extend into the growth cone periphery and are regulated by a diverse family of microtubule plus-end tracking proteins (+TIPs). These +TIPs accumulate at the dynamic ends of MTs, where they are well-positioned to encounter and respond to key signaling events downstream of guidance receptors, catalyzing immediate changes in microtubule stability and actin cross-talk, that facilitate both axonal outgrowth and turning events.
Collapse
Affiliation(s)
| | - Burcu Erdogan
- Department of Biology, Boston College Chestnut Hill, MA, USA
| | | |
Collapse
|
25
|
Kim KW, Jin Y. Neuronal responses to stress and injury in C. elegans. FEBS Lett 2015; 589:1644-52. [PMID: 25979176 DOI: 10.1016/j.febslet.2015.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/22/2022]
Abstract
The nervous system plays critical roles in the stress response. Animals can survive and function under harsh conditions, and resist and recover from injuries because neurons perceive and respond to various stressors through specific regulatory mechanisms. Caenorhabditis elegans has served as an excellent model to discover fundamental mechanisms underlying the neuronal response to stress. The basic physiological processes that C. elegans exhibits under stress conditions are similar to those observed in higher organisms. Many molecular pathways activated by environmental and cellular stresses are also conserved. In this review, we summarize major findings in examining neuronal responses to hypoxia, oxidative stress, osmotic stress, and traumatic injury. These studies from C. elegans have provided novel insights into our understanding of neuronal responses to stress at the molecular, cellular, and circuit levels.
Collapse
Affiliation(s)
- Kyung Won Kim
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States.
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States; Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
26
|
Valakh V, Frey E, Babetto E, Walker LJ, DiAntonio A. Cytoskeletal disruption activates the DLK/JNK pathway, which promotes axonal regeneration and mimics a preconditioning injury. Neurobiol Dis 2015; 77:13-25. [PMID: 25726747 DOI: 10.1016/j.nbd.2015.02.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/12/2015] [Accepted: 02/15/2015] [Indexed: 10/23/2022] Open
Abstract
Nerve injury can lead to axonal regeneration, axonal degeneration, and/or neuronal cell death. Remarkably, the MAP3K dual leucine zipper kinase, DLK, promotes each of these responses, suggesting that DLK is a sensor of axon injury. In Drosophila, mutations in proteins that stabilize the actin and microtubule cytoskeletons activate the DLK pathway, suggesting that DLK may be activated by cytoskeletal disruption. Here we test this model in mammalian sensory neurons. We find that pharmacological agents designed to disrupt either the actin or microtubule cytoskeleton activate the DLK pathway, and that activation is independent of calcium influx or induction of the axon degeneration program. Moreover, activation of the DLK pathway by targeting the cytoskeleton induces a pro-regenerative state, enhancing axon regeneration in response to a subsequent injury in a process akin to preconditioning. This highlights the potential utility of activating the DLK pathway as a method to improve axon regeneration. Moreover, DLK is required for these responses to cytoskeletal perturbations, suggesting that DLK functions as a key neuronal sensor of cytoskeletal damage.
Collapse
Affiliation(s)
- Vera Valakh
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Erin Frey
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Elisabetta Babetto
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Lauren J Walker
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|