1
|
Takeda K, Watanabe K, Iijima S, Nagahiro T, Suzuki H, Izumo K, Ikegaya Y, Matsumoto N. Ramelteon coordinates theta and gamma oscillations in the hippocampus for novel object recognition memory in mice. J Pharmacol Sci 2025; 158:121-130. [PMID: 40288822 DOI: 10.1016/j.jphs.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/14/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025] Open
Abstract
Object recognition memory is an animal's ability to discriminate between novel and familiar items and is supported by neural activities in not only the perirhinal cortex but also the hippocampus and prefrontal cortex. Since we previously demonstrated that ramelteon enhanced object recognition memory in mice, we sought neural correlates of the memory improvement. We recorded neural activity in the hippocampus and prefrontal cortex of mice while they performed a novel object recognition task. We found that theta oscillations in the hippocampus were enhanced when ramelteon-treated mice explored both novel and familiar objects. Moreover, we showed high coherence in phases at low gamma frequencies between the hippocampus and prefrontal cortex. We assume that theta enhancement is indicative of increased cholinergic activity by melatonin receptor activation. High coherence of low gamma oscillations between the hippocampal and prefrontal network in ramelteon-treated mice sampling novel objects suggests better cognitive operations for discrimination between novelty and familiarity. The current study sheds light upon physiological consequences of melatonin receptor activation, further contributing improved cognitive functions.
Collapse
Affiliation(s)
- Kinjiro Takeda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kisa Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Sena Iijima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takeshi Nagahiro
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Haruka Suzuki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kano Izumo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
2
|
Wang Y, Hui Y, Wang L, Qiao H, Wu X, Bai Y, Sun Q, Zhang Q, Li L. Intermittent theta burst stimulation is superior to 10 Hz-repetitive transcranial magnetic stimulation in promoting episodic-like memory in healthy male rats by enhancing low γ oscillation and glutamate neuronal activities of the anterior cingulate cortex. Neurochem Int 2025; 188:105995. [PMID: 40398749 DOI: 10.1016/j.neuint.2025.105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/19/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
Intermittent theta-burst stimulation (iTBS) and high-frequency repetitive transcranial magnetic stimulation (rTMS) produce beneficial after-effects on memory performance. The two modalities have modulatory after-effects on the prefrontal neuronal oscillations and neurotransmitters, which are critically involved in episodic memory processing. However, whether iTBS exerts better cognitive effects than high-frequency rTMS through modulating neuronal oscillations and neurotransmitter levels in the prefrontal cortex has not been determined. Thus, iTBS and 10 Hz-rTMS modalities were applied to healthy male rats respectively, and behavior tests, electrophysiological experiments and microdialysis and neurochemistry were performed. We found that iTBS and 10 Hz-rTMS promoted episodic memory in healthy male rats, and iTBS exerted better cognitive effects than 10 Hz-rTMS. Intriguingly, iTBS induced greater effects than 10 Hz-rTMS in enhancing low γ oscillation in the anterior cingulate cortex (ACC) which is a subregion of the prefrontal cortex. Further, compared to sham stimuli, iTBS suppressed δ oscillation and enhanced θ oscillation, while 10 Hz-rTMS did not, suggesting that iTBS induces higher cortical excitability in the ACC than 10 Hz-rTMS. This is supported by a higher increase in glutamate neuronal activities in the ACC following iTBS than 10 Hz-rTMS. Finally, we found that iTBS and 10 Hz-rTMS decreased extracellular gamma-aminobutyric acid levels and increased extracellular glutamate levels in the ACC, thus leading to the activation of ACC glutamate neurons after the two modalities. These findings suggest that iTBS produces better cognitive effects in healthy male rats, which may be attributed to enhanced low γ oscillation and activated glutamatergic neurons in the ACC.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yanping Hui
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ling Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hongfei Qiao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiang Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yihua Bai
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qingfeng Sun
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qiaojun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Libo Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
3
|
Wang Y, Zhang Q, Fei F, Hu K, Wang F, Cheng H, Xu C, Xu L, Wu J, Parpura V, Chen Z, Wang Y. Septo-subicular cholinergic circuit promotes seizure development via astrocytic inflammation. Cell Rep 2025; 44:115712. [PMID: 40372911 DOI: 10.1016/j.celrep.2025.115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/29/2025] [Accepted: 04/25/2025] [Indexed: 05/17/2025] Open
Abstract
The central dogma explaining epileptic seizures largely revolves around the classic theory of "excitability-inhibition" imbalance between glutamatergic and GABAergic transmission. Cholinergic neurons play a significant role in epilepsy; however, these neuronal populations are molecularly and structurally heterogeneous. Here, we show a subpopulation of subiculum-projecting septal cholinergic neurons that promote seizure development. Functionally, this subpopulation is suppressed during seizures. Selective manipulation of the septo-subicular cholinergic circuit bidirectionally regulates the development of hippocampal seizures. Notably, cholinergic signaling enhances subicular astrocytic caspase-1-mediated neuroinflammation via M3 muscarinic receptors, increasing excitatory synaptic transmission and promoting seizure development. Together, these results demonstrate that activation of the septo-subicular cholinergic circuits facilitates seizure development via astrocytic inflammation. Our findings provide insight into the cholinergic mechanism involved in epilepsy and suggest targeted therapeutic strategies for epilepsy treatment, focusing on the specific cholinergic neuronal subpopulation.
Collapse
Affiliation(s)
- Yu Wang
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qingyang Zhang
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fan Fei
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Keyu Hu
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fei Wang
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Heming Cheng
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Cenglin Xu
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lingyu Xu
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiannong Wu
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Vladimir Parpura
- International Translational Neuroscience Research Institute, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhong Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yi Wang
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Dobryakova YV, Bolshakov AP, Korotkova T, Rozov AV. Acetylcholine in the hippocampus: problems and achievements. Front Neural Circuits 2025; 19:1491820. [PMID: 40371058 PMCID: PMC12075383 DOI: 10.3389/fncir.2025.1491820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 04/11/2025] [Indexed: 05/16/2025] Open
Abstract
Cholinergic septohippocampal projections originating from the medial septal area (MSA) play a critical role in regulating attention, memory formation, stress responses, and synaptic plasticity. Cholinergic axons from the MSA extensively innervate all hippocampal regions, providing a structural basis for the simultaneous release of acetylcholine (ACh) across the entire hippocampus. However, this widespread release appears inconsistent with the specific functional roles that ACh is thought to serve during distinct behaviors. A key unresolved question is how the dynamics of ACh tissue concentrations determine its ability to activate different receptor types and coordinate individual synaptic pathways. Here, we highlight several debated issues, including the potential intrinsic source of ACh within the hippocampus - such as cholinergic interneurons - and the co-release of ACh with GABA. Furthermore, we discuss recent findings on in vivo ACh concentration dynamics, which present a new dilemma for understanding ACh signaling in the hippocampus: the contrast between "global" ACh release, driven by synchronous activation of MSA neurons, and "local" release, which may be influenced by yet unidentified factors.
Collapse
Affiliation(s)
- Yulia V. Dobryakova
- Laboratory of Neurophysiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
| | - Alexey P. Bolshakov
- Laboratory of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
| | - Tinna Korotkova
- Laboratory of Neurophysiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
| | - Andrey V. Rozov
- Laboratory of Neurophysiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
| |
Collapse
|
5
|
Méndez FA, Torres-Flores MI, Ordaz B, Peña-Ortega F. Acute and Long-Term Consequences of Neonatal NMDA Blockade in the Cx3cr1 Knock-Out Mouse. Inflammation 2025:10.1007/s10753-025-02272-x. [PMID: 40295453 DOI: 10.1007/s10753-025-02272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 02/12/2025] [Indexed: 04/30/2025]
Abstract
Neuron-microglia communication through the fractalkine pathway is a critical factor mediating microglial proliferation, migration, release of mediators, and clearance of cellular debris, as well as the function of neuronal NMDA receptors. Disruption of the fractalkine-mediated microglia-neuron communication is associated with divergent outcomes, from damaging to protective, in different neurological conditions (including schizophrenia and epilepsy). In the present work we explore the impact of the absence of the fractalkine receptor (CX3CR1) after neonatal blockade of NMDA receptors, which induces acute and long-term alterations in behavior, neuronal integrity and excitability. Wild-type (WT) and Cx3cr1-/- (KO) mice of both sexes randomly received either a low (0.5 mg/kg) or high dose (1 mg/kg) of MK-801 (NMDA receptor antagonist) or saline, for five consecutive days, during early postnatal development. Neuronal apoptosis was assessed at a midpoint of the pharmacological protocol. Survival and growth rates were determined up to adulthood when innate behaviors, unconditioned anxiety, contextual memory and seizure susceptibility were evaluated, as well as hippocampal local field potential and sensory gating. CX3CR1 depletion and neonatal MK-801 treatment had a synergistic acute effect, increasing neuronal apoptosis and overall mortality. Both factors independently induced long-lasting impairments in the wide array of behavioral tasks assessed during adulthood. However, low MK-801 dose treatment greatly augmented the mortality of pentylenetetrazol-induced seizures in WT mice, an effect prevented by CX3CR1 depletion. MK-801 treatment induced a shift in the power spectrum of the hippocampal local field potential towards higher frequencies that was averted in Cx3cr1-/- mice by an opposite shift. Our results reveal that CX3CR1 depletion severely increases the vulnerability to neonatal NMDA antagonism with additional complex interactions regarding cognitive and neurophysiological effects, which should be considered in the context of neuron-microglia miscommunication in many neurological disorders including schizophrenia and epilepsy.
Collapse
Affiliation(s)
- Felipe A Méndez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230, Querétaro, Mexico
- Center for Neuroscience, Department of Neurology, University of California Davis, Davis, CA, USA
| | - Mayra Itzel Torres-Flores
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230, Querétaro, Mexico
- Center for Neuroscience, Department of Neurology, University of California Davis, Davis, CA, USA
| | - Benito Ordaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230, Querétaro, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230, Querétaro, Mexico.
| |
Collapse
|
6
|
Gemzik ZM, Griffin AL. Medial septal theta stimulation enhances spatial working memory performance in rats. Learn Mem 2025; 32:a054075. [PMID: 40210434 PMCID: PMC12052090 DOI: 10.1101/lm.054075.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/06/2025] [Indexed: 04/12/2025]
Abstract
Spatial working memory (SWM) relies on the integrity of the medial septum area (MSA) and its ability to drive theta (4-12 Hz) oscillations in the hippocampus. This study tested the hypothesis that optogenetic theta stimulation of the MSA would enhance choice accuracy on a hippocampus-dependent task in rats. We delivered either excitatory or control theta stimulation during the delay period (10 or 30 sec) of a delayed alternation (DA) task. We show that MSA theta stimulation improved choice accuracy on the 30 sec delay trials, providing strong support for the notion that MSA theta stimulation boosts SWM.
Collapse
Affiliation(s)
- Zachary M Gemzik
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Amy L Griffin
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
7
|
Sun L, Bao L. Neuronal theta oscillation of hippocampal ensemble and memory function. Behav Brain Res 2025; 481:115429. [PMID: 39800078 DOI: 10.1016/j.bbr.2025.115429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Memory is the ability to acquire and store information following an experience, which can be retrieved by related context exposure. Pioneering studies have demonstrated that sparsely distributed neuronal ensembles or engram cells can serve as neural substrates for storing and recalling memory traces. Many studies of neuronal ensembles have focused on the hippocampus, and increasing evidence has indicated that the neuronal oscillation is closely associated with hippocampal memory functions, including both encoding and retrieval processes. In particular, the theta synchronization of hippocampal ensembles with other brain regions mediates the retrieval of multiple types of memory. The recent progress of theta oscillations in the formation of memory engrams is reviewed, as well as the increased theta power and neurotransmitter regulation on memory function. Detailed information based on an analysis of hippocampal local theta rhythms is presented. Moreover, the hippocampus theta synchronization with the sensory cortex, prefrontal cortex and amygdala, which mediate different types of memory retrieval, are also reviewed. Together, these findings contribute to understanding the important role of hippocampal theta oscillation in the storage and recall of memory traces.
Collapse
Affiliation(s)
- Lin Sun
- School of Clinical Medicine, Changzhi Medical College, Changzhi, Shanxi Province 046013, China
| | - Lihua Bao
- Department of Neurology, Changzhi People's Hospital, Changzhi, Shanxi Province 046000, China.
| |
Collapse
|
8
|
Maslarova A, Shin JN, Navas-Olive A, Vöröslakos M, Hamer H, Doerfler A, Henin S, Buzsáki G, Liu A. Spatiotemporal Patterns Differentiate Hippocampal Sharp-Wave Ripples from Interictal Epileptiform Discharges in Mice and Humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636758. [PMID: 39975118 PMCID: PMC11839046 DOI: 10.1101/2025.02.06.636758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hippocampal sharp-wave ripples (SPW-Rs) are high-frequency oscillations critical for memory consolidation in mammals. Despite extensive characterization in rodents, their application as biomarkers to track and treat memory dysfunction in humans is limited by coarse spatial sampling, interference from interictal epileptiform discharges (IEDs), and lack of consensus on human SPW-R localization and morphology. We demonstrate that mouse and human hippocampal ripples share spatial, spectral and temporal features, which are clearly distinct from IEDs. In 1024-channel hippocampal recordings from APP/PS1 mice, SPW-Rs were distinguishable from IEDs by their narrow localization to the CA1 pyramidal layer, narrowband frequency peaks, and multiple ripple cycles on the unfiltered local field potential. In epilepsy patients, ripples showed similar narrowband frequency peaks and visible ripple cycles in CA1 and the subiculum but were absent in the dentate gyrus. Conversely, IEDs showed a broad spatial extent and wide-band frequency power. We introduce a semi-automated, human ripple detection toolbox ("ripmap") selecting optimal detection channels and separating event waveforms by low-dimensional embedding. Our approach improves ripple detection accuracy, providing a firm foundation for future human memory research.
Collapse
|
9
|
Ignatavicius A, Matar E, Lewis SJG. Visual hallucinations in Parkinson's disease: spotlight on central cholinergic dysfunction. Brain 2025; 148:376-393. [PMID: 39252645 PMCID: PMC11788216 DOI: 10.1093/brain/awae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Visual hallucinations are a common non-motor feature of Parkinson's disease and have been associated with accelerated cognitive decline, increased mortality and early institutionalization. Despite their prevalence and negative impact on patient outcomes, the repertoire of treatments aimed at addressing this troubling symptom is limited. Over the past two decades, significant contributions have been made in uncovering the pathological and functional mechanisms of visual hallucinations, bringing us closer to the development of a comprehensive neurobiological framework. Convergent evidence now suggests that degeneration within the central cholinergic system may play a significant role in the genesis and progression of visual hallucinations. Here, we outline how cholinergic dysfunction may serve as a potential unifying neurobiological substrate underlying the multifactorial and dynamic nature of visual hallucinations. Drawing upon previous theoretical models, we explore the impact that alterations in cholinergic neurotransmission has on the core cognitive processes pertinent to abnormal perceptual experiences. We conclude by highlighting that a deeper understanding of cholinergic neurobiology and individual pathophysiology may help to improve established and emerging treatment strategies for the management of visual hallucinations and psychotic symptoms in Parkinson's disease.
Collapse
Affiliation(s)
- Anna Ignatavicius
- Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Elie Matar
- Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2050, Australia
- Centre for Integrated Research and Understanding of Sleep (CIRUS), Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Simon J G Lewis
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University Centre for Parkinson’s Disease Research, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
10
|
Moghadam FF, Gutierrez Guzman BE, Zheng X, Parsa M, Hozyen LM, Dannenberg H. Cholinergic dynamics in the septo-hippocampal system provide phasic multiplexed signals for spatial novelty and correlate with behavioral states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634097. [PMID: 39896475 PMCID: PMC11785060 DOI: 10.1101/2025.01.21.634097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
In the hippocampal formation, cholinergic modulation from the medial septum/diagonal band of Broca (MSDB) is known to correlate with the speed of an animal's movements at sub-second timescales and also supports spatial memory formation. Yet, the extent to which sub-second cholinergic dynamics, if at all, align with transient behavioral and cognitive states supporting the encoding of novel spatial information remains unknown. In this study, we used fiber photometry to record the temporal dynamics in the population activity of septo-hippocampal cholinergic neurons at sub-second resolution during a hippocampus-dependent object location memory task using ChAT-Cre mice. Using a general linear model, we quantified the extent to which cholinergic dynamics were explained by changes in movement speed, behavioral states such as locomotion, grooming, and rearing, and hippocampus-dependent cognitive states such as recognizing a novel location of a familiar object. The data show that cholinergic dynamics contain a multiplexed code of fast and slow signals i) coding for the logarithm of movement speed at sub-second timescales, ii) providing a phasic spatial novelty signal during the brief periods of exploring a novel object location, and iii) coding for environmental novelty at a seconds-long timescale. Furthermore, behavioral event-related phasic cholinergic activity around the onset and offset of the behavior demonstrates that fast cholinergic transients help facilitate a switch in cognitive and behavioral state before and during the onset of behavior. These findings enhance understanding of the mechanisms by which cholinergic modulation contributes to the coding of movement speed and encoding of novel spatial information.
Collapse
Affiliation(s)
| | | | - Xihui Zheng
- Interdisciplinary Program for Neuroscience, George Mason University, Fairfax, VA, United States
| | - Mina Parsa
- Interdisciplinary Program for Neuroscience, George Mason University, Fairfax, VA, United States
| | - Lojy M. Hozyen
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
| | - Holger Dannenberg
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
- Interdisciplinary Program for Neuroscience, George Mason University, Fairfax, VA, United States
| |
Collapse
|
11
|
Tuna T, Banks T, Glickert G, Sevinc C, Nair SS, Unal G. Basal forebrain innervation of the amygdala: an anatomical and computational exploration. Brain Struct Funct 2025; 230:30. [PMID: 39805973 PMCID: PMC11729089 DOI: 10.1007/s00429-024-02886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025]
Abstract
Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity. We used retrograde tracing with fluorescent immunohistochemistry to identify cholinergic and non-cholinergic parvalbumin- or calbindin-immunoreactive BF neuronal subgroups targeting the input (lateral and basolateral nuclei) and output (central nucleus and the central bed nucleus of the stria terminalis) regions of the amygdaloid complex. We observed a dense non-cholinergic, putative GABAergic projection from the ventral pallidum (VP) and the substantia innominata (SI) to the basolateral amygdala (BLA). The VP/SI axonal projections to the BLA were confirmed using viral anterograde tracing and transsynaptic labeling. We tested the potential function of this VP/SI-BLA pathway in a 1000-cell biophysically realistic network model, which incorporated principal neurons and three major interneuron groups of the BLA, together with extrinsic glutamatergic, cholinergic, and VP/SI GABAergic inputs. We observed in silico that theta-modulation of VP/SI GABAergic projections enhanced theta oscillations in the BLA via their selective innervation of the parvalbumin-expressing local interneurons. Ablation of parvalbumin-, but not somatostatin- or calretinin-expressing, interneurons reduced theta power in the BLA model. These results suggest that long-range BF GABAergic projections may modulate network activity at their target regions through the formation of a common interneuron-type and oscillatory phase-specific disinhibitory motif.
Collapse
Affiliation(s)
- Tuğçe Tuna
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| | - Tyler Banks
- Neural Engineering Laboratory, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Gregory Glickert
- Neural Engineering Laboratory, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Cem Sevinc
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| | - Satish S Nair
- Neural Engineering Laboratory, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.
| |
Collapse
|
12
|
Gambrill A, Rueckemann JW, Barria A. CHOLINERGIC MODULATION OF CELLULAR RESONANCE IN NON-HUMAN PRIMATE HIPPOCAMPUS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632495. [PMID: 39829940 PMCID: PMC11741476 DOI: 10.1101/2025.01.10.632495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Acetylcholine modulates the network physiology of the hippocampus, a crucial brain structure that supports cognition and memory formation in mammals 1-3. In this and adjacent regions, synchronized neuronal activity within theta-band oscillations (4-10Hz) is correlated with attentive processing that leads to successful memory encoding 4-10. Acetylcholine facilitates the hippocampus entering a theta oscillatory regime and modulates the temporal organization of activity within theta oscillations 11,12. Unlike rodents that exhibit constant theta oscillations during movement and exploration, primates only manifest theta oscillations in transient bouts during periods of acute attention-despite conserved hippocampal anatomy 13-16. The phasic nature of primate theta oscillations and their susceptibility to muscarinic antagonists 17, suggest that acetylcholine afferents acutely modulate local circuitry, resulting in a temporary shift in hippocampal rhythmic dynamics. However, we lack a mechanistic understanding that links cellular physiology to emergent theta-rhythmic network dynamics. We explored the hypothesis that acetylcholine induces a distinct modulation of cellular properties to facilitate synchronization within the theta band in non-human primate neurons. Here we show that non-human primate neurons from the CA1 region of monkey hippocampus are not homogeneous in their voltage response to inputs of varying frequencies, a phenomenon known as cellular resonance 18,19. We classified these neurons as 'resonant' or 'non-resonant'. Under the influence of carbachol, these two classes of neurons become indistinguishable in their resonance, suggesting that acetylcholine transiently creates a homogeneous susceptibility to inputs within the theta range. This change is mediated by metabotropic acetylcholine receptors that enhance sag potentials, indicating that acetylcholine acts on principal neurons to modulate Hyperpolarization-activated Cyclic Nucleotide-gated channels. Our results reveal a mechanism through which acetylcholine can rapidly modulate intrinsic properties of primate hippocampal neurons to facilitate synchronization within theta-rhythmic circuits, providing insight into the unique features of primate hippocampal physiology.
Collapse
Affiliation(s)
- Abigail Gambrill
- Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA
- Authors contributed equally to this work
| | - Jon W. Rueckemann
- Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA
- Washington National Primate Research Center
- Authors contributed equally to this work
| | - Andres Barria
- Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA
| |
Collapse
|
13
|
Shivakumar AB, Mehak SF, Gupta A, Gangadharan G. Medial septal cholinergic neurotransmission is essential for social memory in mice. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111207. [PMID: 39615870 DOI: 10.1016/j.pnpbp.2024.111207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/09/2024] [Accepted: 11/24/2024] [Indexed: 01/29/2025]
Abstract
Social memory, a fundamental component of social behavior, is essential for the recognition and recall of familiar and novel animals/humans which is disrupted in several neuropsychiatric disorders. Although hippocampal circuitry is crucial for social memory, the role of extra-hippocampal regions in this behavior remains elusive. Here, we identified the physiological link between medial septal dependent cholinergic theta oscillations in the hippocampus and social memory behavior. We found that selective ablation of cholinergic neurons in the medial septum impaired social memory in mice, while their sociability and social novelty remained intact. Additionally, these mice showed an attenuation of cholinergic theta oscillations (3-7 Hz) in the hippocampal dorsal CA2 (dCA2) region. Furthermore, enhancing dCA2 theta oscillations by elevating cholinergic signaling using acetylcholinesterase inhibitor rescued social memory deficit. Together, these results indicate that 1) medial septal cholinergic neurons are essential for modulating social memory 2) cholinergic hippocampal theta oscillations contribute to social memory processes.
Collapse
Affiliation(s)
- Apoorva Bettagere Shivakumar
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Sonam Fathima Mehak
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Amritanshu Gupta
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Gireesh Gangadharan
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
14
|
Ognjanovski N, Kim DS, Charlett-Green E, Goldiez E, van Koppen S, Aton SJ, Watson BO. Daily rhythms drive dynamism in sleep, oscillations and interneuron firing, while excitatory firing remains stable across 24 h. Eur J Neurosci 2025; 61:e16619. [PMID: 39663213 DOI: 10.1111/ejn.16619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/25/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024]
Abstract
The adaptation to the daily 24-h light-dark cycle is ubiquitous across animal species and is crucial for maintaining fitness. This free-running cycle occurs innately within multiple bodily systems, such as endogenous circadian rhythms in clock-gene expression and synaptic plasticity. These phenomena are well studied; however, it is unknown if and how the 24-h clock affects electrophysiologic network function in vivo. The hippocampus is a region of interest for long timescale (>8 h) studies because it is critical for cognitive function and exhibits time-of-day effects in learning. We recorded single cell spiking activity and local field potentials (LFPs) in mouse hippocampus across the 24-h (12:12-h light/dark) cycle to quantify how electrophysiological network function is modulated across the 24-h day. We found that while inhibitory population firing rates and LFP oscillations exhibit modulation across the day, average excitatory population firing is static. This excitatory stability, despite inhibitory dynamism, may enable consistent around-the-clock function of neural circuits.
Collapse
Affiliation(s)
- Nicolette Ognjanovski
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - David S Kim
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Emma Charlett-Green
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Ethan Goldiez
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Sofie van Koppen
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Brendon O Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Chang H, Tang W, Wulf AM, Nyasulu T, Wolf ME, Fernandez-Ruiz A, Oliva A. Sleep microstructure organizes memory replay. Nature 2025; 637:1161-1169. [PMID: 39743590 PMCID: PMC12107872 DOI: 10.1038/s41586-024-08340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Recently acquired memories are reactivated in the hippocampus during sleep, an initial step for their consolidation1-3. This process is concomitant with the hippocampal reactivation of previous memories4-6, posing the problem of how to prevent interference between older and recent, initially labile, memory traces. Theoretical work has suggested that consolidating multiple memories while minimizing interference can be achieved by randomly interleaving their reactivation7-10. An alternative is that a temporal microstructure of sleep can promote the reactivation of different types of memories during specific substates. Here, to test these two hypotheses, we developed a method to simultaneously record large hippocampal ensembles and monitor sleep dynamics through pupillometry in naturally sleeping mice. Oscillatory pupil fluctuations revealed a previously unknown microstructure of non-REM sleep-associated memory processes. We found that memory replay of recent experiences dominated in sharp-wave ripples during contracted pupil substates of non-REM sleep, whereas replay of previous memories preferentially occurred during dilated pupil substates. Selective closed-loop disruption of sharp-wave ripples during contracted pupil non-REM sleep impaired the recall of recent memories, whereas the same manipulation during dilated pupil substates had no behavioural effect. Stronger extrinsic excitatory inputs characterized the contracted pupil substate, whereas higher recruitment of local inhibition was prominent during dilated pupil substates. Thus, the microstructure of non-REM sleep organizes memory replay, with previous versus new memories being temporally segregated in different substates and supported by local and input-driven mechanisms, respectively. Our results suggest that the brain can multiplex distinct cognitive processes during sleep to facilitate continuous learning without interference.
Collapse
Affiliation(s)
- Hongyu Chang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Wenbo Tang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Annabella M Wulf
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Thokozile Nyasulu
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Madison E Wolf
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | | | - Azahara Oliva
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
16
|
Bratsch-Prince JX, Jones GC, Warren JW, Mott DD. Synaptic acetylcholine induces sharp wave ripples in the basolateral amygdala through nicotinic receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626291. [PMID: 39677685 PMCID: PMC11642747 DOI: 10.1101/2024.12.01.626291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
While the basolateral amygdala (BLA) is critical in the consolidation of emotional memories, mechanisms underlying memory consolidation in this region are not well understood. In the hippocampus, memory consolidation depends upon network signatures termed sharp wave ripples (SWR). These SWRs largely occur during states of awake rest or slow wave sleep and are inversely correlated with cholinergic tone. While high frequency cholinergic stimulation can inhibit SWRs through muscarinic acetylcholine receptors, it is unclear how nicotinic acetylcholine receptors or different cholinergic firing patterns may influence SWR generation. SWRs are also present in BLA in vivo. Interestingly, the BLA receives extremely dense cholinergic inputs, yet the relationship between acetylcholine (ACh) and BLA SWRs is unexplored. Here, using brain slice electrophysiology in male and female mice, we show that brief stimulation of ACh inputs to BLA reliably induces SWRs that resemble those that occur in the BLA in vivo. Repeated ACh-SWRs are induced with single pulse stimulation at low, but not higher frequencies. ACh-SWRs are driven by nicotinic receptors which recruit different classes of local interneurons and trigger glutamate release from external inputs. In total, our findings establish a previously undefined mechanism for SWR induction in the brain. They also challenge the previous notion of neuromodulators as purely modulatory agents gating these events but instead reveal these systems can directly instruct SWR induction with temporal precision. Further, these results intriguingly suggest a new role for the nicotinic system in emotional memory consolidation.
Collapse
Affiliation(s)
| | - Grace C. Jones
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| | - James W. Warren
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| | - David D. Mott
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| |
Collapse
|
17
|
Shivakumar AB, Mehak SF, Jijimon F, Gangadharan G. Extrahippocampal Contributions to Social Memory: The Role of Septal Nuclei. Biol Psychiatry 2024; 96:835-847. [PMID: 38718881 DOI: 10.1016/j.biopsych.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 06/16/2024]
Abstract
Social memory, the ability to recognize and remember individuals within a social group, is crucial for social interactions and relationships. Deficits in social memory have been linked to several neuropsychiatric and neurodegenerative disorders. The hippocampus, especially the circuit that links dorsal CA2 and ventral CA1 neurons, is considered a neural substrate for social memory formation. Recent studies have provided compelling evidence of extrahippocampal contributions to social memory. The septal nuclei, including the medial and lateral septum, make up a basal forebrain region that shares bidirectional neuronal connections with the hippocampus and has recently been identified as critical for social memory. The focus of our review is the neural circuit mechanisms that underlie social memory, with a special emphasis on the septum. We also discuss the social memory dysfunction associated with neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Apoorva Bettagere Shivakumar
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sonam Fathima Mehak
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Feyba Jijimon
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gireesh Gangadharan
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
18
|
Yi JD, Pasdarnavab M, Kueck L, Tarcsay G, Ewell LA. Interictal spikes during spatial working memory carry helpful or distracting representations of space and have opposing impacts on performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623481. [PMID: 39605412 PMCID: PMC11601362 DOI: 10.1101/2024.11.13.623481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
In temporal lobe epilepsy, interictal spikes (IS) - hypersynchronous bursts of network activity - occur at high rates in between seizures. We sought to understand the influence of IS on working memory by recording hippocampal local field potentials from epileptic mice while they performed a delayed alternation task. We found that IS disrupted performance when they were spatially non-restricted and occurred during running. In contrast, when IS were clustered at reward locations, animals performed well. A machine learning decoding approach revealed that IS at reward sites were larger than IS elsewhere on the maze, and could be classified as occurring at specific reward locations - suggesting they carry informative content for the memory task. Finally, a spiking model revealed that spatially clustered IS preserved hippocampal replay, while spatially dispersed IS disrupted replay by causing over-generalization. Together, these results show that IS can have opposing outcomes on memory.
Collapse
Affiliation(s)
- Justin D. Yi
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
- These authors contributed equally
| | | | | | - Gergely Tarcsay
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Laura A. Ewell
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Center for Learning and Memory, University of California, Irvine, Irvine, CA, USA
- Senior author
- Lead contact
| |
Collapse
|
19
|
Zhu L, Demetriou Y, Barden J, Disla J, Mattis J. Medial septum parvalbumin-expressing inhibitory neurons are impaired in a mouse model of Dravet Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620933. [PMID: 39554146 PMCID: PMC11565850 DOI: 10.1101/2024.10.29.620933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Dravet syndrome (DS) is a severe neurodevelopmental disorder caused by pathogenic variants in the SCN1A gene, which encodes the voltage-gated sodium channel Na v 1.1 α subunit. Experiments in animal models of DS - including the haploinsufficient Scn1a +/- mouse - have identified impaired excitability of interneurons in the hippocampus and neocortex; this is thought to underlie the treatment-resistant epilepsy that is a prominent feature of the DS phenotype. However, additional brain structures, such as the medial septum (MS), also express SCN1A . The medial septum is known to play an important role in cognitive function and thus may contribute to the intellectual impairment that also characterizes DS. In this study, we employed whole cell patch clamp recordings in acute brain slices to characterize the electrophysiological properties of MS neurons in Scn1a +/- mice versus age-matched wild-type littermate controls. We found no discernible genotype-related differences in MS cholinergic (ChAT) neurons, but significant dysfunction within MS parvalbumin-expressing (PV) inhibitory neurons in Scn1a +/- mice. We further identified heterogeneity of firing patterns among MS PV neurons, and additional genotype differences in the proportion of subtype representation. These results confirm that the MS is an additional locus of pathology in DS, that may contribute to co- morbidities such as cognitive impairment.
Collapse
|
20
|
Sulaman BA, Zhang Y, Matosevich N, Kjærby C, Foustoukos G, Andersen M, Eban-Rothschild A. Emerging Functions of Neuromodulation during Sleep. J Neurosci 2024; 44:e1277242024. [PMID: 39358018 PMCID: PMC11450531 DOI: 10.1523/jneurosci.1277-24.2024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 10/04/2024] Open
Abstract
Neuromodulators act on multiple timescales to affect neuronal activity and behavior. They function as synaptic fine-tuners and master coordinators of neuronal activity across distant brain regions and body organs. While much research on neuromodulation has focused on roles in promoting features of wakefulness and transitions between sleep and wake states, the precise dynamics and functions of neuromodulatory signaling during sleep have received less attention. This review discusses research presented at our minisymposium at the 2024 Society for Neuroscience meeting, highlighting how norepinephrine, dopamine, and acetylcholine orchestrate brain oscillatory activity, control sleep architecture and microarchitecture, regulate responsiveness to sensory stimuli, and facilitate memory consolidation. The potential of each neuromodulator to influence neuronal activity is shaped by the state of the synaptic milieu, which in turn is influenced by the organismal or systemic state. Investigating the effects of neuromodulator release across different sleep substates and synaptic environments offers unique opportunities to deepen our understanding of neuromodulation and explore the distinct computational opportunities that arise during sleep. Moreover, since alterations in neuromodulatory signaling and sleep are implicated in various neuropsychiatric disorders and because existing pharmacological treatments affect neuromodulatory signaling, gaining a deeper understanding of the less-studied aspects of neuromodulators during sleep is of high importance.
Collapse
Affiliation(s)
- Bibi Alika Sulaman
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yiyao Zhang
- Neuroscience Institute, New York University, New York, New York 10016
| | - Noa Matosevich
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Celia Kjærby
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Georgios Foustoukos
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Mie Andersen
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen 2200, Denmark
| | | |
Collapse
|
21
|
Luna-Munguia H, Gasca-Martinez D, Garay-Cortes A, Coutiño D, Regalado M, de Los Rios E, Villaseñor P, Hidalgo-Flores F, Flores-Guapo K, Benito BY, Concha L. Selective Medial Septum Lesions in Healthy Rats Induce Longitudinal Changes in Microstructure of Limbic Regions, Behavioral Alterations, and Increased Susceptibility to Status Epilepticus. Mol Neurobiol 2024; 61:1-21. [PMID: 38443731 DOI: 10.1007/s12035-024-04069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Septo-hippocampal pathway, crucial for physiological functions and involved in epilepsy. Clinical monitoring during epileptogenesis is complicated. We aim to evaluate tissue changes after lesioning the medial septum (MS) of normal rats and assess how the depletion of specific neuronal populations alters the animals' behavior and susceptibility to establishing a pilocarpine-induced status epilepticus. Male Sprague-Dawley rats were injected into the MS with vehicle or saporins (to deplete GABAergic or cholinergic neurons; n = 16 per group). Thirty-two animals were used for diffusion tensor imaging (DTI); scanned before surgery and 14 and 49 days post-injection. Fractional anisotropy and apparent diffusion coefficient were evaluated in the fimbria, dorsal hippocampus, ventral hippocampus, dorso-medial thalamus, and amygdala. Between scans 2 and 3, animals were submitted to diverse behavioral tasks. Stainings were used to analyze tissue alterations. Twenty-four different animals received pilocarpine to evaluate the latency and severity of the status epilepticus 2 weeks after surgery. Additionally, eight different animals were only used to evaluate the neuronal damage inflicted on the MS 1 week after the molecular surgery. Progressive changes in DTI parameters in both white and gray matter structures of the four evaluated groups were observed. Behaviorally, the GAT1-saporin injection impacted spatial memory formation, while 192-IgG-saporin triggered anxiety-like behaviors. Histologically, the GABAergic toxin also induced aberrant mossy fiber sprouting, tissue damage, and neuronal death. Regarding the pilocarpine-induced status epilepticus, this agent provoked an increased mortality rate. Selective septo-hippocampal modulation impacts the integrity of limbic regions crucial for certain behavioral skills and could represent a precursor for epilepsy development.
Collapse
Affiliation(s)
- Hiram Luna-Munguia
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico.
| | - Deisy Gasca-Martinez
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
- Unidad de Analisis Conductual, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Alejandra Garay-Cortes
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Daniela Coutiño
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Mirelta Regalado
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Ericka de Los Rios
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
- Unidad de Microscopia, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Paulina Villaseñor
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Fernando Hidalgo-Flores
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Karen Flores-Guapo
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Brandon Yair Benito
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Luis Concha
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| |
Collapse
|
22
|
Kumar D, Yanagisawa M, Funato H. Sleep-dependent memory consolidation in young and aged brains. AGING BRAIN 2024; 6:100124. [PMID: 39309405 PMCID: PMC11416671 DOI: 10.1016/j.nbas.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Young children and aged individuals are more prone to memory loss than young adults. One probable reason is insufficient sleep-dependent memory consolidation. Sleep timing and sleep-stage duration differ between children and aged individuals compared to adults. Frequent daytime napping and fragmented sleep architecture are common in children and older individuals. Moreover, sleep-dependent oscillations that play crucial roles in long-term memory storage differ among age groups. Notably, the frontal cortex, which is important for long-term memory storage undergoes major structural changes in children and aged subjects. The similarities in sleep dynamics between children and aged subjects suggest that a deficit in sleep-dependent consolidation contributes to memory loss in both age groups.
Collapse
Affiliation(s)
- Deependra Kumar
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| |
Collapse
|
23
|
Adam CD, Mirzakhalili E, Gagnon KG, Cottone C, Arena JD, Ulyanova AV, Johnson VE, Wolf JA. Disrupted Hippocampal Theta-Gamma Coupling and Spike-Field Coherence Following Experimental Traumatic Brain Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596704. [PMID: 39314320 PMCID: PMC11418945 DOI: 10.1101/2024.05.30.596704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Traumatic brain injury (TBI) often results in persistent learning and memory deficits, likely due to disrupted hippocampal circuitry underlying these processes. Precise temporal control of hippocampal neuronal activity is important for memory encoding and retrieval and is supported by oscillations that dynamically organize single unit firing. Using high-density laminar electrophysiology, we discovered a loss of oscillatory power across CA1 lamina, with a profound, layer-specific reduction in theta-gamma phase amplitude coupling in injured rats. Interneurons from injured animals were less strongly entrained to theta and gamma oscillations, suggesting a mechanism for the loss of coupling, while pyramidal cells were entrained to a later phase of theta. During quiet immobility, we report decreased ripple amplitudes from injured animals during sharp-wave ripple events. These results reveal deficits in information encoding and retrieval schemes essential to cognition that likely underlie TBI-associated learning and memory impairments, and elucidate potential targets for future neuromodulation therapies.
Collapse
Affiliation(s)
- Christopher D Adam
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Ehsan Mirzakhalili
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Kimberly G Gagnon
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Carlo Cottone
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - John D Arena
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Alexandra V Ulyanova
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - Victoria E Johnson
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| |
Collapse
|
24
|
Leung LS, Gill RS, Shen B, Chu L. Cholinergic and behavior-dependent beta and gamma waves are coupled between olfactory bulb and hippocampus. Hippocampus 2024; 34:464-490. [PMID: 38949057 DOI: 10.1002/hipo.23622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024]
Abstract
Olfactory oscillations may enhance cognitive processing through coupling with beta (β, 15-30 Hz) and gamma (γ, 30-160 Hz) activity in the hippocampus (HPC). We hypothesize that coupling between olfactory bulb (OB) and HPC oscillations is increased by cholinergic activation in control rats and is reduced in kainic-acid-treated epileptic rats, a model of temporal lobe epilepsy. OB γ2 (63-100 Hz) power was higher during walking and immobility-awake (IMM) compared to sleep, while γ1 (30-57 Hz) power was higher during grooming than other behavioral states. Muscarinic cholinergic agonist pilocarpine (25 mg/kg ip) with peripheral muscarinic blockade increased OB power and OB-HPC coherence at β and γ1 frequency bands. A similar effect was found after physostigmine (0.5 mg/kg ip) but not scopolamine (10 mg/kg ip). Pilocarpine increased bicoherence and cross-frequency coherence (CFC) between OB slow waves (SW, 1-5 Hz) and hippocampal β, γ1 and γ2 waves, with stronger coherence at CA1 alveus and CA3c than CA1 stratum radiatum. Bicoherence further revealed a nonlinear interaction of β waves in OB with β waves at the CA1-alveus. Beta and γ1 waves in OB or HPC were segregated at one phase of the OB-SW, opposite to the phase of γ2 and γ3 (100-160 Hz) waves, suggesting independent temporal processing of β/γ1 versus γ2/γ3 waves. At CA1 radiatum, kainic-acid-treated epileptic rats compared to control rats showed decreased theta power, theta-β and theta-γ2 CFC during baseline walking, decreased CFC of HPC SW with γ2 and γ3 waves during baseline IMM, and decreased coupling of OB SW with β and γ2 waves at CA1 alveus after pilocarpine. It is concluded that β and γ waves in the OB and HPC are modulated by a slow respiratory rhythm, in a cholinergic and behavior-dependent manner, and OB-HPC functional connectivity at β and γ frequencies may enhance cognitive functions.
Collapse
Affiliation(s)
- L Stan Leung
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Ravnoor Singh Gill
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Bixia Shen
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Liangwei Chu
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
25
|
Gillespie AK, Astudillo Maya D, Denovellis EL, Desse S, Frank LM. Neurofeedback training can modulate task-relevant memory replay rate in rats. eLife 2024; 12:RP90944. [PMID: 38958562 PMCID: PMC11221834 DOI: 10.7554/elife.90944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Hippocampal replay - the time-compressed, sequential reactivation of ensembles of neurons related to past experience - is a key neural mechanism of memory consolidation. Replay typically coincides with a characteristic pattern of local field potential activity, the sharp-wave ripple (SWR). Reduced SWR rates are associated with cognitive impairment in multiple models of neurodegenerative disease, suggesting that a clinically viable intervention to promote SWRs and replay would prove beneficial. We therefore developed a neurofeedback paradigm for rat subjects in which SWR detection triggered rapid positive feedback in the context of a memory-dependent task. This training protocol increased the prevalence of task-relevant replay during the targeted neurofeedback period by changing the temporal dynamics of SWR occurrence. This increase was also associated with neural and behavioral forms of compensation after the targeted period. These findings reveal short-timescale regulation of SWR generation and demonstrate that neurofeedback is an effective strategy for modulating hippocampal replay.
Collapse
Affiliation(s)
- Anna K Gillespie
- Departments of Biological Structure and Lab Medicine & Pathology, University of WashingtonSeattleUnited States
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Daniela Astudillo Maya
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Eric L Denovellis
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Sachi Desse
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Loren M Frank
- Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
26
|
McCutcheon RA, Weber LAE, Nour MM, Cragg SJ, McGuire PM. Psychosis as a disorder of muscarinic signalling: psychopathology and pharmacology. Lancet Psychiatry 2024; 11:554-565. [PMID: 38795721 DOI: 10.1016/s2215-0366(24)00100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 05/28/2024]
Abstract
Dopaminergic receptor antagonism is a crucial component of all licensed treatments for psychosis, and dopamine dysfunction has been central to pathophysiological models of psychotic symptoms. Some clinical trials, however, indicate that drugs that act through muscarinic receptor agonism can also be effective in treating psychosis, potentially implicating muscarinic abnormalities in the pathophysiology of psychosis. Here, we discuss understanding of the central muscarinic system, and we examine preclinical, behavioural, post-mortem, and neuroimaging evidence for its involvement in psychosis. We then consider how altered muscarinic signalling could contribute to the genesis and maintenance of psychotic symptoms, and we review the clinical evidence for muscarinic agents as treatments. Finally, we discuss future research that could clarify the relationship between the muscarinic system and psychotic symptoms.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health, Oxford Health NHS Foundation Trust, Oxford, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Lilian A E Weber
- Department of Psychiatry, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Matthew M Nour
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health, Oxford Health NHS Foundation Trust, Oxford, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Stephanie J Cragg
- Department of Physiology, Anatomy and Genetics, Centre for Cellular and Molecular Neurobiology, University of Oxford, UK; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
| | - Philip M McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health, Oxford Health NHS Foundation Trust, Oxford, UK
| |
Collapse
|
27
|
Zacky Ariffin M, Yun Ng S, Nadia H, Koh D, Loh N, Michiko N, Khanna S. Neurokinin1 - cholinergic receptor mechanisms in the medial Septum-Dorsal hippocampus axis mediates experimental neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100162. [PMID: 39224764 PMCID: PMC11367143 DOI: 10.1016/j.ynpai.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The neurokinin-1 receptors (NK1Rs) in the forebrain medial septum (MS) region are localized exclusively on cholinergic neurons that partly project to the hippocampus and the cingulate cortex (Cg), regions implicated in nociception. In the present study, we explored the hypothesis that neurotransmission at septal NK1R and hippocampal cholinergic mechanisms mediate experimental neuropathic pain in the rodent chronic constriction injury model (CCI). Our investigations showed that intraseptal microinjection of substance P (SP) in rat evoked a peripheral hypersensitivity (PH)-like response in uninjured animals that was attenuated by systemic atropine sulphate, a muscarinic-cholinergic receptor antagonist. Conversely, pre-emptive destruction of septal cholinergic neurons attenuated the development of PH in the CCI model that also prevented the expression of cellular markers of nociception in the spinal cord and the forebrain. Likewise, anti-nociception was evoked on intraseptal microinjection of L-733,060, an antagonist at NK1Rs, and on bilateral or unilateral microinjection of the cholinergic receptor antagonists, atropine or mecamylamine, into the different regions of the dorsal hippocampus (dH) or on bilateral microinjection into the Cg. Interestingly, the effect of L-733,060 was accompanied with a widespread decreased in levels of CCI-induced nociceptive cellular markers in forebrain that was not secondary to behaviour, suggesting an active modulation of nociceptive processing by transmission at NK1R in the medial septum. The preceding suggest that the development and maintenance of neuropathic nociception is facilitated by septal NK1R-dH cholinergic mechanisms which co-ordinately affect nociceptive processing in the dH and the Cg. Additionally, the data points to a potential strategy for pain modulation that combines anticholinergics and anti-NKRs.
Collapse
Affiliation(s)
- Mohammed Zacky Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Si Yun Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Hamzah Nadia
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Darrel Koh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Natasha Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Naomi Michiko
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
28
|
Fu X, Tasker JG. Neuromodulation of inhibitory synaptic transmission in the basolateral amygdala during fear and anxiety. Front Cell Neurosci 2024; 18:1421617. [PMID: 38994327 PMCID: PMC11236696 DOI: 10.3389/fncel.2024.1421617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
The basolateral amygdala plays pivotal roles in the regulation of fear and anxiety and these processes are profoundly modulated by different neuromodulatory systems that are recruited during emotional arousal. Recent studies suggest activities of BLA interneurons and inhibitory synaptic transmission in BLA principal cells are regulated by neuromodulators to influence the output and oscillatory network states of the BLA, and ultimately the behavioral expression of fear and anxiety. In this review, we first summarize a cellular mechanism of stress-induced anxiogenesis mediated by the interaction of glucocorticoid and endocannabinoid signaling at inhibitory synapses in the BLA. Then we discuss cell type-specific activity patterns induced by neuromodulators converging on the Gq signaling pathway in BLA perisomatic parvalbumin-expressing (PV) and cholecystokinin-expressing (CCK) basket cells and their effects on BLA network oscillations and fear learning.
Collapse
Affiliation(s)
- Xin Fu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jeffrey G. Tasker
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
29
|
Zhang Y, Karadas M, Liu J, Gu X, Vöröslakos M, Li Y, Tsien RW, Buzsáki G. Interaction of acetylcholine and oxytocin neuromodulation in the hippocampus. Neuron 2024; 112:1862-1875.e5. [PMID: 38537642 PMCID: PMC11156550 DOI: 10.1016/j.neuron.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 06/09/2024]
Abstract
A postulated role of subcortical neuromodulators is to control brain states. Mechanisms by which different neuromodulators compete or cooperate at various temporal scales remain an open question. We investigated the interaction of acetylcholine (ACh) and oxytocin (OXT) at slow and fast timescales during various brain states. Although these neuromodulators fluctuated in parallel during NREM packets, transitions from NREM to REM were characterized by a surge of ACh but a continued decrease of OXT. OXT signaling lagged behind ACh. High ACh was correlated with population synchrony and gamma oscillations during active waking, whereas minimum ACh predicts sharp-wave ripples (SPW-Rs). Optogenetic control of ACh and OXT neurons confirmed the active role of these neuromodulators in the observed correlations. Synchronous hippocampal activity consistently reduced OXT activity, whereas inactivation of the lateral septum-hypothalamus path attenuated this effect. Our findings demonstrate how cooperative actions of these neuromodulators allow target circuits to perform specific functions.
Collapse
Affiliation(s)
| | | | | | - Xinyi Gu
- Neuroscience Institute, New York, NY, USA
| | | | - Yulong Li
- School of Life Science, Peking University, Beijing, China
| | - Richard W Tsien
- Neuroscience Institute, New York, NY, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - György Buzsáki
- Neuroscience Institute, New York, NY, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
30
|
Kniffin A, Bangasser DA, Parikh V. Septohippocampal cholinergic system at the intersection of stress and cognition: Current trends and translational implications. Eur J Neurosci 2024; 59:2155-2180. [PMID: 37118907 PMCID: PMC10875782 DOI: 10.1111/ejn.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
Deficits in hippocampus-dependent memory processes are common across psychiatric and neurodegenerative disorders such as depression, anxiety and Alzheimer's disease. Moreover, stress is a major environmental risk factor for these pathologies and it exerts detrimental effects on hippocampal functioning via the activation of hypothalamic-pituitary-adrenal (HPA) axis. The medial septum cholinergic neurons extensively innervate the hippocampus. Although, the cholinergic septohippocampal pathway (SHP) has long been implicated in learning and memory, its involvement in mediating the adaptive and maladaptive impact of stress on mnemonic processes remains less clear. Here, we discuss current research highlighting the contributions of cholinergic SHP in modulating memory encoding, consolidation and retrieval. Then, we present evidence supporting the view that neurobiological interactions between HPA axis stress response and cholinergic signalling impact hippocampal computations. Finally, we critically discuss potential challenges and opportunities to target cholinergic SHP as a therapeutic strategy to improve cognitive impairments in stress-related disorders. We argue that such efforts should consider recent conceptualisations on the dynamic nature of cholinergic signalling in modulating distinct subcomponents of memory and its interactions with cellular substrates that regulate the adaptive stress response.
Collapse
Affiliation(s)
- Alyssa Kniffin
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| | - Debra A. Bangasser
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA
| | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| |
Collapse
|
31
|
Dmitrieva E, Malkov A. Optogenetic stimulation of medial septal glutamatergic neurons modulates theta-gamma coupling in the hippocampus. Neurobiol Learn Mem 2024; 211:107929. [PMID: 38685526 DOI: 10.1016/j.nlm.2024.107929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Hippocampal cross-frequency theta-gamma coupling (TGC) is a basic mechanism for information processing, retrieval, and consolidation of long-term and working memory. While the role of entorhinal afferents in the modulation of hippocampal TGC is widely accepted, the influence of other main input to the hippocampus, from the medial septal area (MSA, the pacemaker of the hippocampal theta rhythm) is poorly understood. Optogenetics allows us to explore how different neuronal populations of septohippocampal circuits control neuronal oscillations in vivo. Rhythmic activation of septal glutamatergic neurons has been shown to drive hippocampal theta oscillations, but the role of these neuronal populations in information processing during theta activation has remained unclear. Here we investigated the influence of phasic activation of MSA glutamatergic neurons expressing channelrhodopsin II on theta-gamma coupling in the hippocampus. During the experiment, local field potentials of MSA and hippocampus of freely behaving mice were modulated by 470 nm light flashes with theta frequency (2-10) Hz. It was shown that both the power and the strength of modulation of gamma rhythm nested on hippocampal theta waves depend on the frequency of stimulation. The modulation of the amplitude of slow gamma rhythm (30-50 Hz) prevailed over modulation of fast gamma (55-100 Hz) during flash trains and the observed effects were specific for theta stimulation of MSA. We discuss the possibility that phasic depolarization of septal glutamatergic neurons controls theta-gamma coupling in the hippocampus and plays a role in memory retrieval and consolidation.
Collapse
Affiliation(s)
- Elena Dmitrieva
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Pushchino, Russia
| | - Anton Malkov
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, Pushchino, Russia.
| |
Collapse
|
32
|
Seenivasan P, Basak R, Narayanan R. Cross-strata co-occurrence of ripples with theta-frequency oscillations in the hippocampus of foraging rats. J Physiol 2024; 602:2315-2341. [PMID: 38654581 PMCID: PMC7615956 DOI: 10.1113/jp284629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Brain rhythms have been postulated to play central roles in animal cognition. A prominently reported dichotomy of hippocampal rhythms links theta-frequency oscillations (4-12 Hz) and ripples (120-250 Hz) exclusively to preparatory and consummatory behaviours, respectively. However, because of the differential power expression of these two signals across hippocampal strata, such exclusivity requires validation through analyses of simultaneous multi-strata recordings. We assessed co-occurrence of theta-frequency oscillations with ripples in multi-channel recordings of extracellular potentials across hippocampal strata from foraging rats. We detected all ripple events from an identified stratum pyramidale (SP) channel. We then defined theta epochs based on theta oscillations detected from the stratum lacunosum-moleculare (SLM) or the stratum radiatum (SR). We found ∼20% of ripple events (in SP) to co-occur with theta epochs identified from SR/SLM channels, defined here as theta ripples. Strikingly, when theta epochs were instead identified from the SP channel, such co-occurrences were significantly reduced because of a progressive reduction in theta power along the SLM-SR-SP axis. Behaviourally, we found most theta ripples to occur during immobile periods, with comparable theta power during exploratory and immobile theta epochs. Furthermore, the progressive reduction in theta power along the SLM-SR-SP axis was common to exploratory and immobile periods. Finally, we found a strong theta-phase preference of theta ripples within the fourth quadrant [3π/2 - 2π] of the associated theta oscillation. The prevalence of theta ripples expands the potential roles of ripple-frequency oscillations to span the continuum of encoding, retrieval and consolidation, achieved through interactions with theta oscillations. KEY POINTS: The brain manifests oscillations in recorded electrical potentials, with different frequencies of oscillation associated with distinct behavioural states. A prominently reported dichotomy assigns theta-frequency oscillations (4-12 Hz) and ripples (120-250 Hz) recorded in the hippocampus to be exclusively associated with preparatory and consummatory behaviours, respectively. Our multi-strata recordings from the rodent hippocampus coupled with cross-strata analyses provide direct quantitative evidence for the occurrence of ripple events nested within theta oscillations. These results highlight the need for an analysis pipeline that explicitly accounts for the specific strata where individual oscillatory power is high, in analysing simultaneously recorded data from multiple strata. Our observations open avenues for investigations involving cross-strata interactions between theta oscillations and ripples across different behavioural states.
Collapse
Affiliation(s)
- Pavithraa Seenivasan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Reshma Basak
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
33
|
Aidil-Carvalho F, Caulino-Rocha A, Ribeiro JA, Cunha-Reis D. Mismatch novelty exploration training shifts VPAC 1 receptor-mediated modulation of hippocampal synaptic plasticity by endogenous VIP in male rats. J Neurosci Res 2024; 102:e25333. [PMID: 38656542 DOI: 10.1002/jnr.25333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
Novelty influences hippocampal-dependent memory through metaplasticity. Mismatch novelty detection activates the human hippocampal CA1 area and enhances rat hippocampal-dependent learning and exploration. Remarkably, mismatch novelty training (NT) also enhances rodent hippocampal synaptic plasticity while inhibition of VIP interneurons promotes rodent exploration. Since VIP, acting on VPAC1 receptors (Rs), restrains hippocampal LTP and depotentiation by modulating disinhibition, we now investigated the impact of NT on VPAC1 modulation of hippocampal synaptic plasticity in male Wistar rats. NT enhanced both CA1 hippocampal LTP and depotentiation unlike exploring an empty holeboard (HT) or a fixed configuration of objects (FT). Blocking VIP VPAC1Rs with PG 97269 (100 nM) enhanced both LTP and depotentiation in naïve animals, but this effect was less effective in NT rats. Altered endogenous VIP modulation of LTP was absent in animals exposed to the empty environment (HT). HT and FT animals showed mildly enhanced synaptic VPAC1R levels, but neither VIP nor VPAC1R levels were altered in NT animals. Conversely, NT enhanced the GluA1/GluA2 AMPAR ratio and gephyrin synaptic content but not PSD-95 excitatory synaptic marker. In conclusion, NT influences hippocampal synaptic plasticity by reshaping brain circuits modulating disinhibition and its control by VIP-expressing hippocampal interneurons while upregulation of VIP VPAC1Rs is associated with the maintenance of VIP control of LTP in FT and HT animals. This suggests VIP receptor ligands may be relevant to co-adjuvate cognitive recovery therapies in aging or epilepsy, where LTP/LTD imbalance occurs.
Collapse
Affiliation(s)
- Fatima Aidil-Carvalho
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Caulino-Rocha
- BioISI-Instituto de Biossistemas e Ciências Integrativas, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim Alexandre Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Diana Cunha-Reis
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- BioISI-Instituto de Biossistemas e Ciências Integrativas, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
34
|
Yang Y, Leopold DA, Duyn JH, Liu X. Hippocampal replay sequence governed by spontaneous brain-wide dynamics. PNAS NEXUS 2024; 3:pgae078. [PMID: 38562584 PMCID: PMC10983782 DOI: 10.1093/pnasnexus/pgae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/01/2024] [Indexed: 04/04/2024]
Abstract
Neurons in the hippocampus exhibit spontaneous spiking activity during rest that appears to recapitulate previously experienced events. While this replay activity is frequently linked to memory consolidation and learning, the underlying mechanisms are not well understood. Recent large-scale neural recordings in mice have demonstrated that resting-state spontaneous activity is expressed as quasi-periodic cascades of spiking activity that pervade the forebrain, with each cascade engaging a high proportion of recorded neurons. Hippocampal ripples are known to be coordinated with cortical dynamics; however, less is known about the occurrence of replay activity relative to other brain-wide spontaneous events. Here we analyzed responses across the mouse brain to multiple viewings of natural movies, as well as subsequent patterns of neural activity during rest. We found that hippocampal neurons showed time-selectivity, with individual neurons responding consistently during particular moments of the movie. During rest, the population of time-selective hippocampal neurons showed both forward and time-reversed replay activity that matched the sequence observed in the movie. Importantly, these replay events were strongly time-locked to brain-wide spiking cascades, with forward and time-reversed replay activity associated with distinct cascade types. Thus, intrinsic hippocampal replay activity is temporally structured according to large-scale spontaneous physiology affecting areas throughout the forebrain. These findings shed light on the coordination between hippocampal and cortical circuits thought to be critical for memory consolidation.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - David A Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, and National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiao Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
35
|
Arndt KC, Gilbert ET, Klaver LMF, Kim J, Buhler CM, Basso JC, McKenzie S, English DF. Granular retrosplenial cortex layer 2/3 generates high-frequency oscillations dynamically coupled with hippocampal rhythms across brain states. Cell Rep 2024; 43:113910. [PMID: 38461414 DOI: 10.1016/j.celrep.2024.113910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/20/2023] [Accepted: 02/17/2024] [Indexed: 03/12/2024] Open
Abstract
The granular retrosplenial cortex (gRSC) exhibits high-frequency oscillations (HFOs; ∼150 Hz), which can be driven by a hippocampus-subiculum pathway. How the cellular-synaptic and laminar organization of gRSC facilitates HFOs is unknown. Here, we probe gRSC HFO generation and coupling with hippocampal rhythms using focal optogenetics and silicon-probe recordings in behaving mice. ChR2-mediated excitation of CaMKII-expressing cells in L2/3 or L5 induces HFOs, but spontaneous HFOs are found only in L2/3, where HFO power is highest. HFOs couple to CA1 sharp wave-ripples (SPW-Rs) during rest and the descending phase of theta. gRSC HFO current sources and sinks are the same for events during both SPW-Rs and theta oscillations. Independent component analysis shows that high gamma (50-100 Hz) in CA1 stratum lacunosum moleculare is comodulated with HFO power. HFOs may thus facilitate interregional communication of a multisynaptic loop between the gRSC, hippocampus, and medial entorhinal cortex during distinct brain and behavioral states.
Collapse
Affiliation(s)
- Kaiser C Arndt
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| | - Earl T Gilbert
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| | | | - Jongwoon Kim
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Chelsea M Buhler
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| | - Julia C Basso
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA; Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24060, USA; Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Sam McKenzie
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
36
|
Varga V, Petersen P, Zutshi I, Huszar R, Zhang Y, Buzsáki G. Working memory features are embedded in hippocampal place fields. Cell Rep 2024; 43:113807. [PMID: 38401118 PMCID: PMC11044127 DOI: 10.1016/j.celrep.2024.113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/26/2024] Open
Abstract
Hippocampal principal neurons display both spatial tuning properties and memory features. Whether this distinction corresponds to separate neuron types or a context-dependent continuum has been debated. We report here that the task-context ("splitter") feature is highly variable along both trial and spatial position axes. Neurons acquire or lose splitter features across trials even when place field features remain unaltered. Multiple place fields of the same neuron can individually encode both past or future run trajectories, implying that splitter fields are under the control of assembly activity. Place fields can be differentiated into subfields by the behavioral choice of the animal, and splitting within subfields evolves across trials. Interneurons also differentiate choices by integrating inputs from pyramidal cells. Finally, bilateral optogenetic inactivation of the medial entorhinal cortex reversibly decreases the fraction of splitter fields. Our findings suggest that place or splitter features are different manifestations of the same hippocampal computation.
Collapse
Affiliation(s)
- Viktor Varga
- Neuroscience Institute, Langone Health, New York University, New York, NY, USA; Subcortical Modulation Research Group, Institute of Experimental Medicine - Hungarian Research Network, Budapest, Hungary
| | - Peter Petersen
- Neuroscience Institute, Langone Health, New York University, New York, NY, USA; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ipshita Zutshi
- Neuroscience Institute, Langone Health, New York University, New York, NY, USA
| | - Roman Huszar
- Neuroscience Institute, Langone Health, New York University, New York, NY, USA
| | - Yiyao Zhang
- Neuroscience Institute, Langone Health, New York University, New York, NY, USA
| | - György Buzsáki
- Neuroscience Institute, Langone Health, New York University, New York, NY, USA; Department of Neuroscience and Physiology, Langone Health, New York University, New York, NY, USA; Department of Neurology, Langone Health, New York University, New York, NY, USA.
| |
Collapse
|
37
|
Nascimento C, Guerreiro-Pinto V, Pawlak S, Caulino-Rocha A, Amat-Garcia L, Cunha-Reis D. Impaired Response to Mismatch Novelty in the Li 2+-Pilocarpine Rat Model of TLE: Correlation with Hippocampal Monoaminergic Inputs. Biomedicines 2024; 12:631. [PMID: 38540244 PMCID: PMC10968540 DOI: 10.3390/biomedicines12030631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Novelty detection, crucial to episodic memory formation, is impaired in epileptic patients with mesial temporal lobe resection. Mismatch novelty detection, that activates the hippocampal CA1 area in humans and is vital for memory reformulation and reconsolidation, is also impaired in patients with hippocampal lesions. In this work, we investigated the response to mismatch novelty, as occurs with the new location of known objects in a familiar environment, in the Li2+-pilocarpine rat model of TLE and its correlation with hippocampal monoaminergic markers. Animals showing spontaneous recurrent seizures (SRSs) for at least 4 weeks at the time of behavioural testing showed impaired spatial learning in the radial arm maze, as described. Concurrently, SRS rats displayed impaired exploratory responses to mismatch novelty, yet novel object recognition was not significantly affected in SRS rats. While the levels of serotonin and dopamine transporters were mildly decreased in hippocampal membranes from SRS rats, the levels on the norepinephrine transporter, tyrosine hydroxylase and dopamine-β-hydroxylase were enhanced, hinting for an augmentation, rather than an impairment in noradrenergic function in SRS animals. Altogether, this reveals that mismatch novelty detection is particularly affected by hippocampal damage associated to the Li2+-pilocarpine model of epilepsy 4-8 weeks after the onset of SRSs and suggests that deficits in mismatch novelty detection may substantially contribute to cognitive impairment in MTLE. As such, behavioural tasks based on these aspects of mismatch novelty may prove useful in the development of cognitive therapy strategies aiming to rescue cognitive deficits observed in epilepsy.
Collapse
Affiliation(s)
- Carlos Nascimento
- Unidade de Fisiologia Clínica e Translacional, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Vasco Guerreiro-Pinto
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Seweryn Pawlak
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana Caulino-Rocha
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Laia Amat-Garcia
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Diana Cunha-Reis
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
38
|
Crews FT, Macht V, Vetreno RP. Epigenetic regulation of microglia and neurons by proinflammatory signaling following adolescent intermittent ethanol (AIE) exposure and in human AUD. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2024; 4:12094. [PMID: 38524847 PMCID: PMC10957664 DOI: 10.3389/adar.2024.12094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/05/2024] [Indexed: 03/26/2024]
Abstract
Adolescent alcohol drinking is linked to high rates of adult alcohol problems and alcohol use disorder (AUD). The Neurobiology of Alcohol Drinking in Adulthood (NADIA) consortium adolescent intermittent ethanol (AIE) models adolescent binge drinking, followed by abstinent maturation to adulthood to determine the persistent AIE changes in neurobiology and behavior. AIE increases adult alcohol drinking and preference, increases anxiety and reward seeking, and disrupts sleep and cognition, all risks for AUD. In addition, AIE induces changes in neuroimmune gene expression in neurons and glia that alter neurocircuitry and behavior. HMGB1 is a unique neuroimmune signal released from neurons and glia by ethanol that activates multiple proinflammatory receptors, including Toll-like receptors (TLRs), that spread proinflammatory gene induction. HMGB1 expression is increased by AIE in rat brain and in post-mortem human AUD brain, where it correlates with lifetime alcohol consumption. HMGB1 activation of TLR increase TLR expression. Human AUD brain and rat brain following AIE show increases in multiple TLRs. Brain regional differences in neurotransmitters and cell types impact ethanol responses and neuroimmune gene induction. Microglia are monocyte-like cells that provide trophic and synaptic functions, that ethanol proinflammatory signals sensitize or "prime" during repeated drinking cycles, impacting neurocircuitry. Neurocircuits are differently impacted dependent upon neuronal-glial signaling. Acetylcholine is an anti-inflammatory neurotransmitter. AIE increases HMGB1-TLR4 signaling in forebrain, reducing cholinergic neurons by silencing multiple cholinergic defining genes through upregulation of RE-1 silencing factor (REST), a transcription inhibitor known to regulate neuronal differentiation. HMGB1 REST induction reduces cholinergic neurons in basal forebrain and cholinergic innervation of hippocampus. Adult brain hippocampal neurogenesis is regulated by a neurogenic niche formed from multiple cells. In vivo AIE and in vitro studies find ethanol increases HMGB1-TLR4 signaling and other proinflammatory signaling as well as reducing trophic factors, NGF, and BDNF, coincident with loss of the cholinergic synapse marker vChAT. These changes in gene expression-transcriptomes result in reduced adult neurogenesis. Excitingly, HMGB1 antagonists, anti-inflammatories, and epigenetic modifiers like histone deacetylase inhibitors restore trophic the neurogenesis. These findings suggest anti-inflammatory and epigenetic drugs should be considered for AUD therapy and may provide long-lasting reversal of psychopathology.
Collapse
Affiliation(s)
- Fulton T. Crews
- Departments of Pharmacology and Psychiatry, Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | | |
Collapse
|
39
|
Kim J, Huang H, Gilbert ET, Arndt KC, English DF, Jia X. T-DOpE probes reveal sensitivity of hippocampal oscillations to cannabinoids in behaving mice. Nat Commun 2024; 15:1686. [PMID: 38402238 PMCID: PMC10894268 DOI: 10.1038/s41467-024-46021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
Understanding the neural basis of behavior requires monitoring and manipulating combinations of physiological elements and their interactions in behaving animals. We developed a thermal tapering process enabling fabrication of low-cost, flexible probes combining ultrafine features: dense electrodes, optical waveguides, and microfluidic channels. Furthermore, we developed a semi-automated backend connection allowing scalable assembly. We demonstrate T-DOpE (Tapered Drug delivery, Optical stimulation, and Electrophysiology) probes achieve in single neuron-scale devices (1) high-fidelity electrophysiological recording (2) focal drug delivery and (3) optical stimulation. The device tip can be miniaturized (as small as 50 µm) to minimize tissue damage while the ~20 times larger backend allows for industrial-scale connectorization. T-DOpE probes implanted in mouse hippocampus revealed canonical neuronal activity at the level of local field potentials (LFP) and neural spiking. Taking advantage of the triple-functionality of these probes, we monitored LFP while manipulating cannabinoid receptors (CB1R; microfluidic agonist delivery) and CA1 neuronal activity (optogenetics). Focal infusion of CB1R agonist downregulated theta and sharp wave-ripple oscillations (SPW-Rs). Furthermore, we found that CB1R activation reduces sharp wave-ripples by impairing the innate SPW-R-generating ability of the CA1 circuit.
Collapse
Affiliation(s)
- Jongwoon Kim
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Hengji Huang
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Earl T Gilbert
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | - Kaiser C Arndt
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | | | - Xiaoting Jia
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA.
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA.
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
40
|
Lv Y, Wen Y, Vetrivelan R, Lu J. Pontine parabrachial nucleus-basal forebrain circuitry regulating cortical and hippocampal arousal. Sleep Med 2024; 113:49-55. [PMID: 37984017 PMCID: PMC12039854 DOI: 10.1016/j.sleep.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/12/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION The basal forebrain (BF) and the medial septum (MS) respectively drive neuronal activity of cerebral cortex and hippocampus (HPC) in sleep-wake cycle. Our previous studies of lesions and neuronal circuit tracing have shown that the pontine parabrachial nucleus (PB) projections to the BF and MS may be a key circuit for cortical and HPC arousal. AIMS This study aims to demonstrate that PB projections to the BF and MS activate the cerebral cortex and HPC. RESULTS By using chemogenetic stimulation of the BF, the PB-BF and the PB-MS pathway combined with electroencephalogram (EEG) Fast Fourier Transformation (FFT) analysis in rats, we demonstrated that chemogenetic stimulation of the BF or PB neurons projecting to the BF activated the cerebral cortex while chemogenetic stimulation of the MS or PB neurons projecting to the MS activated HPC activity, in sleep and wake state. These stimulations did not significantly alter sleep-wake amounts. CONCLUSIONS Our results support that PB projections to the BF and MS specifically regulating cortical and HPC activity.
Collapse
Affiliation(s)
- Yudan Lv
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Yujun Wen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Ningxia Key Laboratory of Craniocerebral Diseases, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Jun Lu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Stroke Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
41
|
Zheng F, Phelan KD, Shwe UT. Increased Susceptibility to Pilocarpine-Induced Status Epilepticus and Reduced Latency in TRPC1/4 Double Knockout Mice. Neurol Int 2023; 15:1469-1479. [PMID: 38132974 PMCID: PMC10745782 DOI: 10.3390/neurolint15040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
Canonical transient receptor potential channels (TRPCs) are a family of calcium-permeable cation channels. Previous studies have shown that heteromeric channels comprising TRPC1 and TRPC4 mediate epileptiform bursting in lateral septal neurons and hippocampal CA1 pyramidal neurons, suggesting that TRPC1/4 channels play a pro-seizure role. In this study, we utilized electroencephalography (EEG) recording and spectral analysis to assess the role of TRPC1/4 channels in the pilocarpine model of status epilepticus (SE). We found that, surprisingly, TRPC1/4 double knockout (DKO) mice exhibited an increased susceptibility to pilocarpine-induced SE. Furthermore, SE latency was also significantly reduced in TRPC1/4 DKO mice. Further studies are needed to reveal the underlying mechanisms of our unexpected results.
Collapse
Affiliation(s)
- Fang Zheng
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Neurobiology & Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - U Thaung Shwe
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
42
|
Crews FT, Fisher RP, Qin L, Vetreno RP. HMGB1 neuroimmune signaling and REST-G9a gene repression contribute to ethanol-induced reversible suppression of the cholinergic neuron phenotype. Mol Psychiatry 2023; 28:5159-5172. [PMID: 37402853 PMCID: PMC10764639 DOI: 10.1038/s41380-023-02160-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Adolescent binge drinking increases Toll-like receptor 4 (TLR4), receptor for advanced glycation end products (RAGE), the endogenous TLR4/RAGE agonist high-mobility group box 1 (HMGB1), and proinflammatory neuroimmune signaling in the adult basal forebrain in association with persistent reductions of basal forebrain cholinergic neurons (BFCNs). In vivo preclinical adolescent intermittent ethanol (AIE) studies find anti-inflammatory interventions post-AIE reverse HMGB1-TLR4/RAGE neuroimmune signaling and loss of BFCNs in adulthood, suggesting proinflammatory signaling causes epigenetic repression of the cholinergic neuron phenotype. Reversible loss of BFCN phenotype in vivo is linked to increased repressive histone 3 lysine 9 dimethylation (H3K9me2) occupancy at cholinergic gene promoters, and HMGB1-TLR4/RAGE proinflammatory signaling is linked to epigenetic repression of the cholinergic phenotype. Using an ex vivo basal forebrain slice culture (FSC) model, we report EtOH recapitulates the in vivo AIE-induced loss of ChAT+IR BFCNs, somal shrinkage of the remaining ChAT+ neurons, and reduction of BFCN phenotype genes. Targeted inhibition of EtOH-induced proinflammatory HMGB1 blocked ChAT+IR loss while disulfide HMBG1-TLR4 and fully reduced HMGB1-RAGE signaling decreased ChAT+IR BFCNs. EtOH increased expression of the transcriptional repressor RE1-silencing transcription factor (REST) and the H3K9 methyltransferase G9a that was accompanied by increased repressive H3K9me2 and REST occupancy at promoter regions of the BFCN phenotype genes Chat and Trka as well as the lineage transcription factor Lhx8. REST expression was similarly increased in the post-mortem human basal forebrain of individuals with alcohol use disorder, which is negatively correlated with ChAT expression. Administration of REST siRNA and the G9a inhibitor UNC0642 blocked and reversed the EtOH-induced loss of ChAT+IR BFCNs, directly linking REST-G9a transcriptional repression to suppression of the cholinergic neuron phenotype. These data suggest that EtOH induces a novel neuroplastic process involving neuroimmune signaling and transcriptional epigenetic gene repression resulting in the reversible suppression of the cholinergic neuron phenotype.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rachael P Fisher
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Liya Qin
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
43
|
He G, Li Y, Deng H, Zuo H. Advances in the study of cholinergic circuits in the central nervous system. Ann Clin Transl Neurol 2023; 10:2179-2191. [PMID: 37846148 PMCID: PMC10723250 DOI: 10.1002/acn3.51920] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
OBJECTIVE Further understanding of the function and regulatory mechanism of cholinergic neural circuits and related neurodegenerative diseases. METHODS This review summarized the research progress of the central cholinergic nervous system, especially for the cholinergic circuit of the medial septal nucleus-hippocampus, vertical branch of diagonal band-hippocampus, basal nucleus of Meynert-cerebral cortex cholinergic loop, amygdala, pedunculopontine nucleus, and striatum-related cholinergic loops. RESULTS The extensive and complex fiber projection of cholinergic neurons form the cholinergic neural circuits, which regulate several nuclei in the brain through neurotransmission and participate in learning and memory, attention, emotion, movement, etc. The loss of cholinergic neurotransmitters, the reduction, loss, and degeneration of cholinergic neurons or abnormal theta oscillations and cholinergic neural circuits can induce cognitive disorders such as AD, PD, PDD, and DLB. INTERPRETATION The projection and function of cholinergic fibers in some nuclei and the precise regulatory mechanisms of cholinergic neural circuits in the brain remain unclear. Further investigation of cholinergic fiber projections in various brain regions and the underlying mechanisms of the neural circuits are expected to open up new avenues for the prevention and treatment of senile neurodegenerative diseases.
Collapse
Affiliation(s)
- Ganghua He
- Beijing Institute of Radiation MedicineBeijingChina
- College of Life Science and Engineering, Foshan UniversityFoshanChina
| | - Yang Li
- Beijing Institute of Radiation MedicineBeijingChina
| | - Hua Deng
- College of Life Science and Engineering, Foshan UniversityFoshanChina
| | - Hongyan Zuo
- Beijing Institute of Radiation MedicineBeijingChina
| |
Collapse
|
44
|
Xie Z, Dong S, Zhang Y, Yuan Y. Transcranial ultrasound stimulation at the peak-phase of theta-cycles in the hippocampus improve memory performance. Neuroimage 2023; 283:120423. [PMID: 37884166 DOI: 10.1016/j.neuroimage.2023.120423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
The present study aimed to investigate the effectiveness of closed-loop transcranial ultrasound stimulation (closed-loop TUS) as a non-invasive, high temporal-spatial resolution method for modulating brain function to enhance memory. For this purpose, we applied closed-loop TUS to the CA1 region of the rat hippocampus for 7 consecutive days at different phases of theta cycles. Following the intervention, we evaluated memory performance through behavioral testing and recorded the neural activity. Our results indicated that closed-loop TUS applied at the peak phase of theta cycles significantly improves the memory performance in rats, as evidenced by behavioral testing. Furthermore, we observed that closed-loop TUS modifies the power and cross-frequency coupling strength of local field potentials (LFPs) during memory task, as well as modulates neuronal activity patterns and synaptic transmission, depending on phase of stimulation relative to theta rhythm. We demonstrated that closed-loop TUS can modulate neural activity and memory performance in a phase-dependent manner. Specifically, we observed that effectiveness of closed-loop TUS in regulating neural activity and memory is dependent on the timing of stimulation in relation to different theta phase. The findings implied that closed-loop TUS may have the capability to alter neural activity and memory performance in a phase-sensitive manner, and suggested that the efficacy of closed-loop TUS in modifying neural activity and memory was contingent on timing of stimulation with respect to the theta rhythm. Moreover, the improvement in memory performance after closed-loop TUS was found to be persistent.
Collapse
Affiliation(s)
- Zhenyu Xie
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Shuxun Dong
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Yiyao Zhang
- Neuroscience Institute, NYU Langone Health, New York 10016, USA.
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
45
|
Salgado-Puga K, Rothschild G. Exposure to sounds during sleep impairs hippocampal sharp wave ripples and memory consolidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568283. [PMID: 38045371 PMCID: PMC10690295 DOI: 10.1101/2023.11.22.568283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Sleep is critical for the consolidation of recent experiences into long-term memories. As a key underlying neuronal mechanism, hippocampal sharp-wave ripples (SWRs) occurring during sleep define periods of hippocampal reactivation of recent experiences and have been causally linked with memory consolidation. Hippocampal SWR-dependent memory consolidation during sleep is often referred to as occurring during an "offline" state, dedicated to processing internally generated neural activity patterns rather than external stimuli. However, the brain is not fully disconnected from the environment during sleep. In particular, sounds heard during sleep are processed by a highly active auditory system which projects to brain regions in the medial temporal lobe, reflecting an anatomical pathway for sound modulation of hippocampal activity. While neural processing of salient sounds during sleep, such as those of a predator or an offspring, is evolutionarily adaptive, whether ongoing processing of environmental sounds during sleep interferes with SWR-dependent memory consolidation remains unknown. To address this question, we used a closed-loop system to deliver non-waking sound stimuli during or following SWRs in sleeping rats. We found that exposure to sounds during sleep suppressed the ripple power and reduced the rate of SWRs. Furthermore, sounds delivered during SWRs (On-SWR) suppressed ripple power significantly more than sounds delivered 2 seconds after SWRs (Off-SWR). Next, we tested the influence of sound presentation during sleep on memory consolidation. To this end, SWR-triggered sounds were applied during sleep sessions following learning of a conditioned place preference paradigm, in which rats learned a place-reward association. We found that On-SWR sound pairing during post-learning sleep induced a complete abolishment of memory retention 24 h following learning, while leaving memory retention immediately following sleep intact. In contrast, Off-SWR pairing weakened memory 24 h following learning as well as immediately following learning. Notably, On-SWR pairing induced a significantly larger impairment in memory 24 h after learning as compared to Off-SWR pairing. Together, these findings suggest that sounds heard during sleep suppress SWRs and memory consolidation, and that the magnitude of these effects are dependent on sound-SWR timing. These results suggest that exposure to environmental sounds during sleep may pose a risk for memory consolidation processes.
Collapse
|
46
|
Lisgaras CP, Scharfman HE. Interictal spikes in Alzheimer's disease: Preclinical evidence for dominance of the dentate gyrus and cholinergic control by the medial septum. Neurobiol Dis 2023; 187:106294. [PMID: 37714307 PMCID: PMC10617404 DOI: 10.1016/j.nbd.2023.106294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023] Open
Abstract
Interictal spikes (IIS) are a common type of abnormal electrical activity in Alzheimer's disease (AD) and preclinical models. The brain regions where IIS are largest are not known but are important because such data would suggest sites that contribute to IIS generation. Because hippocampus and cortex exhibit altered excitability in AD models, we asked which areas dominate the activity during IIS along the cortical-CA1-dentate gyrus (DG) dorso-ventral axis. Because medial septal (MS) cholinergic neurons are overactive when IIS typically occur, we also tested the novel hypothesis that silencing the MS cholinergic neurons selectively would reduce IIS. We used mice that simulate aspects of AD: Tg2576 mice, presenilin 2 (PS2) knockout mice and Ts65Dn mice. To selectively silence MS cholinergic neurons, Tg2576 mice were bred with choline-acetyltransferase (ChAT)-Cre mice and offspring were injected in the MS with AAV encoding inhibitory designer receptors exclusively activated by designer drugs (DREADDs). We recorded local field potentials along the cortical-CA1-DG axis using silicon probes during wakefulness, slow-wave sleep (SWS) and rapid eye movement (REM) sleep. We detected IIS in all transgenic or knockout mice but not age-matched controls. IIS were detectable throughout the cortical-CA1-DG axis and occurred primarily during REM sleep. In all 3 mouse lines, IIS amplitudes were significantly greater in the DG granule cell layer vs. CA1 pyramidal layer or overlying cortex. Current source density analysis showed robust and early current sources in the DG, and additional sources in CA1 and the cortex also. Selective chemogenetic silencing of MS cholinergic neurons significantly reduced IIS rate during REM sleep without affecting the overall duration, number of REM bouts, latency to REM sleep, or theta power during REM. Notably, two control interventions showed no effects. Consistent maximal amplitude and strong current sources of IIS in the DG suggest that the DG is remarkably active during IIS. In addition, selectively reducing MS cholinergic tone, at times when MS is hyperactive, could be a new strategy to reduce IIS in AD.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America.
| | - Helen E Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America
| |
Collapse
|
47
|
Király B, Domonkos A, Jelitai M, Lopes-Dos-Santos V, Martínez-Bellver S, Kocsis B, Schlingloff D, Joshi A, Salib M, Fiáth R, Barthó P, Ulbert I, Freund TF, Viney TJ, Dupret D, Varga V, Hangya B. The medial septum controls hippocampal supra-theta oscillations. Nat Commun 2023; 14:6159. [PMID: 37816713 PMCID: PMC10564782 DOI: 10.1038/s41467-023-41746-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
Hippocampal theta oscillations orchestrate faster beta-to-gamma oscillations facilitating the segmentation of neural representations during navigation and episodic memory. Supra-theta rhythms of hippocampal CA1 are coordinated by local interactions as well as inputs from the entorhinal cortex (EC) and CA3 inputs. However, theta-nested gamma-band activity in the medial septum (MS) suggests that the MS may control supra-theta CA1 oscillations. To address this, we performed multi-electrode recordings of MS and CA1 activity in rodents and found that MS neuron firing showed strong phase-coupling to theta-nested supra-theta episodes and predicted changes in CA1 beta-to-gamma oscillations on a cycle-by-cycle basis. Unique coupling patterns of anatomically defined MS cell types suggested that indirect MS-to-CA1 pathways via the EC and CA3 mediate distinct CA1 gamma-band oscillations. Optogenetic activation of MS parvalbumin-expressing neurons elicited theta-nested beta-to-gamma oscillations in CA1. Thus, the MS orchestrates hippocampal network activity at multiple temporal scales to mediate memory encoding and retrieval.
Collapse
Affiliation(s)
- Bálint Király
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
- Department of Biological Physics, Institute of Physics, Eötvös Loránd University, Budapest, Hungary
| | - Andor Domonkos
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, Hungary
| | - Márta Jelitai
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, Hungary
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sergio Martínez-Bellver
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
- Department of Anatomy and Human Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Barnabás Kocsis
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Dániel Schlingloff
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Abhilasha Joshi
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Minas Salib
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Richárd Fiáth
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Barthó
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - István Ulbert
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás F Freund
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Tim J Viney
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Viktor Varga
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
48
|
Hencz A, Magony A, Thomas C, Kovacs K, Szilagyi G, Pal J, Sik A. Mild hypoxia-induced structural and functional changes of the hippocampal network. Front Cell Neurosci 2023; 17:1277375. [PMID: 37841285 PMCID: PMC10576450 DOI: 10.3389/fncel.2023.1277375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Hypoxia causes structural and functional changes in several brain regions, including the oxygen-concentration-sensitive hippocampus. We investigated the consequences of mild short-term hypoxia on rat hippocampus in vivo. The hypoxic group was treated with 16% O2 for 1 h, and the control group with 21% O2. Using a combination of Gallyas silver impregnation histochemistry revealing damaged neurons and interneuron-specific immunohistochemistry, we found that somatostatin-expressing inhibitory neurons in the hilus were injured. We used 32-channel silicon probe arrays to record network oscillations and unit activity from the hippocampal layers under anaesthesia. There were no changes in the frequency power of slow, theta, beta, or gamma bands, but we found a significant increase in the frequency of slow oscillation (2.1-2.2 Hz) at 16% O2 compared to 21% O2. In the hilus region, the firing frequency of unidentified interneurons decreased. In the CA3 region, the firing frequency of some unidentified interneurons decreased while the activity of other interneurons increased. The activity of pyramidal cells increased both in the CA1 and CA3 regions. In addition, the regularity of CA1, CA3 pyramidal cells' and CA3 type II and hilar interneuron activity has significantly changed in hypoxic conditions. In summary, a low O2 environment caused profound changes in the state of hippocampal excitatory and inhibitory neurons and network activity, indicating potential changes in information processing caused by mild short-term hypoxia.
Collapse
Affiliation(s)
- Alexandra Hencz
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Andor Magony
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
| | - Chloe Thomas
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Krisztina Kovacs
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gabor Szilagyi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Pecs, Hungary
| | - Jozsef Pal
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Attila Sik
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
49
|
Tsunematsu T, Matsumoto S, Merkler M, Sakata S. Pontine Waves Accompanied by Short Hippocampal Sharp Wave-Ripples During Non-rapid Eye Movement Sleep. Sleep 2023; 46:zsad193. [PMID: 37478470 PMCID: PMC10485565 DOI: 10.1093/sleep/zsad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/28/2023] [Indexed: 07/23/2023] Open
Abstract
Ponto-geniculo-occipital or pontine (P) waves have long been recognized as an electrophysiological signature of rapid eye movement (REM) sleep. However, P-waves can be observed not just during REM sleep, but also during non-REM (NREM) sleep. Recent studies have uncovered that P-waves are functionally coupled with hippocampal sharp wave ripples (SWRs) during NREM sleep. However, it remains unclear to what extent P-waves during NREM sleep share their characteristics with P-waves during REM sleep and how the functional coupling to P-waves modulates SWRs. Here, we address these issues by performing multiple types of electrophysiological recordings and fiber photometry in both sexes of mice. P-waves during NREM sleep share their waveform shapes and local neural ensemble dynamics at a short (~100 milliseconds) timescale with their REM sleep counterparts. However, the dynamics of mesopontine cholinergic neurons are distinct at a longer (~10 seconds) timescale: although P-waves are accompanied by cholinergic transients, the cholinergic tone gradually reduces before P-wave genesis during NREM sleep. While P-waves are coupled to hippocampal theta rhythms during REM sleep, P-waves during NREM sleep are accompanied by a rapid reduction in hippocampal ripple power. SWRs coupled with P-waves are short-lived and hippocampal neural firing is also reduced after P-waves. These results demonstrate that P-waves are part of coordinated sleep-related activity by functionally coupling with hippocampal ensembles in a state-dependent manner.
Collapse
Affiliation(s)
- Tomomi Tsunematsu
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-, Japan
| | - Sumire Matsumoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-, Japan
| | - Mirna Merkler
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
50
|
Çalışkan G, Demiray YE, Stork O. Comparison of three common inbred mouse strains reveals substantial differences in hippocampal GABAergic interneuron populations and in vitro network oscillations. Eur J Neurosci 2023; 58:3383-3401. [PMID: 37550182 DOI: 10.1111/ejn.16112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023]
Abstract
A major challenge in neuroscience is to pinpoint neurobiological correlates of specific cognitive and neuropsychiatric traits. At the mesoscopic level, promising candidates for establishing such connections are brain oscillations that can be robustly recorded as local field potentials with varying frequencies in the hippocampus in vivo and in vitro. Inbred mouse strains show natural variation in hippocampal synaptic plasticity (e.g. long-term potentiation), a cellular correlate of learning and memory. However, their diversity in expression of different types of hippocampal network oscillations has not been fully explored. Here, we investigated hippocampal network oscillations in three widely used inbred mouse strains: C57BL/6J (B6J), C57BL/6NCrl (B6N) and 129S2/SvPasCrl (129) with the aim to identify common oscillatory characteristics in inbred mouse strains that show aberrant emotional/cognitive behaviour (B6N and 129) and compare them to "control" B6J strain. First, we detected higher gamma oscillation power in the hippocampal CA3 of both B6N and 129 strains. Second, higher incidence of hippocampal sharp wave-ripple (SPW-R) transients was evident in these strains. Third, we observed prominent differences in the densities of distinct interneuron types and CA3 associative network activity, which are indispensable for sustainment of mesoscopic network oscillations. Together, these results add further evidence to profound physiological differences among inbred mouse strains commonly used in neuroscience research.
Collapse
Affiliation(s)
- Gürsel Çalışkan
- Research Group "Synapto-Oscillopathies", Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Yunus E Demiray
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying MentalHealth (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Jena-Magdeburg-Halle, Germany
| |
Collapse
|