1
|
Xu Y, Chen Y, Bai N, Su Y, Ye Y, Zhang R, Yang Y, Liu C, Hu C, Pan J. Deubiquitinating enzyme USP2 regulates brown adipose tissue thermogenesis via controlling EBF2 stabilization. Mol Metab 2025; 96:102139. [PMID: 40189098 PMCID: PMC12020889 DOI: 10.1016/j.molmet.2025.102139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
OBJECTIVE The activation of brown adipose tissue (BAT) promotes energy expenditure is recognized as a promising therapeutic strategy for combating obesity. The deubiquitinating enzyme family members are widely involved in the process of energy metabolism. However, the specific deubiquitinating enzyme member that affects the BAT thermogenesis remains largely unexplored. METHODS Adeno-associated virus, lentivirus and small molecule inhibitor were applied to generate USP2 gain- or loss-of-function both in vivo and in vitro. OxyMax comprehensive laboratory animal monitoring system, seahorse and transmission electron microscopy were used to determine the energy metabolism. Quantitative proteomics, immunofluorescence staining and co-immunoprecipitation were performed to reveal the potential substrates of USP2. RESULTS USP2 is upregulated upon thermogenic activation in adipose, and has a close correlation with UCP1 mRNA levels in human adipose tissue. BAT-specific Usp2 knockdown or systemic USP2 inhibition resulted in impaired thermogenic programs both in vivo and in vitro. Conversely, overexpression of Usp2 in BAT conferred protection against high-fat diet-induced obesity and associated metabolic disorders. Proteome-wide analysis identified EBF2 as the substrate of USP2 that mediates the thermogenic function of USP2 in BAT. CONCLUSIONS Our data demonstrated the vital role of USP2 in regulating BAT activation and systemic energy homeostasis. Activation of USP2-EBF2 interaction could be a potential therapeutic strategy against obesity.
Collapse
Affiliation(s)
- Yuejie Xu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ying Chen
- Jinzhou Medical University Graduate Training Base (Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine), Jinzhou, 121001, China
| | - Ningning Bai
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yingying Su
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yafen Ye
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Rong Zhang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Caizhi Liu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Jiemin Pan
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
2
|
Thottappillil N, Li Z, Xing X, Arondekar S, Zhu M, Cherief M, Qin Q, Zhou M, Archer M, Broderick K, Pèault B, Lee M, James AW. ZIC1 transcription factor overexpression in segmental bone defects is associated with brown adipogenic and osteogenic differentiation. Stem Cells 2025; 43:sxaf013. [PMID: 40151950 DOI: 10.1093/stmcls/sxaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Transcriptional factor regulation is central to the lineage commitment of stem/ progenitor cells. ZIC1 (ZIC family member 1) is a C2H2-type zinc finger transcription factor expressed during development, brown fat, and certain cancers. Previously, we observed that overexpression of ZIC1 induces osteogenic differentiation at the expense of white adipogenic differentiation. In the present study, the feasibility of ZIC1 overexpressed human progenitor cells in critical-sized bone defects was studied. To achieve this, human adipose stem/stromal cells with other without lentiviral ZIC1 overexpression were implanted in a femoral segmental defect model in NOD-SCIDγ mice. Results showed that ZIC1 overexpressed cells induced osteogenic differentiation by protein markers in a critical-sized femoral segment defect compared to empty lentiviral control, although bone union was not observed. The immunohistochemical evaluation showed that implantation of ZIC1 overexpression cells led to an increase in osteoblast antigen expression (RUNX2, OCN), activation of Hedgehog signaling (Patched1), and an increase in brown adipogenesis markers (ZIC1, EBF2). In contrast, no change in bone defect-associated vasculature was observed (CD31, Endomucin). Together, these data suggest that overexpression of the ZIC1 transcription factor in progenitor cells is associated with differentiation towards osteoblastic and brown adipogenic cell fates.
Collapse
Affiliation(s)
- Neelima Thottappillil
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Shreya Arondekar
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Manyu Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Myles Zhou
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Kristen Broderick
- Department of Plastic Surgery, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Bruno Pèault
- UCLA and Orthopedic Hospital Department of Orthopedic Surgery and the Orthopedic Hospital Research Center, Los Angeles, CA 90095, United States
| | - Min Lee
- Division of Advanced Prosthodontics, Department of Bioengineering, UCLA School of Dentistry, Los Angeles, CA 90005, United States
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
3
|
Liu J, Jiang Y, Liu T, Chen C, Chui L, Cui A, Zhang X, Wang X, Wang Y, Yang C, Zhang Y, Wu T, Yang S, Huang J, Tao C, Zhao J, Wang Y. Single-nucleus RNA sequencing defines adipose tissue subpopulations that contribute to Tibetan pig cold adaptation. BMC Biol 2025; 23:107. [PMID: 40275312 PMCID: PMC12023645 DOI: 10.1186/s12915-025-02211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Thermogenic beige adipocyte displays a remarkable ability in mammals to adapt to cold environments, but the underlying cellular mechanisms remain unclear, especially in pigs that lack functional UCP1. RESULTS Multilocular beige adipocytes were observed in both Tibetan pigs (cold-tolerant) and Bama pigs (cold-sensitive) after short-term cold exposure (4 ℃ for 3 days). Through single-nucleus RNA sequencing of adipose tissues, including subcutaneous inguinal adipose tissues (IAT) and perirenal adipose tissues (PAT), from both pig breeds at room temperature and cold treatment conditions, we discovered two cell subpopulations specific to Tibetan pigs, PDGFRα+EBF2High in IAT and ADIPOQ+HIF1AHigh in both depots. PDGFRα+EBF2High cells were characterized as potential beige precursors, while ADIPOQ+HIF1AHigh cells were found to express highly thermogenic-related genes. Despite the decrease of the lipogenic subpopulation and the increase of the lipolytic and the thermogenic subpopulations observed in both pig breeds upon cold treatment, Tibetan pigs exhibited stronger cellular and molecular responses compared to Bama pigs. Remarkably, cold-induced de novo beige adipogenesis and white adipocyte browning, likely occurred in Tibetan pigs, while Bama pigs relied more heavily on white browning. Moreover, BMP7, which was highly expressed in the PDGFRα+EBF2High subpopulation, positively regulates porcine beige thermogenic capacity. CONCLUSIONS Our data offers a comprehensive and unprecedented perspective on the heterogeneity and plasticity of adipose tissues of pigs and broadens the understanding of beige fat biology in mammals.
Collapse
Affiliation(s)
- Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Yao Jiang
- National Animal Husbandry Service, Beijing, 100125, China
| | - Tianxia Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Lnstitute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuanhe Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Linya Chui
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Along Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Lnstitute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xueping Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiao Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Lnstitute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunhuai Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Lnstitute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Tianwen Wu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Shulin Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Jiaojiao Huang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Cong Tao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Lnstitute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China.
| | - Yanfang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China.
| |
Collapse
|
4
|
Shimura H, Yamamoto S, Shiiba I, Oikawa M, Uchinomiya S, Ojida A, Yanagi S, Kadowaki H, Nishitoh H, Fukuda T, Nagashima S, Yamaguchi T. Etomoxir suppresses the expression of PPARγ2 and inhibits the thermogenic gene induction of brown adipocytes through pathways other than β-oxidation inhibition. J Biochem 2025; 177:203-212. [PMID: 39727324 DOI: 10.1093/jb/mvae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Brown adipocytes are characterized by a high abundance of mitochondria, allowing them to consume fatty acids for heat production. Increasing the number of brown adipocytes is considered a promising strategy for combating obesity. However, the molecular mechanisms underlying their differentiation remain poorly understood. In this study, we demonstrate that etomoxir, an inhibitor of Carnitine Palmitoyltransferase 1 (CPT1), inhibits their differentiation through mechanisms independent of β-oxidation inhibition. In the presence of etomoxir during brown adipocyte differentiation, reduced expression of the thermogenic gene UCP1 and decreased lipid droplets formation were observed. Furthermore, a transient reduction in the expression of PPARγ2, a critical factor in adipocyte differentiation, was also observed in the presence of etomoxir. These findings suggest the presence of a regulatory mechanism that specifically enhances PPARγ2 expression during brown adipocyte differentiation, thereby modulating thermogenic gene expression.
Collapse
Affiliation(s)
- Hiroki Shimura
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Sota Yamamoto
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Isshin Shiiba
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Mami Oikawa
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shohei Uchinomiya
- Medical Chemistry and Chemical Biology, Department of Medicinal Sciences, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Akio Ojida
- Medical Chemistry and Chemical Biology, Department of Medicinal Sciences, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Hisae Kadowaki
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Miyazaki, Miyazaki 889-1692, Japan
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Miyazaki, Miyazaki 889-1692, Japan
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Miyazaki 889-1692, Japan
| | - Toshifumi Fukuda
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shun Nagashima
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Tomoyuki Yamaguchi
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
5
|
Wang S, He T, Luo Y, Ren K, Shen H, Hou L, Wei Y, Fu T, Xie W, Wang P, Hu J, Zhu Y, Huang Z, Li Q, Li W, Guo H, Li B. SOX4 facilitates brown fat development and maintenance through EBF2-mediated thermogenic gene program in mice. Cell Death Differ 2025; 32:447-465. [PMID: 39402212 PMCID: PMC11893884 DOI: 10.1038/s41418-024-01397-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 03/12/2025] Open
Abstract
Brown adipose tissue (BAT) is critical for non-shivering thermogenesis making it a promising therapeutic strategy to combat obesity and metabolic disease. However, the regulatory mechanisms underlying brown fat formation remain incompletely understood. Here, we found SOX4 is required for BAT development and thermogenic program. Depletion of SOX4 in BAT progenitors (Sox4-MKO) or brown adipocytes (Sox4-BKO) resulted in whitened BAT and hypothermia upon acute cold exposure. The reduced thermogenic capacity of Sox4-MKO mice increases their susceptibility to diet-induced obesity. Conversely, overexpression of SOX4 in BAT enhances thermogenesis counteracting diet-induced obesity. Mechanistically, SOX4 activates the transcription of EBF2, which determines brown fat fate. Moreover, phosphorylation of SOX4 at S235 by PKA facilitates its nuclear translocation and EBF2 transcription. Further, SOX4 cooperates with EBF2 to activate transcriptional programs governing thermogenic gene expression. These results demonstrate that SOX4 serves as an upstream regulator of EBF2, providing valuable insights into BAT development and thermogenic function maintenance.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Ting He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Ya Luo
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, 361102, Xiamen, Fujian, China
| | - Kexin Ren
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Huanming Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, 518055, Shenzhen, China
| | - Lingfeng Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yixin Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Tong Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Wenlong Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Peng Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Jie Hu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yu Zhu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Zhengrong Huang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Qiyuan Li
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, 361102, Xiamen, Fujian, China.
| | - Weihua Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China.
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
| | - Boan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
| |
Collapse
|
6
|
Yildiz R, Ganbold K, Sparman NZR, Rajbhandari P. Immune Regulatory Crosstalk in Adipose Tissue Thermogenesis. Compr Physiol 2025; 15:e70001. [PMID: 39921241 DOI: 10.1002/cph4.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
Brown adipose tissue (BAT) and thermogenic beige fat within white adipose tissue (WAT), collectively known as adaptive thermogenic fat, dissipate energy as heat, offering promising therapeutic potential to combat obesity and metabolic disorders. The specific biological functions of these fat depots are determined by their unique interaction with the microenvironments, composed of immune cells, endothelial cells, pericytes, and nerve fibers. Immune cells residing in these depots play a key role in regulating energy expenditure and systemic energy homeostasis. The dynamic microenvironment of thermogenic fat depots is essential for maintaining tissue health and function. Immune cells infiltrate both BAT and beige WAT, contributing to their homeostasis and activation through intricate cellular communications. Emerging evidence underscores the importance of various immune cell populations in regulating thermogenic adipose tissue, though many remain undercharacterized. This review provides a comprehensive overview of the immune cells that regulate adaptive thermogenesis and their complex interactions within the adipose niche, highlighting their potential to influence metabolic health and contribute to therapeutic interventions for obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Ramazan Yildiz
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Khatanzul Ganbold
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Njeri Z R Sparman
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Disease Mechanism and Therapeutics Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
7
|
Halurkar MS, Inoue O, Singh A, Mukherjee R, Ginugu M, Ahn C, Bonatto Paese CL, Duszynski M, Brugmann SA, Lim HW, Sanchez-Gurmaches J. The widely used Ucp1-Cre transgene elicits complex developmental and metabolic phenotypes. Nat Commun 2025; 16:770. [PMID: 39824816 PMCID: PMC11742029 DOI: 10.1038/s41467-024-54763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/20/2024] [Indexed: 01/20/2025] Open
Abstract
Bacterial artificial chromosome transgenic models, including most Cre-recombinases, enable potent interrogation of gene function in vivo but require rigorous validation as limitations emerge. Due to its high relevance to metabolic studies, we perform comprehensive analysis of the Ucp1-CreEvdr line which is widely used for brown fat research. Hemizygotes exhibit major brown and white fat transcriptomic dysregulation, indicating potential altered tissue function. Ucp1-CreEvdr homozygotes also show high mortality, tissue specific growth defects, and craniofacial abnormalities. Mapping the transgene insertion site reveals insertion in chromosome 1 accompanied by large genomic alterations disrupting several genes expressed in a range of tissues. Notably, Ucp1-CreEvdr transgene retains an extra Ucp1 gene copy that may be highly expressed under high thermogenic burden. Our multi-faceted analysis highlights a complex phenotype arising from the presence of the Ucp1-CreEvdr transgene independently of intended genetic manipulations. Overall, comprehensive validation of transgenic mice is imperative to maximize discovery while mitigating unexpected, off-target effects.
Collapse
Affiliation(s)
- Manasi Suchit Halurkar
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Oto Inoue
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Archana Singh
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rajib Mukherjee
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Pioneering Medicines, 140 First St., Suite 302, Cambridge, MA, USA
| | - Meghana Ginugu
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christopher Ahn
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christian Louis Bonatto Paese
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Surgery, Division of Plastic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Molly Duszynski
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Surgery, Division of Plastic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Yin M, Sun L, Wu S, Ma J, Zhang W, Ji X, Tang Z, Zhang X, Yang Y, Zhang X, Huang J, Zheng S, Liu W, Ji C, Zhang L. TGFβ-mediated inhibition of hypodermal adipocyte progenitor differentiation promotes wound-induced skin fibrosis. Cell Prolif 2025; 58:e13722. [PMID: 39072821 PMCID: PMC11693572 DOI: 10.1111/cpr.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Aberrant activation of dermal fibroblasts during wound healing often leads to debilitating fibrotic changes in the skin, such as scleroderma and keloids. However, the underlying cellular and molecular mechanisms remain elusive. Here, we established a wound-induced skin fibrosis (WISF) mouse model in mature adult mice, characterised by excessive deposition of collagen bundles, loss of dermal adipocytes, and enrichment of DPP4+Ly6A+THY1+ hypodermal interstitial adipocyte progenitors (HI-APs) and pericytes, resembling human fibrotic skin diseases. This WISF model exhibited an age-dependent gain of fibrotic characteristics, contrasting with the wound-induced hair neogenesis observed in younger mice. Through comprehensive analyses of the WISF, we delineated a trajectory of fibroblast differentiation that originates from HI-APs. These progenitors highly expressed several extracellular matrix (ECM) genes and exhibited a TGFβ pathway signature. TGFβ was identified as the key signal to inhibit the adipogenic potential and maintain the fibrogenic potential of dermal APs. Additionally, administering a TGFβ receptor inhibitor to wound scar reduced the abundance of ECM-producing APs. Finally, analysis of human scleroderma skin tissues revealed a negative correlation between the expression of AP-, ECM-, and TGFβ pathway-related genes and PPARG. Overall, this study establishes a wound-induced skin fibrosis mouse model and demonstrates that TGFβ-mediated blockage of HI-AP differentiation is crucial for driving fibrotic pathology. Targeting HI-APs and adipogenesis may provide novel avenues for developing disease-modifying therapies for fibrotic skin diseases.
Collapse
Affiliation(s)
- Meimei Yin
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Lixiang Sun
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
- Central Laboratory, Zhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
| | - Shuai Wu
- State Key Laboratory of Cellular Stress Biology, School of Life SciencesXiamen UniversityXiamenChina
| | - Jinhang Ma
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Wenlu Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Xiaoxuan Ji
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Zhichong Tang
- State Key Laboratory of Cellular Stress Biology, School of Life SciencesXiamen UniversityXiamenChina
| | - Xiaowei Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Yichun Yang
- Central Laboratory, Zhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
| | - Xinyuan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Jin‐wen Huang
- Department of DermatologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Shaoluan Zheng
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
| | - Wen‐jie Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Chao Ji
- Department of DermatologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Ling‐juan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| |
Collapse
|
9
|
Liao Y, Peng Z, Fu S, Hua Y, Luo W, Liu R, Chen Y, Gu W, Zhao P, Zhao J, Wang Y, Wang H. Elevated EBF2 in mouse but not pig drives the progressive brown fat lineage specification via chromatin activation. J Adv Res 2024:S2090-1232(24)00624-6. [PMID: 39736442 DOI: 10.1016/j.jare.2024.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/08/2024] [Accepted: 12/28/2024] [Indexed: 01/01/2025] Open
Abstract
Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis, but it is absent in some mammals, including pigs. During development, BAT progenitors are derived from paired box 7 (Pax7)-expressing somitic mesodermal stem cells, which also give rise to skeletal muscle. However, the intrinsic mechanisms underlying the fate decisions between brown fat and muscle progenitors remain elusive across species. In this study, we analyzed the dynamics of chromatin landscape during the segregation and specification of brown fat and muscle lineages from Pax7+ multipotent mesodermal stem cells, aiming to uncover epigenetic factors that drive de novo BAT formation. Notably, myogenic progenitors were specified at embryonic day (E) 12.5, exhibiting high levels of H3K4me3 and low H3K27me3 at muscle-related genes. In contrast, the specification of the BAT lineage occurred much later, with coordinated step-wise depositions of histone modifications at BAT-associated genes from E10.5 to E14.5. We identified the transcription factor early B-cell factor 2 (EBF2) as a key driver of the progressive specification of brown fat lineage and the simultaneous deviation away from the muscle lineage. Mechanistically, EBF2 interacts with transcriptional co-activators CREB binding protein/ E1A-binding protein p300 (CBP/P300) to induce H3K27ac deposition and chromatin activation at BAT-associated genes to promote brown adipogenesis. Both mouse and pig EBF2 could potently stimulate adipogenesis in unspecified multipotent mesodermal stem cells. However, in pigs, EBF2 expression was depleted during the critical lineage specification time window, thus preventing the embryonic formation and development of porcine BAT. Hence, the elevation of EBF2 in mice, but not in pigs, promote chromatin activation to drive the progressive specification of brown fat lineage.
Collapse
Affiliation(s)
- Yinlong Liao
- College of Animal Science, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Taian, China; Yazhouwan National Laboratory, Sanya, China
| | - Zhelun Peng
- College of Animal Science, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Taian, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shanshan Fu
- College of Animal Science, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Taian, China
| | - Yao Hua
- College of Animal Science, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Taian, China
| | - Wenzhe Luo
- College of Animal Science, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Taian, China
| | - Ruige Liu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yingjin Chen
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Gu
- Shandong Provincial Key Laboratory of Animal Microecologics and Efficient Breeding of Livestock and Poultry, Shandong Baolai-Leelai Bio-Tech Co., Ltd, Taian, China
| | - Pengxiang Zhao
- College of Animal Science, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Taian, China
| | - Jianguo Zhao
- Institute of Zoology, Chinese Academy of Science, Beijing, China
| | - Yanfang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Heng Wang
- College of Animal Science, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Taian, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
10
|
Huang Y, Wang N, Xing H, Tian J, Zhang D, Gao D, Hsia HC, Lu J, Raredon MSB, Kyriakides TR. Alteration of skin fibroblast steady state contributes to healing outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627278. [PMID: 39713414 PMCID: PMC11661132 DOI: 10.1101/2024.12.06.627278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Fibroblasts display complex functions associated with distinct gene expression profiles that influence matrix production and cell communications and the autonomy of tissue development and repair. Thrombospondin-2 (TSP-2), produced by fibroblasts, is a potent angiogenesis inhibitor and negatively associated with tissue repair. Single-cell (sc) sequencing analysis on WT and TSP2KO skin fibroblasts demonstrate distinct cell heterogeneity. Specifically, we found an enrichment of Sox10+ multipotent progenitor cells, identified as Schwann precursor cells, in TSP2KO fibroblasts, while fibrosis-related subpopulations decreased. Immunostaining of tissue and cells validated the increase of this Sox10+ population in KO fibroblasts. Furthermore, in silico analysis suggested enhanced pro-survival signaling, including WNT, TGF-β, and PDGF-β, alongside a reduced BMP4 response. Additionally, the creation of two TSP2KO NIH3T3 cell lines using the CRISPR/Cas9 technique allowed functional and signaling validation in a less complex system. Moreover, KO 3T3 cells exhibited enhanced migration and proliferation, with elevated levels of pro-regenerative molecules including TGF-β3 and Wnt4, and enrichment of nuclear β-catenin. These functional and molecular alterations likely contribute to improved healing and increased neurogenesis in TSP2-deficient wounds. Overall, our findings describe the heterogeneity of dermal fibroblasts and identify pro-regenerative features of TSP2KO fibroblasts.
Collapse
Affiliation(s)
- Yaqing Huang
- Department of Pathology, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA
| | - Nuoya Wang
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA
| | - Hao Xing
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA
| | - Jingru Tian
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Dingyao Zhang
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Daqian Gao
- Plastic & Reconstructive Surgery, Yale University, New Haven, CT 06520, USA
| | - Henry C. Hsia
- Plastic & Reconstructive Surgery, Yale University, New Haven, CT 06520, USA
| | - Jun Lu
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Micha Sam Brickman Raredon
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA
| | - Themis R. Kyriakides
- Department of Pathology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
11
|
Galigniana NM, Ruiz MC, Piwien-Pilipuk G. FK506 binding protein 51: Its role in the adipose organ and beyond. J Cell Biochem 2024; 125:e30351. [PMID: 36502528 DOI: 10.1002/jcb.30351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 02/17/2024]
Abstract
There is a great body of evidence that the adipose organ plays a central role in the control not only of energy balance, but importantly, in the maintenance of metabolic homeostasis. Interest in the study of different aspects of its physiology grew in the last decades due to the pandemic of obesity and the consequences of metabolic syndrome. It was not until recently that the first evidence for the role of the high molecular weight immunophilin FK506 binding protein (FKBP) 51 in the process of adipocyte differentiation have been described. Since then, many new facets have been discovered of this stress-responsive FKBP51 as a central node for precise coordination of many cell functions, as shown for nuclear steroid receptors, autophagy, signaling pathways as Akt, p38 MAPK, and GSK3, as well as for insulin signaling and the control of glucose homeostasis. Thus, the aim of this review is to integrate and discuss the recent advances in the understanding of the many roles of FKBP51 in the adipose organ.
Collapse
Affiliation(s)
- Natalia M Galigniana
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marina C Ruiz
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| | - Graciela Piwien-Pilipuk
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| |
Collapse
|
12
|
Chen ZJ, Das SS, Kar A, Lee SHT, Abuhanna KD, Alvarez M, Sukhatme MG, Gelev KZ, Heffel MG, Zhang Y, Avram O, Rahmani E, Sankararaman S, Heinonen S, Peltoniemi H, Halperin E, Pietiläinen KH, Luo C, Pajukanta P. Single-cell DNA methylome and 3D genome atlas of the human subcutaneous adipose tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.02.621694. [PMID: 39554055 PMCID: PMC11566006 DOI: 10.1101/2024.11.02.621694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Human subcutaneous adipose tissue (SAT) contains a diverse array of cell-types; however, the epigenomic landscape among the SAT cell-types has remained elusive. Our integrative analysis of single-cell resolution DNA methylation and chromatin conformation profiles (snm3C-seq), coupled with matching RNA expression (snRNA-seq), systematically cataloged the epigenomic, 3D topology, and transcriptomic dynamics across the SAT cell-types. We discovered that the SAT CG methylation (mCG) landscape is characterized by pronounced hyper-methylation in myeloid cells and hypo-methylation in adipocytes and adipose stem and progenitor cells (ASPCs), driving nearly half of the 705,063 detected differentially methylated regions (DMRs). In addition to the enriched cell-type-specific transcription factor binding motifs, we identified TET1 and DNMT3A as plausible candidates for regulating cell-type level mCG profiles. Furthermore, we observed that global mCG profiles closely correspond to SAT lineage, which is also reflected in cell-type-specific chromosome compartmentalization. Adipocytes, in particular, display significantly more short-range chromosomal interactions, facilitating the formation of complex local 3D genomic structures that regulate downstream transcriptomic activity, including those associated with adipogenesis. Finally, we discovered that variants in cell-type level DMRs and A compartments significantly predict and are enriched for variance explained in abdominal obesity. Together, our multimodal study characterizes human SAT epigenomic landscape at the cell-type resolution and links partitioned polygenic risk of abdominal obesity to SAT epigenome.
Collapse
|
13
|
Guo G, Wang W, Tu M, Zhao B, Han J, Li J, Pan Y, Zhou J, Ma W, Liu Y, Sun T, Han X, An Y. Deciphering adipose development: Function, differentiation and regulation. Dev Dyn 2024; 253:956-997. [PMID: 38516819 DOI: 10.1002/dvdy.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
The overdevelopment of adipose tissues, accompanied by excess lipid accumulation and energy storage, leads to adipose deposition and obesity. With the increasing incidence of obesity in recent years, obesity is becoming a major risk factor for human health, causing various relevant diseases (including hypertension, diabetes, osteoarthritis and cancers). Therefore, it is of significance to antagonize obesity to reduce the risk of obesity-related diseases. Excess lipid accumulation in adipose tissues is mediated by adipocyte hypertrophy (expansion of pre-existing adipocytes) or hyperplasia (increase of newly-formed adipocytes). It is necessary to prevent excessive accumulation of adipose tissues by controlling adipose development. Adipogenesis is exquisitely regulated by many factors in vivo and in vitro, including hormones, cytokines, gender and dietary components. The present review has concluded a comprehensive understanding of adipose development including its origin, classification, distribution, function, differentiation and molecular mechanisms underlying adipogenesis, which may provide potential therapeutic strategies for harnessing obesity without impairing adipose tissue function.
Collapse
Affiliation(s)
- Ge Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wanli Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wen Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
14
|
Kyung DS, Lee E, Chae S, Son Y, Moon YJ, Hwang D, Kim JK, Lee YH, Seong JK. Single-cell transcriptomic analysis reveals dynamic activation of cellular signaling pathways regulating beige adipogenesis. Exp Mol Med 2024; 56:2309-2322. [PMID: 39465352 PMCID: PMC11541910 DOI: 10.1038/s12276-024-01252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 10/29/2024] Open
Abstract
PDGFRA+ cells have been identified as adipocyte stem cells (ASCs) that differentiate into beige adipocytes in white adipose tissue (WAT) following thermogenic stimuli. To elucidate the molecular heterogeneity of ASCs, we conducted single-cell transcriptomic profiling of PDGFRA+ cells isolated from the inguinal WAT (iWAT) of mice treated with the beta3 adrenergic receptor agonist CL316243. Single-cell RNA-seq revealed nine major clusters, which were categorized into four groups: resting, proliferating, differentiating, and adipogenic factor-expressing cells (AFECs). Trajectory analysis revealed sequential activation of molecular pathways, including the Hedgehog and Notch signaling pathways, during beige adipogenesis. AFECs expressed Dpp4 and did not differentiate into adipocytes in culture or after transplantation. Furthermore, genetic lineage tracing studies indicated that DPP4+ cells did not differentiate into adipocytes in iWAT during CL316243-induced beige adipogenesis. However, high-fat diet feeding led to the recruitment of adipocytes from DPP4+ cells in iWAT. Overall, this study improved our understanding of the dynamic molecular basis of beige adipogenesis and the potential contribution of DPP4+ adipocyte lineages to the pathological expansion of WAT during diet-induced obesity.
Collapse
Affiliation(s)
- Dong Soo Kyung
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Interdisciplinary Program for Bioinformatics and Program for Cancer Biology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eunmin Lee
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Sehyun Chae
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yeonho Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye-Jin Moon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences Seoul National University, Seoul, 08826, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences Seoul National University, Seoul, 08826, Republic of Korea.
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Interdisciplinary Program for Bioinformatics and Program for Cancer Biology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
15
|
Mo YY, Han YX, Xu SN, Jiang HL, Wu HX, Cai JM, Li L, Bu YH, Xiao F, Liang HD, Wen Y, Liu YZ, Yin YL, Zhou HD. Adipose Tissue Plasticity: A Comprehensive Definition and Multidimensional Insight. Biomolecules 2024; 14:1223. [PMID: 39456156 PMCID: PMC11505740 DOI: 10.3390/biom14101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Adipose tissue is composed of adipocytes, stromal vascular fraction, nerves, surrounding immune cells, and the extracellular matrix. Under various physiological or pathological conditions, adipose tissue shifts cellular composition, lipid storage, and organelle dynamics to respond to the stress; this remodeling is called "adipose tissue plasticity". Adipose tissue plasticity includes changes in the size, species, number, lipid storage capacity, and differentiation function of adipocytes, as well as alterations in the distribution and cellular composition of adipose tissue. This plasticity has a major role in growth, obesity, organismal protection, and internal environmental homeostasis. Moreover, certain thresholds exist for this plasticity with significant individualized differences. Here, we comprehensively elaborate on the specific connotation of adipose tissue plasticity and the relationship between this plasticity and the development of many diseases. Meanwhile, we summarize possible strategies for treating obesity in response to adipose tissue plasticity, intending to provide new insights into the dynamic changes in adipose tissue and contribute new ideas to relevant clinical problems.
Collapse
Affiliation(s)
- Yu-Yao Mo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Xin Han
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Shi-Na Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hong-Li Jiang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hui-Xuan Wu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Jun-Min Cai
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yan-Hong Bu
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha 410012, China;
| | - Fen Xiao
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Han-Dan Liang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Ying Wen
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Ze Liu
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
| | - Yu-Long Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| |
Collapse
|
16
|
Mao L, Lu J, Hou Y, Nie T. Directly targeting PRDM16 in thermogenic adipose tissue to treat obesity and its related metabolic diseases. Front Endocrinol (Lausanne) 2024; 15:1458848. [PMID: 39351529 PMCID: PMC11439700 DOI: 10.3389/fendo.2024.1458848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Obesity is increasing globally and is closely associated with a range of metabolic disorders, including metabolic associated fatty liver disease, diabetes, and cardiovascular diseases. An effective strategy to combat obesity involves stimulating brown and beige adipocyte thermogenesis, which significantly enhances energy expenditure. Recent research has underscored the vital role of PRDM16 in the development and functionality of thermogenic adipocytes. Consequently, PRDM16 has been identified as a potential therapeutic target for obesity and its related metabolic disorders. This review comprehensively examines various studies that focus on combating obesity by directly targeting PRDM16 in adipose tissue.
Collapse
Affiliation(s)
- Liufeng Mao
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinli Lu
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yunliang Hou
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tao Nie
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
17
|
Yang S, Liu Y, Wu X, Zhu R, Sun Y, Zou S, Zhang D, Yang X. Molecular Regulation of Thermogenic Mechanisms in Beige Adipocytes. Int J Mol Sci 2024; 25:6303. [PMID: 38928011 PMCID: PMC11203837 DOI: 10.3390/ijms25126303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Adipose tissue is conventionally recognized as a metabolic organ responsible for storing energy. However, a proportion of adipose tissue also functions as a thermogenic organ, contributing to the inhibition of weight gain and prevention of metabolic diseases. In recent years, there has been significant progress in the study of thermogenic fats, particularly brown adipose tissue (BAT). Despite this progress, the mechanism underlying thermogenesis in beige adipose tissue remains highly controversial. It is widely acknowledged that beige adipose tissue has three additional thermogenic mechanisms in addition to the conventional UCP1-dependent thermogenesis: Ca2+ cycling thermogenesis, creatine substrate cycling thermogenesis, and triacylglycerol/fatty acid cycling thermogenesis. This paper delves into these three mechanisms and reviews the latest advancements in the molecular regulation of thermogenesis from the molecular genetic perspective. The objective of this review is to provide readers with a foundation of knowledge regarding the beige fats and a foundation for future research into the mechanisms of this process, which may lead to the development of new strategies for maintaining human health.
Collapse
Affiliation(s)
- Siqi Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Yingke Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Xiaoxu Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Rongru Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Yuanlu Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Shuoya Zou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| |
Collapse
|
18
|
Papadopoulos KS, Piperi C, Korkolopoulou P. Clinical Applications of Adipose-Derived Stem Cell (ADSC) Exosomes in Tissue Regeneration. Int J Mol Sci 2024; 25:5916. [PMID: 38892103 PMCID: PMC11172884 DOI: 10.3390/ijms25115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) are mesenchymal stem cells with a great potential for self-renewal and differentiation. Exosomes derived from ADSCs (ADSC-exos) can imitate their functions, carrying cargoes of bioactive molecules that may affect specific cellular targets and signaling processes. Recent evidence has shown that ADSC-exos can mediate tissue regeneration through the regulation of the inflammatory response, enhancement of cell proliferation, and induction of angiogenesis. At the same time, they may promote wound healing as well as the remodeling of the extracellular matrix. In combination with scaffolds, they present the future of cell-free therapies and promising adjuncts to reconstructive surgery with diverse tissue-specific functions and minimal adverse effects. In this review, we address the main characteristics and functional properties of ADSC-exos in tissue regeneration and explore their most recent clinical application in wound healing, musculoskeletal regeneration, dermatology, and plastic surgery as well as in tissue engineering.
Collapse
Affiliation(s)
- Konstantinos S. Papadopoulos
- Department of Plastic and Reconstructive Surgery, 401 General Military Hospital of Athens, 11525 Athens, Greece;
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
19
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
20
|
Liu J, Jiang Y, Chen C, Zhang L, Wang J, Yang C, Wu T, Yang S, Tao C, Wang Y. Bone Morphogenetic Protein 2 Enhances Porcine Beige Adipogenesis via AKT/mTOR and MAPK Signaling Pathways. Int J Mol Sci 2024; 25:3915. [PMID: 38612723 PMCID: PMC11012093 DOI: 10.3390/ijms25073915] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Bone morphogenetic protein 2 (BMP2) has been reported to regulate adipogenesis, but its role in porcine beige adipocyte formation remains unclear. Our data reveal that BMP2 is significantly induced at the early stages of porcine beige adipocyte differentiation. Additionally, supplementing rhBMP2 during the early stages, but not the late stages of differentiation, significantly enhances porcine SVF adipogenesis, thermogenesis, and proliferation. Furthermore, compared to the empty plasmid-transfected-SVFs, BMP2-overexpressed SVFs had the enhanced lipid accumulation and thermogenesis, while knockdown of BMP2 in SVFs exhibited the opposite effect. The RNA-seq of the above three types of cells revealed the enrichment of the annotation of thermogenesis, brown cell differentiation, etc. In addition, the analysis also highlights the significant enrichment of cell adhesion, the MAPK cascade, and PPARγ signaling. Mechanistically, BMP2 positively regulates the adipogenic and thermogenic capacities of porcine beige adipocytes by activating PPARγ expression through AKT/mTOR and MAPK signaling pathways.
Collapse
Affiliation(s)
- Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (J.L.); (C.C.); (L.Z.); (J.W.); (C.Y.); (T.W.); (S.Y.)
| | - Yao Jiang
- National Animal Husbandry Service, Beijing 100125, China;
| | - Chuanhe Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (J.L.); (C.C.); (L.Z.); (J.W.); (C.Y.); (T.W.); (S.Y.)
| | - Lilan Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (J.L.); (C.C.); (L.Z.); (J.W.); (C.Y.); (T.W.); (S.Y.)
| | - Jiahao Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (J.L.); (C.C.); (L.Z.); (J.W.); (C.Y.); (T.W.); (S.Y.)
| | - Chunhuai Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (J.L.); (C.C.); (L.Z.); (J.W.); (C.Y.); (T.W.); (S.Y.)
| | - Tianwen Wu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (J.L.); (C.C.); (L.Z.); (J.W.); (C.Y.); (T.W.); (S.Y.)
| | - Shulin Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (J.L.); (C.C.); (L.Z.); (J.W.); (C.Y.); (T.W.); (S.Y.)
| | - Cong Tao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (J.L.); (C.C.); (L.Z.); (J.W.); (C.Y.); (T.W.); (S.Y.)
| | - Yanfang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (J.L.); (C.C.); (L.Z.); (J.W.); (C.Y.); (T.W.); (S.Y.)
| |
Collapse
|
21
|
Zhou WY, Liu P, Xia YF, Shi YJ, Xu HY, Ding M, Yang QQ, Qian SW, Tang Y, Lu Y, Tang QQ, Liu Y. NR2F6 is essential for brown adipocyte differentiation and systemic metabolic homeostasis. Mol Metab 2024; 81:101891. [PMID: 38307386 PMCID: PMC10864868 DOI: 10.1016/j.molmet.2024.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVE Brown adipose tissue (BAT) development and function are essential for maintaining energy balance. However, the key factors that specifically regulate brown adipogenesis require further identification. Here, we demonstrated that the nuclear receptor subfamily 2 group F member 6 (NR2F6) played a pivotal role in brown adipogenesis and energy homeostasis. METHODS We examined the differentiation of immortalized brown adipocytes and primary brown adipocytes when NR2F6 were deleted, and explored the mechanism through which NR2F6 regulated adipogenesis using ChIP-qPCR in vitro. Male wild type (WT) and Pdgfra-Cre-mediated deletion of Nr2f6 in preadipocytes (NR2F6-PKO) mice were fed with high fat diet (HFD) for 12 weeks, and adiposity, glucose intolerance, insulin resistance and inflammation were assessed. RESULTS NR2F6 exhibited abundant expression in BAT, while its expression was minimal in white adipose tissue (WAT). Within BAT, NR2F6 was highly expressed in preadipocytes, experienced a transient increase in the early stage of brown adipocyte differentiation, and significantly decreased in the mature adipocytes. Depletion of NR2F6 in preadipocytes inhibited brown adipogenesis, caused hypertrophy of brown adipocytes, and impaired thermogenic function of BAT, but without affecting WAT development. NR2F6 transcriptionally regulated PPARγ expression to promote adipogenic process in brown adipocytes. Loss of NR2F6 in preadipocytes led to increased susceptibility to diet-induced metabolic disorders. CONCLUSIONS Our findings unveiled NR2F6 as a novel key regulator of brown adipogenesis, potentially opening up new avenues for maintaining metabolic homeostasis by targeting NR2F6.
Collapse
Affiliation(s)
- Wei-Yu Zhou
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Pei Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi-Fan Xia
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi-Jie Shi
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hong-Yu Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Meng Ding
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi-Qi Yang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shu-Wen Qian
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Lu
- Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yang Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
22
|
Bahadoran Z, Mirmiran P, Ghasemi A. Adipose organ dysfunction and type 2 diabetes: Role of nitric oxide. Biochem Pharmacol 2024; 221:116043. [PMID: 38325496 DOI: 10.1016/j.bcp.2024.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Adipose organ, historically known as specialized lipid-handling tissue serving as the long-term fat depot, is now appreciated as the largest endocrine organ composed of two main compartments, i.e., subcutaneous and visceral adipose tissue (AT), madding up white and beige/brown adipocytes. Adipose organ dysfunction manifested as maldistribution of the compartments, hypertrophic, hypoxic, inflamed, and insulin-resistant AT, contributes to the development of type 2 diabetes (T2D). Here, we highlight the role of nitric oxide (NO·) in AT (dys)function in relation to developing T2D. The key aspects determining lipid and glucose homeostasis in AT depend on the physiological levels of the NO· produced via endothelial NO· synthases (eNOS). In addition to decreased NO· bioavailability (via decreased expression/activity of eNOS or scavenging NO·), excessive NO· produced by inducible NOS (iNOS) in response to hypoxia and AT inflammation may be a critical interfering factor diverting NO· signaling to the formation of reactive oxygen and nitrogen species, resulting in AT and whole-body metabolic dysfunction. Pharmacological approaches boosting AT-NO· availability at physiological levels (by increasing NO· production and its stability), as well as suppression of iNOS-NO· synthesis, are potential candidates for developing NO·-based therapeutics in T2D.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Giordano AP, Gambaro SE, Alzamendi A, Harnichar AE, Rey MA, Ongaro L, Spinedi E, Zubiría MG, Giovambattista A. Dexamethasone Inhibits White Adipose Tissue Browning. Int J Mol Sci 2024; 25:2714. [PMID: 38473960 DOI: 10.3390/ijms25052714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
White adipose tissue (WAT) regulates energy balance through energy storage, adipokines secretion and the thermogenesis process. Beige adipocytes are responsible for WAT thermogenesis. They are generated by adipogenesis or transdifferentiation during cold or β3-adrenergic agonist stimulus through a process called browning. Browning has gained significant interest for to its preventive effect on obesity. Glucocorticoids (GCs) have several functions in WAT biology; however, their role in beige adipocyte generation and WAT browning is not fully understood. The aim of our study was to determine the effect of dexamethasone (DXM) on WAT thermogenesis. For this purpose, rats were treated with DXM at room temperature (RT) or cold conditions to determine different thermogenic markers. Furthermore, the effects of DXM on the adipogenic potential of beige precursors and on mature beige adipocytes were evaluated in vitro. Our results showed that DXM decreased UCP-1 mRNA and protein levels, mainly after cold exposure. In vitro studies showed that DXM decreased the expression of a beige precursor marker (Ebf2), affecting their ability to differentiate into beige adipocytes, and inhibited the thermogenic response of mature beige adipocytes (Ucp-1, Dio2 and Pgc1α gene expressions and mitochondrial respiration). Overall, our data strongly suggest that DXM can inhibit the thermogenic program of both retroperitoneal and inguinal WAT depots, an effect that could be exerted, at least partially, by inhibiting de novo cell generation and the thermogenic response in beige adipocytes.
Collapse
Affiliation(s)
- Alejandra Paula Giordano
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
- Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Sabrina Eliana Gambaro
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
- Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Ana Alzamendi
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
| | - Alejandro Ezequiel Harnichar
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
| | - María Amanda Rey
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3A 0G4, Canada
| | - Eduardo Spinedi
- CENEXA (UNLP-CONICET), La Plata Medical School-UNLP, Calles 60 y 120, La Plata 1900, Argentina
| | - María Guillermina Zubiría
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
- Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Andrés Giovambattista
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina
- Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata 1900, Argentina
| |
Collapse
|
24
|
Gambaro SE, Zubiría MG, Giordano AP, Castro PF, Garraza C, Harnichar AE, Alzamendi A, Spinedi E, Giovambattista A. Role of Spexin in White Adipose Tissue Thermogenesis under Basal and Cold-Stimulated Conditions. Int J Mol Sci 2024; 25:1767. [PMID: 38339044 PMCID: PMC10855774 DOI: 10.3390/ijms25031767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Spexin (SPX) is a novel adipokine that plays an emerging role in metabolic diseases due to its involvement in carbohydrate homeostasis, weight loss, appetite control, and gastrointestinal movement, among others. In obese patients, SPX plasma levels are reduced. Little is known about the relationship between SPX and white adipose tissue (WAT) thermogenesis. Therefore, the aim of the present study was to evaluate the role of SPX in this process. C57BL/6J male mice were treated or not with SPX for ten days. On day 3, mice were randomly divided into two groups: one kept at room temperature and the other kept at cold temperature (4 °C). Caloric intake and body weight were recorded daily. At the end of the protocol, plasma, abdominal (epididymal), subcutaneous (inguinal), and brown AT (EAT, IAT, and BAT, respectively) depots were collected for measurements. We found that SPX treatment reduced Uncoupling protein 1 levels in WAT under both basal and cold conditions. SPX also reduced cox8b and pgc1α mRNA levels and mitochondrial DNA, principally in IAT. SPX did not modulate the number of beige precursors. SPX decreased spx levels in IAT depots and galr2 in WAT depots. No differences were observed in the BAT depots. In conclusion, we showed, for the first time, that SPX treatment in vivo reduced the thermogenic process in subcutaneous and abdominal AT, being more evident under cold stimulation.
Collapse
Affiliation(s)
- Sabrina E. Gambaro
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
- Biology Department, School of Exact Sciences, La Plata National University, La Plata 1900, Argentina
| | - María G. Zubiría
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
- Biology Department, School of Exact Sciences, La Plata National University, La Plata 1900, Argentina
| | - Alejandra P. Giordano
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
- Biology Department, School of Exact Sciences, La Plata National University, La Plata 1900, Argentina
| | - Patricia F. Castro
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
| | - Carolina Garraza
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
| | - Alejandro E. Harnichar
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
| | - Ana Alzamendi
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
| | - Eduardo Spinedi
- CENEXA (UNLP-CONICET), La Plata Medical School-UNLP, Calles 60 y 120, La Plata 1900, Argentina;
| | - Andrés Giovambattista
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
- Biology Department, School of Exact Sciences, La Plata National University, La Plata 1900, Argentina
| |
Collapse
|
25
|
Babel NK, Feldman BJ. Glucocorticoid signaling and the impact of high-fat diet on adipogenesis in vivo. Steroids 2024; 201:109336. [PMID: 37944652 PMCID: PMC11005958 DOI: 10.1016/j.steroids.2023.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Our research used glucocorticoids as a medically relevant molecular probe to identify a previously unrecognized ADAMTS1-PTN-Wnt pathway. We elucidated the role of this pathway in regulating adipose precursor cell (APC) behavior to either proliferate or differentiate in response to systemic cues, such as elevated caloric intake. Further, our studies identified the non-muscle myosin protein MYH9 as a key target of this pathway to modulate adipogenesis in vivo. These findings enable strategies toward developing novel therapeutics for obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Noah K Babel
- Department of Pediatrics, Division of Endocrinology, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Brian J Feldman
- Department of Pediatrics, Division of Endocrinology, University of California, San Francisco (UCSF), San Francisco, CA, United States.
| |
Collapse
|
26
|
Yao B, Xing M, Meng S, Li S, Zhou J, Zhang M, Yang C, Qu S, Jin Y, Yuan H, Zen K, Ma C. EBF2 Links KMT2D-Mediated H3K4me1 to Suppress Pancreatic Cancer Progression via Upregulating KLLN. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302037. [PMID: 38015024 PMCID: PMC10787067 DOI: 10.1002/advs.202302037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/09/2023] [Indexed: 11/29/2023]
Abstract
Mono-methylation of histone H3 on Lys 4 (H3K4me1), which is catalyzed by histone-lysine N-methyltransferase 2D (KMT2D), serves as an important epigenetic regulator in transcriptional control. In this study, the authors identify early B-cell factor 2 (EBF2) as a binding protein of H3K4me1. Combining analyses of RNA-seq and ChIP-seq data, the authors further identify killin (KLLN) as a transcriptional target of KMT2D and EBF2 in pancreatic ductal adenocarcinoma (PDAC) cells. KMT2D-dependent H3K4me1 and EBF2 are predominantly over-lapped proximal to the transcription start site (TSS) of KLLN gene. Comprehensive functional assays show that KMT2D and EBF2 cooperatively inhibit PDAC cells proliferation, migration, and invasion through upregulating KLLN. Such inhibition on PDAC progression is also achieved through increasing H3K4me1 level by GSK-LSD1, a selective inhibitor of lysine-specific demethylase 1 (LSD1). Taken together, these findings reveal a new mechanism underlying PDAC progression and provide potential therapeutic targets for PDAC treatment.
Collapse
Affiliation(s)
- Bing Yao
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Mengying Xing
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Shixin Meng
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Shang Li
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Jingwan Zhou
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Ming Zhang
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Chen Yang
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Shuang Qu
- School of Life Science and TechnologyChina Pharmaceutical University639 Longmian AvenueNanjingJiangsu211198China
| | - Yucui Jin
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDC20007USA
| | - Ke Zen
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Changyan Ma
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
- Jiangsu Key Laboratory of XenotransplantationNanjing Medical University101 Longmian AvenueNanjing211166China
| |
Collapse
|
27
|
Kesharwani D, Brown AC. Navigating the Adipocyte Precursor Niche: Cell-Cell Interactions, Regulatory Mechanisms and Implications for Adipose Tissue Homeostasis. JOURNAL OF CELLULAR SIGNALING 2024; 5:65-86. [PMID: 38826152 PMCID: PMC11141760 DOI: 10.33696/signaling.5.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Support for stem cell self-renewal and differentiation hinges upon the intricate microenvironment termed the stem cell 'niche'. Within the adipose tissue stem cell niche, diverse cell types, such as endothelial cells, immune cells, mural cells, and adipocytes, intricately regulate the function of adipocyte precursors. These interactions, whether direct or indirect, play a pivotal role in governing the balance between self-renewal and differentiation of adipocyte precursors into adipocytes. The mechanisms orchestrating the maintenance and coordination of this niche are still in the early stages of comprehension, despite their crucial role in regulating adipose tissue homeostasis. The complexity of understanding adipocyte precursor renewal and differentiation is amplified due to the challenges posed by the absence of suitable surface receptors for identification, limitations in creating optimal ex vivo culture conditions for expansion and constraints in conducting in vivo studies. This review delves into the current landscape of knowledge surrounding adipocyte precursors within the adipose stem cell niche. We will review the identification of adipocyte precursors, the cell-cell interactions they engage in, the factors influencing their renewal and commitment toward adipocytes and the transformations they undergo during instances of obesity.
Collapse
Affiliation(s)
- Devesh Kesharwani
- Center for Molecular Medicine, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
| | - Aaron C. Brown
- Center for Molecular Medicine, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
- School of Biomedical Sciences and Engineering, The University of Maine, Orono, Maine 04469, USA
- Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
28
|
You W, Xu Z, Chen W, Yang X, Liu S, Wang L, Tu Y, Zhou Y, Valencak TG, Wang Y, Kuang S, Shan T. Cellular and Transcriptional Dynamics during Brown Adipose Tissue Regeneration under Acute Injury. RESEARCH (WASHINGTON, D.C.) 2023; 6:0268. [PMID: 38434240 PMCID: PMC10907023 DOI: 10.34133/research.0268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/18/2023] [Indexed: 03/05/2024]
Abstract
Brown adipose tissue (BAT) is the major site of non-shivering thermogenesis and crucial for systemic metabolism. Under chronic cold exposures and high-fat diet challenges, BAT undergoes robust remodeling to adapt to physiological demands. However, whether and how BAT regenerates after acute injuries are poorly understood. Here, we established a novel BAT injury and regeneration model (BAT-IR) in mice and performed single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq to determine cellular and transcriptomic dynamics during BAT-IR. We further defined distinct fibro-adipogenic and myeloid progenitor populations contributing to BAT regeneration. Cell trajectory and gene expression analyses uncovered the involvement of MAPK, Wnt, and Hedgehog (Hh) signaling pathways in BAT regeneration. We confirmed the role of Hh signaling in BAT development through Myf5Cre-mediated conditional knockout (cKO) of the Sufu gene to activate Hh signaling in BAT and muscle progenitors. Our BAT-IR model therefore provides a paradigm to identify conserved cellular and molecular mechanisms underlying BAT development and remodeling.
Collapse
Affiliation(s)
- Wenjing You
- College of Animal Sciences,
Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences,
Zhejiang University, Hangzhou, China
- Department of Laboratory Medicine, the First Affiliated Hospital, College of Medicine,
Zhejiang University, Hangzhou, China
| | - Wentao Chen
- College of Animal Sciences,
Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Xin Yang
- Department of Animal Sciences,
Purdue University, West Lafayette, IN, USA
| | - Shiqi Liu
- College of Animal Sciences,
Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Liyi Wang
- College of Animal Sciences,
Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yuang Tu
- College of Animal Sciences,
Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yanbing Zhou
- College of Animal Sciences,
Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | | | - Yizhen Wang
- College of Animal Sciences,
Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Shihuan Kuang
- Department of Animal Sciences,
Purdue University, West Lafayette, IN, USA
| | - Tizhong Shan
- College of Animal Sciences,
Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
29
|
Rao J, Djeffal Y, Chal J, Marchianò F, Wang CH, Al Tanoury Z, Gapon S, Mayeuf-Louchart A, Glass I, Sefton EM, Habermann B, Kardon G, Watt FM, Tseng YH, Pourquié O. Reconstructing human brown fat developmental trajectory in vitro. Dev Cell 2023; 58:2359-2375.e8. [PMID: 37647896 PMCID: PMC10873093 DOI: 10.1016/j.devcel.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 08/23/2022] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Brown adipocytes (BAs) represent a specialized cell type that is able to uncouple nutrient catabolism from ATP generation to dissipate energy as heat. In humans, the brown fat tissue is composed of discrete depots found throughout the neck and trunk region. BAs originate from a precursor common to skeletal muscle, but their developmental trajectory remains poorly understood. Here, we used single-cell RNA sequencing to characterize the development of interscapular brown fat in mice. Our analysis identified a transient stage of BA differentiation characterized by the expression of the transcription factor GATA6. We show that recapitulating the sequence of signaling cues identified in mice can lead to efficient differentiation of BAs in vitro from human pluripotent stem cells. These precursors can in turn be efficiently converted into functional BAs that can respond to signals mimicking adrenergic stimuli by increasing their metabolism, resulting in heat production.
Collapse
Affiliation(s)
- Jyoti Rao
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Yannis Djeffal
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jerome Chal
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Fabio Marchianò
- Aix-Marseille University, CNRS, IBDM, The Turing Center for Living Systems, 13009 Marseille, France
| | - Chih-Hao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ziad Al Tanoury
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Svetlana Gapon
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | - Ian Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elizabeth M Sefton
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Bianca Habermann
- Aix-Marseille University, CNRS, IBDM, The Turing Center for Living Systems, 13009 Marseille, France
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Great Maze Pond, London SE1 9RT, UK
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
30
|
Jun S, Angueira AR, Fein EC, Tan JME, Weller AH, Cheng L, Batmanov K, Ishibashi J, Sakers AP, Stine RR, Seale P. Control of murine brown adipocyte development by GATA6. Dev Cell 2023; 58:2195-2205.e5. [PMID: 37647897 PMCID: PMC10842351 DOI: 10.1016/j.devcel.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 06/07/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Brown adipose tissue (BAT) is a thermogenic organ that protects animals against hypothermia and obesity. BAT derives from the multipotent paraxial mesoderm; however, the identity of embryonic brown fat progenitor cells and regulators of adipogenic commitment are unclear. Here, we performed single-cell gene expression analyses of mesenchymal cells during mouse embryogenesis with a focus on BAT development. We identified cell populations associated with the development of BAT, including Dpp4+ cells that emerge at the onset of adipogenic commitment. Immunostaining and lineage-tracing studies show that Dpp4+ cells constitute the BAT fascia and contribute minorly as adipocyte progenitors. Additionally, we identified the transcription factor GATA6 as a marker of brown adipogenic progenitor cells. Deletion of Gata6 in the brown fat lineage resulted in a striking loss of BAT. Together, these results identify progenitor and transitional cells in the brown adipose lineage and define a crucial role for GATA6 in BAT development.
Collapse
Affiliation(s)
- Seoyoung Jun
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anthony R Angueira
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ethan C Fein
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine M E Tan
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Angela H Weller
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lan Cheng
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kirill Batmanov
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeff Ishibashi
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander P Sakers
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel R Stine
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
Song A, Wang QA. Becoming less beige with age. eLife 2023; 12:e89700. [PMID: 37417552 PMCID: PMC10328496 DOI: 10.7554/elife.89700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
The production of beige adipocytes following cold exposure is blocked as mice get older and leads to changes in the expression of metabolic genes.
Collapse
Affiliation(s)
- Anying Song
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical CenterDuarteUnited States
| | - Qiong A Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute and the Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical CenterDuarteUnited States
| |
Collapse
|
32
|
Wang C, Wang X, Hu W. Molecular and cellular regulation of thermogenic fat. Front Endocrinol (Lausanne) 2023; 14:1215772. [PMID: 37465124 PMCID: PMC10351381 DOI: 10.3389/fendo.2023.1215772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Thermogenic fat, consisting of brown and beige adipocytes, dissipates energy in the form of heat, in contrast to the characteristics of white adipocytes that store energy. Increasing energy expenditure by activating brown adipocytes or inducing beige adipocytes is a potential therapeutic strategy for treating obesity and type 2 diabetes. Thus, a better understanding of the underlying mechanisms of thermogenesis provides novel therapeutic interventions for metabolic diseases. In this review, we summarize the recent advances in the molecular regulation of thermogenesis, focusing on transcription factors, epigenetic regulators, metabolites, and non-coding RNAs. We further discuss the intercellular and inter-organ crosstalk that regulate thermogenesis, considering the heterogeneity and complex tissue microenvironment of thermogenic fat.
Collapse
Affiliation(s)
- Cuihua Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
| | - Xianju Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Wenxiang Hu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
33
|
Vallecillo-García P, Orgeur M, Comai G, Poehle-Kronawitter S, Fischer C, Gloger M, Dumas CE, Giesecke-Thiel C, Sauer S, Tajbakhsh S, Höpken UE, Stricker S. A local subset of mesenchymal cells expressing the transcription factor Osr1 orchestrates lymph node initiation. Immunity 2023; 56:1204-1219.e8. [PMID: 37160119 DOI: 10.1016/j.immuni.2023.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/05/2022] [Accepted: 04/13/2023] [Indexed: 05/11/2023]
Abstract
During development, lymph node (LN) initiation is coordinated by lymphoid tissue organizer (LTo) cells that attract lymphoid tissue inducer (LTi) cells at strategic positions within the embryo. The identity and function of LTo cells during the initial attraction of LTi cells remain poorly understood. Using lineage tracing, we demonstrated that a subset of Osr1-expressing cells was mesenchymal LTo progenitors. By investigating the heterogeneity of Osr1+ cells, we uncovered distinct mesenchymal LTo signatures at diverse anatomical locations, identifying a common progenitor of mesenchymal LTos and LN-associated adipose tissue. Osr1 was essential for LN initiation, driving the commitment of mesenchymal LTo cells independent of neural retinoic acid, and for LN-associated lymphatic vasculature assembly. The combined action of chemokines CXCL13 and CCL21 was required for LN initiation. Our results redefine the role and identity of mesenchymal organizer cells and unify current views by proposing a model of cooperative cell function in LN initiation.
Collapse
Affiliation(s)
| | - Mickael Orgeur
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| | - Glenda Comai
- Institut Pasteur, Stem Cells & Development Unit, CNRS UMR 3738, Paris, France
| | | | - Cornelius Fischer
- Core Facility Genomics, Berlin Institute of Health at Charité, 10178 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115, Berlin, Germany
| | - Marleen Gloger
- Max Delbrück Center for Molecular Medicine, Department of Translational Tumor Immunology, 13125 Berlin, Germany; Uppsala University, Immunology Genetics and Pathology, 75237 Uppsala, Sweden
| | - Camille E Dumas
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| | | | - Sascha Sauer
- Core Facility Genomics, Berlin Institute of Health at Charité, 10178 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115, Berlin, Germany
| | - Shahragim Tajbakhsh
- Institut Pasteur, Stem Cells & Development Unit, CNRS UMR 3738, Paris, France
| | - Uta E Höpken
- Max Delbrück Center for Molecular Medicine, Department of Microenvironmental Regulation in Autoimmunity and Cancer, 13125 Berlin, Germany
| | - Sigmar Stricker
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
34
|
Palani NP, Horvath C, Timshel PN, Folkertsma P, Grønning AGB, Henriksen TI, Peijs L, Jensen VH, Sun W, Jespersen NZ, Wolfrum C, Pers TH, Nielsen S, Scheele C. Adipogenic and SWAT cells separate from a common progenitor in human brown and white adipose depots. Nat Metab 2023; 5:996-1013. [PMID: 37337126 PMCID: PMC10290958 DOI: 10.1038/s42255-023-00820-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/11/2023] [Indexed: 06/21/2023]
Abstract
Adipocyte function is a major determinant of metabolic disease, warranting investigations of regulating mechanisms. We show at single-cell resolution that progenitor cells from four human brown and white adipose depots separate into two main cell fates, an adipogenic and a structural branch, developing from a common progenitor. The adipogenic gene signature contains mitochondrial activity genes, and associates with genome-wide association study traits for fat distribution. Based on an extracellular matrix and developmental gene signature, we name the structural branch of cells structural Wnt-regulated adipose tissue-resident (SWAT) cells. When stripped from adipogenic cells, SWAT cells display a multipotent phenotype by reverting towards progenitor state or differentiating into new adipogenic cells, dependent on media. Label transfer algorithms recapitulate the cell types in human adipose tissue datasets. In conclusion, we provide a differentiation map of human adipocytes and define the multipotent SWAT cell, providing a new perspective on adipose tissue regulation.
Collapse
Affiliation(s)
- Nagendra P Palani
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Carla Horvath
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Pascal N Timshel
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- ZS Associates, Copenhagen, Denmark
| | - Pytrik Folkertsma
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Alexander G B Grønning
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tora I Henriksen
- The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lone Peijs
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Verena H Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Naja Z Jespersen
- The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Søren Nielsen
- The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
- The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
35
|
Portales AE, Miguel I, Rodriguez MJ, Novaro V, Gambaro SE, Giovambattista A. CDK4/6 are necessary for UCP1-mediated thermogenesis of white adipose tissue. Life Sci 2023; 322:121652. [PMID: 37011871 DOI: 10.1016/j.lfs.2023.121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
AIMS In white adipose tissue (WAT) the cell cycle regulators CDK4 and CDK6 (CDK4/6) promote adipogenesis and maintain the adipocyte mature state. Here we aimed to investigate their role in the Ucp1-mediated thermogenesis of WAT depots and in the biogenesis of beige adipocytes. MAIN METHODS We treated mice with the CDK4/6 inhibitor palbociclib at room temperature (RT) or cold and analyzed thermogenic markers in the epididymal (abdominal) and inguinal (subcutaneous) WAT depots. We also assessed the effect of in vivo palbociclib-treatment on the percentage of beige precursors in the stroma vascular fraction (SVF), and on its beige adipogenic potential. Finally, we treated SVFs and mature adipocytes from WAT depots with palbociclib in vitro to study the role of CDK4/6 in beige adipocytes biogenesis. KEY FINDINGS In vivo CDK4/6 inhibition downregulated thermogenesis at RT and impaired cold-induced browning of both WAT depots. It also reduced the percentage of beige precursors and the beige adipogenic potential of the SVF upon differentiation. A similar result was observed with direct CDK4/6 inhibition in the SVF of control mice in vitro. Importantly, CDK4/6 inhibition also downregulated the thermogenic program of beige differentiated- and depots-derived adipocytes. SIGNIFICANCE CDK4/6 modulate Ucp1-mediated thermogenesis of WAT depots in basal and cold-stressing conditions controlling beige adipocytes biogenesis by adipogenesis and transdifferentiation. This shows a pivotal role of CDK4/6 in WAT browning that could be applied to fight obesity or browning-associated hypermetabolic conditions such as cancer cachexia.
Collapse
|
36
|
Xue S, Lee D, Berry DC. Thermogenic adipose tissue in energy regulation and metabolic health. Front Endocrinol (Lausanne) 2023; 14:1150059. [PMID: 37020585 PMCID: PMC10067564 DOI: 10.3389/fendo.2023.1150059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
The ability to generate thermogenic fat could be a targeted therapy to thwart obesity and improve metabolic health. Brown and beige adipocytes are two types of thermogenic fat cells that regulate energy balance. Both adipocytes share common morphological, biochemical, and thermogenic properties. Yet, recent evidence suggests unique features exist between brown and beige adipocytes, such as their cellular origin and thermogenic regulatory processes. Beige adipocytes also appear highly plastic, responding to environmental stimuli and interconverting between beige and white adipocyte states. Additionally, beige adipocytes appear to be metabolically heterogenic and have substrate specificity. Nevertheless, obese and aged individuals cannot develop beige adipocytes in response to thermogenic fat-inducers, creating a key clinical hurdle to their therapeutic promise. Thus, elucidating the underlying developmental, molecular, and functional mechanisms that govern thermogenic fat cells will improve our understanding of systemic energy regulation and strive for new targeted therapies to generate thermogenic fat. This review will examine the recent advances in thermogenic fat biogenesis, molecular regulation, and the potential mechanisms for their failure.
Collapse
Affiliation(s)
| | | | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
37
|
Fang R, Yan L, Liao Z. Abnormal lipid metabolism in cancer-associated cachexia and potential therapy strategy. Front Oncol 2023; 13:1123567. [PMID: 37205195 PMCID: PMC10185845 DOI: 10.3389/fonc.2023.1123567] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Cancer-associated cachexia (CAC) is a major characteristic of advanced cancer, associates with almost all types of cancer. Recent studies have found that lipopenia is an important feature of CAC, and it even occurs earlier than sarcopenia. Different types of adipose tissue are all important in the process of CAC. In CAC patients, the catabolism of white adipose tissue (WAT) is increased, leading to an increase in circulating free fatty acids (FFAs), resulting in " lipotoxic". At the same time, WAT also is induced by a variety of mechanisms, browning into brown adipose tissue (BAT). BAT is activated in CAC and greatly increases energy expenditure in patients. In addition, the production of lipid is reduced in CAC, and the cross-talk between adipose tissue and other systems, such as muscle tissue and immune system, also aggravates the progression of CAC. The treatment of CAC is still a vital clinical problem, and the abnormal lipid metabolism in CAC provides a new way for the treatment of CAC. In this article, we will review the mechanism of metabolic abnormalities of adipose tissue in CAC and its role in treatment.
Collapse
Affiliation(s)
- Ruoxin Fang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Ling Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, China
- *Correspondence: Zhengkai Liao, ; Ling Yan,
| | - Zhengkai Liao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
- *Correspondence: Zhengkai Liao, ; Ling Yan,
| |
Collapse
|
38
|
Nakayama M, Okada H, Seki M, Suzuki Y, Chung UI, Ohba S, Hojo H. Single-cell RNA sequencing unravels heterogeneity of skeletal progenitors and cell-cell interactions underlying the bone repair process. Regen Ther 2022; 21:9-18. [PMID: 35619947 PMCID: PMC9127115 DOI: 10.1016/j.reth.2022.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/10/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Activation of skeletal progenitors upon tissue injury and the subsequent cell fate specification are tightly coordinated in the bone repair process. Although known osteoimmunological signaling networks play important roles in the microenvironment of the bone defect sites, the molecular mechanism underlying the bone repair process has not been fully understood. Methods To better understand the behavior of the skeletal progenitors and the heterogeneity of the cells during bone repair at the microenvironmental level, we performed a combinatorial analysis consisting of lineage tracing for skeletal progenitors using the Sox9-CreERT2;R26R tdTomato mouse line followed by single-cell RNA sequencing (scRNA-seq) analysis using a mouse model of calvarial bone repair. To identify a therapeutic target for bone regeneration, further computational analysis was performed focusing on the identification of the cell-cell interactions, followed by pharmacological assessments with a critical-size calvarial bone defect mouse model. Results Lineage tracing analysis showed that skeletal progenitors marked by Sox9 were activated upon bone injury and contributed to bone repair by differentiating into osteoblasts. The scRNA-seq analysis characterized heterogeneous cell populations at the bone defect sites; the computational analysis predicted a bifurcated lineage from skeletal progenitors toward osteogenic and adipogenic lineages. Chemokine C-C motif ligand 9 (Ccl9) was identified as a signaling molecule that regulates bone regeneration in the mouse model, possibly through the regulation of adipogenic differentiation at the bone defect site. Conclusion Multipotential skeletal progenitors and the direction of the cell differentiation were characterized at single cell resolution in a mouse bone repair model. The Ccl9 signaling pathway may be a key factor directing osteogenesis from the progenitors in the model and may be a therapeutic target for bone regeneration.
Collapse
Affiliation(s)
- Mika Nakayama
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Hiroyuki Okada
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Ung-il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8655, Japan
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Hironori Hojo
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8655, Japan
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| |
Collapse
|
39
|
Nakayama M, Okada H, Seki M, Suzuki Y, Chung UI, Ohba S, Hojo H. Single-cell RNA sequencing unravels heterogeneity of skeletal progenitors and cell-cell interactions underlying the bone repair process. Regen Ther 2022. [PMID: 35619947 DOI: 10.1016/j.reth.2022.05.001'||'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction Activation of skeletal progenitors upon tissue injury and the subsequent cell fate specification are tightly coordinated in the bone repair process. Although known osteoimmunological signaling networks play important roles in the microenvironment of the bone defect sites, the molecular mechanism underlying the bone repair process has not been fully understood. Methods To better understand the behavior of the skeletal progenitors and the heterogeneity of the cells during bone repair at the microenvironmental level, we performed a combinatorial analysis consisting of lineage tracing for skeletal progenitors using the Sox9-CreERT2;R26R tdTomato mouse line followed by single-cell RNA sequencing (scRNA-seq) analysis using a mouse model of calvarial bone repair. To identify a therapeutic target for bone regeneration, further computational analysis was performed focusing on the identification of the cell-cell interactions, followed by pharmacological assessments with a critical-size calvarial bone defect mouse model. Results Lineage tracing analysis showed that skeletal progenitors marked by Sox9 were activated upon bone injury and contributed to bone repair by differentiating into osteoblasts. The scRNA-seq analysis characterized heterogeneous cell populations at the bone defect sites; the computational analysis predicted a bifurcated lineage from skeletal progenitors toward osteogenic and adipogenic lineages. Chemokine C-C motif ligand 9 (Ccl9) was identified as a signaling molecule that regulates bone regeneration in the mouse model, possibly through the regulation of adipogenic differentiation at the bone defect site. Conclusion Multipotential skeletal progenitors and the direction of the cell differentiation were characterized at single cell resolution in a mouse bone repair model. The Ccl9 signaling pathway may be a key factor directing osteogenesis from the progenitors in the model and may be a therapeutic target for bone regeneration.
Collapse
Affiliation(s)
- Mika Nakayama
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Hiroyuki Okada
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Ung-Il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8655, Japan.,Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Hironori Hojo
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8655, Japan.,Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| |
Collapse
|
40
|
Nakayama M, Okada H, Seki M, Suzuki Y, Chung UI, Ohba S, Hojo H. Single-cell RNA sequencing unravels heterogeneity of skeletal progenitors and cell-cell interactions underlying the bone repair process. Regen Ther 2022. [PMID: 35619947 DOI: 10.1016/j.reth.2022.05.001%' and 2*3*8=6*8 and 'qwim'!='qwim%] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction Activation of skeletal progenitors upon tissue injury and the subsequent cell fate specification are tightly coordinated in the bone repair process. Although known osteoimmunological signaling networks play important roles in the microenvironment of the bone defect sites, the molecular mechanism underlying the bone repair process has not been fully understood. Methods To better understand the behavior of the skeletal progenitors and the heterogeneity of the cells during bone repair at the microenvironmental level, we performed a combinatorial analysis consisting of lineage tracing for skeletal progenitors using the Sox9-CreERT2;R26R tdTomato mouse line followed by single-cell RNA sequencing (scRNA-seq) analysis using a mouse model of calvarial bone repair. To identify a therapeutic target for bone regeneration, further computational analysis was performed focusing on the identification of the cell-cell interactions, followed by pharmacological assessments with a critical-size calvarial bone defect mouse model. Results Lineage tracing analysis showed that skeletal progenitors marked by Sox9 were activated upon bone injury and contributed to bone repair by differentiating into osteoblasts. The scRNA-seq analysis characterized heterogeneous cell populations at the bone defect sites; the computational analysis predicted a bifurcated lineage from skeletal progenitors toward osteogenic and adipogenic lineages. Chemokine C-C motif ligand 9 (Ccl9) was identified as a signaling molecule that regulates bone regeneration in the mouse model, possibly through the regulation of adipogenic differentiation at the bone defect site. Conclusion Multipotential skeletal progenitors and the direction of the cell differentiation were characterized at single cell resolution in a mouse bone repair model. The Ccl9 signaling pathway may be a key factor directing osteogenesis from the progenitors in the model and may be a therapeutic target for bone regeneration.
Collapse
Affiliation(s)
- Mika Nakayama
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Hiroyuki Okada
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Ung-Il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8655, Japan.,Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Hironori Hojo
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8655, Japan.,Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| |
Collapse
|
41
|
Nakayama M, Okada H, Seki M, Suzuki Y, Chung UI, Ohba S, Hojo H. Single-cell RNA sequencing unravels heterogeneity of skeletal progenitors and cell-cell interactions underlying the bone repair process. Regen Ther 2022. [PMID: 35619947 DOI: 10.1016/j.reth.2022.05.001" and 2*3*8=6*8 and "ahpo"="ahpo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction Activation of skeletal progenitors upon tissue injury and the subsequent cell fate specification are tightly coordinated in the bone repair process. Although known osteoimmunological signaling networks play important roles in the microenvironment of the bone defect sites, the molecular mechanism underlying the bone repair process has not been fully understood. Methods To better understand the behavior of the skeletal progenitors and the heterogeneity of the cells during bone repair at the microenvironmental level, we performed a combinatorial analysis consisting of lineage tracing for skeletal progenitors using the Sox9-CreERT2;R26R tdTomato mouse line followed by single-cell RNA sequencing (scRNA-seq) analysis using a mouse model of calvarial bone repair. To identify a therapeutic target for bone regeneration, further computational analysis was performed focusing on the identification of the cell-cell interactions, followed by pharmacological assessments with a critical-size calvarial bone defect mouse model. Results Lineage tracing analysis showed that skeletal progenitors marked by Sox9 were activated upon bone injury and contributed to bone repair by differentiating into osteoblasts. The scRNA-seq analysis characterized heterogeneous cell populations at the bone defect sites; the computational analysis predicted a bifurcated lineage from skeletal progenitors toward osteogenic and adipogenic lineages. Chemokine C-C motif ligand 9 (Ccl9) was identified as a signaling molecule that regulates bone regeneration in the mouse model, possibly through the regulation of adipogenic differentiation at the bone defect site. Conclusion Multipotential skeletal progenitors and the direction of the cell differentiation were characterized at single cell resolution in a mouse bone repair model. The Ccl9 signaling pathway may be a key factor directing osteogenesis from the progenitors in the model and may be a therapeutic target for bone regeneration.
Collapse
Affiliation(s)
- Mika Nakayama
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Hiroyuki Okada
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Ung-Il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8655, Japan.,Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Hironori Hojo
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8655, Japan.,Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| |
Collapse
|
42
|
Song WJ, Liu PP, Meng ZQ, Zheng YY, Zhou GH, Li HX, Ding SJ. Identification of porcine adipose progenitor cells by fluorescence-activated cell sorting for the preparation of cultured fat by 3D bioprinting. Food Res Int 2022; 162:111952. [DOI: 10.1016/j.foodres.2022.111952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/14/2022] [Indexed: 11/04/2022]
|
43
|
Nakayama M, Okada H, Seki M, Suzuki Y, Chung UI, Ohba S, Hojo H. Single-cell RNA sequencing unravels heterogeneity of skeletal progenitors and cell-cell interactions underlying the bone repair process. Regen Ther 2022. [PMID: 35619947 DOI: 10.1016/j.reth.2022.05.001' and 2*3*8=6*8 and 'l7zx'='l7zx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction Activation of skeletal progenitors upon tissue injury and the subsequent cell fate specification are tightly coordinated in the bone repair process. Although known osteoimmunological signaling networks play important roles in the microenvironment of the bone defect sites, the molecular mechanism underlying the bone repair process has not been fully understood. Methods To better understand the behavior of the skeletal progenitors and the heterogeneity of the cells during bone repair at the microenvironmental level, we performed a combinatorial analysis consisting of lineage tracing for skeletal progenitors using the Sox9-CreERT2;R26R tdTomato mouse line followed by single-cell RNA sequencing (scRNA-seq) analysis using a mouse model of calvarial bone repair. To identify a therapeutic target for bone regeneration, further computational analysis was performed focusing on the identification of the cell-cell interactions, followed by pharmacological assessments with a critical-size calvarial bone defect mouse model. Results Lineage tracing analysis showed that skeletal progenitors marked by Sox9 were activated upon bone injury and contributed to bone repair by differentiating into osteoblasts. The scRNA-seq analysis characterized heterogeneous cell populations at the bone defect sites; the computational analysis predicted a bifurcated lineage from skeletal progenitors toward osteogenic and adipogenic lineages. Chemokine C-C motif ligand 9 (Ccl9) was identified as a signaling molecule that regulates bone regeneration in the mouse model, possibly through the regulation of adipogenic differentiation at the bone defect site. Conclusion Multipotential skeletal progenitors and the direction of the cell differentiation were characterized at single cell resolution in a mouse bone repair model. The Ccl9 signaling pathway may be a key factor directing osteogenesis from the progenitors in the model and may be a therapeutic target for bone regeneration.
Collapse
Affiliation(s)
- Mika Nakayama
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Hiroyuki Okada
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Ung-Il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8655, Japan.,Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Hironori Hojo
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8655, Japan.,Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| |
Collapse
|
44
|
Mesa AM, Medrano TI, Sirohi VK, Walker WH, Johnson RD, Tevosian SG, Adkin AM, Cooke PS. Identification and characterization of novel abdominal and pelvic brown adipose depots in mice. Adipocyte 2022; 11:616-629. [PMID: 36260113 PMCID: PMC9586652 DOI: 10.1080/21623945.2022.2133415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Brown adipose tissue (BAT) generates heat through non-shivering thermogenesis, and increasing BAT amounts or activity could facilitate obesity treatment and provide metabolic benefits. In mice, BAT has been reported in perirenal, thoracic and cranial sites. Here, we describe new pelvic and lower abdominal BAT depots located around the urethra, internal reproductive and urinary tract organs and major lower pelvic blood vessels, as well as between adjacent muscles where the upper hind leg meets the abdominal cavity. Immunohistochemical, western blot and PCR analyses revealed that these tissues expressed BAT markers such as uncoupling protein 1 (UCP1) and CIDEA, but not white adipose markers, and β3-adrenergic stimulation increased UCP1 amounts, a classic characteristic of BAT tissue. The newly identified BAT stores contained extensive sympathetic innervation with high mitochondrial density and multilocular lipid droplets similar to interscapular BAT. BAT repositories were present and functional neonatally, and showed developmental changes between the neonatal and adult periods. In summary, several new depots showing classical BAT characteristics are reported and characterized in the lower abdominal/pelvic region of mice. These BAT stores are likely significant metabolic regulators in the mouse and some data suggests that similar BAT depots may also exist in humans.
Collapse
Affiliation(s)
- Ana M. Mesa
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Theresa I. Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Vijay K. Sirohi
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - William H. Walker
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh and Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Richard D. Johnson
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Sergei G. Tevosian
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Angie M. Adkin
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Paul S. Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA,CONTACT Paul S. Cooke Department of Physiological Sciences, University of Florida, Gainesville, FL32610, USA
| |
Collapse
|
45
|
Nakayama M, Okada H, Seki M, Suzuki Y, Chung UI, Ohba S, Hojo H. Single-cell RNA sequencing unravels heterogeneity of skeletal progenitors and cell-cell interactions underlying the bone repair process. Regen Ther 2022. [PMID: 35619947 DOI: 10.1016/j.reth.2022.05.001'||dbms_pipe.receive_message(chr(98)||chr(98)||chr(98),15)||'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction Activation of skeletal progenitors upon tissue injury and the subsequent cell fate specification are tightly coordinated in the bone repair process. Although known osteoimmunological signaling networks play important roles in the microenvironment of the bone defect sites, the molecular mechanism underlying the bone repair process has not been fully understood. Methods To better understand the behavior of the skeletal progenitors and the heterogeneity of the cells during bone repair at the microenvironmental level, we performed a combinatorial analysis consisting of lineage tracing for skeletal progenitors using the Sox9-CreERT2;R26R tdTomato mouse line followed by single-cell RNA sequencing (scRNA-seq) analysis using a mouse model of calvarial bone repair. To identify a therapeutic target for bone regeneration, further computational analysis was performed focusing on the identification of the cell-cell interactions, followed by pharmacological assessments with a critical-size calvarial bone defect mouse model. Results Lineage tracing analysis showed that skeletal progenitors marked by Sox9 were activated upon bone injury and contributed to bone repair by differentiating into osteoblasts. The scRNA-seq analysis characterized heterogeneous cell populations at the bone defect sites; the computational analysis predicted a bifurcated lineage from skeletal progenitors toward osteogenic and adipogenic lineages. Chemokine C-C motif ligand 9 (Ccl9) was identified as a signaling molecule that regulates bone regeneration in the mouse model, possibly through the regulation of adipogenic differentiation at the bone defect site. Conclusion Multipotential skeletal progenitors and the direction of the cell differentiation were characterized at single cell resolution in a mouse bone repair model. The Ccl9 signaling pathway may be a key factor directing osteogenesis from the progenitors in the model and may be a therapeutic target for bone regeneration.
Collapse
Affiliation(s)
- Mika Nakayama
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Hiroyuki Okada
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Ung-Il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8655, Japan.,Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Hironori Hojo
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8655, Japan.,Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| |
Collapse
|
46
|
Civelek E, Ozen G. The biological actions of prostanoids in adipose tissue in physiological and pathophysiological conditions. Prostaglandins Leukot Essent Fatty Acids 2022; 186:102508. [PMID: 36270150 DOI: 10.1016/j.plefa.2022.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
Adipose tissue has been established as an endocrine organ that plays an important role in maintaining metabolic homeostasis. Adipose tissue releases several bioactive molecules called adipokines. Inflammation, dysregulation of adipokine synthesis, and secretion are observed in obesity and related diseases and cause adipose tissue dysfunction. Prostanoids, belonging to the eicosanoid family of lipid mediators, can be synthesized in adipose tissue and play a critical role in adipose tissue biology. In this review, we summarized the current knowledge regarding the interaction of prostanoids with adipokines, the expression of prostanoid receptors, and prostanoid synthase enzymes in adipose tissues in health and disease. Furthermore, the involvement of prostanoids in the physiological function or dysfunction of adipose tissue including inflammation, lipolysis, adipogenesis, thermogenesis, browning of adipocytes, and vascular tone regulation was also discussed by examining studies using pharmacological approaches or genetically modified animals for prostanoid receptors/synthase enzymes. Overall, the present review provides a perspective on the evidence from literature regarding the biological effects of prostanoids in adipose tissue. Among prostanoids, prostaglandin E2 (PGE2) is prominent in regards to its substantial role in both adipose tissue physiology and pathophysiology. Targeting prostanoids may serve as a potential therapeutic strategy for preventing or treating obesity and related diseases.
Collapse
Affiliation(s)
- Erkan Civelek
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gulsev Ozen
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
47
|
Qi Y, Hui XH. The Single-Cell Revelation of Thermogenic Adipose Tissue. Mol Cells 2022; 45:673-684. [PMID: 36254709 PMCID: PMC9589375 DOI: 10.14348/molcells.2022.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022] Open
Abstract
The past two decades have witnessed an upsurge in the appreciation of adipose tissue (AT) as an immuno-metabolic hub harbouring heterogeneous cell populations that collectively fine-tune systemic metabolic homeostasis. Technological advancements, especially single-cell transcriptomics, have offered an unprecedented opportunity for dissecting the sophisticated cellular networks and compositional dynamics underpinning AT remodelling. The "re-discovery" of functional brown adipose tissue dissipating heat energy in human adults has aroused tremendous interest in exploiting the mechanisms underpinning the engagement of AT thermogenesis for combating human obesity. In this review, we aim to summarise and evaluate the use of single-cell transcriptomics that contribute to a better appreciation of the cellular plasticity and intercellular crosstalk in thermogenic AT.
Collapse
Affiliation(s)
- Yue Qi
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Hannah Hui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
48
|
Martins FF, Souza-Mello V, Aguila MB, Mandarim-de-Lacerda CA. Brown adipose tissue as an endocrine organ: updates on the emerging role of batokines. Horm Mol Biol Clin Investig 2022:hmbci-2022-0044. [DOI: 10.1515/hmbci-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/20/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Brown adipose tissue (BAT) remains active in adults, oxidizing fatty acids or glucose and releasing energy in the form of heat. Brown adipocytes and enhanced thermogenesis are targets for treating obesity and its comorbidities. BAT shows high synthesis activity and secretes several signaling molecules. The brown adipokines, or batokines, take action in an autocrine, paracrine, and endocrine manner. Batokines have a role in the homeostasis of the cardiovascular system, central nervous system, white adipose tissue, liver, and skeletal muscle and exert beneficial effects on BAT. The systemic function of batokines gives BAT an endocrine organ profile. Besides, the batokines Fibroblast Growth Factor-21, Vascular Endothelial Growth Factor A, Bone Morphogenetic Protein 8, Neuregulin 4, Myostatin, and Interleukin-6 emerge as targets to treat obesity and its comorbidities, deserving attention. This review outlines the role of six emerging batokines on BAT and their cross-talk with other organs, focusing on their physiological significance and diet-induced changes.
Collapse
Affiliation(s)
- Fabiane Ferreira Martins
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases , Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases , Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases , Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases , Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro , Rio de Janeiro , Brazil
| |
Collapse
|
49
|
Wang G, Song A, Bae M, Wang QA. Adipose Tissue Plasticity in Aging. Compr Physiol 2022; 12:4119-4132. [PMID: 36214190 DOI: 10.1002/cphy.c220005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As a dynamic endocrine organ, white adipose tissue (WAT) stores lipids and plays a critical role in maintaining whole-body energy homeostasis and insulin sensitivity. A large group of the population over 65 years old suffer from increased WAT mass, especially in the visceral location. Visceral adiposity accelerates aging through promoting age-associated chronic conditions, significantly shortening life expectancy. Unlike WAT, brown adipose tissue (BAT) functions as an effective energy sink that burns and disposes of excess lipids and glucose upon activation of thermogenesis. Unfortunately, the thermogenic activity of BAT declines during aging. New appreciation of cellular and functional remodeling of WAT and BAT during aging has emerged in recent years. Efforts are underway to explore the potential underlying mechanisms behind these age-associated alterations in WAT and BAT and the impact of these alterations on whole-body metabolism. Lastly, it is intriguing to translate our knowledge obtained from animal models to the clinic to prevent and treat age-associated metabolic disorders. © 2022 American Physiological Society. Compr Physiol 12: 4119-4132, 2022.
Collapse
Affiliation(s)
- Guan Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Anying Song
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Marie Bae
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Qiong A Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA.,Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, California, USA
| |
Collapse
|
50
|
MYPT1-PP1β phosphatase negatively regulates both chromatin landscape and co-activator recruitment for beige adipogenesis. Nat Commun 2022; 13:5715. [PMID: 36175407 PMCID: PMC9523048 DOI: 10.1038/s41467-022-33363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/14/2022] [Indexed: 12/05/2022] Open
Abstract
Protein kinase A promotes beige adipogenesis downstream from β-adrenergic receptor signaling by phosphorylating proteins, including histone H3 lysine 9 (H3K9) demethylase JMJD1A. To ensure homeostasis, this process needs to be reversible however, this step is not well understood. We show that myosin phosphatase target subunit 1- protein phosphatase 1β (MYPT1-PP1β) phosphatase activity is inhibited via PKA-dependent phosphorylation, which increases phosphorylated JMJD1A and beige adipogenesis. Mechanistically, MYPT1-PP1β depletion results in JMJD1A-mediated H3K9 demethylation and activation of the Ucp1 enhancer/promoter regions. Interestingly, MYPT1-PP1β also dephosphorylates myosin light chain which regulates actomyosin tension-mediated activation of YAP/TAZ which directly stimulates Ucp1 gene expression. Pre-adipocyte specific Mypt1 deficiency increases cold tolerance with higher Ucp1 levels in subcutaneous white adipose tissues compared to control mice, confirming this regulatory mechanism in vivo. Thus, we have uncovered regulatory cross-talk involved in beige adipogenesis that coordinates epigenetic regulation with direct activation of the mechano-sensitive YAP/TAZ transcriptional co-activators. How β-AR signaling coordinates epigenetic and transcriptional pathways is unknown. Here the authors show that cold-induced β-AR signaling negatively regulates MYPT1-PP1β phosphatase activity to orchestrate both pathways for beige adipogenesis.
Collapse
|