1
|
Sun Y, Bock R, Li Z. A hidden intrinsic ability of bicistronic expression based on a novel translation reinitiation mechanism in yeast. Nucleic Acids Res 2025; 53:gkaf220. [PMID: 40156854 PMCID: PMC11952965 DOI: 10.1093/nar/gkaf220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Gene organization in operons and co-expression as polycistronic transcripts is characteristic of prokaryotes. With the evolution of the eukaryotic translation machinery, operon structure and expression of polycistrons were largely abandoned. Whether eukaryotes still possess the ability to express polycistrons, and how they functionally activate bacterial operons acquired by horizontal DNA transfer is unknown. Here, we demonstrate that a polycistron can be rapidly activated in yeast by induction of bicistronic expression under selection. We show that induced translation of the downstream cistron in a bicistronic transcript is based on a novel type of reinitiation mediated by the 80S ribosome and triggered by inefficient stop codon recognition, and that induced bicistronic expression is stable and independent of cis-elements. These results provide key insights into the epigenetic mechanism of the pathway of activation. We also developed a yeast strain that efficiently expresses bicistronic constructs, but does not carry any genomic DNA sequence change, and utilized this strain to synthesize a high-value metabolite from a bicistronic expression construct. Together, our results reveal the capacity of yeast to express bicistrons in a previously unrecognized pathway. While this capacity is normally hidden, it can be rapidly induced by selection to improve fitness.
Collapse
Affiliation(s)
- Yiwen Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Zhichao Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
2
|
Van Etten J, Stephens TG, Bhattacharya D. Genetic Transfer in Action: Uncovering DNA Flow in an Extremophilic Microbial Community. Environ Microbiol 2025; 27:e70048. [PMID: 39900484 PMCID: PMC11790422 DOI: 10.1111/1462-2920.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/05/2025]
Abstract
Horizontal genetic transfer (HGT) is a significant driver of genomic novelty in all domains of life. HGT has been investigated in many studies however, the focus has been on conspicuous protein-coding DNA transfers that often prove to be adaptive in recipient organisms and are therefore fixed longer-term in lineages. These results comprise a subclass of HGTs and do not represent exhaustive (coding and non-coding) DNA transfer and its impact on ecology. Uncovering exhaustive HGT can provide key insights into the connectivity of genomes in communities and how these transfers may occur. In this study, we use the term frequency-inverse document frequency (TF-IDF) technique, that has been used successfully to mine DNA transfers within real and simulated high-quality prokaryote genomes, to search for exhaustive HGTs within an extremophilic microbial community. We establish a pipeline for validating transfers identified using this approach. We find that most DNA transfers are within-domain and involve non-coding DNA. A relatively high proportion of the predicted protein-coding HGTs appear to encode transposase activity, restriction-modification system components, and biofilm formation functions. Our study demonstrates the utility of the TF-IDF approach for HGT detection and provides insights into the mechanisms of recent DNA transfer.
Collapse
Affiliation(s)
- Julia Van Etten
- Department of Biochemistry and Microbiology, RutgersThe State University of New JerseyNew BrunswickNew JerseyUSA
| | - Timothy G. Stephens
- Department of Biochemistry and Microbiology, RutgersThe State University of New JerseyNew BrunswickNew JerseyUSA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, RutgersThe State University of New JerseyNew BrunswickNew JerseyUSA
| |
Collapse
|
3
|
Sun J, Hang G, Lv H, Li Y, Song Q, Zhong Z, Sun Z, Liu W. Genomic characteristics and phylogenetic relationships of Cutibacterium acnes breast milk isolates. BMC Microbiol 2025; 25:2. [PMID: 39762730 PMCID: PMC11702113 DOI: 10.1186/s12866-024-03717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cutibacterium acnes is one of the most commonly found microbes in breast milk. However, little is known about the genomic characteristics of C. acnes isolated from breast milk. In this study, the sequencing and assembly results of 10 C. acnes isolates from breast milk were compared with the genomic data of 454 strains downloaded from NCBI, and the characteristics of breast milk isolates from various perspectives, including phylogeny, genomic characteristics, virulence genes, drug resistance genes, and carbohydrate utilization, were elucidated. RESULTS The findings of this study revealed no differences between the breast milk isolates and other isolates in terms of genomic features, phylogenetic relationships, virulence, and resistance-related genes. However, breast milk-derived isolates exhibited significantly lower copies of the carbohydrate metabolic enzyme genes GT5 and GT51 (P < 0.05) and a higher copy number of the GH31 gene (P < 0.05) than others. C. acnes primarily consists of three genetic branches (A, B, and C), which correspond to the three subspecies of C. acnes (C. acnes subsp. elongatum, C. acnes subsp. defendens, C. acnes subsp. acnes). The genetic differences between branches B and C were smaller than that between branch A. Branches A and B carry a higher number of copies of carbohydrate enzymes, including CE1, CE10, GH3, and CBM32 than branch C. Branches B and C possess the carbohydrate enzymes PL8 and GH23, which are absent in branch A. Core genes, core intergenic regions, and concatenated sequences of core genes and core intergenic regions were compared to construct a phylogenetic tree, and it was found that core intergenic regions could be used to describe phylogenetic relationships. CONCLUSIONS It is therefore speculated that the C. acnes in breast milk originates from the nipple or breast surface. This study provides a novel genetic basis for genetic differentiation of C. acnes isolates from breast milk.
Collapse
Affiliation(s)
- Jiaqi Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Guoxuan Hang
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Huimin Lv
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Yu Li
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Qiujie Song
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China.
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P. R. China.
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
4
|
Sánchez-Maroto L, Gella P, Couce A. Novel Fosfomycin Resistance Mechanism in Pseudomonas entomophila Due to Atypical Pho Regulon Control of GlpT. Antibiotics (Basel) 2024; 13:1008. [PMID: 39596703 PMCID: PMC11590989 DOI: 10.3390/antibiotics13111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives:Pseudomonas entomophila is a ubiquitous bacterium capable of killing insects of different orders and has become a model for host-pathogen studies and a promising tool for biological pest control. In the human pathogen Pseudomonas aeruginosa, spontaneous resistance to fosfomycin arises almost exclusively from mutations in the glycerol-3-phosphate transporter (GlpT), the drug's sole entry route in this species. Here, we investigated whether this specificity is conserved in P. entomophila, as it could provide a valuable marker system for studying mutation rates and spectra and for selection in genetic engineering. Methods: We isolated 16 independent spontaneous fosfomycin-resistant mutants in P. entomophila, and studied the genetic basis of the resistance using a combination of sequencing, phenotyping and computational approaches. Results: We only found two mutants without alterations in glpT or any of its known regulatory elements. Whole-genome sequencing revealed unique inactivating mutations in phoU, a key regulator of the phosphate starvation (Pho) regulon. Computational analyses identified a PhoB binding site in the glpT promoter, and experiments showed that phoU inactivation reduced glpT expression nearly 20-fold. While placing a sugar-phosphate transporter under the Pho regulon may seem advantageous, bioinformatic analysis shows this configuration is atypical among pseudomonads. Conclusions: This atypical Pho regulon control of GlpT probably reflects the peculiarities of P. entomophila's habitat and lifestyle; highlighting how readily regulatory evolution can lead to the rapid divergence of resistance mechanisms, even among closely related species.
Collapse
Affiliation(s)
| | | | - Alejandro Couce
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain (P.G.)
| |
Collapse
|
5
|
Yuan W, Yu J, Li Z. Rapid functional activation of horizontally transferred eukaryotic intron-containing genes in the bacterial recipient. Nucleic Acids Res 2024; 52:8344-8355. [PMID: 39011898 DOI: 10.1093/nar/gkae628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
Horizontal gene transfer has occurred across all domains of life and contributed substantially to the evolution of both prokaryotes and eukaryotes. Previous studies suggest that many horizontally transferred eukaryotic genes conferred selective advantages to bacterial recipients, but how these eukaryotic genes evolved into functional bacterial genes remained unclear, particularly how bacteria overcome the expressional barrier posed by eukaryotic introns. Here, we first confirmed that the presence of intron would inactivate the horizontally transferred gene in Escherichia coli even if this gene could be efficiently transcribed. Subsequent large-scale genetic screens for activation of gene function revealed that activation events could rapidly occur within several days of selective cultivation. Molecular analysis of activation events uncovered two distinct mechanisms how bacteria overcome the intron barrier: (i) intron was partially deleted and the resulting stop codon-removed mutation led to one intact foreign protein or (ii) intron was intactly retained but it mediated the translation initiation and the interaction of two split small proteins (derived from coding sequences up- and downstream of intron, respectively) to restore gene function. Our findings underscore the likelihood that horizontally transferred eukaryotic intron-containing genes could rapidly acquire functionality if they confer a selective advantage to the prokaryotic recipient.
Collapse
Affiliation(s)
- Wen Yuan
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jing Yu
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhichao Li
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
6
|
Taylor AJ, Yahara K, Pascoe B, Ko S, Mageiros L, Mourkas E, Calland JK, Puranen S, Hitchings MD, Jolley KA, Kobras CM, Bayliss S, Williams NJ, van Vliet AHM, Parkhill J, Maiden MCJ, Corander J, Hurst LD, Falush D, Keim P, Didelot X, Kelly DJ, Sheppard SK. Epistasis, core-genome disharmony, and adaptation in recombining bacteria. mBio 2024; 15:e0058124. [PMID: 38683013 PMCID: PMC11237541 DOI: 10.1128/mbio.00581-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Recombination of short DNA fragments via horizontal gene transfer (HGT) can introduce beneficial alleles, create genomic disharmony through negative epistasis, and create adaptive gene combinations through positive epistasis. For non-core (accessory) genes, the negative epistatic cost is likely to be minimal because the incoming genes have not co-evolved with the recipient genome and are frequently observed as tightly linked cassettes with major effects. By contrast, interspecific recombination in the core genome is expected to be rare because disruptive allelic replacement is likely to introduce negative epistasis. Why then is homologous recombination common in the core of bacterial genomes? To understand this enigma, we take advantage of an exceptional model system, the common enteric pathogens Campylobacter jejuni and C. coli that are known for very high magnitude interspecies gene flow in the core genome. As expected, HGT does indeed disrupt co-adapted allele pairings, indirect evidence of negative epistasis. However, multiple HGT events enable recovery of the genome's co-adaption between introgressing alleles, even in core metabolism genes (e.g., formate dehydrogenase). These findings demonstrate that, even for complex traits, genetic coalitions can be decoupled, transferred, and independently reinstated in a new genetic background-facilitating transition between fitness peaks. In this example, the two-step recombinational process is associated with C. coli that are adapted to the agricultural niche.IMPORTANCEGenetic exchange among bacteria shapes the microbial world. From the acquisition of antimicrobial resistance genes to fundamental questions about the nature of bacterial species, this powerful evolutionary force has preoccupied scientists for decades. However, the mixing of genes between species rests on a paradox: 0n one hand, promoting adaptation by conferring novel functionality; on the other, potentially introducing disharmonious gene combinations (negative epistasis) that will be selected against. Taking an interdisciplinary approach to analyze natural populations of the enteric bacteria Campylobacter, an ideal example of long-range admixture, we demonstrate that genes can independently transfer across species boundaries and rejoin in functional networks in a recipient genome. The positive impact of two-gene interactions appears to be adaptive by expanding metabolic capacity and facilitating niche shifts through interspecific hybridization. This challenges conventional ideas and highlights the possibility of multiple-step evolution of multi-gene traits by interspecific introgression.
Collapse
Affiliation(s)
- Aidan J Taylor
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ben Pascoe
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Seungwon Ko
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Leonardos Mageiros
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
- The Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - Jessica K Calland
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Santeri Puranen
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| | - Matthew D Hitchings
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - Keith A Jolley
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Carolin M Kobras
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sion Bayliss
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Nicola J Williams
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Wirral, United Kingdom
| | | | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Jukka Corander
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Laurence D Hurst
- The Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Daniel Falush
- The Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Shanghai, China
| | - Paul Keim
- Department of Biology, University of Oxford, Oxford, United Kingdom
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Xavier Didelot
- Department of Statistics, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - David J Kelly
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
7
|
Frantsuzova E, Bogun A, Kopylova O, Vetrova A, Solyanikova I, Streletskii R, Delegan Y. Genomic, Phylogenetic and Physiological Characterization of the PAH-Degrading Strain Gordonia polyisoprenivorans 135. BIOLOGY 2024; 13:339. [PMID: 38785821 PMCID: PMC11117675 DOI: 10.3390/biology13050339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
The strain Gordonia polyisoprenivorans 135 is able to utilize a wide range of aromatic compounds. The aim of this work was to study the features of genetic organization and biotechnological potential of the strain G. polyisoprenivorans 135 as a degrader of aromatic compounds. The study of the genome of the strain 135 and the pangenome of the G. polyisoprenivorans species revealed that some genes, presumably involved in PAH catabolism, are atypical for Gordonia and belong to the pangenome of Actinobacteria. Analyzing the intergenic regions of strain 135 alongside the "panIGRome" of G. polyisoprenivorans showed that some intergenic regions in strain 135 also differ from those located between the same pairs of genes in related strains. The strain G. polyisoprenivorans 135 in our work utilized naphthalene (degradation degree 39.43%) and grew actively on salicylate. At present, this is the only known strain of G. polyisoprenivorans with experimentally confirmed ability to utilize these compounds.
Collapse
Affiliation(s)
- Ekaterina Frantsuzova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| | - Olga Kopylova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
- Pushchino Branch of Federal State Budgetary Educational Institution of Higher Education “Russian Biotechnology University (ROSBIOTECH)”, 142290 Pushchino, Moscow Region, Russia
| | - Anna Vetrova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| | - Inna Solyanikova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
- Regional Microbiological Center, Belgorod State University, 308015 Belgorod, Russia
| | - Rostislav Streletskii
- Laboratory of Ecological Soil Science, Faculty of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| |
Collapse
|
8
|
Douglas GM, Shapiro BJ. Pseudogenes act as a neutral reference for detecting selection in prokaryotic pangenomes. Nat Ecol Evol 2024; 8:304-314. [PMID: 38177690 DOI: 10.1038/s41559-023-02268-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/10/2023] [Indexed: 01/06/2024]
Abstract
A long-standing question is to what degree genetic drift and selection drive the divergence in rare accessory gene content between closely related bacteria. Rare genes, including singletons, make up a large proportion of pangenomes (all genes in a set of genomes), but it remains unclear how many such genes are adaptive, deleterious or neutral to their host genome. Estimates of species' effective population sizes (Ne) are positively associated with pangenome size and fluidity, which has independently been interpreted as evidence for both neutral and adaptive pangenome models. We hypothesized that pseudogenes, used as a neutral reference, could be used to distinguish these models. We find that most functional categories are depleted for rare pseudogenes when a genome encodes only a single intact copy of a gene family. In contrast, transposons are enriched in pseudogenes, suggesting they are mostly neutral or deleterious to the host genome. Thus, even if individual rare accessory genes vary in their effects on host fitness, we can confidently reject a model of entirely neutral or deleterious rare genes. We also define the ratio of singleton intact genes to singleton pseudogenes (si/sp) within a pangenome, compare this measure across 668 prokaryotic species and detect a signal consistent with the adaptive value of many rare accessory genes. Taken together, our work demonstrates that comparing with pseudogenes can improve inferences of the evolutionary forces driving pangenome variation.
Collapse
Affiliation(s)
- Gavin M Douglas
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.
- McGill Genome Centre, McGill University, Montréal, Québec, Canada.
| | - B Jesse Shapiro
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.
- McGill Genome Centre, McGill University, Montréal, Québec, Canada.
- McGill Centre for Microbiome Research, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
9
|
Migration Rates on Swim Plates Vary between Escherichia coli Soil Isolates: Differences Are Associated with Variants in Metabolic Genes. Appl Environ Microbiol 2023; 89:e0172722. [PMID: 36695629 PMCID: PMC9972950 DOI: 10.1128/aem.01727-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This study investigates migration phenotypes of 265 Escherichia coli soil isolates from the Buffalo River basin in Minnesota, USA. Migration rates on semisolid tryptone swim plates ranged from nonmotile to 190% of the migration rate of a highly motile E. coli K-12 strain. The nonmotile isolate, LGE0550, had mutations in flagellar and chemotaxis genes, including two IS3 elements in the flagellin-encoding gene fliC. A genome-wide association study (GWAS), associating the migration rates with genetic variants in specific genes, yielded two metabolic variants (rygD-serA and metR-metE) with previous implications in chemotaxis. As a novel way of confirming GWAS results, we used minimal medium swim plates to confirm the associations. Other variants in metabolic genes and genes that are associated with biofilm were positively or negatively associated with migration rates. A determination of growth phenotypes on Biolog EcoPlates yielded differential growth for the 10 tested isolates on d-malic acid, putrescine, and d-xylose, all of which are important in the soil environment. IMPORTANCE E. coli is a Gram-negative, facultative anaerobic bacterium whose life cycle includes extra host environments in addition to human, animal, and plant hosts. The bacterium has the genomic capability of being motile. In this context, the significance of this study is severalfold: (i) the great diversity of migration phenotypes that we observed within our isolate collection supports previous (G. NandaKafle, A. A. Christie, S. Vilain, and V. S. Brözel, Front Microbiol 9:762, 2018, https://doi.org/10.3389/fmicb.2018.00762; Y. Somorin, F. Abram, F. Brennan, and C. O'Byrne, Appl Environ Microbiol 82:4628-4640, 2016, https://doi.org/10.1128/AEM.01175-16) ideas of soil promoting phenotypic heterogeneity, (ii) such heterogeneity may facilitate bacterial growth in the many different soil niches, and (iii) such heterogeneity may enable the bacteria to interact with human, animal, and plant hosts.
Collapse
|
10
|
Nielsen FD, Møller-Jensen J, Jørgensen MG. Adding context to the pneumococcal core genes using bioinformatic analysis of the intergenic pangenome of Streptococcus pneumoniae. FRONTIERS IN BIOINFORMATICS 2023; 3:1074212. [PMID: 36844929 PMCID: PMC9944727 DOI: 10.3389/fbinf.2023.1074212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction: Whole genome sequencing offers great opportunities for linking genotypes to phenotypes aiding in our understanding of human disease and bacterial pathogenicity. However, these analyses often overlook non-coding intergenic regions (IGRs). By disregarding the IGRs, crucial information is lost, as genes have little biological function without expression. Methods/Results: In this study, we present the first complete pangenome of the important human pathogen Streptococcus pneumoniae (pneumococcus), spanning both the genes and IGRs. We show that the pneumococcus species retains a small core genome of IGRs that are present across all isolates. Gene expression is highly dependent on these core IGRs, and often several copies of these core IGRs are found across each genome. Core genes and core IGRs show a clear linkage as 81% of core genes are associated with core IGRs. Additionally, we identify a single IGR within the core genome that is always occupied by one of two highly distinct sequences, scattered across the phylogenetic tree. Discussion: Their distribution indicates that this IGR is transferred between isolates through horizontal regulatory transfer independent of the flanking genes and that each type likely serves different regulatory roles depending on their genetic context.
Collapse
Affiliation(s)
- Flemming Damgaard Nielsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark,Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mikkel Girke Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark,*Correspondence: Mikkel Girke Jørgensen,
| |
Collapse
|
11
|
Cardenas-Alvarez MX, Restrepo-Montoya D, Bergholz TM. Genome-Wide Association Study of Listeria monocytogenes Isolates Causing Three Different Clinical Outcomes. Microorganisms 2022; 10:1934. [PMID: 36296210 PMCID: PMC9610272 DOI: 10.3390/microorganisms10101934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 12/05/2022] Open
Abstract
Heterogeneity in virulence potential of L. monocytogenes subgroups have been associated with genetic elements that could provide advantages in certain environments to invade, multiply, and survive within a host. The presence of gene mutations has been found to be related to attenuated phenotypes, while the presence of groups of genes, such as pathogenicity islands (PI), has been associated with hypervirulent or stress-resistant clones. We evaluated 232 whole genome sequences from invasive listeriosis cases in human and ruminants from the US and Europe to identify genomic elements associated with strains causing three clinical outcomes: central nervous system (CNS) infections, maternal-neonatal (MN) infections, and systemic infections (SI). Phylogenetic relationships and virulence-associated genes were evaluated, and a gene-based and single nucleotide polymorphism (SNP)-based genome-wide association study (GWAS) were conducted in order to identify loci associated with the different clinical outcomes. The orthologous results indicated that genes of phage phiX174, transfer RNAs, and type I restriction-modification (RM) system genes along with SNPs in loci involved in environmental adaptation such as rpoB and a phosphotransferase system (PTS) were associated with one or more clinical outcomes. Detection of phenotype-specific candidate loci represents an approach that could narrow the group of genetic elements to be evaluated in future studies.
Collapse
Affiliation(s)
| | | | - Teresa M. Bergholz
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Hyun JC, Monk JM, Palsson BO. Comparative pangenomics: analysis of 12 microbial pathogen pangenomes reveals conserved global structures of genetic and functional diversity. BMC Genomics 2022; 23:7. [PMID: 34983386 PMCID: PMC8725406 DOI: 10.1186/s12864-021-08223-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND With the exponential growth of publicly available genome sequences, pangenome analyses have provided increasingly complete pictures of genetic diversity for many microbial species. However, relatively few studies have scaled beyond single pangenomes to compare global genetic diversity both within and across different species. We present here several methods for "comparative pangenomics" that can be used to contextualize multi-pangenome scale genetic diversity with gene function for multiple species at multiple resolutions: pangenome shape, genes, sequence variants, and positions within variants. RESULTS Applied to 12,676 genomes across 12 microbial pathogenic species, we observed several shared resolution-specific patterns of genetic diversity: First, pangenome openness is associated with species' phylogenetic placement. Second, relationships between gene function and frequency are conserved across species, with core genomes enriched for metabolic and ribosomal genes and accessory genomes for trafficking, secretion, and defense-associated genes. Third, genes in core genomes with the highest sequence diversity are functionally diverse. Finally, certain protein domains are consistently mutation enriched across multiple species, especially among aminoacyl-tRNA synthetases where the extent of a domain's mutation enrichment is strongly function-dependent. CONCLUSIONS These results illustrate the value of each resolution at uncovering distinct aspects in the relationship between genetic and functional diversity across multiple species. With the continued growth of the number of sequenced genomes, these methods will reveal additional universal patterns of genetic diversity at the pangenome scale.
Collapse
Affiliation(s)
- Jason C Hyun
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Jonathan M Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
White KA, McEntire KD, Buan NR, Robinson L, Barbar E. Charting a New Frontier Integrating Mathematical Modeling in Complex Biological Systems from Molecules to Ecosystems. Integr Comp Biol 2021; 61:2255-2266. [PMID: 34283225 DOI: 10.1093/icb/icab165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | - Nicole R Buan
- University of Nebraska-Lincoln, Department of Biochemistry
| | | | - Elisar Barbar
- Oregon State University, Department of Biochemistry and Biophysics
| |
Collapse
|
14
|
Li E, Zhang H, Jiang H, Pieterse CMJ, Jousset A, Bakker PAHM, de Jonge R. Experimental-Evolution-Driven Identification of Arabidopsis Rhizosphere Competence Genes in Pseudomonas protegens. mBio 2021; 12:e0092721. [PMID: 34101491 PMCID: PMC8262913 DOI: 10.1128/mbio.00927-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
Beneficial plant root-associated microorganisms carry out a range of functions that are essential for plant performance. Establishment of a bacterium on plant roots, however, requires overcoming several challenges, including competition with neighboring microorganisms and host immunity. Forward and reverse genetics have led to the identification of mechanisms that are used by beneficial microorganisms to overcome these challenges, such as the production of iron-chelating compounds, the formation of strong biofilms, or the concealment of characteristic microbial molecular patterns that trigger the host immune system. However, how such mechanisms arose from an evolutionary perspective is much less understood. To study bacterial adaptation in the rhizosphere, we employed experimental evolution to track the physiological and genetic dynamics of root-dwelling Pseudomonas protegens in the Arabidopsis thaliana rhizosphere under axenic conditions. This simplified binary one plant/one bacterium system allows for the amplification of key adaptive mechanisms for bacterial rhizosphere colonization. We identified 35 mutations, including single-nucleotide polymorphisms, insertions, and deletions, distributed over 28 genes. We found that mutations in genes encoding global regulators and in genes for siderophore production, cell surface decoration, attachment, and motility accumulated in parallel, underlining the finding that bacterial adaptation to the rhizosphere follows multiple strategies. Notably, we observed that motility increased in parallel across multiple independent evolutionary lines. All together, these results underscore the strength of experimental evolution in identifying key genes, pathways, and processes for bacterial rhizosphere colonization and a methodology for the development of elite beneficial microorganisms with enhanced root-colonizing capacities that can support sustainable agriculture in the future. IMPORTANCE Beneficial root-associated microorganisms carry out many functions that are essential for plant performance. Establishment of a bacterium on plant roots, however, requires overcoming many challenges. Previously, diverse mechanisms that are used by beneficial microorganisms to overcome these challenges were identified. However, how such mechanisms have developed from an evolutionary perspective is much less understood. Here, we employed experimental evolution to track the evolutionary dynamics of a root-dwelling pseudomonad on the root of Arabidopsis. We found that mutations in global regulators, as well as in genes for siderophore production, cell surface decoration, attachment, and motility, accumulate in parallel, emphasizing these strategies for bacterial adaptation to the rhizosphere. We identified 35 mutations distributed over 28 genes. All together, our results demonstrate the power of experimental evolution in identifying key pathways for rhizosphere colonization and a methodology for the development of elite beneficial microorganisms that can support sustainable agriculture.
Collapse
Affiliation(s)
- Erqin Li
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Hao Zhang
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Henan Jiang
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Alexandre Jousset
- Ecology and Biodiversity, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Peter A. H. M. Bakker
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Evolutionary Dynamics Based on Comparative Genomics of Pathogenic Escherichia coli Lineages Harboring Polyketide Synthase ( pks) Island. mBio 2021; 12:mBio.03634-20. [PMID: 33653937 PMCID: PMC8545132 DOI: 10.1128/mbio.03634-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The genotoxin colibactin is a secondary metabolite produced by the polyketide synthase (pks) island harbored by extraintestinal pathogenic E. coli (ExPEC) and other members of the Enterobacteriaceae that has been increasingly reported to have critical implications in human health. The present study entails a high-throughput whole-genome comparison and phylogenetic analysis of such pathogenic E. coli isolates to gain insights into the patterns of distribution, horizontal transmission, and evolution of the island. For the current study, 23 pks-positive ExPEC genomes were newly sequenced, and their virulome and resistome profiles indicated a preponderance of virulence encoding genes and a reduced number of genes for antimicrobial resistance. In addition, 4,090 E. coli genomes from the public domain were also analyzed for large-scale screening for pks-positive genomes, out of which a total of 530 pks-positive genomes were studied to understand the subtype-based distribution pattern(s). The pks island showed a significant association with the B2 phylogroup (82.2%) and a high prevalence in sequence type 73 (ST73; n = 179) and ST95 (n = 110) and the O6:H1 (n = 110) serotype. Maximum-likelihood (ML) phylogeny of the core genome and intergenic regions (IGRs) of the ST95 model data set, which was selected because it had both pks-positive and pks-negative genomes, displayed clustering in relation to their carriage of the pks island. Prevalence patterns of genes encoding RM systems in the pks-positive and pks-negative genomes were also analyzed to determine their potential role in pks island acquisition and the maintenance capability of the genomes. Further, the maximum-likelihood phylogeny based on the core genome and pks island sequences from 247 genomes with an intact pks island demonstrated horizontal gene transfer of the island across sequence types and serotypes, with few exceptions. This study vitally contributes to understanding of the lineages and subtypes that have a higher propensity to harbor the pks island-encoded genotoxin with possible clinical implications.
Collapse
|
16
|
Bloch SE, Ryu MH, Ozaydin B, Broglie R. Harnessing atmospheric nitrogen for cereal crop production. Curr Opin Biotechnol 2020; 62:181-188. [DOI: 10.1016/j.copbio.2019.09.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
|
17
|
Menendez-Gil P, Caballero CJ, Catalan-Moreno A, Irurzun N, Barrio-Hernandez I, Caldelari I, Toledo-Arana A. Differential evolution in 3'UTRs leads to specific gene expression in Staphylococcus. Nucleic Acids Res 2020; 48:2544-2563. [PMID: 32016395 PMCID: PMC7049690 DOI: 10.1093/nar/gkaa047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/05/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
The evolution of gene expression regulation has contributed to species differentiation. The 3' untranslated regions (3'UTRs) of mRNAs include regulatory elements that modulate gene expression; however, our knowledge of their implications in the divergence of bacterial species is currently limited. In this study, we performed genome-wide comparative analyses of mRNAs encoding orthologous proteins from the genus Staphylococcus and found that mRNA conservation was lost mostly downstream of the coding sequence (CDS), indicating the presence of high sequence diversity in the 3'UTRs of orthologous genes. Transcriptomic mapping of different staphylococcal species confirmed that 3'UTRs were also variable in length. We constructed chimeric mRNAs carrying the 3'UTR of orthologous genes and demonstrated that 3'UTR sequence variations affect protein production. This suggested that species-specific functional 3'UTRs might be specifically selected during evolution. 3'UTR variations may occur through different processes, including gene rearrangements, local nucleotide changes, and the transposition of insertion sequences. By extending the conservation analyses to specific 3'UTRs, as well as the entire set of Escherichia coli and Bacillus subtilis mRNAs, we showed that 3'UTR variability is widespread in bacteria. In summary, our work unveils an evolutionary bias within 3'UTRs that results in species-specific non-coding sequences that may contribute to bacterial diversity.
Collapse
Affiliation(s)
- Pilar Menendez-Gil
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-Gobierno de Navarra, 31192-Mutilva, Navarra, Spain
| | - Carlos J Caballero
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-Gobierno de Navarra, 31192-Mutilva, Navarra, Spain
| | - Arancha Catalan-Moreno
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-Gobierno de Navarra, 31192-Mutilva, Navarra, Spain
| | - Naiara Irurzun
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-Gobierno de Navarra, 31192-Mutilva, Navarra, Spain
| | - Inigo Barrio-Hernandez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Isabelle Caldelari
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000-Strasbourg, France
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-Gobierno de Navarra, 31192-Mutilva, Navarra, Spain
| |
Collapse
|
18
|
Prescott RD, Decho AW. Flexibility and Adaptability of Quorum Sensing in Nature. Trends Microbiol 2020; 28:436-444. [PMID: 32001099 DOI: 10.1016/j.tim.2019.12.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 02/02/2023]
Abstract
Quorum sensing (QS), a type of chemical communication, allows bacteria to sense and coordinate activities in natural biofilm communities using N-acyl homoserine lactones (AHLs) as one type of signaling molecule. For AHL-based communication to occur, bacteria must produce and recognize the same signals, which activate similar genes in different species. Our current understanding of AHL-QS suggests that signaling between species would arise randomly, which is not probable. We propose that AHL-QS signaling is a mutable and adaptable process, within limits. AHLs are highly-conserved signals, however, their corresponding receptor proteins (LuxR) are highly variable. We suggest that both flexibility and adaptation occur among receptor proteins, allowing for complex signaling networks to develop in biofilms over time.
Collapse
Affiliation(s)
- Rebecca D Prescott
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK; Microbial Interactions Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.
| | - Alan W Decho
- Microbial Interactions Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
19
|
Bacterial Microcompartment-Mediated Ethanolamine Metabolism in Escherichia coli Urinary Tract Infection. Infect Immun 2019; 87:IAI.00211-19. [PMID: 31138611 PMCID: PMC6652756 DOI: 10.1128/iai.00211-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/16/2019] [Indexed: 12/23/2022] Open
Abstract
Urinary tract infections (UTIs) are common and in general are caused by intestinal uropathogenic Escherichia coli (UPEC) ascending via the urethra. Microcompartment-mediated catabolism of ethanolamine, a host cell breakdown product, fuels the competitive overgrowth of intestinal E. coli, both pathogenic enterohemorrhagic E. coli and commensal strains. During a UTI, urease-negative E. coli bacteria thrive, despite the comparative nutrient limitation in urine. Urinary tract infections (UTIs) are common and in general are caused by intestinal uropathogenic Escherichia coli (UPEC) ascending via the urethra. Microcompartment-mediated catabolism of ethanolamine, a host cell breakdown product, fuels the competitive overgrowth of intestinal E. coli, both pathogenic enterohemorrhagic E. coli and commensal strains. During a UTI, urease-negative E. coli bacteria thrive, despite the comparative nutrient limitation in urine. The role of ethanolamine as a potential nutrient source during UTIs is understudied. We evaluated the role of the metabolism of ethanolamine as a potential nitrogen and carbon source for UPEC in the urinary tract. We analyzed infected urine samples by culture, high-performance liquid chromatography, reverse transcription-quantitative PCR, and genomic sequencing. The ethanolamine concentration in urine was comparable to the concentration of the most abundant reported urinary amino acid, d-serine. Transcription of the eut operon was detected in the majority of urine samples containing E. coli screened. All sequenced UPEC strains had conserved eut operons, while metabolic genotypes previously associated with UTI (dsdCXA, metE) were mainly limited to phylogroup B2. In vitro ethanolamine was found to be utilized as a sole source of nitrogen by UPEC strains. The metabolism of ethanolamine in artificial urine medium (AUM) induced metabolosome formation and provided a growth advantage at the physiological levels found in urine. Interestingly, eutE (which encodes acetaldehyde dehydrogenase) was required for UPEC strains to utilize ethanolamine to gain a growth advantage in AUM, suggesting that ethanolamine is also utilized as a carbon source. These data suggest that urinary ethanolamine is a significant additional carbon and nitrogen source for infecting E. coli strains.
Collapse
|
20
|
Greenlon A, Chang PL, Damtew ZM, Muleta A, Carrasquilla-Garcia N, Kim D, Nguyen HP, Suryawanshi V, Krieg CP, Yadav SK, Patel JS, Mukherjee A, Udupa S, Benjelloun I, Thami-Alami I, Yasin M, Patil B, Singh S, Sarma BK, von Wettberg EJB, Kahraman A, Bukun B, Assefa F, Tesfaye K, Fikre A, Cook DR. Global-level population genomics reveals differential effects of geography and phylogeny on horizontal gene transfer in soil bacteria. Proc Natl Acad Sci U S A 2019; 116:15200-15209. [PMID: 31285337 PMCID: PMC6660780 DOI: 10.1073/pnas.1900056116] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although microorganisms are known to dominate Earth's biospheres and drive biogeochemical cycling, little is known about the geographic distributions of microbial populations or the environmental factors that pattern those distributions. We used a global-level hierarchical sampling scheme to comprehensively characterize the evolutionary relationships and distributional limitations of the nitrogen-fixing bacterial symbionts of the crop chickpea, generating 1,027 draft whole-genome sequences at the level of bacterial populations, including 14 high-quality PacBio genomes from a phylogenetically representative subset. We find that diverse Mesorhizobium taxa perform symbiosis with chickpea and have largely overlapping global distributions. However, sampled locations cluster based on the phylogenetic diversity of Mesorhizobium populations, and diversity clusters correspond to edaphic and environmental factors, primarily soil type and latitude. Despite long-standing evolutionary divergence and geographic isolation, the diverse taxa observed to nodulate chickpea share a set of integrative conjugative elements (ICEs) that encode the major functions of the symbiosis. This symbiosis ICE takes 2 forms in the bacterial chromosome-tripartite and monopartite-with tripartite ICEs confined to a broadly distributed superspecies clade. The pairwise evolutionary relatedness of these elements is controlled as much by geographic distance as by the evolutionary relatedness of the background genome. In contrast, diversity in the broader gene content of Mesorhizobium genomes follows a tight linear relationship with core genome phylogenetic distance, with little detectable effect of geography. These results illustrate how geography and demography can operate differentially on the evolution of bacterial genomes and offer useful insights for the development of improved technologies for sustainable agriculture.
Collapse
Affiliation(s)
- Alex Greenlon
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Peter L Chang
- Department of Plant Pathology, University of California, Davis, CA 95616
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Zehara Mohammed Damtew
- College of Natural Sciences, Addis Ababa University, Addis Ababa, 32853 Ethiopia
- Debre Zeit Agricultural Research Center, Ethiopian Institute for Agricultural Research, Bishoftu, Ethiopia
| | - Atsede Muleta
- College of Natural Sciences, Addis Ababa University, Addis Ababa, 32853 Ethiopia
| | | | - Donghyun Kim
- International Crop Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India
| | - Hien P Nguyen
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 183-8509 Tokyo, Japan
| | - Vasantika Suryawanshi
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Christopher P Krieg
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| | - Sudheer Kumar Yadav
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, India
| | - Jai Singh Patel
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, India
| | - Arpan Mukherjee
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, India
| | - Sripada Udupa
- Biodiversity and Integrated Gene Management Program, International Center for Agricultural Research in the Dry Areas, 10112 Rabat, Morocco
| | - Imane Benjelloun
- Institute National de la Recherche Agronomique, 10100 Rabat, Morocco
| | - Imane Thami-Alami
- Institute National de la Recherche Agronomique, 10100 Rabat, Morocco
| | | | - Bhuvaneshwara Patil
- Department of Genetics and Plant Breeding, University of Agricultural Sciences, Dharwad 580001, India
| | - Sarvjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141027, India
| | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, India
| | - Eric J B von Wettberg
- Department of Biological Sciences, Florida International University, Miami, FL 33199
- Department of Plant and Soil Science, University of Vermont, Burlington, VT 05405
| | - Abdullah Kahraman
- Department of Field Crops, Faculty of Agriculture, Harran University, 63100 Sanliurfa, Turkey
| | - Bekir Bukun
- Department of Plant Protection, Dicle University, 21280 Diyarbakir, Turkey
| | - Fassil Assefa
- College of Natural Sciences, Addis Ababa University, Addis Ababa, 32853 Ethiopia
| | - Kassahun Tesfaye
- College of Natural Sciences, Addis Ababa University, Addis Ababa, 32853 Ethiopia
| | - Asnake Fikre
- Debre Zeit Agricultural Research Center, Ethiopian Institute for Agricultural Research, Bishoftu, Ethiopia
| | - Douglas R Cook
- Department of Plant Pathology, University of California, Davis, CA 95616;
| |
Collapse
|
21
|
Li Z, Bock R. Rapid functional activation of a horizontally transferred eukaryotic gene in a bacterial genome in the absence of selection. Nucleic Acids Res 2019; 47:6351-6359. [PMID: 31106341 PMCID: PMC6614815 DOI: 10.1093/nar/gkz370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/07/2019] [Accepted: 04/30/2019] [Indexed: 12/02/2022] Open
Abstract
Horizontal gene transfer has occurred between organisms of all domains of life and contributed substantially to genome evolution in both prokaryotes and eukaryotes. Phylogenetic evidence suggests that eukaryotic genes horizontally transferred to bacteria provided useful new gene functions that improved metabolic plasticity and facilitated adaptation to new environments. How these eukaryotic genes evolved into functional bacterial genes is not known. Here, we have conducted a genetic screen to identify the mechanisms involved in functional activation of a eukaryotic gene after its transfer into a bacterial genome. We integrated a eukaryotic selectable marker gene cassette driven by expression elements from the red alga Porphyridium purpureum into the genome of Escherichia coli. Following growth under non-selective conditions, gene activation events were indentified by antibiotic selection. We show that gene activation in the bacterial recipient occurs at high frequency and involves two major types of spontaneous mutations: deletion and gene amplification. We further show that both mechanisms result in promoter capture and are frequently triggered by microhomology-mediated recombination. Our data suggest that horizontally transferred genes have a high probability of acquiring functionality, resulting in their maintenance if they confer a selective advantage.
Collapse
Affiliation(s)
- Zhichao Li
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
22
|
Avram O, Rapoport D, Portugez S, Pupko T. M1CR0B1AL1Z3R-a user-friendly web server for the analysis of large-scale microbial genomics data. Nucleic Acids Res 2019; 47:W88-W92. [PMID: 31114912 PMCID: PMC6602433 DOI: 10.1093/nar/gkz423] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 11/21/2022] Open
Abstract
Large-scale mining and analysis of bacterial datasets contribute to the comprehensive characterization of complex microbial dynamics within a microbiome and among different bacterial strains, e.g., during disease outbreaks. The study of large-scale bacterial evolutionary dynamics poses many challenges. These include data-mining steps, such as gene annotation, ortholog detection, sequence alignment and phylogeny reconstruction. These steps require the use of multiple bioinformatics tools and ad-hoc programming scripts, making the entire process cumbersome, tedious and error-prone due to manual handling. This motivated us to develop the M1CR0B1AL1Z3R web server, a 'one-stop shop' for conducting microbial genomics data analyses via a simple graphical user interface. Some of the features implemented in M1CR0B1AL1Z3R are: (i) extracting putative open reading frames and comparative genomics analysis of gene content; (ii) extracting orthologous sets and analyzing their size distribution; (iii) analyzing gene presence-absence patterns; (iv) reconstructing a phylogenetic tree based on the extracted orthologous set; (v) inferring GC-content variation among lineages. M1CR0B1AL1Z3R facilitates the mining and analysis of dozens of bacterial genomes using advanced techniques, with the click of a button. M1CR0B1AL1Z3R is freely available at https://microbializer.tau.ac.il/.
Collapse
Affiliation(s)
- Oren Avram
- The School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dana Rapoport
- The School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shir Portugez
- The School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Pupko
- The School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
23
|
Shelyakin PV, Bochkareva OO, Karan AA, Gelfand MS. Micro-evolution of three Streptococcus species: selection, antigenic variation, and horizontal gene inflow. BMC Evol Biol 2019; 19:83. [PMID: 30917781 PMCID: PMC6437910 DOI: 10.1186/s12862-019-1403-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Background The genus Streptococcus comprises pathogens that strongly influence the health of humans and animals. Genome sequencing of multiple Streptococcus strains demonstrated high variability in gene content and order even in closely related strains of the same species and created a newly emerged object for genomic analysis, the pan-genome. Here we analysed the genome evolution of 25 strains of Streptococcus suis, 50 strains of Streptococcus pyogenes and 28 strains of Streptococcus pneumoniae. Results Fractions of the pan-genome, unique, periphery, and universal genes differ in size, functional composition, the level of nucleotide substitutions, and predisposition to horizontal gene transfer and genomic rearrangements. The density of substitutions in intergenic regions appears to be correlated with selection acting on adjacent genes, implying that more conserved genes tend to have more conserved regulatory regions. The total pan-genome of the genus is open, but only due to strain-specific genes, whereas other pan-genome fractions reach saturation. We have identified the set of genes with phylogenies inconsistent with species and non-conserved location in the chromosome; these genes are rare in at least one species and have likely experienced recent horizontal transfer between species. The strain-specific fraction is enriched with mobile elements and hypothetical proteins, but also contains a number of candidate virulence-related genes, so it may have a strong impact on adaptability and pathogenicity. Mapping the rearrangements to the phylogenetic tree revealed large parallel inversions in all species. A parallel inversion of length 15 kB with breakpoints formed by genes encoding surface antigen proteins PhtD and PhtB in S. pneumoniae leads to replacement of gene fragments that likely indicates the action of an antigen variation mechanism. Conclusions Members of genus Streptococcus have a highly dynamic, open pan-genome, that potentially confers them with the ability to adapt to changing environmental conditions, i.e. antibiotic resistance or transmission between different hosts. Hence, integrated analysis of all aspects of genome evolution is important for the identification of potential pathogens and design of drugs and vaccines. Electronic supplementary material The online version of this article (10.1186/s12862-019-1403-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pavel V Shelyakin
- Vavilov Institute of General Genetics Russian Academy of Sciences, Gubkina str. 3, Moscow, 119991, Russia. .,Kharkevich Institute for Information Transmission Problems, 19, Bolshoy Karetny per., Moscow, 127051, Russia. .,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.
| | - Olga O Bochkareva
- Kharkevich Institute for Information Transmission Problems, 19, Bolshoy Karetny per., Moscow, 127051, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Anna A Karan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail S Gelfand
- Kharkevich Institute for Information Transmission Problems, 19, Bolshoy Karetny per., Moscow, 127051, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Faculty of Computer Science, Higher School of Economics, Moscow, Russia
| |
Collapse
|
24
|
Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW, Weiser JN, Corander J, Bentley SD, Croucher NJ. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res 2019; 29:304-316. [PMID: 30679308 PMCID: PMC6360808 DOI: 10.1101/gr.241455.118] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/10/2018] [Indexed: 12/02/2022]
Abstract
The routine use of genomics for disease surveillance provides the opportunity for high-resolution bacterial epidemiology. Current whole-genome clustering and multilocus typing approaches do not fully exploit core and accessory genomic variation, and they cannot both automatically identify, and subsequently expand, clusters of significantly similar isolates in large data sets spanning entire species. Here, we describe PopPUNK (Population Partitioning Using Nucleotide K -mers), a software implementing scalable and expandable annotation- and alignment-free methods for population analysis and clustering. Variable-length k-mer comparisons are used to distinguish isolates' divergence in shared sequence and gene content, which we demonstrate to be accurate over multiple orders of magnitude using data from both simulations and genomic collections representing 10 taxonomically widespread species. Connections between closely related isolates of the same strain are robustly identified, despite interspecies variation in the pairwise distance distributions that reflects species' diverse evolutionary patterns. PopPUNK can process 103-104 genomes in a single batch, with minimal memory use and runtimes up to 200-fold faster than existing model-based methods. Clusters of strains remain consistent as new batches of genomes are added, which is achieved without needing to reanalyze all genomes de novo. This facilitates real-time surveillance with consistent cluster naming between studies and allows for outbreak detection using hundreds of genomes in minutes. Interactive visualization and online publication is streamlined through the automatic output of results to multiple platforms. PopPUNK has been designed as a flexible platform that addresses important issues with currently used whole-genome clustering and typing methods, and has potential uses across bacterial genetics and public health research.
Collapse
Affiliation(s)
- John A Lees
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Simon R Harris
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Gerry Tonkin-Hill
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Rebecca A Gladstone
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Stephanie W Lo
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Jukka Corander
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
- Department of Biostatistics, University of Oslo, 0372 Oslo, Norway
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
- Institute of Infection and Global Health, University of Liverpool, Liverpool L7 3EA, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
25
|
Yona AH, Alm EJ, Gore J. Random sequences rapidly evolve into de novo promoters. Nat Commun 2018; 9:1530. [PMID: 29670097 PMCID: PMC5906472 DOI: 10.1038/s41467-018-04026-w] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/28/2018] [Indexed: 11/09/2022] Open
Abstract
How new functions arise de novo is a fundamental question in evolution. We studied de novo evolution of promoters in Escherichia coli by replacing the lac promoter with various random sequences of the same size (~100 bp) and evolving the cells in the presence of lactose. We find that ~60% of random sequences can evolve expression comparable to the wild-type with only one mutation, and that ~10% of random sequences can serve as active promoters even without evolution. Such a short mutational distance between random sequences and active promoters may improve the evolvability, yet may also lead to accidental promoters inside genes that interfere with normal expression. Indeed, our bioinformatic analyses indicate that E. coli was under selection to reduce accidental promoters inside genes by avoiding promoter-like sequences. We suggest that a low threshold for functionality balanced by selection against undesired targets can increase the evolvability by making new beneficial features more accessible. Bacterial promoters initiate gene transcription and have distinct sequence features. Here, the authors show that random sequences that contain no information are just on the verge of functioning as promoters in Escherichia coli.
Collapse
Affiliation(s)
- Avihu H Yona
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jeff Gore
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
26
|
Thorpe HA, Bayliss SC, Sheppard SK, Feil EJ. Piggy: a rapid, large-scale pan-genome analysis tool for intergenic regions in bacteria. Gigascience 2018; 7:1-11. [PMID: 29635296 PMCID: PMC5890482 DOI: 10.1093/gigascience/giy015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/09/2018] [Accepted: 02/16/2018] [Indexed: 12/31/2022] Open
Abstract
Background The concept of the "pan-genome," which refers to the total complement of genes within a given sample or species, is well established in bacterial genomics. Rapid and scalable pipelines are available for managing and interpreting pan-genomes from large batches of annotated assemblies. However, despite overwhelming evidence that variation in intergenic regions in bacteria can directly influence phenotypes, most current approaches for analyzing pan-genomes focus exclusively on protein-coding sequences. Findings To address this we present Piggy, a novel pipeline that emulates Roary except that it is based only on intergenic regions. A key utility provided by Piggy is the detection of highly divergent ("switched") intergenic regions (IGRs) upstream of genes. We demonstrate the use of Piggy on large datasets of clinically important lineages of Staphylococcus aureus and Escherichia coli. Conclusions For S. aureus, we show that highly divergent (switched) IGRs are associated with differences in gene expression and we establish a multilocus reference database of IGR alleles (igMLST; implemented in BIGSdb).
Collapse
Affiliation(s)
- Harry A Thorpe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY
| | - Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY
| | - Edward J Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY
| |
Collapse
|
27
|
Park J, Wang HH. Systematic and synthetic approaches to rewire regulatory networks. CURRENT OPINION IN SYSTEMS BIOLOGY 2018; 8:90-96. [PMID: 30637352 PMCID: PMC6329604 DOI: 10.1016/j.coisb.2017.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microbial gene regulatory networks are composed of cis- and trans-components that in concert act to control essential and adaptive cellular functions. Regulatory components and interactions evolve to adopt new configurations through mutations and network rewiring events, resulting in novel phenotypes that may benefit the cell. Advances in high-throughput DNA synthesis and sequencing have enabled the development of new tools and approaches to better characterize and perturb various elements of regulatory networks. Here, we highlight key recent approaches to systematically dissect the sequence space of cis-regulatory elements and trans-regulators as well as their inter-connections. These efforts yield fundamental insights into the architecture, robustness, and dynamics of gene regulation and provide models and design principles for building synthetic regulatory networks for a variety of practical applications.
Collapse
Affiliation(s)
- Jimin Park
- Department of Systems Biology, Columbia University Medical Center, New York, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University Medical Center, New York, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, USA
| |
Collapse
|
28
|
The complex resistomes of Paenibacillaceae reflect diverse antibiotic chemical ecologies. ISME JOURNAL 2017; 12:885-897. [PMID: 29259290 DOI: 10.1038/s41396-017-0017-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/17/2017] [Accepted: 11/05/2017] [Indexed: 12/31/2022]
Abstract
The ecology of antibiotic resistance involves the interplay of a long natural history of antibiotic production in the environment, and the modern selection of resistance in pathogens through human use of these drugs. Important components of the resistome are intrinsic resistance genes of environmental bacteria, evolved and acquired over millennia, and their mobilization, which drives dissemination in pathogens. Understanding the dynamics and evolution of resistance across bacterial taxa is essential to address the current crisis in drug-resistant infections. Here we report the exploration of antibiotic resistance in the Paenibacillaceae prompted by our discovery of an ancient intrinsic resistome in Paenibacillus sp. LC231, recovered from the isolated Lechuguilla cave environment. Using biochemical and gene expression analysis, we have mined the resistome of the second member of the Paenibacillaceae family, Brevibacillus brevis VM4, which produces several antimicrobial secondary metabolites. Using phylogenomics, we show that Paenibacillaceae resistomes are in flux, evolve mostly independent of secondary metabolite biosynthetic diversity, and are characterized by cryptic, redundant, pseudoparalogous, and orthologous genes. We find that in contrast to pathogens, mobile genetic elements are not significantly responsible for resistome remodeling. This offers divergent modes of resistome development in pathogens and environmental bacteria.
Collapse
|
29
|
Weissenbach J, Ilhan J, Bogumil D, Hülter N, Stucken K, Dagan T. Evolution of Chaperonin Gene Duplication in Stigonematalean Cyanobacteria (Subsection V). Genome Biol Evol 2017; 9:241-252. [PMID: 28082600 PMCID: PMC5381637 DOI: 10.1093/gbe/evw287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/15/2022] Open
Abstract
Chaperonins promote protein folding and are known to play a role in the maintenance of cellular stability under stress conditions. The group I bacterial chaperonin complex comprises GroEL, that forms a barrel-like oligomer, and GroES that forms the lid. In most eubacteria the GroES/GroEL chaperonin is encoded by a single-copy bicistronic operon, whereas in cyanobacteria up to three groES/groEL paralogs have been documented. Here we study the evolution and functional diversification of chaperonin paralogs in the heterocystous, multi-seriate filament forming cyanobacterium Chlorogloeopsis fritschii PCC 6912. The genome of C. fritschii encodes two groES/groEL operons (groESL1, groESL1.2) and a monocistronic groEL gene (groEL2). A phylogenetic reconstruction reveals that the groEL2 duplication is as ancient as cyanobacteria, whereas the groESL1.2 duplication occurred at the ancestor of heterocystous cyanobacteria. A comparison of the groEL paralogs transcription levels under different growth conditions shows that they have adapted distinct transcriptional regulation. Our results reveal that groEL1 and groEL1.2 are upregulated during diazotrophic conditions and the localization of their promoter activity points towards a role in heterocyst differentiation. Furthermore, protein–protein interaction assays suggest that paralogs encoded in the two operons assemble into hybrid complexes. The monocistronic encoded GroEL2 is not forming oligomers nor does it interact with the co-chaperonins. Interaction between GroES1.2 and GroEL1.2 could not be documented, suggesting that the groESL1.2 operon does not encode a functional chaperonin complex. Functional complementation experiments in Escherichia coli show that only GroES1/GroEL1 and GroES1/GroEL1.2 can substitute the native operon. In summary, the evolutionary consequences of chaperonin duplication in cyanobacteria include the retention of groESL1 as a housekeeping gene, subfunctionalization of groESL1.2 and neofunctionalization of the monocistronic groEL2 paralog.
Collapse
Affiliation(s)
- Julia Weissenbach
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, Germany
| | - Judith Ilhan
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, Germany
| | - David Bogumil
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, Germany
| | - Nils Hülter
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, Germany
| | - Karina Stucken
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, Germany
| |
Collapse
|
30
|
Laing CR, Whiteside MD, Gannon VPJ. Pan-genome Analyses of the Species Salmonella enterica, and Identification of Genomic Markers Predictive for Species, Subspecies, and Serovar. Front Microbiol 2017; 8:1345. [PMID: 28824552 PMCID: PMC5534482 DOI: 10.3389/fmicb.2017.01345] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/03/2017] [Indexed: 12/31/2022] Open
Abstract
Food safety is a global concern, with upward of 2.2 million deaths due to enteric disease every year. Current whole-genome sequencing platforms allow routine sequencing of enteric pathogens for surveillance, and during outbreaks; however, a remaining challenge is the identification of genomic markers that are predictive of strain groups that pose the most significant health threats to humans, or that can persist in specific environments. We have previously developed the software program Panseq, which identifies the pan-genome among a group of sequences, and the SuperPhy platform, which utilizes this pan-genome information to identify biomarkers that are predictive of groups of bacterial strains. In this study, we examined the pan-genome of 4893 genomes of Salmonella enterica, an enteric pathogen responsible for the loss of more disability adjusted life years than any other enteric pathogen. We identified a pan-genome of 25.3 Mbp, a strict core of 1.5 Mbp present in all genomes, and a conserved core of 3.2 Mbp found in at least 96% of these genomes. We also identified 404 genomic regions of 1000 bp that were specific to the species S. enterica. These species-specific regions were found to encode mostly hypothetical proteins, effectors, and other proteins related to virulence. For each of the six S. enterica subspecies, markers unique to each were identified. No serovar had pan-genome regions that were present in all of its genomes and absent in all other serovars; however, each serovar did have genomic regions that were universally present among all constituent members, and statistically predictive of the serovar. The phylogeny based on SNPs within the conserved core genome was found to be highly concordant to that produced by a phylogeny using the presence/absence of 1000 bp regions of the entire pan-genome. Future studies could use these predictive regions as components of a vaccine to prevent salmonellosis, as well as in simple and rapid diagnostic tests for both in silico and wet-lab applications, with uses ranging from food safety to public health. Lastly, the tools and methods described in this study could be applied as a pan-genomics framework to other population genomic studies seeking to identify markers for other bacterial species and their sub-groups.
Collapse
Affiliation(s)
- Chad R Laing
- National Microbiology Laboratory, Public Health Agency of CanadaLethbridge, AB, Canada
| | - Matthew D Whiteside
- National Microbiology Laboratory, Public Health Agency of CanadaLethbridge, AB, Canada
| | - Victor P J Gannon
- National Microbiology Laboratory, Public Health Agency of CanadaLethbridge, AB, Canada
| |
Collapse
|
31
|
Bacterial pathogen gene regulation: a DNA-structure-centred view of a protein-dominated domain. Clin Sci (Lond) 2017; 130:1165-77. [PMID: 27252403 DOI: 10.1042/cs20160024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/15/2016] [Indexed: 02/03/2023]
Abstract
The mechanisms used by bacterial pathogens to regulate the expression of their genes, especially their virulence genes, have been the subject of intense investigation for several decades. Whole genome sequencing projects, together with more targeted studies, have identified hundreds of DNA-binding proteins that contribute to the patterns of gene expression observed during infection as well as providing important insights into the nature of the gene products whose expression is being controlled by these proteins. Themes that have emerged include the importance of horizontal gene transfer to the evolution of pathogens, the need to impose regulatory discipline upon these imported genes and the important roles played by factors normally associated with the organization of genome architecture as regulatory principles in the control of virulence gene expression. Among these architectural elements is the structure of DNA itself, its variable nature at a topological rather than just at a base-sequence level and its ability to play an active (as well as a passive) part in the gene regulation process.
Collapse
|
32
|
Ampattu BJ, Hagmann L, Liang C, Dittrich M, Schlüter A, Blom J, Krol E, Goesmann A, Becker A, Dandekar T, Müller T, Schoen C. Transcriptomic buffering of cryptic genetic variation contributes to meningococcal virulence. BMC Genomics 2017; 18:282. [PMID: 28388876 PMCID: PMC5383966 DOI: 10.1186/s12864-017-3616-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/10/2017] [Indexed: 01/06/2023] Open
Abstract
Background Commensal bacteria like Neisseria meningitidis sometimes cause serious disease. However, genomic comparison of hyperinvasive and apathogenic lineages did not reveal unambiguous hints towards indispensable virulence factors. Here, in a systems biological approach we compared gene expression of the invasive strain MC58 and the carriage strain α522 under different ex vivo conditions mimicking commensal and virulence compartments to assess the strain-specific impact of gene regulation on meningococcal virulence. Results Despite indistinguishable ex vivo phenotypes, both strains differed in the expression of over 500 genes under infection mimicking conditions. These differences comprised in particular metabolic and information processing genes as well as genes known to be involved in host-damage such as the nitrite reductase and numerous LOS biosynthesis genes. A model based analysis of the transcriptomic differences in human blood suggested ensuing metabolic flux differences in energy, glutamine and cysteine metabolic pathways along with differences in the activation of the stringent response in both strains. In support of the computational findings, experimental analyses revealed differences in cysteine and glutamine auxotrophy in both strains as well as a strain and condition dependent essentiality of the (p)ppGpp synthetase gene relA and of a short non-coding AT-rich repeat element in its promoter region. Conclusions Our data suggest that meningococcal virulence is linked to transcriptional buffering of cryptic genetic variation in metabolic genes including global stress responses. They further highlight the role of regulatory elements for bacterial virulence and the limitations of model strain approaches when studying such genetically diverse species as N. meningitidis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3616-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Biju Joseph Ampattu
- Institute for Hygiene and Microbiology, Joseph-Schneider-Straße 2, University of Würzburg, 97080, Würzburg, Germany
| | - Laura Hagmann
- Institute for Hygiene and Microbiology, Joseph-Schneider-Straße 2, University of Würzburg, 97080, Würzburg, Germany
| | - Chunguang Liang
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.,Department of Human Genetics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 27, 33615, Bielefeld, Germany
| | - Jochen Blom
- Institute for Bioinformatics and Systems Biology, Justus Liebig University Gießen, Heinrich-Buff-Ring 58, 35392, Gießen, Germany
| | - Elizaveta Krol
- LOEWE-Center for Synthetic Microbiology, Hans-Meerwein-Straße, 35032, Marburg, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics and Systems Biology, Justus Liebig University Gießen, Heinrich-Buff-Ring 58, 35392, Gießen, Germany
| | - Anke Becker
- LOEWE-Center for Synthetic Microbiology, Hans-Meerwein-Straße, 35032, Marburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christoph Schoen
- Institute for Hygiene and Microbiology, Joseph-Schneider-Straße 2, University of Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
33
|
Correlated Mutations and Homologous Recombination Within Bacterial Populations. Genetics 2016; 205:891-917. [PMID: 28007887 DOI: 10.1534/genetics.116.189621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022] Open
Abstract
Inferring the rate of homologous recombination within a bacterial population remains a key challenge in quantifying the basic parameters of bacterial evolution. Due to the high sequence similarity within a clonal population, and unique aspects of bacterial DNA transfer processes, detecting recombination events based on phylogenetic reconstruction is often difficult, and estimating recombination rates using coalescent model-based methods is computationally expensive, and often infeasible for large sequencing data sets. Here, we present an efficient solution by introducing a set of mutational correlation functions computed using pairwise sequence comparison, which characterize various facets of bacterial recombination. We provide analytical expressions for these functions, which precisely recapitulate simulation results of neutral and adapting populations under different coalescent models. We used these to fit correlation functions measured at synonymous substitutions using whole-genome data on Escherichia coli and Streptococcus pneumoniae populations. We calculated and corrected for the effect of sample selection bias, i.e., the uneven sampling of individuals from natural microbial populations that exists in most datasets. Our method is fast and efficient, and does not employ phylogenetic inference or other computationally intensive numerics. By simply fitting analytical forms to measurements from sequence data, we show that recombination rates can be inferred, and the relative ages of different samples can be estimated. Our approach, which is based on population genetic modeling, is broadly applicable to a wide variety of data, and its computational efficiency makes it particularly attractive for use in the analysis of large sequencing datasets.
Collapse
|
34
|
Bao YJ, Shapiro BJ, Lee SW, Ploplis VA, Castellino FJ. Phenotypic differentiation of Streptococcus pyogenes populations is induced by recombination-driven gene-specific sweeps. Sci Rep 2016; 6:36644. [PMID: 27821851 PMCID: PMC5099688 DOI: 10.1038/srep36644] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/13/2016] [Indexed: 01/05/2023] Open
Abstract
Genomic recombination plays an important role in driving adaptive evolution and population differentiation in bacteria. However, controversy exists as to the effects of recombination on population diversity and differentiation, i.e., recombination is frequent enough to sweep through the population at selected gene loci (gene-specific sweeps), or the recombination rate is low without interfering genome-wide selective sweeps. Observations supporting either view are sparse. Pathogenic bacteria causing infectious diseases are promising candidates to provide observations of recombination. However, phenotype-associated differentiations are usually vague among them due to diverse disease manifestations. Here we report a population genomic study of the group A Streptococcus pyogenes (GAS), a human pathogen with highly recombining genomes. By employing a genome-wide association study on single nucleotide polymorphisms (SNPs), we demonstrate a phenotypic differentiation of GAS, represented by separate clustering of two sublineages associated with niche-specific infections, i.e., skin infection and pharyngitis-induced acute rheumatic fever. By quantifying SNPs associated with the differentiation in a statistical and phylogenetic context, we propose that the phenotype-associated differentiation arose through recombination-driven gene-specific sweeps, rather than genome-wide sweeps. Our work provides a novel paradigm of phenotype-associated differentiation induced by gene-specific sweeps in a human pathogen and has implications for understanding of driving forces of bacterial evolution.
Collapse
Affiliation(s)
- Yun-Juan Bao
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - B Jesse Shapiro
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Shaun W Lee
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
35
|
Rabbani M, Wahl LM. The dynamics of mobile promoters: Enhanced stability in promoter regions. J Theor Biol 2016; 407:401-408. [PMID: 27460588 DOI: 10.1016/j.jtbi.2016.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/18/2016] [Accepted: 07/20/2016] [Indexed: 11/28/2022]
Abstract
Mobile promoters are emerging as a new class of mobile genetic elements, first identified by examining prokaryote genome sequences, and more recently confirmed by experimental observations in bacteria. Recent datasets have identified over 40,000 putative mobile promoters in sequenced prokaryote genomes, however only one-third of these are in regions of the genome directly upstream from coding sequences, that is, in promoter regions. The presence of many promoter sequences in non-promoter regions is unexplained. Here we develop a general mathematical model for the dynamics of mobile promoters, extending previous work to capture the dynamics both within and outside promoter regions. From this general model, we apply rigorous model selection techniques to identify which parameters are statistically justified in describing the available mobile promoter data, and find best-fit values of these parameters. Our results suggest that high rates of horizontal gene transfer maintain the population of mobile promoters in promoter regions, and that once established at these sites, mobile promoters are rarely lost, but are commonly copied to other genomic regions. In contrast, mobile promoter copies in non-promoter regions are more numerous and more volatile, experiencing substantially higher rates of duplication, loss and diversification.
Collapse
Affiliation(s)
- Mahnaz Rabbani
- Applied Mathematics, Western University, London, Ontario, Canada N6A 5B7
| | - Lindi M Wahl
- Applied Mathematics, Western University, London, Ontario, Canada N6A 5B7.
| |
Collapse
|
36
|
Otto A, Biran D, Sura T, Becher D, Ron EZ. Proteomics of septicemic Escherichia coli. Proteomics Clin Appl 2016; 10:1020-1024. [DOI: 10.1002/prca.201600049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/03/2016] [Accepted: 09/02/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Andreas Otto
- Institute for Microbiology; Ernst-Moritz-Arndt Universität; Greifswald Germany
| | - Dvora Biran
- Department of Molecular Microbiology and Biotechnology; Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Thomas Sura
- Institute for Microbiology; Ernst-Moritz-Arndt Universität; Greifswald Germany
| | - Dörte Becher
- Institute for Microbiology; Ernst-Moritz-Arndt Universität; Greifswald Germany
| | - Eliora Z. Ron
- Department of Molecular Microbiology and Biotechnology; Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
37
|
McNally A, Oren Y, Kelly D, Pascoe B, Dunn S, Sreecharan T, Vehkala M, Välimäki N, Prentice MB, Ashour A, Avram O, Pupko T, Dobrindt U, Literak I, Guenther S, Schaufler K, Wieler LH, Zhiyong Z, Sheppard SK, McInerney JO, Corander J. Combined Analysis of Variation in Core, Accessory and Regulatory Genome Regions Provides a Super-Resolution View into the Evolution of Bacterial Populations. PLoS Genet 2016; 12:e1006280. [PMID: 27618184 PMCID: PMC5019451 DOI: 10.1371/journal.pgen.1006280] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/04/2016] [Indexed: 02/05/2023] Open
Abstract
The use of whole-genome phylogenetic analysis has revolutionized our understanding of the evolution and spread of many important bacterial pathogens due to the high resolution view it provides. However, the majority of such analyses do not consider the potential role of accessory genes when inferring evolutionary trajectories. Moreover, the recently discovered importance of the switching of gene regulatory elements suggests that an exhaustive analysis, combining information from core and accessory genes with regulatory elements could provide unparalleled detail of the evolution of a bacterial population. Here we demonstrate this principle by applying it to a worldwide multi-host sample of the important pathogenic E. coli lineage ST131. Our approach reveals the existence of multiple circulating subtypes of the major drug–resistant clade of ST131 and provides the first ever population level evidence of core genome substitutions in gene regulatory regions associated with the acquisition and maintenance of different accessory genome elements. We present an approach to evolutionary analysis of bacterial pathogens combining core genome, accessory genome, and gene regulatory region analyses. This enables unparalleled resolution of the evolution of a multi-drug resistant pandemic pathogen that would remain invisible to a core genome phylogenetic analysis alone. In particular, our combined analysis approach identifies population-level evidence for compensatory mutations offsetting the costs of resistance plasmid maintenance as a key event in the emergence of dominant MDR lineages of E. coli.
Collapse
Affiliation(s)
- Alan McNally
- Pathogen Research Group, Nottingham Trent University, Nottingham, United Kingdom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| | - Yaara Oren
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Darren Kelly
- Department of Biology, National University Ireland, Maynooth, Ireland
| | - Ben Pascoe
- College of Medicine, University of Swansea, Swansea, United Kingdom
| | - Steven Dunn
- Pathogen Research Group, Nottingham Trent University, Nottingham, United Kingdom
| | - Tristan Sreecharan
- Pathogen Research Group, Nottingham Trent University, Nottingham, United Kingdom
| | - Minna Vehkala
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Niko Välimäki
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Michael B. Prentice
- Departments of Pathology and Microbiology, University College Cork, Cork, Ireland
| | - Amgad Ashour
- Departments of Pathology and Microbiology, University College Cork, Cork, Ireland
| | - Oren Avram
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ulrich Dobrindt
- Institute of Hygiene, Universitat Muenster, Muenster, Germany
| | - Ivan Literak
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, and CEITEC VFU, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Sebastian Guenther
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universitat, Berlin, Germany
| | - Katharina Schaufler
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universitat, Berlin, Germany
| | - Lothar H. Wieler
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universitat, Berlin, Germany
- Robert Koch Institute, Berlin, Germany
| | - Zong Zhiyong
- Centre for Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | | | - James O. McInerney
- Department of Biology, National University Ireland, Maynooth, Ireland
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Department of Biostatistics, University of Oslo, Oslo, Norway
| |
Collapse
|
38
|
Tenaillon O, Barrick JE, Ribeck N, Deatherage DE, Blanchard JL, Dasgupta A, Wu GC, Wielgoss S, Cruveiller S, Médigue C, Schneider D, Lenski RE. Tempo and mode of genome evolution in a 50,000-generation experiment. Nature 2016; 536:165-70. [PMID: 27479321 PMCID: PMC4988878 DOI: 10.1038/nature18959] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/23/2016] [Indexed: 01/13/2023]
Abstract
Adaptation by natural selection depends on the rates, effects, and interactions of many mutations, making it difficult to determine what proportion of mutations in an evolving lineage are beneficial. We analysed 264 complete genomes from 12 Escherichia coli populations to characterize their dynamics over 50,000 generations. The populations that retained the ancestral mutation rate support a model where most fixed mutations are beneficial, the fraction of beneficial mutations declines as fitness rises, and neutral mutations accumulate at a constant rate. We also compared these populations to mutation-accumulation lines evolved under a bottlenecking regime that minimizes selection. Nonsynonymous mutations, intergenic mutations, insertions, and deletions are overrepresented in the long-term populations, further supporting the inference that most mutations that reached high frequency were favoured by selection. These results illuminate the shifting balance of forces that govern genome evolution in populations adapting to a new environment.
Collapse
|
39
|
Hiraoka S, Yang CC, Iwasaki W. Metagenomics and Bioinformatics in Microbial Ecology: Current Status and Beyond. Microbes Environ 2016; 31:204-12. [PMID: 27383682 PMCID: PMC5017796 DOI: 10.1264/jsme2.me16024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Metagenomic approaches are now commonly used in microbial ecology to study microbial communities in more detail, including many strains that cannot be cultivated in the laboratory. Bioinformatic analyses make it possible to mine huge metagenomic datasets and discover general patterns that govern microbial ecosystems. However, the findings of typical metagenomic and bioinformatic analyses still do not completely describe the ecology and evolution of microbes in their environments. Most analyses still depend on straightforward sequence similarity searches against reference databases. We herein review the current state of metagenomics and bioinformatics in microbial ecology and discuss future directions for the field. New techniques will allow us to go beyond routine analyses and broaden our knowledge of microbial ecosystems. We need to enrich reference databases, promote platforms that enable meta- or comprehensive analyses of diverse metagenomic datasets, devise methods that utilize long-read sequence information, and develop more powerful bioinformatic methods to analyze data from diverse perspectives.
Collapse
Affiliation(s)
- Satoshi Hiraoka
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo
| | | | | |
Collapse
|
40
|
Transcriptome Remodeling Contributes to Epidemic Disease Caused by the Human Pathogen Streptococcus pyogenes. mBio 2016; 7:mBio.00403-16. [PMID: 27247229 PMCID: PMC4895104 DOI: 10.1128/mbio.00403-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
For over a century, a fundamental objective in infection biology research has been to understand the molecular processes contributing to the origin and perpetuation of epidemics. Divergent hypotheses have emerged concerning the extent to which environmental events or pathogen evolution dominates in these processes. Remarkably few studies bear on this important issue. Based on population pathogenomic analysis of 1,200 Streptococcus pyogenes type emm89 infection isolates, we report that a series of horizontal gene transfer events produced a new pathogenic genotype with increased ability to cause infection, leading to an epidemic wave of disease on at least two continents. In the aggregate, these and other genetic changes substantially remodeled the transcriptomes of the evolved progeny, causing extensive differential expression of virulence genes and altered pathogen-host interaction, including enhanced immune evasion. Our findings delineate the precise molecular genetic changes that occurred and enhance our understanding of the evolutionary processes that contribute to the emergence and persistence of epidemically successful pathogen clones. The data have significant implications for understanding bacterial epidemics and for translational research efforts to blunt their detrimental effects. The confluence of studies of molecular events underlying pathogen strain emergence, evolutionary genetic processes mediating altered virulence, and epidemics is in its infancy. Although understanding these events is necessary to develop new or improved strategies to protect health, surprisingly few studies have addressed this issue, in particular, at the comprehensive population genomic level. Herein we establish that substantial remodeling of the transcriptome of the human-specific pathogen Streptococcus pyogenes by horizontal gene flow and other evolutionary genetic changes is a central factor in precipitating and perpetuating epidemic disease. The data unambiguously show that the key outcome of these molecular events is evolution of a new, more virulent pathogenic genotype. Our findings provide new understanding of epidemic disease.
Collapse
|
41
|
Benítez-Burraco A, Uriagereka J. The Immune Syntax Revisited: Opening New Windows on Language Evolution. Front Mol Neurosci 2016; 8:84. [PMID: 26793054 PMCID: PMC4707268 DOI: 10.3389/fnmol.2015.00084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/14/2015] [Indexed: 01/29/2023] Open
Abstract
Recent research has added new dimensions to our understanding of classical evolution, according to which evolutionary novelties result from gene mutations inherited from parents to offspring. Language is surely one such novelty. Together with specific changes in our genome and epigenome, we suggest that two other (related) mechanisms may have contributed to the brain rewiring underlying human cognitive evolution and, specifically, the changes in brain connectivity that prompted the emergence of our species-specific linguistic abilities: the horizontal transfer of genetic material by viral and non-viral vectors and the brain/immune system crosstalk (more generally, the dialogue between the microbiota, the immune system, and the brain).
Collapse
Affiliation(s)
| | - Juan Uriagereka
- Department of Linguistics, University of Maryland College Park, MD, USA
| |
Collapse
|
42
|
Fitzgerald S, Dillon SC, Chao TC, Wiencko HL, Hokamp K, Cameron ADS, Dorman CJ. Re-engineering cellular physiology by rewiring high-level global regulatory genes. Sci Rep 2015; 5:17653. [PMID: 26631971 PMCID: PMC4668568 DOI: 10.1038/srep17653] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/30/2015] [Indexed: 01/10/2023] Open
Abstract
Knowledge of global regulatory networks has been exploited to rewire the gene control programmes of the model bacterium Salmonella enterica serovar Typhimurium. The product is an organism with competitive fitness that is superior to that of the wild type but tuneable under specific growth conditions. The paralogous hns and stpA global regulatory genes are located in distinct regions of the chromosome and control hundreds of target genes, many of which contribute to stress resistance. The locations of the hns and stpA open reading frames were exchanged reciprocally, each acquiring the transcription control signals of the other. The new strain had none of the compensatory mutations normally associated with alterations to hns expression in Salmonella; instead it displayed rescheduled expression of the stress and stationary phase sigma factor RpoS and its regulon. Thus the expression patterns of global regulators can be adjusted artificially to manipulate microbial physiology, creating a new and resilient organism.
Collapse
Affiliation(s)
- Stephen Fitzgerald
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.,Department of Biology, University of Regina, Saskatchewan, Canada
| | - Shane C Dillon
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Tzu-Chiao Chao
- Department of Biology, University of Regina, Saskatchewan, Canada
| | - Heather L Wiencko
- Department of Genetics, Smurfit Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Karsten Hokamp
- Department of Genetics, Smurfit Institute, Trinity College Dublin, Dublin 2, Ireland
| | | | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
43
|
Soen Y, Knafo M, Elgart M. A principle of organization which facilitates broad Lamarckian-like adaptations by improvisation. Biol Direct 2015; 10:68. [PMID: 26631109 PMCID: PMC4668624 DOI: 10.1186/s13062-015-0097-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND During the lifetime of an organism, every individual encounters many combinations of diverse changes in the somatic genome, epigenome and microbiome. This gives rise to many novel combinations of internal failures which are unique to each individual. How any individual can tolerate this high load of new, individual-specific scenarios of failure is not clear. While stress-induced plasticity and hidden variation have been proposed as potential mechanisms of tolerance, the main conceptual problem remains unaddressed, namely: how largely non-beneficial random variation can be rapidly and safely organized into net benefits to every individual. PRESENTATION OF THE HYPOTHESIS We propose an organizational principle which explains how every individual can alleviate a high load of novel stressful scenarios using many random variations in flexible and inherently less harmful traits. Random changes which happen to reduce stress, benefit the organism and decrease the drive for additional changes. This adaptation (termed 'Adaptive Improvisation') can be further enhanced, propagated, stabilized and memorized when beneficial changes reinforce themselves by auto-regulatory mechanisms. This principle implicates stress not only in driving diverse variations in cells tissues and organs, but also in organizing these variations into adaptive outcomes. Specific (but not exclusive) examples include stress reduction by rapid exchange of mobile genetic elements (or exosomes) in unicellular, and rapid changes in the symbiotic microorganisms of animals. In all cases, adaptive changes can be transmitted across generations, allowing rapid improvement and assimilation in a few generations. TESTING THE HYPOTHESIS We provide testable predictions derived from the hypothesis. IMPLICATIONS OF THE HYPOTHESIS The hypothesis raises a critical, but thus far overlooked adaptation problem and explains how random variation can self-organize to confer a wide range of individual-specific adaptations beyond the existing outcomes of natural selection. It portrays gene regulation as an inseparable synergy between natural selection and adaptation by improvisation. The latter provides a basis for Lamarckian adaptation that is not limited to a specific mechanism and readily accounts for the remarkable resistance of tumors to treatment.
Collapse
Affiliation(s)
- Yoav Soen
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Maor Knafo
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Michael Elgart
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
44
|
Bohlin J. Genome expansion in bacteria: the curios case of Chlamydia trachomatis. BMC Res Notes 2015; 8:512. [PMID: 26423146 PMCID: PMC4589037 DOI: 10.1186/s13104-015-1464-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 09/21/2015] [Indexed: 11/23/2022] Open
Abstract
Background Recent findings indicated that a correlation between genomic % AT and genome size within strains of microbial species was predominantly associated with the uptake of foreign DNA. One species however, Chlamydia trachomatis, defied any explanation. In the present study 79 fully sequenced C. trachomatis genomes, representing ocular- (nine strains), urogenital- (36 strains) and lymphogranuloma venereum strains (LGV, 22 strains), in three pathogroups, in addition to 12 laboratory isolates, were scrutinized with the intent of elucidating the positive correlation between genomic AT content and genome size. Results The average size difference between the strains of each pathogroup was largely explained by the incorporation of genetic fragments. These fragments were slightly more AT rich than their corresponding host genomes, but not enough to justify the difference in AT content between the strains of the smaller genomes lacking the fragments. In addition, a genetic region predominantly found in the ocular strains, which had the largest genomes, was on average more GC rich than the host genomes of the urogenital strains (58.64 % AT vs. 58.69 % AT), which had the second largest genomes, implying that the foreign genetic regions cannot alone explain the association between genome size and AT content in C. trachomatis. 23,492 SNPs were identified for all 79 genomes, and although the SNPs were on average slightly GC rich (~47 % AT), a significant association was found between genome-wide SNP AT content, for each pathogroup, and genome size (p < 0.001, R2 = 0.86) in the C. trachomatis strains. Conclusions The correlation between genome size and AT content, with respect to the C. trachomatis pathogroups, was explained by the incorporation of genetic fragments unique to the ocular and/or urogenital strains into the LGV- and urogential strains in addition to the genome-wide SNP AT content differences between the three pathogroups. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1464-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jon Bohlin
- Department of Bacteriology and Immunology, Norwegian Institute of Public Health, Lovisenberggata 6, P.O. Box 4404, 0403, Oslo, Norway.
| |
Collapse
|
45
|
Extinction probabilities and stationary distributions of mobile genetic elements in prokaryotes: The birth-death-diversification model. Theor Popul Biol 2015; 106:22-31. [PMID: 26383090 DOI: 10.1016/j.tpb.2015.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 08/27/2015] [Accepted: 09/02/2015] [Indexed: 11/23/2022]
Abstract
Theoretical approaches are essential to our understanding of the complex dynamics of mobile genetic elements (MGEs) within genomes. Recently, the birth-death-diversification model was developed to describe the dynamics of mobile promoters (MPs), a particular class of MGEs in prokaryotes. A unique feature of this model is that genetic diversification of elements was included. To explore the implications of diversification on the longterm fate of MGE lineages, in this contribution we analyze the extinction probabilities, extinction times and equilibrium solutions of the birth-death-diversification model. We find that diversification increases both the survival and growth rate of MGE families, but the strength of this effect depends on the rate of horizontal gene transfer (HGT). We also find that the distribution of MGE families per genome is not necessarily monotonically decreasing, as observed for MPs, but may have a peak in the distribution that is related to the HGT rate. For MPs specifically, we find that new families have a high extinction probability, and predict that the number of MPs is increasing, albeit at a very slow rate. Additionally, we develop an extension of the birth-death-diversification model which allows MGEs in different regions of the genome, for example coding and non-coding, to be described by different rates. This extension may offer a potential explanation as to why the majority of MPs are located in non-promoter regions of the genome.
Collapse
|
46
|
Evidence for horizontal transfer of mitochondrial DNA to the plastid genome in a bamboo genus. Sci Rep 2015; 5:11608. [PMID: 26100509 PMCID: PMC4477325 DOI: 10.1038/srep11608] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 06/01/2015] [Indexed: 11/08/2022] Open
Abstract
In flowering plants, three genomes (nuclear, mitochondrial, and plastid) coexist and intracellular horizontal transfer of DNA is prevalent, especially from the plastid to the mitochondrion genome. However, the plastid genomes are generally conserved in evolution and have long been considered immune to foreign DNA. Recently, the opposite direction of DNA transfer from the mitochondrial to the plastid genome has been reported in two eudicot lineages. Here we sequenced 6 plastid genomes of bamboos, three of which are neotropical woody species and three are herbaceous ones. Several unusual features were found, including the duplication of trnT-GGU and loss of one copy of rps19 due to contraction of inverted repeats (IRs). The most intriguing was the ~2.7 kb insertion in the plastid IR regions in the three herbaceous bamboos. Furthermore, the insertion was documented to be horizontally transferred from the mitochondrial to the plastid genome. Our study provided evidence of the mitochondrial-to-plastid DNA transfer in the monocots, demonstrating again that this rare event does occur in other angiosperm lineages. However, the mechanism underlying the transfer remains obscure, and more studies in other plants may elucidate it in the future.
Collapse
|
47
|
Ashkenazy H, Cohen O, Pupko T, Huchon D. Indel reliability in indel-based phylogenetic inference. Genome Biol Evol 2014; 6:3199-209. [PMID: 25409663 PMCID: PMC4986452 DOI: 10.1093/gbe/evu252] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is often assumed that it is unlikely that the same insertion or deletion (indel) event occurred at the same position in two independent evolutionary lineages, and thus, indel-based inference of phylogeny should be less subject to homoplasy compared with standard inference which is based on substitution events. Indeed, indels were successfully used to solve debated evolutionary relationships among various taxonomical groups. However, indels are never directly observed but rather inferred from the alignment and thus indel-based inference may be sensitive to alignment errors. It is hypothesized that phylogenetic reconstruction would be more accurate if it relied only on a subset of reliable indels instead of the entire indel data. Here, we developed a method to quantify the reliability of indel characters by measuring how often they appear in a set of alternative multiple sequence alignments. Our approach is based on the assumption that indels that are consistently present in most alternative alignments are more reliable compared with indels that appear only in a small subset of these alignments. Using simulated and empirical data, we studied the impact of filtering and weighting indels by their reliability scores on the accuracy of indel-based phylogenetic reconstruction. The new method is available as a web-server at http://guidance.tau.ac.il/RELINDEL/.
Collapse
Affiliation(s)
- Haim Ashkenazy
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Ofir Cohen
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel Present address: Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Dorothée Huchon
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
48
|
|