1
|
Wang HY, Taher H, Kreklywich CN, Schmidt KA, Scheef EA, Barfield R, Otero CE, Valencia SM, Zhang K, Callahan C, Monticolo F, Qiao Y, Gilbride RM, Crooks CM, Mirza A, Knight K, Moström MJ, Manuel TD, Sprehe L, Kendall S, Burgt NV, Kowalik TF, Barry PA, Hansen SG, Shu J, Tarantal AF, Chan C, Streblow DN, Picker LJ, Kaur A, Früh K, Permar SR, Malouli D. The pentameric complex is not required for congenital CMV transmission in seronegative rhesus macaques. Sci Transl Med 2025; 17:eadm8961. [PMID: 40073152 DOI: 10.1126/scitranslmed.adm8961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/29/2024] [Accepted: 01/22/2025] [Indexed: 03/14/2025]
Abstract
Congenital cytomegalovirus (cCMV) is the leading infectious cause of neonatal neurological impairment worldwide, but the viral factors enabling vertical spread across the placenta remain undetermined. The pentameric complex (PC), composed of the subunits gH/gL/UL128/UL130/UL131A, has been demonstrated to be important for entry into nonfibroblast cells in vitro. These findings link the PC to broad cell tropism and virus dissemination in vivo, denoting all subunits as potential targets for intervention strategies and vaccine development. To determine the relevance of the PC for congenital transmission in a translational nonhuman primate model, we engineered a rhesus CMV (RhCMV) mutant lacking the orthologs of UL128 and UL130, which demonstrated diminished infection of epithelial cells in vitro. However, intravenous inoculation of either CD4+ T cell-depleted or immunocompetent RhCMV-seronegative pregnant rhesus macaques (RMs) in the early second trimester with the PC-deficient mutant resulted in maternal RhCMV peak plasma viremia similar to inoculations with PC-intact RhCMV, although virus shedding in saliva and urine was limited. Infections with the PC-intact virus induced IgG responses that neutralized RhCMV entry into epithelial cells in tissue culture. These responses were reduced, but not absent, from animals infected with the PC-deficient virus, which also induced IgG responses against gH. Moreover, congenital CMV transmission was confirmed in multiple animals infected with PC-deficient virus by detecting viral DNA in the amniotic fluid, indicating that transplacental transmission in RMs is not contingent on the PC.
Collapse
Affiliation(s)
- Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Duke University Medical Center, Durham, NC 27710, USA
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Husam Taher
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Craig N Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Kimberli A Schmidt
- Department of Pathology and Laboratory Medicine, Center for Immunology and Infectious Diseases, California National Primate Research Center, University of California Davis, Davis, CA 95616, USA
| | - Elizabeth A Scheef
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics and Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Claire E Otero
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Duke University Medical Center, Durham, NC 27710, USA
| | | | - Ke Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Boston, MA 02142, USA
| | - Claire Callahan
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Francesco Monticolo
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yueqing Qiao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Roxanne M Gilbride
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Chelsea M Crooks
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anne Mirza
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Kelsey Knight
- Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Matilda J Moström
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Tabitha D Manuel
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Lesli Sprehe
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Savannah Kendall
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Nathan Vande Burgt
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Timothy F Kowalik
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Peter A Barry
- Department of Pathology and Laboratory Medicine, Center for Immunology and Infectious Diseases, California National Primate Research Center, University of California Davis, Davis, CA 95616, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jian Shu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Boston, MA 02142, USA
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA 02139, USA
| | - Alice F Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California Davis, Davis, CA 95616, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics and Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Amitinder Kaur
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| |
Collapse
|
2
|
Ridelfi M, Pierleoni G, Zucconi Galli Fonseca V, Batani G, Rappuoli R, Sala C. State of the Art and Emerging Technologies in Vaccine Design for Respiratory Pathogens. Semin Respir Crit Care Med 2025. [PMID: 39870103 DOI: 10.1055/a-2500-1878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
In this review, we present the efforts made so far in developing effective solutions to prevent infections caused by seven major respiratory pathogens: influenza virus, respiratory syncytial virus (RSV), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Bordetella pertussis, Streptococcus pneumoniae (pneumococcus), Mycobacterium tuberculosis, and Pseudomonas aeruginosa. Advancements driven by the recent coronavirus disease 2019 (COVID-19) crisis have largely focused on viruses, but effective prophylactic solutions for bacterial pathogens are also needed, especially in light of the antimicrobial resistance (AMR) phenomenon. Here, we discuss various innovative key technologies that can help address this critical need, such as (a) the development of Lung-on-Chip ex vivo models to gain a better understanding of the pathogenesis process and the host-microbe interactions; (b) a more thorough investigation of the mechanisms behind mucosal immunity as the first line of defense against pathogens; (c) the identification of correlates of protection (CoPs) which, in conjunction with the Reverse Vaccinology 2.0 approach, can push a more rational and targeted design of vaccines. By focusing on these critical areas, we expect substantial progress in the development of new vaccines against respiratory bacterial pathogens, thereby enhancing global health protection in the framework of the increasingly concerning AMR emergence.
Collapse
Affiliation(s)
- Matteo Ridelfi
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giulio Pierleoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Giampiero Batani
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | - Claudia Sala
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| |
Collapse
|
3
|
Zamora D, Dasgupta S, Stevens-Ayers T, Edmison B, Winston DJ, Razonable RR, Mehta AK, Lyon GM, Boeckh M, Singh N, Koelle DM, Limaye AP. Cytomegalovirus immunity in high-risk liver transplant recipients following preemptive antiviral therapy versus prophylaxis. JCI Insight 2024; 9:e180115. [PMID: 39099206 PMCID: PMC11457861 DOI: 10.1172/jci.insight.180115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
CMV-specific T cells, NK cells, and neutralizing antibodies (nAbs) were assessed in a randomized trial of CMV prevention with preemptive antiviral therapy (PET) versus prophylactic antiviral therapy (PRO) in donor-seropositive/recipient-seronegative (D+R-) liver transplant recipients (LTxR) at 100 days (end of intervention) and at 6 and 12 months after transplant. The PET group had significantly increased numbers of circulating polyfunctional T cells, NK cells, and nAbs compared with the PRO group at day 100, and several CMV immune parameters remained significantly higher by 12 months after transplant. Among PET recipients, preceding CMV viremia (vs. no preceding viremia) was associated with significantly higher levels of most CMV immune parameters at day 100. Higher numbers of CMV-specific polyfunctional T cells and NKG2C+ NK cells at day 100 were associated with a decreased incidence of CMV disease in multivariable Cox regression. The strongest associations with protection against CMV disease were with increased numbers of CMV-specific polyfunctional CD4+ T cells, CD3negCD56dimCD57negNKG2Cpos cells, and CD3negCD56dimCD57posNKG2Cpos NK cells. Our results suggest that PET is superior to PRO for CMV disease prevention by allowing low-level CMV replication and associated antigen exposure that is promptly controlled by antiviral therapy and facilitates enhanced CMV protective immunity in D+R- LTxR.
Collapse
Affiliation(s)
- Danniel Zamora
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sayan Dasgupta
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Terry Stevens-Ayers
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Bradley Edmison
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Drew J. Winston
- Division of Infectious Diseases, UCLA Medical Center, Los Angeles, California, USA
| | - Raymund R. Razonable
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Aneesh K. Mehta
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - G. Marshall Lyon
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael Boeckh
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Nina Singh
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Transplant Infectious Diseases, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - David M. Koelle
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Global Health and
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Benaroya Research Institute, Seattle, Washington, USA
| | - Ajit P. Limaye
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
4
|
Zavaglio F, d'Angelo P, Fornara C, Zelini P, Comolli G, Furione M, Arossa A, Spinillo A, Lilleri D, Baldanti F. Different Antigen-Specific CD4 + and CD8 + T-Cell Response against HCMV Proteins in Pregnant Women with Primary Infection and in Control Subjects with Remote Infection. J Clin Med 2024; 13:5448. [PMID: 39336935 PMCID: PMC11432261 DOI: 10.3390/jcm13185448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Human cytomegalovirus (HCMV) is the most frequent cause of congenital infections. The HCMV-specific T-cell response in primary infection may help define reliable correlates of immune protection in pregnancy. In this study, the antigen-specific T-cell response against different HCMV proteins (IE-1, pp65, gB, gHgLpUL128L) was investigated in pregnant women with primary infection and in control subjects with remote infection to identify possible components of a vaccine. Methods: Blood samples from 35 pregnant women with HCMV primary infection and 30 HCMV-seropositive healthy adult subjects with remote infection were tested. The antigen-specific T-cell response was measured using cytokine intracellular staining after stimulation with IE-1, pp65, gB and gHgLpUL128L peptides pool. Results: The pp65-specific CD4+ T-cell response was higher in pregnant women with HCMV primary infection at the late time point and in control subjects with remote infection, while the pregnant women at the early time point showed a higher gB-specific CD8+ T-cell response. Regarding the CD4+ and CD8+ T-cell phenotypes, we observed that HCMV-specific CD4+ and CD8+ T cells expressing CD45RA+ remained constant in pregnant women with primary infection at the early and late time points and in subjects with remote infection, while HCMV-specific CD4+ and CD8+ T cells expressing IL-7R+ or producing IL-2 were higher in control subjects with remote infection than in pregnant women with HCMV primary infection. Conclusions: The T-cell response was higher against gB in the early phase of infection and against pp65 in the late phase. Therefore, these proteins should be taken into consideration as candidates for a vaccine.
Collapse
Affiliation(s)
- Federica Zavaglio
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Piera d'Angelo
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chiara Fornara
- General Clinical Laboratory, with Specialist Areas of Clinical Pathology, Microbiology and Virology, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Paola Zelini
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giuditta Comolli
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Milena Furione
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Alessia Arossa
- Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Arsenio Spinillo
- Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Daniele Lilleri
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fausto Baldanti
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
5
|
Bardwell B, Bay J, Colburn Z. The clinical applications of immunosequencing. Curr Res Transl Med 2024; 72:103439. [PMID: 38447267 DOI: 10.1016/j.retram.2024.103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/20/2023] [Accepted: 01/11/2024] [Indexed: 03/08/2024]
Abstract
Technological advances in high-throughput sequencing have opened the door for the interrogation of adaptive immune responses at unprecedented scale. It is now possible to determine the sequences of antibodies or T-cell receptors produced by individual B and T cells in a sample. This capability, termed immunosequencing, has transformed the study of both infectious and non-infectious diseases by allowing the tracking of dynamic changes in B and T cell clonal populations over time. This has improved our understanding of the pathology of cancers, autoimmune diseases, and infectious diseases. However, to date there has been only limited clinical adoption of the technology. Advances over the last decade and on the horizon that reduce costs and improve interpretability could enable widespread clinical use. Many clinical applications have been proposed and, while most are still undergoing research and development, some methods relying on immunosequencing data have been implemented, the most widespread of which is the detection of measurable residual disease. Here, we review the diagnostic, prognostic, and therapeutic applications of immunosequencing for both infectious and non-infectious diseases.
Collapse
Affiliation(s)
- B Bardwell
- Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA
| | - J Bay
- Department of Medicine, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA
| | - Z Colburn
- Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA.
| |
Collapse
|
6
|
Huang Y, Zhu X, Guo X, Zhou Y, Liu D, Mao J, Xiong Y, Deng Y, Gao X. Advances in mRNA vaccines for viral diseases. J Med Virol 2023; 95:e28924. [PMID: 37417396 DOI: 10.1002/jmv.28924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
Since the onset of the pandemic caused by severe acute respiratory syndrome coronavirus 2, messenger RNA (mRNA) vaccines have demonstrated outstanding performance. mRNA vaccines offer significant advantages over conventional vaccines in production speed and cost-effectiveness, making them an attractive option against other viral diseases. This article reviewed recent advances in viral mRNA vaccines and their delivery systems to provide references and guidance for developing mRNA vaccines for new viral diseases.
Collapse
Affiliation(s)
- Yukai Huang
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xuerui Zhu
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiao Guo
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Dongying Liu
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingrui Mao
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yongai Xiong
- Department of Pharmaceutics, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Youcai Deng
- Department of Hematology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xinghong Gao
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Provincial Department of Education, Key Laboratory of Infectious Disease & Bio-Safety, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
7
|
Wang HY, Taher H, Kreklywich CN, Schmidt KA, Scheef EA, Barfield R, Otero CE, Valencia SM, Crooks CM, Mirza A, Woods K, Burgt NV, Kowalik TF, Barry PA, Hansen SG, Tarantal AF, Chan C, Streblow DN, Picker LJ, Kaur A, Früh K, Permar SR, Malouli D. The pentameric complex is not required for vertical transmission of cytomegalovirus in seronegative pregnant rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545169. [PMID: 37398229 PMCID: PMC10312687 DOI: 10.1101/2023.06.15.545169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Congenital cytomegalovirus (cCMV) infection is the leading infectious cause of neonatal neurological impairment but essential virological determinants of transplacental CMV transmission remain unclear. The pentameric complex (PC), composed of five subunits, glycoproteins H (gH), gL, UL128, UL130, and UL131A, is essential for efficient entry into non-fibroblast cells in vitro . Based on this role in cell tropism, the PC is considered a possible target for CMV vaccines and immunotherapies to prevent cCMV. To determine the role of the PC in transplacental CMV transmission in a non-human primate model of cCMV, we constructed a PC-deficient rhesus CMV (RhCMV) by deleting the homologues of the HCMV PC subunits UL128 and UL130 and compared congenital transmission to PC-intact RhCMV in CD4+ T cell-depleted or immunocompetent RhCMV-seronegative, pregnant rhesus macaques (RM). Surprisingly, we found that the transplacental transmission rate was similar for PC-intact and PC-deleted RhCMV based on viral genomic DNA detection in amniotic fluid. Moreover, PC-deleted and PC-intact RhCMV acute infection led to similar peak maternal plasma viremia. However, there was less viral shedding in maternal urine and saliva and less viral dissemination in fetal tissues in the PC-deleted group. As expected, dams inoculated with PC-deleted RhCMV demonstrated lower plasma IgG binding to PC-intact RhCMV virions and soluble PC, as well as reduced neutralization of PC-dependent entry of the PC-intact RhCMV isolate UCD52 into epithelial cells. In contrast, binding to gH expressed on the cell surface and neutralization of entry into fibroblasts by the PC-intact RhCMV was higher for dams infected with PC-deleted RhCMV compared to those infected with PC-intact RhCMV. Our data demonstrates that the PC is dispensable for transplacental CMV infection in our non-human primate model. One Sentence Summary Congenital CMV transmission frequency in seronegative rhesus macaques is not affected by the deletion of the viral pentameric complex.
Collapse
|
8
|
Zhong L, Zhang W, Krummenacher C, Chen Y, Zheng Q, Zhao Q, Zeng MS, Xia N, Zeng YX, Xu M, Zhang X. Targeting herpesvirus entry complex and fusogen glycoproteins with prophylactic and therapeutic agents. Trends Microbiol 2023:S0966-842X(23)00077-X. [DOI: 10.1016/j.tim.2023.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023]
|
9
|
Fornara C, Schultz E, Lilleri D, Baldanti F, Ryckman B, Gerna G. Fibroblast, Epithelial and Endothelial Cell-Derived Human Cytomegalovirus Strains Display Distinct Neutralizing Antibody Responses and Varying Levels of gH/gL Complexes. Int J Mol Sci 2023; 24:4417. [PMID: 36901847 PMCID: PMC10003051 DOI: 10.3390/ijms24054417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
In sequential sera from pregnant women with HCMV primary infection (PI), the serum neutralizing activity is higher against virions produced in epithelial and endothelial cells than in fibroblasts. Immunoblotting shows that the pentamer complex/trimer complex (PC/TC) ratio varies according to the producer cell culture type used for the virus preparation to be employed in the neutralizing antibody (NAb) assay, and is lower in fibroblasts and higher in epithelial, and especially endothelial cells. The blocking activity of TC- and PC-specific inhibitors varies according to the PC/TC ratio of virus preparations. The rapid reversion of the virus phenotype following its back passage to the original cell culture (fibroblasts) potentially argues in favor of a producer cell effect on virus phenotype. However, the role of genetic factors cannot be overlooked. In addition to the producer cell type, the PC/TC ratio may differ in single HCMV strains. In conclusion, the NAb activity not only varies with different HCMV strains, but is a dynamic parameter changing according to virus strain, type of target and producer cells, and number of cell culture passages. These findings may have some important implications for the development of both therapeutic antibodies and subunit vaccines.
Collapse
Affiliation(s)
- Chiara Fornara
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Eric Schultz
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Daniele Lilleri
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fausto Baldanti
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Brent Ryckman
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Giuseppe Gerna
- Laboratories of Genetics, Transplantology and Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
10
|
Chen WH, Kim J, Bu W, Board NL, Tsybovsky Y, Wang Y, Hostal A, Andrews SF, Gillespie RA, Choe M, Stephens T, Yang ES, Pegu A, Peterson CE, Fisher BE, Mascola JR, Pittaluga S, McDermott AB, Kanekiyo M, Joyce MG, Cohen JI. Epstein-Barr virus gH/gL has multiple sites of vulnerability for virus neutralization and fusion inhibition. Immunity 2022; 55:2135-2148.e6. [PMID: 36306784 PMCID: PMC9815946 DOI: 10.1016/j.immuni.2022.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 06/29/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
Abstract
Epstein-Barr virus (EBV) is nearly ubiquitous in adults. EBV causes infectious mononucleosis and is associated with B cell lymphomas, epithelial cell malignancies, and multiple sclerosis. The EBV gH/gL glycoprotein complex facilitates fusion of virus membrane with host cells and is a target of neutralizing antibodies. Here, we examined the sites of vulnerability for virus neutralization and fusion inhibition within EBV gH/gL. We developed a panel of human monoclonal antibodies (mAbs) that targeted five distinct antigenic sites on EBV gH/gL and prevented infection of epithelial and B cells. Structural analyses using X-ray crystallography and electron microscopy revealed multiple sites of vulnerability and defined the antigenic landscape of EBV gH/gL. One mAb provided near-complete protection against viremia and lymphoma in a humanized mouse EBV challenge model. Our findings provide structural and antigenic knowledge of the viral fusion machinery, yield a potential therapeutic antibody to prevent EBV disease, and emphasize gH/gL as a target for herpesvirus vaccines and therapeutics.
Collapse
Affiliation(s)
- Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - JungHyun Kim
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Bu
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan L Board
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Yanmei Wang
- Clinical Services Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Anna Hostal
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Pantaleo G, Correia B, Fenwick C, Joo VS, Perez L. Antibodies to combat viral infections: development strategies and progress. Nat Rev Drug Discov 2022; 21:676-696. [PMID: 35725925 PMCID: PMC9207876 DOI: 10.1038/s41573-022-00495-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 12/11/2022]
Abstract
Monoclonal antibodies (mAbs) are appealing as potential therapeutics and prophylactics for viral infections owing to characteristics such as their high specificity and their ability to enhance immune responses. Furthermore, antibody engineering can be used to strengthen effector function and prolong mAb half-life, and advances in structural biology have enabled the selection and optimization of potent neutralizing mAbs through identification of vulnerable regions in viral proteins, which can also be relevant for vaccine design. The COVID-19 pandemic has stimulated extensive efforts to develop neutralizing mAbs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with several mAbs now having received authorization for emergency use, providing not just an important component of strategies to combat COVID-19 but also a boost to efforts to harness mAbs in therapeutic and preventive settings for other infectious diseases. Here, we describe advances in antibody discovery and engineering that have led to the development of mAbs for use against infections caused by viruses including SARS-CoV-2, respiratory syncytial virus (RSV), Ebola virus (EBOV), human cytomegalovirus (HCMV) and influenza. We also discuss the rationale for moving from empirical to structure-guided strategies in vaccine development, based on identifying optimal candidate antigens and vulnerable regions within them that can be targeted by antibodies to result in a strong protective immune response.
Collapse
Affiliation(s)
- Giuseppe Pantaleo
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Lausanne, Switzerland
| | - Bruno Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Craig Fenwick
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Lausanne, Switzerland
| | - Victor S Joo
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Lausanne, Switzerland
| | - Laurent Perez
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Lausanne, Switzerland.
| |
Collapse
|
12
|
He L, Taylor S, Costa C, Görzer I, Kalser J, Fu TM, Freed D, Wang D, Cui X, Hertel L, McVoy MA. Polymorphic Forms of Human Cytomegalovirus Glycoprotein O Protect against Neutralization of Fibroblast Entry by Antibodies Targeting Epitopes Defined by Glycoproteins H and L. Viruses 2022; 14:1508. [PMID: 35891489 PMCID: PMC9323020 DOI: 10.3390/v14071508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Human cytomegalovirus (CMV) utilizes different glycoproteins to enter into fibroblast and epithelial cells. A trimer of glycoproteins H, L, and O (gH/gL/gO) is required for entry into all cells, whereas a pentamer of gH/gL/UL128/UL130/UL131A is selectively required for infection of epithelial, endothelial, and some myeloid-lineage cells, but not of fibroblasts. Both complexes are of considerable interest for vaccine and immunotherapeutic development but present a conundrum: gH/gL-specific antibodies have moderate potency yet neutralize CMV entry into all cell types, whereas pentamer-specific antibodies are more potent but do not block fibroblast infection. Which cell types and neutralizing activities are important for protective efficacy in vivo remain unclear. Here, we present evidence that certain CMV strains have evolved polymorphisms in gO to evade trimer-specific neutralizing antibodies. Using luciferase-tagged variants of strain TB40/E in which the native gO is replaced by gOs from other strains, we tested the effects of gO polymorphisms on neutralization by monoclonal antibodies (mAbs) targeting four independent epitopes in gH/gL that are common to both trimer and pentamer. Neutralization of fibroblast entry by three mAbs displayed a range of potencies that depended on the gO type, a fourth mAb failed to neutralize fibroblast entry regardless of the gO type, while neutralization of epithelial cell entry by all four mAbs was potent and independent of the gO type. Thus, specific polymorphisms in gO protect the virus from mAb neutralization in the context of fibroblast but not epithelial cell entry. No influence of gO type was observed for protection against CMV hyperimmune globulin or CMV-seropositive human sera, suggesting that antibodies targeting protected gH/gL epitopes represent a minority of the polyclonal neutralizing repertoire induced by natural infection.
Collapse
Affiliation(s)
- Li He
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Scott Taylor
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.T.); (C.C.)
| | - Catherine Costa
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.T.); (C.C.)
| | - Irene Görzer
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria; (I.G.); (J.K.)
| | - Julia Kalser
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria; (I.G.); (J.K.)
| | - Tong-Ming Fu
- Texas Therapeutic Institute, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Daniel Freed
- Merck & Co., Inc., Rahway, NJ 07065, USA; (D.F.); (D.W.)
| | - Dai Wang
- Merck & Co., Inc., Rahway, NJ 07065, USA; (D.F.); (D.W.)
| | - Xiaohong Cui
- Department of Anatomy, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Laura Hertel
- Department of Pediatrics, University of California San Francisco, Oakland, CA 94609, USA;
| | - Michael A. McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
13
|
Neutralizing Antibodies to Human Cytomegalovirus Recombinant Proteins Reduce Infection in an Ex Vivo Model of Developing Human Placentas. Vaccines (Basel) 2022; 10:vaccines10071074. [PMID: 35891239 PMCID: PMC9315547 DOI: 10.3390/vaccines10071074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the leading viral cause of congenital disease and permanent birth defects worldwide. Although the development of an effective vaccine is a public health priority, no vaccines are approved. Among the major antigenic targets are glycoproteins in the virion envelope, including gB, which facilitates cellular entry, and the pentameric complex (gH/gL/pUL128-131), required for the infection of specialized cell types. In this study, sera from rabbits immunized with the recombinant pentameric complex were tested for their ability to neutralize infection of epithelial cells, fibroblasts, and primary placental cell types. Sera from rhesus macaques immunized with recombinant gB or gB plus pentameric complex were tested for HCMV neutralizing activity on both cultured cells and cell column cytotrophoblasts in first-trimester chorionic villus explants. Sera from rabbits immunized with the pentameric complex potently blocked infection by pathogenic viral strains in amniotic epithelial cells and cytotrophoblasts but were less effective in fibroblasts and trophoblast progenitor cells. Sera from rhesus macaques immunized with the pentameric complex and gB more strongly reduced infection in fibroblasts, epithelial cells, and chorionic villus explants than sera from immunization with gB alone. These results suggest that the pentameric complex and gB together elicit antibodies that could have potential as prophylactic vaccine antigens.
Collapse
|
14
|
Parsons AJ, Ophir SI, Duty JA, Kraus TA, Stein KR, Moran TM, Tortorella D. Development of broadly neutralizing antibodies targeting the cytomegalovirus subdominant antigen gH. Commun Biol 2022; 5:387. [PMID: 35468974 PMCID: PMC9038728 DOI: 10.1038/s42003-022-03294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/17/2022] [Indexed: 11/08/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus that increases morbidity and mortality in immunocompromised individuals including transplant recipients and newborns. New anti-HCMV therapies are an urgent medical need for diverse patient populations. HCMV infection of a broad range of host tissues is dependent on the gH/gL/gO trimer and gH/gL/UL28/UL130/UL131A pentamer complexes on the viral envelope. We sought to develop safe and effective therapeutics against HCMV by generating broadly-neutralizing, human monoclonal antibodies (mAbs) from VelocImmune® mice immunized with gH/gL cDNA. Following high-throughput binding and neutralization screening assays, 11 neutralizing antibodies were identified with unique CDR3 regions and a high-affinity (KD 1.4-65 nM) to the pentamer complex. The antibodies bound to distinct regions within Domains 1 and 2 of gH and effectively neutralized diverse clinical strains in physiologically relevant cell types including epithelial cells, trophoblasts, and monocytes. Importantly, combined adminstration of mAbs with ganciclovir, an FDA approved antiviral, greatly limited virus dissemination. Our work identifies several anti-gH/gL mAbs and sheds light on gH neutralizing epitopes that can guide future vaccine strategies.
Collapse
Affiliation(s)
- Andrea J Parsons
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sabrina I Ophir
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - J Andrew Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Thomas A Kraus
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kathryn R Stein
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas M Moran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
15
|
Li J, Wellnitz S, Chi XS, Yue Y, Schmidt KA, Nguyen N, Chen W, Yurgelonis I, Rojas E, Liu Y, Loschko J, Pollozi E, Matsuka YV, Needle E, Vidunas E, Donald RGK, Moran J, Jansen KU, Dormitzer PR, Barry PA, Yang X. Horizontal transmission of cytomegalovirus in a rhesus model despite high-level, vaccine-elicited neutralizing antibody and T cell responses. J Infect Dis 2022; 226:585-594. [PMID: 35413121 PMCID: PMC10147388 DOI: 10.1093/infdis/jiac129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/07/2022] [Indexed: 11/14/2022] Open
Abstract
The development of a vaccine to prevent congenital human cytomegalovirus (HCMV) disease is a public health priority. We tested rhesus CMV (RhCMV) prototypes of HCMV vaccine candidates in a seronegative macaque oral challenge model. Immunogens included a recombinant pentameric complex (PC; gH/gL/pUL128/pUL130/pUL131A), a postfusion gB ectodomain, and a DNA plasmid that encodes pp65-2. Immunization with QS21-adjuvanted PC alone or with the other immunogens elicited neutralizing titers comparable to those elicited by RhCMV infection. Similarly, immunization with all three immunogens elicited pp65-specific cytotoxic T cell responses comparable to those elicited by RhCMV infection. RhCMV readily infected immunized animals and was detected in saliva, blood and urine after challenge in quantities similar to those in placebo-immunized animals. If HCMV evades vaccine-elicited immunity in humans as RhCMV evaded immunity in macaques, a HCMV vaccine must elicit immunity superior to, or different from, that elicited by the prototype RhCMV vaccine to block horizontal transmission.
Collapse
Affiliation(s)
- Julia Li
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Sabine Wellnitz
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Xiaoyuan S Chi
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Yujuan Yue
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Kimberli A Schmidt
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Nancy Nguyen
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Wei Chen
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Irina Yurgelonis
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Eduardo Rojas
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Yuhang Liu
- Groton Center for Chemistry, Pfizer Inc., Groton, CT 06340, USA
| | - Jakob Loschko
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Eneida Pollozi
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Yury V Matsuka
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Elie Needle
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Eugene Vidunas
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Robert G K Donald
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Justin Moran
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Kathrin U Jansen
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Philip R Dormitzer
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Peter A Barry
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA.,Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA 95616, USA.,California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Xinzhen Yang
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| |
Collapse
|
16
|
A Live Olfactory Mouse Cytomegalovirus Vaccine, Attenuated for Systemic Spread, Protects against Superinfection. J Virol 2021; 95:e0126421. [PMID: 34431701 DOI: 10.1128/jvi.01264-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccination against the betaherpesvirus, human cytomegalovirus (HCMV) is a public health goal. However, HCMV has proved difficult to vaccinate against. Vaccination against single HCMV determinants has not worked, suggesting that immunity to a wider antigenic profile may be required. Live attenuated vaccines provide the best prospects for protection, but the question remains as to how to balance vaccine virulence with safety. Animal models of HCMV infection provide insights into identifying targets for virus attenuation and understanding how host immunity blocks natural, mucosal infection. Here, we evaluated the vaccine potential of a mouse cytomegalovirus (MCMV) vaccine deleted of a viral G protein-coupled receptor (GPCR), designated M33, that renders it attenuated for systemic spread. A single noninvasive olfactory ΔM33 MCMV vaccine replicated locally, but as a result of the loss of the M33 GPCR, it failed to spread systemically and was attenuated for latent infection. Vaccination did not prevent host entry of a superinfecting MCMV but spread from the mucosa was blocked. This approach to vaccine design may provide a viable alternative for a safe and effective betaherpesvirus vaccine. IMPORTANCE Human cytomegalovirus (HCMV) is the most common cause of congenital infection for which a vaccine is not yet available. Subunit vaccine candidates have failed to achieve licensure. A live HCMV vaccine may prove more efficacious, but it faces safety hurdles which include its propensity to persist and to establish latency. Understanding how pathogens infect guide rational vaccine design. However, HCMV infections are asymptomatic and thus difficult to capture. Animal models of experimental infection provide insight. Here, we investigated the vaccine potential of a mouse cytomegalovirus (MCMV) attenuated for systemic spread and latency. We used olfactory vaccination and virus challenge to mimic its natural acquisition. We provide proof of concept that a single olfactory MCMV that is deficient in systemic spread can protect against wild-type MCMV superinfection and dissemination. This approach of deleting functional counterpart genes in HCMV may provide safe and effective vaccination against congenital HCMV disease.
Collapse
|
17
|
Long X, Qiu Y, Zhang Z, Wu M. Insight for Immunotherapy of HCMV Infection. Int J Biol Sci 2021; 17:2899-2911. [PMID: 34345215 PMCID: PMC8326118 DOI: 10.7150/ijbs.58127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Human cytomegalovirus (HCMV), a ubiquitous in humans, has a high prevalence rate. Young people are susceptible to HCMV infection in developing countries, while older individuals are more susceptible in developed countries. Most patients have no obvious symptoms from the primary infection. Studies have indicated that the virus has gradually adapted to the host immune system. Therefore, the control of HCMV infection requires strong immune modulation. With the recent advances in immunotherapy, its application to HCMV infections is receiving increasing attention. Here, we discuss the immune response to HCMV infection, the immune escape mechanism, and the different roles that HCMV plays in various types of immunotherapy, including vaccines, adoptive cell therapy, checkpoint blockade therapy, and targeted antibodies.
Collapse
Affiliation(s)
- Xinmiao Long
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008 , Hunan, China
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Yi Qiu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008 , Hunan, China
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Zuping Zhang
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Minghua Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008 , Hunan, China
| |
Collapse
|
18
|
A conditionally replication-defective cytomegalovirus vaccine elicits potent and diverse functional monoclonal antibodies in a phase I clinical trial. NPJ Vaccines 2021; 6:79. [PMID: 34078915 PMCID: PMC8172929 DOI: 10.1038/s41541-021-00342-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/24/2021] [Indexed: 02/03/2023] Open
Abstract
A conditionally replication-defective human cytomegalovirus (HCMV) vaccine, V160, was shown to be safe and immunogenic in a two-part, double-blind, randomized, placebo-controlled phase I clinical trial (NCT01986010). However, the specificities and functional properties of V160-elicited antibodies remain undefined. Here, we characterized 272 monoclonal antibodies (mAbs) isolated from single memory B cells of six V160-vaccinated subjects. The mAbs bind to diverse HCMV antigens, including multiple components of the pentamer, gB, and tegument proteins. The most-potent neutralizing antibodies target the pentamer-UL subunits. The binding sites of the antibodies overlap with those of antibodies responding to natural HCMV infection. The majority of the neutralizing antibodies target the gHgL subunit. The non-neutralizing antibodies predominantly target the gB and pp65 proteins. Sequence analysis indicated that V160 induced a class of gHgL antibodies expressing the HV1-18/KV1-5 germline genes in multiple subjects. This study provides valuable insights into primary targets for anti-HCMV antibodies induced by V160 vaccination.
Collapse
|
19
|
Prevention of Congenital Cytomegalovirus Infection with Vaccines: State of the Art. Vaccines (Basel) 2021; 9:vaccines9050523. [PMID: 34069321 PMCID: PMC8158681 DOI: 10.3390/vaccines9050523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cytomegalovirus (CMV) is the most common cause of congenital infection and non-genetic sensorineural hearing loss in childhood. Up to 2% of neonates, with the highest percentages found in developing countries, are congenitally infected with CMV. At birth, most of these infants are asymptomatic. However, approximately 10% have signs and symptoms of the disease, and 40–60% of symptomatic neonates will later develop permanent neurologic sequelae. To reduce congenital CMV (cCMV) infection, a vaccine able to prevent primary infection is essential. In this narrative review, actual ongoing research about the development of a CMV vaccine is discussed. The progressive increase in knowledge on the ways in which the host’s immune system and CMV relate has made it possible to clarify that the development of a vaccine that is certainly capable of reducing the risk of cCMV infection, and preventing both primary and nonprimary infections is extremely difficult. Many of the ways in which the virus evades the immune system and causes cCMV infection are not yet fully understood, especially in cases of nonprimary infection. Moreover, the schedule that should be recommended and that subjects must be vaccinated to obtain the greatest effect have not been precisely defined. Further studies are needed before the problem of cCMV infection and its related challenges can be totally solved.
Collapse
|
20
|
Choi KY, El-Hamdi NS, McGregor A. A trimeric capable gB CMV vaccine provides limited protection against a highly cell associated and epithelial tropic strain of cytomegalovirus in guinea pigs. J Gen Virol 2021; 102. [PMID: 33729125 DOI: 10.1099/jgv.0.001579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multiple strains of human cytomegalovirus (HCMV) can cause congenital cytomegalovirus (cCMV) by primary or secondary infection. The viral gB glycoprotein is a leading vaccine candidate, essential for infection of all cell-types, and immunodominant antibody target. Guinea pig cytomegalovirus (GPCMV) is the only small animal model for cCMV. Various gB vaccines have shown efficacy but studies have utilized truncated gB and protection against prototype strain 22122 with preferential tropism to fibroblasts despite encoding a gH-based pentamer complex for non-fibroblast infection. A highly cell-associated novel strain of GPCMV (TAMYC) with 99 % identity in gB sequence to 22122 exhibited preferred tropism to epithelial cells. An adenovirus vaccine encoding full-length gB (AdgB) was highly immunogenic and partially protected against 22122 strain challenge in vaccinated animals but not when challenged with TAMYC strain. GPCMV studies with AdgB vaccine sera on numerous cell-types demonstrated impaired neutralization (NA50) compared to fibroblasts. GPCMV-convalescent sera including pentamer complex antibodies increased virus neutralization on non-fibroblasts and anti-gB depletion from GPCMV-convalescent sera had minimal impact on epithelial cell neutralization. GPCMV(PC+) 22122-convalescent animals challenged with TAMYC exhibited higher protection compared to AdgB vaccine. Overall, results suggest that antibody response to both gB and PC are important components of a GPCMV vaccine.
Collapse
Affiliation(s)
- K Yeon Choi
- Dept. Microbial Pathogenesis & Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Nadia S El-Hamdi
- Dept. Microbial Pathogenesis & Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Alistair McGregor
- Dept. Microbial Pathogenesis & Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| |
Collapse
|
21
|
Vietzen H, Görzer I, Honsig C, Jaksch P, Puchhammer-Stöckl E. Human Cytomegalovirus (HCMV)-Specific Antibody Response and Development of Antibody-Dependent Cellular Cytotoxicity Against HCMV After Lung Transplantation. J Infect Dis 2021; 222:417-427. [PMID: 32157310 DOI: 10.1093/infdis/jiaa097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/09/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) may cause severe infections in lung transplant recipients (LTRs). The impact of the host antibody (AB)-dependent cytotoxicity (ADCC) on HCMV is still unclear. Therefore, we analyzed the AB-response against HCMV glycoprotein B (gB) and the pentameric complex (PC) and the ADCC response in HCMV-seropositive (R+) LTRs and in seronegative recipients of positive organs (D+/R-). METHODS Plasma samples were collected from 35 R+ and 28 D+/R- LTRs for 1 (R+) or 2 (D+/R-) years posttransplantation and from 114 healthy control persons. The PC- and gB-specific ABs were assessed by enzyme-linked immunosorbent assay. The ADCC was analyzed by focal expansion assay and CD107 cytotoxicity assay. RESULTS In R+ LTRs, significantly higher gB-specific AB levels developed within 1 year posttransplantation than in controls (immunoglobulin [Ig]G1, P < .001; IgG3, P < .001). In addition, higher levels of ADCC were observed by FEA and CD107 assay in R+ patients compared with controls (P < .001). In 23 D+R- patients, HCMV-specific ABs developed. Antibody-dependent cytotoxicity became detectable 3 months posttransplantation in these, with higher ADCC observed in viremic patients. Depletion of gB- and PC-specific ABs revealed that, in particular, gB-specific Abs were associated with the ADCC response. CONCLUSIONS We show that a strong ADCC is elicited after transplantation and is especially based on gB-specific ABs.
Collapse
Affiliation(s)
- Hannes Vietzen
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Irene Görzer
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Claudia Honsig
- Division of Clinical Virology, Medical University of Vienna, Vienna, Austria
| | - Peter Jaksch
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
22
|
Vlahava VM, Murrell I, Zhuang L, Aicheler RJ, Lim E, Miners KL, Ladell K, Suárez NM, Price DA, Davison AJ, Wilkinson GW, Wills MR, Weekes MP, Wang EC, Stanton RJ. Monoclonal antibodies targeting nonstructural viral antigens can activate ADCC against human cytomegalovirus. J Clin Invest 2021; 131:139296. [PMID: 33586678 PMCID: PMC7880312 DOI: 10.1172/jci139296] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that causes severe disease following congenital infection and in immunocompromised individuals. No vaccines are licensed, and there are limited treatment options. We now show that the addition of anti-HCMV antibodies (Abs) can activate NK cells prior to the production of new virions, through Ab-dependent cellular cytotoxicity (ADCC), overcoming viral immune evasins. Quantitative proteomics defined the most abundant HCMV proteins on the cell surface, and we screened these targets to identify the viral antigens responsible for activating ADCC. Surprisingly, these were not structural glycoproteins; instead, the immune evasins US28, RL11, UL5, UL141, and UL16 each individually primed ADCC. We isolated human monoclonal Abs (mAbs) specific for UL16 or UL141 from a seropositive donor and optimized them for ADCC. Cloned Abs targeting a single antigen (UL141) were sufficient to mediate ADCC against HCMV-infected cells, even at low concentrations. Collectively, these findings validated an unbiased methodological approach to the identification of immunodominant viral antigens, providing a pathway toward an immunotherapeutic strategy against HCMV and potentially other pathogens.
Collapse
Affiliation(s)
- Virginia-Maria Vlahava
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Isa Murrell
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lihui Zhuang
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Eleanor Lim
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kelly L. Miners
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Nicolás M. Suárez
- University of Glasgow-MRC Centre for Virus Research, Glasgow, United Kingdom
| | - David A. Price
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Andrew J. Davison
- University of Glasgow-MRC Centre for Virus Research, Glasgow, United Kingdom
| | - Gavin W.G. Wilkinson
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mark R. Wills
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Eddie C.Y. Wang
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard J. Stanton
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
23
|
Dorfman JR, Balla SR, Pathirana J, Groome MJ, Madhi SA, Moore PL. In utero human cytomegalovirus infection is associated with increased levels of putatively protective maternal antibodies in nonprimary infection: evidence for boosting but not protection. Clin Infect Dis 2021; 73:e981-e987. [PMID: 33560335 DOI: 10.1093/cid/ciab099] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/02/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Although primary maternal cytomegalovirus infections are associated with higher risk of in utero transmission, most fetal infections worldwide result from nonprimary maternal infections. Antibodies directed at glycoprotein B and the gH/gL/pUL128-130-131 pentamer can neutralize virus, and higher levels of antibody directed at several particular pentamer epitopes defined by monoclonal antibodies (mAbs) are associated with reduced risk of fetal cytomegalovirus transmission during primary maternal infection. This had not been explored in maternal nonprimary infection. METHODS In a setting where most maternal cytomegalovirus infections are nonprimary, 42 mothers of infants with congenital CMV infections (transmitters) were compared to 75 cytomegalovirus-seropositive mothers whose infants were cytomegalovirus-uninfected (nontransmitters). Control infants were matched by sex, maternal HIV status and gestational age. We measured the ability of maternal antibodies to block three key pentameric epitopes: one in the gH subunit, another straddling UL130/UL131 and the third straddling gH/gL/UL128/UL130. We tested if levels of antibodies directed at these epitopes were higher in nontransmitters compared to transmitters. RESULTS Levels of all three putatively protective pentamer-directed antibodies were significantly higher in transmitters compared to nontransmitters. In contrast, antibodies targeting an epitope on glycoprotein B were not different. Total antibody specific for pentamer and for gB were also higher in transmitters. CONCLUSIONS We found no evidence that higher levels of any CMV-specific antibodies were associated with reduced risk of congenital CMV infection in nonprimary maternal infection. Instead, we found higher maternal antibody targeting epitopes on CMV pentamer in transmitters than nontransmitters, providing evidence for antibody boosting but not protection.
Collapse
Affiliation(s)
- Jeffrey R Dorfman
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, South Africa
- Department of Science/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
- Division of Medical Virology, Department of Pathology, Stellenbosch University, Cape Town, South Africa
| | - Sashkia R Balla
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jayani Pathirana
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, South Africa
- Department of Science/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Michelle J Groome
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, South Africa
- Department of Science/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, South Africa
- Department of Science/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
24
|
Zamora D, Krantz EM, Green ML, Joncas-Schronce L, Blazevic R, Edmison BC, Huang ML, Stevens-Ayers T, Jerome KR, Geballe AP, Boeckh M. Cytomegalovirus Humoral Response Against Epithelial Cell Entry-Mediated Infection in the Primary Infection Setting After Hematopoietic Cell Transplantation. J Infect Dis 2021; 221:1470-1479. [PMID: 31734696 DOI: 10.1093/infdis/jiz596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The influence of humoral immunity on the prevention of primary cytomegalovirus (CMV) infection after hematopoietic cell transplantation (HCT) is poorly understood. METHODS To determine whether neutralizing antibodies (nAbs) against CMV pentameric complex (PC)-mediated epithelial cell entry decrease CMV infection after HCT, samples were analyzed from a randomized controlled trial of CMV intravenous immunoglobulin (IVIG) prophylaxis. Weekly serum from 61 CMV donor-positive/recipient-negative (D+/R-) HCT patients (33 control, 28 CMV IVIG) was tested using a PC-entry nAb assay and quantitative CMV polymerase chain reaction (PCR). RESULTS There was a trend toward higher weekly PC-entry nAb titers (P = .07) and decreased CMV infection by PCR at viral load cutoffs of ≥1000 and ≥10 000 IU/mL in the CMV IVIG arm. High nAb titers were not significantly protective against CMV infection later after HCT in both study arms. Among CMV-infected patients, each log2 increase in nAb titer was associated with an average 0.2 log10 decrease in concurrent CMV viral load after infection (P = .001; adjusted for study arm). CONCLUSIONS This study provides initial support that CMV IVIG prophylaxis moderately enhances PC-entry nAB activity in D+/R- HCT recipients.
Collapse
Affiliation(s)
- Danniel Zamora
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington
| | - Elizabeth M Krantz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Margaret L Green
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington
| | - Laurel Joncas-Schronce
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Rachel Blazevic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Bradley C Edmison
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Terry Stevens-Ayers
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Adam P Geballe
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Departments of Medicine and Microbiology, University of Washington, Seattle, Washington
| | - Michael Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
25
|
Perotti M, Marcandalli J, Demurtas D, Sallusto F, Perez L. Rationally designed Human Cytomegalovirus gB nanoparticle vaccine with improved immunogenicity. PLoS Pathog 2020; 16:e1009169. [PMID: 33370407 PMCID: PMC7794029 DOI: 10.1371/journal.ppat.1009169] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/08/2021] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the primary viral cause of congenital birth defects and causes significant morbidity and mortality in immune-suppressed transplant recipients. Despite considerable efforts in vaccine development, HCMV infection still represents an unmet clinical need. In recent phase II trials, a MF59-adjuvanted gB vaccine showed only modest efficacy in preventing infection. These findings might be attributed to low level of antibodies (Abs) with a neutralizing activity induced by this vaccine. Here, we analyzed the immunogenicity of each gB antigenic domain (AD) and demonstrated that domain I of gB (AD5) is the main target of HCMV neutralizing antibodies. Furthermore, we designed, characterized and evaluated immunogenic responses to two different nanoparticles displaying a trimeric AD5 antigen. We showed that mice immunization with nanoparticles induces sera neutralization titers up to 100-fold higher compared to those obtained with the gB extracellular domain (gBECD). Collectively, these results illustrate with a medically relevant example the advantages of using a general approach combining antigen discovery, protein engineering and scaffold presentation for modern development of subunit vaccines against complex pathogens.
Collapse
Affiliation(s)
- Michela Perotti
- Institute for Research in Biomedicine, Università della Svizzera italiana, faculty of Biomedical Sciences, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Jessica Marcandalli
- Institute for Research in Biomedicine, Università della Svizzera italiana, faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Davide Demurtas
- BioEM Facility, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, faculty of Biomedical Sciences, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Laurent Perez
- Institute for Research in Biomedicine, Università della Svizzera italiana, faculty of Biomedical Sciences, Bellinzona, Switzerland.,University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Department of Medicine, Division of Immunology and Allergy, Center for Human Immunology (CHIL), Lausanne, Switzerland
| |
Collapse
|
26
|
Wang B, Hara K, Kawabata A, Nishimura M, Wakata A, Tjan LH, Poetranto AL, Yamamoto C, Haseda Y, Aoshi T, Munakata L, Suzuki R, Komatsu M, Tsukamoto R, Itoh T, Nishigori C, Saito Y, Matozaki T, Mori Y. Tetrameric glycoprotein complex gH/gL/gQ1/gQ2 is a promising vaccine candidate for human herpesvirus 6B. PLoS Pathog 2020; 16:e1008609. [PMID: 32702057 PMCID: PMC7377363 DOI: 10.1371/journal.ppat.1008609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
Primary infection of human herpesvirus 6B (HHV-6B) occurs in infants after the decline of maternal immunity and causes exanthema subitum accompanied by a high fever, and it occasionally develops into encephalitis resulting in neurological sequelae. There is no effective prophylaxis for HHV-6B, and its development is urgently needed. The glycoprotein complex gH/gL/gQ1/gQ2 (called 'tetramer of HHV-6B') on the virion surface is a viral ligand for its cellular receptor human CD134, and their interaction is thus essential for virus entry into the cells. Herein we examined the potency of the tetramer as a vaccine candidate against HHV-6B. We designed a soluble form of the tetramer by replacing the transmembrane domain of gH with a cleavable tag, and the tetramer was expressed by a mammalian cell expression system. The expressed recombinant tetramer is capable of binding to hCD134. The tetramer was purified to homogeneity and then administered to mice with aluminum hydrogel adjuvant and/or CpG oligodeoxynucleotide adjuvant. After several immunizations, humoral and cellular immunity for HHV-6B was induced in the mice. These results suggest that the tetramer together with an adjuvant could be a promising candidate HHV-6B vaccine. Human herpesvirus 6B (HHV-6B) is known as the cause of the common childhood febrile illness exanthem subitum in its primary infection, and it develops into a lifelong latent infection in almost all individuals. Severe complications such as meningitis and encephalitis can occur in both the primary infection and reactivation. There is no established treatment or vaccine. The tetrameric glycoprotein complex gH/gL/gQ1/gQ2 (tetramer) on the viral envelope is the ligand for the entry of HHV-6B, which is the critical part for its infection. Here, we established a soluble form of the tetramer and purified it to homogeneity. After several immunizations of tetramer along with different combinations of adjuvants in mice, we observed that it greatly induced defensive immunity against HHV-6B, indicating that the tetramer has the potential to become a vaccine candidate. Moreover, our results also revealed that combinations of distinct adjuvants with the tetramer would be useful as an HHV-6B vaccine strategy for different purposes.
Collapse
Affiliation(s)
- Bochao Wang
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kouichi Hara
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Akiko Kawabata
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Mitsuhiro Nishimura
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Aika Wakata
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Lidya Handayani Tjan
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Anna Lystia Poetranto
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Chisato Yamamoto
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yasunari Haseda
- Vaccine Dynamics Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Taiki Aoshi
- Vaccine Dynamics Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Lisa Munakata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Masato Komatsu
- Department of Diagnostic Pathology, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Ryuko Tsukamoto
- Department of Diagnostic Pathology, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- * E-mail:
| |
Collapse
|
27
|
Forrest C, Gomes A, Reeves M, Male V. NK Cell Memory to Cytomegalovirus: Implications for Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8030394. [PMID: 32698362 PMCID: PMC7563466 DOI: 10.3390/vaccines8030394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells that recognize and eliminate virally-infected and cancerous cells. Members of the innate immune system are not usually considered to mediate immune memory, but over the past decade evidence has emerged that NK cells can do this in several contexts. Of these, the best understood and most widely accepted is the response to cytomegaloviruses, with strong evidence for memory to murine cytomegalovirus (MCMV) and several lines of evidence suggesting that the same is likely to be true of human cytomegalovirus (HCMV). The importance of NK cells in the context of HCMV infection is underscored by the armory of NK immune evasion genes encoded by HCMV aimed at subverting the NK cell immune response. As such, ongoing studies that have utilized HCMV to investigate NK cell diversity and function have proven instructive. Here, we discuss our current understanding of NK cell memory to viral infection with a focus on the response to cytomegaloviruses. We will then discuss the implications that this will have for the development of a vaccine against HCMV with particular emphasis on how a strategy that can harness the innate immune system and NK cells could be crucial for the development of a vaccine against this high-priority pathogen.
Collapse
Affiliation(s)
- Calum Forrest
- Institute of Immunity & Transplantation, UCL, Royal Free Campus, London NW3 2PF, UK; (C.F.); (A.G.)
| | - Ariane Gomes
- Institute of Immunity & Transplantation, UCL, Royal Free Campus, London NW3 2PF, UK; (C.F.); (A.G.)
| | - Matthew Reeves
- Institute of Immunity & Transplantation, UCL, Royal Free Campus, London NW3 2PF, UK; (C.F.); (A.G.)
- Correspondence: (M.R.); (V.M.)
| | - Victoria Male
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Campus, London SW10 9NH, UK
- Correspondence: (M.R.); (V.M.)
| |
Collapse
|
28
|
Theobald SJ, Kreer C, Khailaie S, Bonifacius A, Eiz-Vesper B, Figueiredo C, Mach M, Backovic M, Ballmaier M, Koenig J, Olbrich H, Schneider A, Volk V, Danisch S, Gieselmann L, Ercanoglu MS, Messerle M, von Kaisenberg C, Witte T, Klawonn F, Meyer-Hermann M, Klein F, Stripecke R. Repertoire characterization and validation of gB-specific human IgGs directly cloned from humanized mice vaccinated with dendritic cells and protected against HCMV. PLoS Pathog 2020; 16:e1008560. [PMID: 32667948 PMCID: PMC7363084 DOI: 10.1371/journal.ppat.1008560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) causes serious complications to immune compromised hosts. Dendritic cells (iDCgB) expressing granulocyte-macrophage colony-stimulating factor, interferon-alpha and HCMV-gB were developed to promote de novo antiviral adaptive responses. Mice reconstituted with a human immune system (HIS) were immunized with iDCgB and challenged with HCMV, resulting into 93% protection. Immunization stimulated the expansion of functional effector memory CD8+ and CD4+ T cells recognizing gB. Machine learning analyses confirmed bone marrow T/CD4+, liver B/IgA+ and spleen B/IgG+ cells as predictive biomarkers of immunization (≈87% accuracy). CD8+ and CD4+ T cell responses against gB were validated. Splenic gB-binding IgM-/IgG+ B cells were sorted and analyzed at a single cell level. iDCgB immunizations elicited human-like IgG responses with a broad usage of various IgG heavy chain V gene segments harboring variable levels of somatic hypermutation. From this search, two gB-binding human monoclonal IgGs were generated that neutralized HCMV infection in vitro. Passive immunization with these antibodies provided proof-of-concept evidence of protection against HCMV infection. This HIS/HCMV in vivo model system supported the validation of novel active and passive immune therapies for future clinical translation. Human cytomegalovirus (HCMV) is a ubiquitous pathogen. As long as the immune system is functional, T and B cells can control HCMV. Yet, for patients who have debilitated immune functions, HCMV infections and reactivations cause major complications. Vaccines or antibodies to prevent or treat HCMV are not yet approved. Novel animal models for testing new immunization approaches are emerging and are important tools to identify biomedical products with a reasonable chance to work in patients. Here, we used a model based on mice transplanted with human immune cells and infected with a traceable HCMV. We tested a cell vaccine (iDCgB) carrying gB, a potent HCMV antigen. The model showed that iDCgB halted the HCMV infection in more than 90% of the mice. We found that antibodies were key players mediating protection. Using state-of-the-art methods, we were able to use the sequences of the human antibodies generated in the mice to construct and produce monoclonal antibodies in the laboratory. Proof-of-concept experiments indicated that administration of these monoclonal antibodies into mice protected them against HCMV infection. In summary, this humanized mouse model was useful to test a vaccine and to generate and test novel antibodies that can be further developed for human use.
Collapse
Affiliation(s)
- Sebastian J. Theobald
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Cologne, Germany
| | - Sahamoddin Khailaie
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Michael Mach
- Institute of Virology, University Erlangen-Nürnberg, Erlangen, Germany
| | - Marija Backovic
- Structural Virology Unit, Department of Virology, Institut Pasteur, Paris, France; CNRS UMR 3569, Paris, France
| | - Matthias Ballmaier
- Research Facility Cell Sorting, Hannover Medical School, Hannover, Germany
| | - Johannes Koenig
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Henning Olbrich
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Andreas Schneider
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Valery Volk
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Simon Danisch
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Meryem Seda Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Cologne, Germany
| | - Martin Messerle
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- Instiute of Virology, Hannover Medical School, Hannover, Germany
| | - Constantin von Kaisenberg
- Department of Obstetrics, Clinic of Gynecology and Reproductive Medicine, and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Torsten Witte
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Frank Klawonn
- Biostatistics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Information Engineering, Ostfalia University, Wolfenbuettel, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Renata Stripecke
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- * E-mail:
| |
Collapse
|
29
|
Sandonís V, García-Ríos E, McConnell MJ, Pérez-Romero P. Role of Neutralizing Antibodies in CMV Infection: Implications for New Therapeutic Approaches. Trends Microbiol 2020; 28:900-912. [PMID: 32448762 DOI: 10.1016/j.tim.2020.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Cytomegalovirus (CMV) infection elicits a potent immune response that includes the stimulation of antibodies with neutralizing activity. Recent studies have focused on elucidating the role of neutralizing antibodies in protecting against CMV infection and disease and characterizing viral antigens against which neutralizing antibodies are directed. Here, we provide a synthesis of recent data regarding the role of neutralizing antibodies in protection against CMV infection/disease. We consider the role of humoral immunity in the context of the global CMV-specific immune response, and the implications that recent findings have for vaccine and antibody-based therapy design.
Collapse
Affiliation(s)
- Virginia Sandonís
- Unit of Infectious Diseases, Hospital Universitario '12 de Octubre', Instituto de Investigación Hospital '12 de Octubre' (i+12), Madrid, Spain
| | - Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael J McConnell
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
30
|
Human Cytomegalovirus Congenital (cCMV) Infection Following Primary and Nonprimary Maternal Infection: Perspectives of Prevention through Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8020194. [PMID: 32340180 PMCID: PMC7349293 DOI: 10.3390/vaccines8020194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 01/26/2023] Open
Abstract
Congenital cytomegalovirus (cCMV) might occur as a result of the human cytomegalovirus (HCMV) primary (PI) or nonprimary infection (NPI) in pregnant women. Immune correlates of protection against cCMV have been partly identified only for PI. Following either PI or NPI, HCMV strains undergo latency. From a diagnostic standpoint, while the serological criteria for the diagnosis of PI are well-established, those for the diagnosis of NPI are still incomplete. Thus far, a recombinant gB subunit vaccine has provided the best results in terms of partial protection. This partial efficacy was hypothetically attributed to the post-fusion instead of the pre-fusion conformation of the gB present in the vaccine. Future efforts should be addressed to verify whether a new recombinant gB pre-fusion vaccine would provide better results in terms of prevention of both PI and NPI. It is still a matter of debate whether human hyperimmune globulin are able to protect from HCMV vertical transmission. In conclusion, the development of an HCMV vaccine that would prevent a significant portion of PI would be a major step forward in the development of a vaccine for both PI and NPI.
Collapse
|
31
|
Cui X, Cao Z, Wang S, Adler SP, McVoy MA, Snapper CM. Immunization with Human Cytomegalovirus Core Fusion Machinery and Accessory Envelope Proteins Elicit Strong Synergistic Neutralizing Activities. Vaccines (Basel) 2020; 8:vaccines8020179. [PMID: 32294946 PMCID: PMC7348949 DOI: 10.3390/vaccines8020179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/04/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (HCMV) core fusion machinery proteins gB and gH/gL, and accessory proteins UL128/UL130/UL131A, are the key envelope proteins that mediate HCMV entry into and infection of host cells. To determine whether these HCMV envelope proteins could elicit neutralizing activities synergistically, we immunized rabbits with individual or various combinations of these proteins adsorbed to aluminum hydroxide mixed with CpG-ODN. We then analyzed serum neutralizing activities with multiple HCMV laboratory strains and clinical isolates. HCMV trimeric gB and gH/gL elicited high and moderate titers of HCMV neutralizing activity, respectively. HCMV gB in combination with gH/gL elicited up to 17-fold higher HCMV neutralizing activities compared to the sum of neutralizing activity elicited by the individual proteins analyzed with both fibroblasts and epithelial cells. HCMV gB+gH/gL+UL128/UL130/UL131A in combination increased the neutralizing activity up to 32-fold compared to the sum of neutralizing activities elicited by the individual proteins analyzed with epithelial cells. Adding UL128/UL130/UL131A to gB and gH/gL combination did not increase further the HCMV neutralizing activity analyzed with fibroblasts. These data suggest that the combination of HCMV core fusion machinery envelope proteins gB+gH/gL or the combination of gB and pentameric complex could be ideal vaccine candidates that would induce optimal immune responses against HCMV infection.
Collapse
Affiliation(s)
- Xinle Cui
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-3498
| | - Zhouhong Cao
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Michael A. McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Clifford M. Snapper
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
32
|
Polymorphisms in Human Cytomegalovirus Glycoprotein O (gO) Exert Epistatic Influences on Cell-Free and Cell-to-Cell Spread and Antibody Neutralization on gH Epitopes. J Virol 2020; 94:JVI.02051-19. [PMID: 31996433 DOI: 10.1128/jvi.02051-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) glycoproteins H and L (gH/gL) can be bound by either gO or the UL128 to UL131 proteins (referred to here as UL128-131) to form complexes that facilitate entry and spread, and the complexes formed are important targets of neutralizing antibodies. Strains of HCMV vary considerably in the levels of gH/gL/gO and gH/gL/UL128-131, and this can impact infectivity and cell tropism. In this study, we investigated how natural interstrain variation in the amino acid sequence of gO influences the biology of HCMV. Heterologous gO recombinants were constructed in which 6 of the 8 alleles or genotypes (GT) of gO were analyzed in the backgrounds of strains TR and Merlin (ME). The levels of gH/gL complexes were not affected, but there were impacts on entry, spread, and neutralization by anti-gH antibodies. AD169 (AD) gO (GT1a) [referred to here as ADgO(GT1a)] drastically reduced cell-free infectivity of both strains on fibroblasts and epithelial cells. PHgO(GT2a) increased cell-free infectivity of TR in both cell types, but spread in fibroblasts was impaired. In contrast, spread of ME in both cell types was enhanced by Towne (TN) gO (GT4), despite similar cell-free infectivity. TR expressing TNgO(GT4) was resistant to neutralization by anti-gH antibodies AP86 and 14-4b, whereas ADgO(GT1a) conferred resistance to 14-4b but enhanced neutralization by AP86. Conversely, ME expressing ADgO(GT1a) was more resistant to 14-4b. These results suggest that (i) there are mechanistically distinct roles for gH/gL/gO in cell-free and cell-to-cell spread, (ii) gO isoforms can differentially shield the virus from neutralizing antibodies, and (iii) effects of gO polymorphisms are epistatically dependent on other variable loci.IMPORTANCE Advances in HCMV population genetics have greatly outpaced understanding of the links between genetic diversity and phenotypic variation. Moreover, recombination between genotypes may shuffle variable loci into various combinations with unknown outcomes. UL74(gO) is an important determinant of HCMV infectivity and one of the most diverse loci in the viral genome. By analyzing interstrain heterologous UL74(gO) recombinants, we showed that gO diversity can have dramatic impacts on cell-free and cell-to-cell spread as well as on antibody neutralization and that the manifestation of these impacts can be subject to epistatic influences of the global genetic background. These results highlight the potential limitations of laboratory studies of HCMV biology that use single, isolated genotypes or strains.
Collapse
|
33
|
Modeling Human Cytomegalovirus-Induced Microcephaly in Human iPSC-Derived Brain Organoids. CELL REPORTS MEDICINE 2020; 1:100002. [PMID: 33205055 PMCID: PMC7659592 DOI: 10.1016/j.xcrm.2020.100002] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 01/16/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022]
Abstract
Although congenital infection by human cytomegalovirus (HCMV) is well recognized as a leading cause of neurodevelopmental defects, HCMV neuropathogenesis remains poorly understood. A major challenge for investigating HCMV-induced abnormal brain development is the strict CMV species specificity, which prevents the use of animal models to directly study brain defects caused by HCMV. We show that infection of human-induced pluripotent-stem-cell-derived brain organoids by a “clinical-like” HCMV strain results in reduced brain organoid growth, impaired formation of cortical layers, and abnormal calcium signaling and neural network activity. Moreover, we show that the impeded brain organoid development caused by HCMV can be prevented by neutralizing antibodies (NAbs) that recognize the HCMV pentamer complex. These results demonstrate in a three-dimensional cellular biosystem that HCMV can impair the development and function of the human brain and provide insights into the potential capacity of NAbs to mitigate brain defects resulted from HCMV infection. Human iPSC-derived brain organoids to model HCMV-induced brain malformation “Clinical-like” HCMV strain impairs human brain organoid growth and structure HCMV-infected brain organoids exhibit abnormal calcium signaling and neural network HCMV-induced brain organoid abnormality can be prevented by neutralizing antibodies
Collapse
|
34
|
Evasion of a Human Cytomegalovirus Entry Inhibitor with Potent Cysteine Reactivity Is Concomitant with the Utilization of a Heparan Sulfate Proteoglycan-Independent Route of Entry. J Virol 2020; 94:JVI.02012-19. [PMID: 31941787 PMCID: PMC7081914 DOI: 10.1128/jvi.02012-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/09/2020] [Indexed: 01/22/2023] Open
Abstract
The dependence of viruses on the host cell to complete their replicative cycle renders cellular functions potential targets for novel antivirals. We screened a panel of broadly acting cellular ion channel inhibitors for activity against human cytomegalovirus (HCMV) and identified the voltage-gated chloride ion channel inhibitor 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) as a potent inhibitor of HCMV replication. Time-of-addition studies demonstrated that DIDS inhibited entry via direct interaction with the virion that impeded binding to the plasma membrane. Synthesis and analysis of pharmacological variants of DIDS suggested that intrinsic cysteine, and not lysine, reactivity was important for activity against HCMV. Although sequencing of DIDS-resistant HCMV revealed enrichment of a mutation within UL100 (encoding glycoprotein M) and a specific truncation of glycoprotein RL13, these did not explain the DIDS resistance phenotype. Specifically, only the introduction of the RL13 mutant partially phenocopied the DIDS resistance phenotype. Serendipitously, the entry of DIDS-resistant HCMV also became independent of heparan sulfate proteoglycans (HSPGs), suggesting that evasion of DIDS lowered dependence on an initial interaction with HSPGs. Intriguingly, the DIDS-resistant virus demonstrated increased sensitivity to antibody neutralization, which mapped, in part, to the presence of the gM mutation. Taken together the data characterize the antiviral activity of a novel HCMV inhibitor that drives HCMV infection to occur independently of HSPGs and the generation of increased sensitivity to humoral immunity. The data also demonstrate that compounds with cysteine reactivity have the potential to act as antiviral compounds against HCMV via direct engagement of virions.IMPORTANCE Human cytomegalovirus (HCMV) is major pathogen of nonimmunocompetent individuals that remains in need of new therapeutic options. Here, we identify a potent antiviral compound (4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid [DIDS]), its mechanism of action, and the chemical properties required for its activity. In doing so, the data argue that cysteine-reactive compounds could have the capacity to be developed for anti-HCMV activity. Importantly, the data show that entry of DIDS-resistant virus became independent of heparan sulfate proteoglycans (HSPGs) but, concomitantly, became more sensitive to neutralizing antibody responses. This serendipitous observation suggests that retention of an interaction with HSPGs during the entry process in vivo may be evolutionarily advantageous through better evasion of humoral responses directed against HCMV virions.
Collapse
|
35
|
Koenig J, Theobald SJ, Stripecke R. Modeling Human Cytomegalovirus in Humanized Mice for Vaccine Testing. Vaccines (Basel) 2020; 8:vaccines8010089. [PMID: 32079250 PMCID: PMC7157227 DOI: 10.3390/vaccines8010089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Human cytomegalovirus (HCMV or HHV-5) is a globally spread pathogen with strictly human tropism that establishes a life-long persistence. After primary infection, high levels of long-term T and B cell responses are elicited, but the virus is not cleared. HCMV persists mainly in hematopoietic reservoirs, whereby occasional viral reactivation and spread are well controlled in immunocompetent hosts. However, when the immune system cannot control viral infections or reactivations, such as with newborns, patients with immune deficiencies, or immune-compromised patients after transplantations, the lytic outbursts can be severely debilitating or lethal. The development of vaccines for immunization of immune-compromised hosts has been challenging. Several vaccine candidates did not reach the potency expected in clinical trials and were not approved. Before anti-HCMV vaccines can be tested pre-clinically in immune-compromised hosts, reliable in vivo models recapitulating HCMV infection might accelerate their clinical translation. Therefore, immune-deficient mouse strains implanted with human cells and tissues and developing a human immune system (HIS) are being explored to test anti-HCMV vaccines. HIS-mice resemble immune-compromised hosts as they are equipped with antiviral human T and B cells, but the immune reactivity is overall low. Several groups have independently shown that HCMV infections and reactivations can be mirrored in HIS mice. However, these models and the analyses employed varied widely. The path forward is to improve human immune reconstitution and standardize the analyses of adaptive responses so that HIS models can be forthrightly used for testing novel generations of anti-HCMV vaccines in the preclinical pipeline.
Collapse
Affiliation(s)
- Johannes Koenig
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, 30625 Hannover, Germany; (J.K.); (S.J.T.)
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30625 Hannover, Germany
| | - Sebastian J. Theobald
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, 30625 Hannover, Germany; (J.K.); (S.J.T.)
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30625 Hannover, Germany
| | - Renata Stripecke
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, 30625 Hannover, Germany; (J.K.); (S.J.T.)
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-(511)-532-6999; Fax: +49-(511)-532-6975
| |
Collapse
|
36
|
Virus-Like Particles and Nanoparticles for Vaccine Development against HCMV. Viruses 2019; 12:v12010035. [PMID: 31905677 PMCID: PMC7019358 DOI: 10.3390/v12010035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/21/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) infects more than 70% of the human population worldwide. HCMV is responsible for high morbidity and mortality in immunocompromised patients and remains the leading viral cause of congenital birth defects. Despite considerable efforts in vaccine and therapeutic development, HCMV infection still represents an unmet clinical need and a life-threatening disease in immunocompromised individuals and newborns. Immune repertoire interrogation of HCMV seropositive patients allowed the identification of several potential antigens for vaccine design. However, recent HCMV vaccine clinical trials did not lead to a satisfactory outcome in term of efficacy. Therefore, combining antigens with orthogonal technologies to further increase the induction of neutralizing antibodies could improve the likelihood of a vaccine to reach protective efficacy in humans. Indeed, presentation of multiple copies of an antigen in a repetitive array is known to drive a more robust humoral immune response than its soluble counterpart. Virus-like particles (VLPs) and nanoparticles (NPs) are powerful platforms for multivalent antigen presentation. Several self-assembling proteins have been successfully used as scaffolds to present complex glycoprotein antigens on their surface. In this review, we describe some key aspects of the immune response to HCMV and discuss the scaffolds that were successfully used to increase vaccine efficacy against viruses with unmet medical need.
Collapse
|
37
|
Tabata T, Petitt M, Fang-Hoover J, Freed DC, Li F, An Z, Wang D, Fu TM, Pereira L. Neutralizing Monoclonal Antibodies Reduce Human Cytomegalovirus Infection and Spread in Developing Placentas. Vaccines (Basel) 2019; 7:vaccines7040135. [PMID: 31569508 PMCID: PMC6963214 DOI: 10.3390/vaccines7040135] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/16/2019] [Accepted: 09/22/2019] [Indexed: 12/18/2022] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection is a leading cause of birth defects worldwide, yet the most effective strategies for preventing virus transmission during pregnancy are unknown. We measured the efficacy of human monoclonal antibodies (mAbs) to HCMV attachment/entry factors glycoprotein B (gB) and the pentameric complex, gH/gL-pUL128–131, in preventing infection and spread of a clinical strain in primary placental cells and explants of developing anchoring villi. A total of 109 explants from five first-trimester placentas were cultured, and infection was analyzed in over 400 cell columns containing ~120,000 cytotrophoblasts (CTBs). mAbs to gB and gH/gL, 3-25 and 3-16, respectively, neutralized infection in stromal fibroblasts and trophoblast progenitor cells. mAbs to pUL128-131 of the pentameric complex, 1-103 and 2-18, neutralized infection of amniotic epithelial cells better than mAbs 3-25 and 3-16 and hyperimmune globulin. Select mAbs neutralized infection of cell column CTBs, with mAb 2-18 most effective, followed by mAb 3-25. Treatment of anchoring villi with mAbs postinfection reduced spread in CTBs and impaired formation of virion assembly compartments, with mAb 2-18 achieving better suppression at lower concentrations. These results predict that antibodies generated by HCMV vaccines or used for passive immunization have the potential to reduce transplacental transmission and congenital disease.
Collapse
Affiliation(s)
- Takako Tabata
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA.
| | - Matthew Petitt
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA.
| | - June Fang-Hoover
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA.
| | | | | | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Dai Wang
- Merck & Co., Inc., Kenilworth, NJ 07033, USA.
| | - Tong-Ming Fu
- Merck & Co., Inc., Kenilworth, NJ 07033, USA.
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Lenore Pereira
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
38
|
Chéneau C, Coulon F, Porkolab V, Fieschi F, Laurant S, Razanajaona-Doll D, Pin JJ, Borst EM, Messerle M, Bressollette-Bodin C, Halary F. Fine Mapping the Interaction Between Dendritic Cell-Specific Intercellular Adhesion Molecule (ICAM)-3-Grabbing Nonintegrin and the Cytomegalovirus Envelope Glycoprotein B. J Infect Dis 2019; 218:490-503. [PMID: 29648611 PMCID: PMC6049025 DOI: 10.1093/infdis/jiy194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/03/2018] [Indexed: 12/22/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) is a leading cause of virally induced congenital disorders and morbidities in immunocompromised individuals, ie, transplant, cancer, or acquired immune deficiency syndrome patients. Human cytomegalovirus infects virtually all cell types through the envelope glycoprotein complex gH/gL/gO with or without a contribution of the pentameric gH/gL/pUL128L. Together with gH/gL, the HCMV envelope glycoprotein B (gB) contributes to the viral fusion machinery. Methods We previously showed that gB is a ligand for the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) contributing to HCMV attachment to and infection of DC-SIGN-expressing cells. However, the features of the DC-SIGN/gB interaction remain unclear. To address this point, the role of glycans on gB and the consequences of mutagenesis and antibody-mediated blockades on both partners were examined in this study. Results We identified DC-SIGN amino acid residues involved in this interaction through an extensive mutagenesis study. We also showed the importance of high-mannose N-glycans decorating the asparagine residue at position 208, demonstrating that the antigenic domain 5 on gB is involved in the interaction with DC-SIGN. Finally, antibody-mediated blockades allowed us to identify DC-SIGN as a major HCMV attachment receptor on monocyte-derived dendritic cells. Conclusions Taken together, these results have permitted us to fine-map the interaction between DC-SIGN and HCMV gB.
Collapse
Affiliation(s)
- Coraline Chéneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, France.,Institut de Transplantation Urologie Néphrologie, Centre Hospitalier Universitaire (CHU) Nantes, France
| | - Flora Coulon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, France.,Institut de Transplantation Urologie Néphrologie, Centre Hospitalier Universitaire (CHU) Nantes, France
| | - Vanessa Porkolab
- Université Grenoble Alpes, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institute de Biologie Structurale, Grenoble, France
| | - Franck Fieschi
- Université Grenoble Alpes, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institute de Biologie Structurale, Grenoble, France
| | | | | | | | - Eva Maria Borst
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Céline Bressollette-Bodin
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, France.,Institut de Transplantation Urologie Néphrologie, Centre Hospitalier Universitaire (CHU) Nantes, France.,Service de Virologie Clinique, CHU Hotel Dieu, Nantes, France
| | - Franck Halary
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, France.,Institut de Transplantation Urologie Néphrologie, Centre Hospitalier Universitaire (CHU) Nantes, France
| |
Collapse
|
39
|
Jenks JA, Goodwin ML, Permar SR. The Roles of Host and Viral Antibody Fc Receptors in Herpes Simplex Virus (HSV) and Human Cytomegalovirus (HCMV) Infections and Immunity. Front Immunol 2019; 10:2110. [PMID: 31555298 PMCID: PMC6742691 DOI: 10.3389/fimmu.2019.02110] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/21/2019] [Indexed: 12/01/2022] Open
Abstract
Herpesvirus infections are a leading cause of neurodevelopmental delay in newborns and end-organ disease in immunocompromised patients. One leading strategy to reduce the disease burden of herpesvirus infections such as herpes simplex virus (HSV) and human cytomegalovirus (HCMV) is to prevent primary acquisition by vaccination, yet vaccine development remains hampered by limited understanding of immune correlates of protection against infection. Traditionally, vaccine development has aimed to increase antibody titers with neutralizing function, which involves the direct binding of antibodies to viral particles. However, recent research has explored the numerous other responses that can be mediated by engagement of the antibody constant region (Fc) with Fc receptors (FcR) present on immune cells or with complement molecules. These functions include antiviral responses such as antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Uniquely, herpesviruses encode FcR that can act as distractor receptors for host antiviral IgG, thus enabling viral evasion of host defenses. This review focuses on the relative roles of neutralizing and non-neutralizing functions antibodies that target herpesvirus antigens for HSV and HCMV, as well as the roles of Fc-FcR interactions for both host defenses and viral escape.
Collapse
Affiliation(s)
- Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - Matthew L Goodwin
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States.,Department of Pediatrics, Children's Health and Discovery Institute, Durham, NC, United States
| |
Collapse
|
40
|
Production Strategies for Pentamer-Positive Subviral Dense Bodies as a Safe Human Cytomegalovirus Vaccine. Vaccines (Basel) 2019; 7:vaccines7030104. [PMID: 31480520 PMCID: PMC6789746 DOI: 10.3390/vaccines7030104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Infections with the human cytomegalovirus (HCMV) are associated with severe clinical manifestations in children following prenatal transmission and after viral reactivation in immunosuppressed individuals. The development of an HCMV vaccine has long been requested but there is still no licensed product available. Subviral dense bodies (DB) are immunogenic in pre-clinical models and are thus a promising HCMV vaccine candidate. Recently, we established a virus based on the laboratory strain Towne that synthesizes large numbers of DB containing the pentameric protein complex gH/gL/UL128-131 (Towne-UL130repΔGFP). The work presented here focuses on providing strategies for the production of a safe vaccine based on that strain. A GMP-compliant protocol for DB production was established. Furthermore, the DB producer strain Towne-UL130rep was attenuated by deleting the UL25 open reading frame. Additional genetic modifications aim to abrogate its capacity to replicate in vivo by conditionally expressing pUL51 using the Shield-1/FKBP destabilization system. We further show that the terminase inhibitor letermovir can be used to reduce infectious virus contamination of a DB vaccine by more than two orders of magnitude. Taken together, strategies are provided here that allow for the production of a safe and immunogenic DB vaccine for clinical testing.
Collapse
|
41
|
Dense Bodies of a gH/gL/UL128/UL130/UL131 Pentamer-Repaired Towne Strain of Human Cytomegalovirus Induce an Enhanced Neutralizing Antibody Response. J Virol 2019; 93:JVI.00931-19. [PMID: 31189713 DOI: 10.1128/jvi.00931-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
The development of a vaccine against human cytomegalovirus infection (HCMV) is a high-priority medical goal. The viral pentameric protein complex consisting of glycoprotein H (gH)/gL/UL128-131A (PC) is considered to be an important vaccine component. Its relevance to the induction of a protective antibody response is, however, still a matter of debate. We addressed this issue by using subviral dense bodies (DBs) of HCMV. DBs are exceptionally immunogenic. Laboratory HCMV strain DBs harbor important neutralizing antibody targets, like the glycoproteins B, H, L, M, and N, but they are devoid of the PC. To be able to directly compare the impact of the PC on the levels of neutralizing antibody (NT-abs) responses, a PC-positive variant of the HCMV laboratory strain Towne was established by bacterial artificial chromosome (BAC) mutagenesis (Towne-UL130rep). This strain synthesized PC-positive DBs upon infection of fibroblasts. These DBs were used in side-by-side immunizations with PC-negative Towne DBs. Mouse and rabbit sera were tested to address the impact of the PC on DB immunogenicity. The neutralizing antibody response to PC-positive DBs was superior to that of PC-negative DBs, as tested on fibroblasts, epithelial cells, and endothelial cells and for both animal species used. The experiments revealed the potential of the PC to enhance the antibody response against HCMV. Of particular interest was the finding that PC-positive DBs induced an antibody response that blocked the infection of fibroblasts by a PC-positive viral strain more efficiently than sera following immunizations with PC-negative particles.IMPORTANCE Infections with the human cytomegalovirus (HCMV) may cause severe and even life-threatening disease manifestations in newborns and immunosuppressed individuals. Several strategies for the development of a vaccine against this virus are currently pursued. A critical question in this respect refers to the antigenic composition of a successful vaccine. Using a subviral particle vaccine candidate, we show here that one protein complex of HCMV, termed the pentameric complex (PC), enhances the neutralizing antibody response against viral infection of different cell types. We further show for the first time that this not only relates to the infection of epithelial or endothelial cells; the presence of the PC in the particles also enhanced the neutralizing antibody response against the infection of fibroblasts by HCMV. Together, these findings argue in favor of including the PC in strategies for HCMV vaccine development.
Collapse
|
42
|
Human Cytomegalovirus Cell Tropism and Host Cell Receptors. Vaccines (Basel) 2019; 7:vaccines7030070. [PMID: 31336680 PMCID: PMC6789482 DOI: 10.3390/vaccines7030070] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
In the 1970s–1980s, a striking increase in the number of disseminated human cytomegalovirus (HCMV) infections occurred in immunosuppressed patient populations. Autopsy findings documented the in vivo disseminated infection (besides fibroblasts) of epithelial cells, endothelial cells, and polymorphonuclear leukocytes. As a result, multiple diagnostic assays, such as quantification of HCMV antigenemia (pp65), viremia (infectious virus), and DNAemia (HCMV DNA) in patient blood, were developed. In vitro experiments showed that only low passage or endothelial cell-passaged clinical isolates, and not laboratory-adapted strains, could reproduce both HCMV leuko- and endothelial cell-tropism, which were found through genetic analysis to require the three viral genes UL128, UL130, and UL131 of the HCMV UL128 locus (UL128L). Products of this locus, together with gH/gL, were shown to form the gH/gL/pUL128L pentamer complex (PC) required for infection of epithelial cells/endothelial cells, whereas gH/gL and gO form the gH/gL/gO trimer complex (TC) required for infection of all cell types. In 2016, following previous work, a receptor for the TC that mediates entry into fibroblasts was identified as PDGFRα, while in 2018, a receptor for the PC that mediates entry into endothelial/epithelial cells was identified as neuropilin2 (Nrp2). Furthermore, the olfactory receptor family member OR14I1 was recently identified as a possible additional receptor for the PC in epithelial cells. Thus, current data support two models of viral entry: (i) in fibroblasts, following interaction of PDGFRα with TC, the latter activates gB to fuse the virus envelope with the cell membrane, whereas (ii) in epithelial cells/endothelial cells, interaction of Nrp2 (and OR14I1) with PC promotes endocytosis of virus particles, followed by gB activation by gH/gL/gO (or gH/gL) and final low-pH entry into the cell.
Collapse
|
43
|
Cui X, Cao Z, Wang S, Flora M, Adler SP, McVoy MA, Snapper CM. Immunization of Rabbits with Recombinant Human Cytomegalovirus Trimeric versus Monomeric gH/gL Protein Elicits Markedly Higher Titers of Antibody and Neutralization Activity. Int J Mol Sci 2019; 20:ijms20133158. [PMID: 31261659 PMCID: PMC6651862 DOI: 10.3390/ijms20133158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 11/30/2022] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection and HCMV infection of immunosuppressed patients cause significant morbidity and mortality, and vaccine development against HCMV is a major public health priority. HCMV envelope glycoproteins gB, gH, and gL, which constitute the core fusion machinery, play critical roles in HCMV fusion and entry into host cells. HCMV gB and gH/gL have been reported to elicit potent neutralizing antibodies. Recently, the gB/gH/gL complex was identified in the envelope of HCMV virions, and 16–50% of the total gH/gL bound to gB, forming the gB/gH/gL complex. These findings make the gB/gH/gL a unique HCMV vaccine candidate. We previously reported the production of HCMV trimeric gB and gH/gL heterodimers, and immunization with a combination of trimeric gB and gH/gL heterodimers elicited strong synergistic HCMV-neutralizing activity. To further improve the immunogenicity of gH/gL, we produced trimeric gH/gL. Rabbits immunized with HCMV trimeric gH/gL induced up to 38-fold higher serum titers of gH/gL-specific IgG relative to HCMV monomeric gH/gL, and elicited ~10-fold higher titers of complement-dependent and complement-independent HCMV-neutralizing activity for both epithelial cells and fibroblasts. HCMV trimeric gH/gL in combination with HCMV trimeric gB would be a novel promising HCMV vaccine candidate that could induce highly potent neutralizing activities.
Collapse
Affiliation(s)
- Xinle Cui
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Zhouhong Cao
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shuishu Wang
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Michael Flora
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Clifford M Snapper
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
44
|
Foglierini M, Marcandalli J, Perez L. HCMV Envelope Glycoprotein Diversity Demystified. Front Microbiol 2019; 10:1005. [PMID: 31156572 PMCID: PMC6529531 DOI: 10.3389/fmicb.2019.01005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/18/2019] [Indexed: 12/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the leading viral cause of congenital birth defects and is responsible for morbidity and mortality in immunosuppressed individuals. Considerable efforts have been deployed over the last decade to develop a vaccine capable of preventing HCMV infection. However, in recent clinical trials, vaccines showed at best modest efficacy in preventing infection. These findings might be explained by the high level of sequence polymorphism at the genomic level. To investigate if genomic variation also leads to antigenic variation, we performed a bioinformatic sequence analysis and evaluated the percentage of conservation at the amino acid level of all the proteins present in the virion envelope. Using more than two hundred sequences per envelope glycoprotein and analyzing their degree of conservation, we observe that antigenic variation is in large part limited to three proteins. In addition, we demonstrate that the two leading vaccine candidates, the pentamer and gB complexes, are well conserved at the amino acid level. These results suggest that despite genomic polymorphism, antigenic variability is not involved in the modest efficacy observed in the recent clinical trials for a HCMV vaccine. We therefore propose that next-generation vaccines should focus on stabilizing and refining the gB domains needed to induce a protective humoral response.
Collapse
Affiliation(s)
- Mathilde Foglierini
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jessica Marcandalli
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Laurent Perez
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
45
|
Abstract
Congenital human cytomegalovirus (HCMV) infection and HCMV infection of the immunosuppressed patients cause significant morbidity and mortality, and vaccine development against HCMV is a major public health priority. Efforts to develop HCMV vaccines have been ongoing for 50 y, though no HCMV vaccine has been licensed; encouraging and promising results have obtained from both preclinical and clinical trials. HCMV infection induces a wide range of humoral and T cell-mediated immune responses, and both branches of immunity are correlated with protection. In recent years, there have been novel approaches toward the development of HCMV vaccines and demonstrated that vaccine candidates could potentially provide superior protection over natural immunity acquired following HCMV infection. Further, rationally designed HCMV protein antigens that express native conformational epitopes could elicit optimal immune response. HCMV vaccine candidates, using a multi-antigen approach, to maximize the elicited protective immunity will most likely be successful in development of HCMV vaccine.
Collapse
Affiliation(s)
- Xinle Cui
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Clifford M Snapper
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
46
|
Lanzavecchia A. Dissecting human antibody responses: useful, basic and surprising findings. EMBO Mol Med 2019; 10:emmm.201808879. [PMID: 29363490 PMCID: PMC5840544 DOI: 10.15252/emmm.201808879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human memory B cells and plasma cells represent a rich source of antibodies that have been selected in response to human pathogens. In the last decade, different methods have been developed to interrogate the human memory repertoire and isolate monoclonal antibodies. I will discuss how a target‐agnostic approach based on high‐throughput screening of antibodies produced by cultured B cells and plasma cells has not only provided potent and broadly neutralizing antibodies against a range of pathogens, but has also advanced our understanding of basic aspects of the immune response, from host–pathogen interaction to the role of somatic mutations in affinity maturation and in the diversification of the antibody response. Most surprisingly, this approach has also revealed a new mechanism of diversification based on templated insertion of non‐Ig DNA into antibody genes that we discovered in the context of the immune response to malaria infection.
Collapse
Affiliation(s)
- Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
47
|
Valencia S, Gill RB, Dowdell KC, Wang Y, Hornung R, Bowman JJ, Lacayo JC, Cohen JI. Comparison of vaccination with rhesus CMV (RhCMV) soluble gB with a RhCMV replication-defective virus deleted for MHC class I immune evasion genes in a RhCMV challenge model. Vaccine 2018; 37:333-342. [PMID: 30522906 DOI: 10.1016/j.vaccine.2018.08.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/06/2018] [Accepted: 08/17/2018] [Indexed: 11/25/2022]
Abstract
A human cytomegalovirus (HCMV) vaccine to prevent infection and/or reduce disease associated with congenital infection or visceral disease in transplant recipients is a high priority, but has remained elusive. We created a disabled infectious single cycle rhesus CMV (RhCMV) deleted for glycoprotein L (gL) and the MHC class I immune evasion genes Rh178 and Rh182-189, and restored its epithelial cell tropism by inserting the Rh128-131A genes. The resulting virus, RhCMVRΔgL/178/182-189, was used to vaccinate rhesus monkeys intramuscularly and was compared with vaccination of animals with soluble RhCMV glycoprotein B (gB) in alum/monophosphoryl lipid A or with PBS as a control. At 4 weeks after the second vaccination, an increased frequency of RhCMV-specific CD8 T cells was detected in animals vaccinated with the RhCMVRΔgL/178/182-189 vaccine compared to animals vaccinated with soluble gB. In contrast, monkeys vaccinated with soluble gB had 20-fold higher gB antibody titers than animals vaccinated with RhCMVRΔgL/178/182-189. Titers of neutralizing antibody to RhCMV infection of fibroblasts were higher in animals vaccinated with gB compared with RhCMVRΔgL/178/182-189. Following vaccination, monkeys were challenged subcutaneously with RhCMV UCD59, a low passage virus propagated in monkey kidney epithelial cells. All animals became infected after challenge; however, the frequency of RhCMV detection in the blood was reduced in monkeys vaccinated with soluble gB compared with those vaccinated with RhCMVRΔgL/178/182-189. The frequency of challenge virus shedding in the urine and saliva and the RhCMV copy number shed at these sites was not different in animals vaccinated with RhCMVRΔgL/178/182-189 or soluble gB compared with those that received PBS before challenge. Although the RhCMVRΔgL/178/182-189 vaccine was superior in inducing cellular immunity to RhCMV, it induced lower titers of neutralizing antibody and antibody to gB than the soluble gB vaccine; after challenge, animals vaccinated with soluble gB had a lower frequency of virus detection in the blood than those vaccinated with RhCMVRΔgL/178/182-189.
Collapse
Affiliation(s)
- Sarah Valencia
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rachel B Gill
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kennichi C Dowdell
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yanmei Wang
- Clinical Services Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ron Hornung
- Clinical Services Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - J Jason Bowman
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juan C Lacayo
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
48
|
Bidmos FA, Siris S, Gladstone CA, Langford PR. Bacterial Vaccine Antigen Discovery in the Reverse Vaccinology 2.0 Era: Progress and Challenges. Front Immunol 2018; 9:2315. [PMID: 30349542 PMCID: PMC6187972 DOI: 10.3389/fimmu.2018.02315] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/17/2018] [Indexed: 11/13/2022] Open
Abstract
The ongoing, and very serious, threat from antimicrobial resistance necessitates the development and use of preventative measures, predominantly vaccination. Polysaccharide-based vaccines have provided a degree of success in limiting morbidity from disseminated bacterial infections, including those caused by the major human obligate pathogens, Neisseria meningitidis, and Streptococcus pneumoniae. Limitations of these polysaccharide vaccines, such as partial coverage and induced escape leading to persistence of disease, provide a compelling argument for the development of protein vaccines. In this review, we briefly chronicle approaches that have yielded licensed vaccines before highlighting reverse vaccinology 2.0 and its potential application in the discovery of novel bacterial protein vaccine candidates. Technical challenges and research gaps are also discussed.
Collapse
Affiliation(s)
- Fadil A Bidmos
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Sara Siris
- Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Paul R Langford
- Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
49
|
Diamond DJ, LaRosa C, Chiuppesi F, Contreras H, Dadwal S, Wussow F, Bautista S, Nakamura R, Zaia JA. A fifty-year odyssey: prospects for a cytomegalovirus vaccine in transplant and congenital infection. Expert Rev Vaccines 2018; 17:889-911. [PMID: 30246580 PMCID: PMC6343505 DOI: 10.1080/14760584.2018.1526085] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/17/2018] [Indexed: 02/08/2023]
Abstract
INTRODUCTION It has been almost fifty years since the Towne strain was used by Plotkin and collaborators as the first vaccine candidate for cytomegalovirus (CMV). While that approach showed partial efficacy, there have been a multitude of challenges to improve on the promise of a CMV vaccine. Efforts have been dichotomized into a therapeutic vaccine for patients with CMV-infected allografts, either stem cells or solid organ, and a prophylactic vaccine for congenital infection. AREAS COVERED This review will evaluate research prospects for a therapeutic vaccine for transplant recipients that recognizes CMV utilizing primarily T cell responses. Similarly, we will provide an extensive discussion on attempts to develop a vaccine to prevent the manifestations of congenital infection, based on eliciting a humoral anti-CMV protective response. The review will also describe newer developments that have upended the efforts toward such a vaccine through the discovery of a second pathway of CMV infection that utilizes an alternative receptor for entry using a series of antigens that have been determined to be important for prevention of infection. EXPERT COMMENTARY There is a concerted effort to unify separate therapeutic and prophylactic vaccine strategies into a single delivery agent that would be effective for both transplant-related and congenital infection.
Collapse
Affiliation(s)
- Don J. Diamond
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Corinna LaRosa
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Flavia Chiuppesi
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Heidi Contreras
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Sanjeet Dadwal
- Department of Medical Specialties, City of Hope National
Medical Center, Duarte, CA
| | - Felix Wussow
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Supriya Bautista
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Ryotaro Nakamura
- Department of Hematology & Hematopoetic Cell
Transplantation, City of Hope National Medical Center, Duarte, CA
| | - John A. Zaia
- Center for Gene Therapy, Hematological Malignancy and Stem
Cell Transplantation Institute, City of Hope, Duarte, CA
| |
Collapse
|
50
|
Multiantigenic Modified Vaccinia Virus Ankara Vaccine Vectors To Elicit Potent Humoral and Cellular Immune Reponses against Human Cytomegalovirus in Mice. J Virol 2018; 92:JVI.01012-18. [PMID: 30045984 DOI: 10.1128/jvi.01012-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/17/2018] [Indexed: 12/14/2022] Open
Abstract
As human cytomegalovirus (HCMV) is a common cause of disease in newborns and transplant recipients, developing an HCMV vaccine is considered a major public health priority. Yet an HCMV vaccine candidate remains elusive. Although the precise HCMV immune correlates of protection are unclear, both humoral and cellular immune responses have been implicated in protection against HCMV infection and disease. Here we describe a vaccine approach based on the well-characterized modified vaccinia virus Ankara (MVA) vector to stimulate robust HCMV humoral and cellular immune responses by an antigen combination composed of the envelope pentamer complex (PC), glycoprotein B (gB), and phosphoprotein 65 (pp65). We show that in mice, multiantigenic MVA vaccine vectors simultaneously expressing all five PC subunits, gB, and pp65 elicit potent complement-independent and complement-dependent HCMV neutralizing antibodies as well as mouse and human MHC-restricted, polyfunctional T cell responses by the individual antigens. In addition, we demonstrate that the PC/gB antigen combination of these multiantigenic MVA vectors can enhance the stimulation of humoral immune responses that mediate in vitro neutralization of different HCMV strains and antibody-dependent cellular cytotoxicity. These results support the use of MVA to develop a multiantigenic vaccine candidate for controlling HCMV infection and disease in different target populations, such as pregnant women and transplant recipients.IMPORTANCE The development of a human cytomegalovirus (HCMV) vaccine to prevent congenital disease and transplantation-related complications is an unmet medical need. While many HCMV vaccine candidates have been developed, partial success in preventing or controlling HCMV infection in women of childbearing age and transplant recipients has been observed with an approach based on envelope glycoprotein B (gB). We introduce a novel vaccine strategy based on the clinically deployable modified vaccinia virus Ankara (MVA) vaccine vector to elicit potent humoral and cellular immune responses by multiple immunodominant HCMV antigens, including gB, phosphoprotein 65, and all five subunits of the pentamer complex. These findings could contribute to development of a multiantigenic vaccine strategy that may afford more protection against HCMV infection and disease than a vaccine approach employing solely gB.
Collapse
|