1
|
Lee S, Park JS, Hong JH, Woo H, Lee CH, Yoon JH, Lee KB, Chung S, Yoon DS, Lee JH. Artificial intelligence in bacterial diagnostics and antimicrobial susceptibility testing: Current advances and future prospects. Biosens Bioelectron 2025; 280:117399. [PMID: 40184880 DOI: 10.1016/j.bios.2025.117399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
Recently, artificial intelligence (AI) has emerged as a transformative tool, enhancing the speed, accuracy, and scalability of bacterial diagnostics. This review explores the role of AI in revolutionizing bacterial detection and antimicrobial susceptibility testing (AST) by leveraging machine learning models, including Random Forest, Support Vector Machines (SVM), and deep learning architectures such as Convolutional Neural Networks (CNNs) and transformers. The integration of AI into these methods promises to address the current limitations of traditional techniques, offering a path toward more efficient, accessible, and reliable diagnostic solutions. In particular, AI-based approaches have demonstrated significant potential in resource-limited settings by enabling cost-effective and portable diagnostic solutions, reducing dependency on specialized infrastructure, and facilitating remote bacterial detection through smartphone-integrated platforms and telemedicine applications. This review highlights AI's transformative role in automating data analysis, minimizing human error, and delivering real-time diagnostic results, ultimately improving patient outcomes and optimizing healthcare efficiency. In addition, we not only examine the current advances in machine learning and deep learning but also review their applications in plate counting, mass spectrometry, morphology-based and motion-based microscopic detection, holographic microscopy, colorimetric and fluorescence detection, electrochemical sensors, Raman and Surface-Enhanced Raman Spectroscopy (SERS), and Atomic Force Microscopy (AFM) for bacterial diagnostics and AST. Finally, we discuss the future directions and potential advancements in AI-driven bacterial diagnostics.
Collapse
Affiliation(s)
- Seungmin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul, 02841, Republic of Korea
| | - Jeong Soo Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; School of Mechanical Engineering, Korea University, 145 Anam-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea
| | - Ji Hye Hong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul, 02841, Republic of Korea
| | - Hyowon Woo
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chang-Hyun Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Ju Hwan Yoon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Ki-Baek Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea.
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul, 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea; Astrion Inc, Seoul, 02841, Republic of Korea.
| | - Jeong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Department of Integrative Energy Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Hinnu M, Mets T, Kerkez I, Putrinš M, Kaldalu N, Cathomen G, Pla Verge M, Cichocka D, Sturm A, Tenson T. Nanomotion technology for testing azithromycin susceptibility of Salmonella enterica. Microbiol Spectr 2025:e0238524. [PMID: 40272183 DOI: 10.1128/spectrum.02385-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Invasive salmonellosis caused by Salmonella enterica subspecies affects millions of people every year, mostly children from low-income countries, and is associated with a high mortality rate. Azithromycin is used to treat invasive salmonellosis resistant to first-line drugs despite conflicting effective concentrations in vitro and achievable serum concentrations in vivo. As resistance levels to azithromycin are rising, we demonstrate that nanomotion technology, which is based on measuring changes in bacterial nanoscale movements, can be used for rapid phenotypic testing of Salmonella's susceptibility to azithromycin. Additionally, the use of nanomotion enabled the detection of the bactericidal effect. Nanomotion changes under various culture conditions correlated with susceptibility measured by minimum inhibitory concenctration (MIC) determination, colony-forming unit (CFU) counting, and fluorescent reporter-based estimates of intrabacterial azithromycin accumulation. Environmental conditions, both during azithromycin treatment and throughout the recovery period, significantly affect the antibacterial response to azithromycin. Azithromycin susceptibility in Salmonella is detectable after only 2 h of treatment. This reflects the quick action of the antibiotic, which could be one of the contributing factors behind the clinical efficacy of azithromycin for Salmonella treatment. Our study underscores the critical role of assay conditions, which greatly influenced both azithromycin efficacy and the test results. IMPORTANCE Azithromycin is used as a last-resort antibiotic to treat life-threatening infections caused by Salmonella enterica, a high-priority pathogen according to the World Health Organization. Resistance levels to azithromycin are increasing, highlighting the need for rapid susceptibility testing. In this study, we demonstrate that nanomotion technology can detect azithromycin susceptibility in Salmonella, suggesting its potential use for rapid resistance detection in clinical settings and its future use with azithromycin. Additionally, the study shows that nanomotion technology can be used for susceptibility and postantibiotic effect testing for various pathogens and antibacterials, including those generally regarded as bacteriostatic.
Collapse
Affiliation(s)
- Mariliis Hinnu
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Toomas Mets
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Ivana Kerkez
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Marta Putrinš
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Niilo Kaldalu
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Gino Cathomen
- Resistell AG, Muttenz, Basel-Landschaft, Switzerland
| | | | | | | | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
3
|
Vocat A, Luraschi-Eggemann A, Antoni C, Cathomen G, Cichocka D, Greub G, Riabova O, Makarov V, Opota O, Mendoza A, Cole ST, Sturm A. Real-time evaluation of macozinone activity against Mycobacterium tuberculosis through bacterial nanomotion analysis. Antimicrob Agents Chemother 2025; 69:e0131824. [PMID: 39601550 PMCID: PMC11784433 DOI: 10.1128/aac.01318-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Novel drugs and improved diagnostics for Mycobacterium tuberculosis (MTB) are urgently needed and go hand in hand. We evaluated the in vitro activity of two benzothiazinone drug candidates (MCZ, PBTZ169; BTZ043) and their main metabolites against MTB using advanced nanomotion technology. The results demonstrated significant reductions in MTB viability within 7 h, indicating the potential for rapid, precise antibiotic susceptibility testing based on a phenotypic read-out in real time. PBTZ169 and H2-PBTZ169 achieved 100% separation between the susceptible H37Rv and a resistant dprE1 mutant strain NTB1. These findings support nanomotion technology's potential for faster antibiotic susceptibility testing of novel MTB drug candidates targeting the DprE1 enzyme that could reduce empirical treatment duration and antibiotic resistance selection pressure due to inaccurate treatments.
Collapse
Affiliation(s)
- Anthony Vocat
- Resistell AG, Muttenz, Switzerland
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Claudia Antoni
- Innovative Medicines for Tuberculosis (iM4TB), Lausanne, Switzerland
| | | | | | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Olga Riabova
- Research Centre of Biotechnology RAS, Leninsky Prospect, Moscow, Russia
| | - Vadim Makarov
- Research Centre of Biotechnology RAS, Leninsky Prospect, Moscow, Russia
| | - Onya Opota
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Alfonso Mendoza
- Innovative Medicines for Tuberculosis (iM4TB), Lausanne, Switzerland
| | - Stewart T. Cole
- Innovative Medicines for Tuberculosis (iM4TB), Lausanne, Switzerland
| | | |
Collapse
|
4
|
Al-Khaz'Aly A, Ghandorah S, Topham JJ, Osman N, Louie T, Farshidfar F, Amrein M. A comprehensive method to analyze single-cell vibrations. Biophys J 2025; 124:77-92. [PMID: 39506334 PMCID: PMC11739874 DOI: 10.1016/j.bpj.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024] Open
Abstract
All living cells vibrate depending on metabolism. It has been hypothesized that vibrations are unique for a given phenotype and thereby suitable to diagnose cancer type and stage and to pre-assess the effectiveness of pharmaceutical treatments in real time. However, cells exhibit highly variable vibrational signals, can be subject to environmental noise, and may be challenging to differentiate, having so far limited the phenomenon's applicability. Here, we combined the sensitive method of force spectroscopy using optical tweezers with comprehensive statistical analysis. After data acquisition, the signal was decomposed into its spectral components via fast Fourier transform. Peaks were parameterized and subjected to principal-component analysis to perform an unbiased multivariate statistical evaluation. This method, which we term cell vibrational profiling (CVP), systematically assesses cellular vibrations. To validate the CVP technique, we conducted experiments on five U251 glioblastoma cells, using 8- to 10-μm polystyrene beads as a control for comparison. We collected raw data using optical tweezers, segmenting into 150+ 5-s intervals. Each segment was converted into power spectra representing a frequency resolution of 10,000 Hz for both cells and controls. U251 glioblastoma cells exhibited significant vibrations at 402.6, 1254.6, 1909.0, 2169.4, and 3462.8 Hz (p < 0.0001). This method was further verified with principal-component analysis modeling, which revealed that, in cell-cell comparisons using the selected frequencies, overlap frequently occurred, and clustering was difficult to discern. In contrast, comparison between cell-bead models showed that clustering was easily distinguishable. Our paper establishes CVP as an unbiased, comprehensive technique to analyze cell vibrations. This technique effectively differentiates between cell types and evaluates cellular responses to therapeutic interventions. Notably, CVP is a versatile, cell-agnostic technique requiring minimal sample preparation and no labeling or external interference. By enabling definitive phenotypic assessments, CVP holds promise as a diagnostic tool and could significantly enhance the evaluation of pharmaceutical treatments.
Collapse
Affiliation(s)
- Ali Al-Khaz'Aly
- Department of Medical Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Computer Science, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Salim Ghandorah
- Department of Medical Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jared J Topham
- Department of Medical Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nasir Osman
- Department of Computer Science, Faculty of Science, University of Calgary, Calgary, AB, Canada; Department of Electrical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Taye Louie
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Farshad Farshidfar
- Department of Oncology, University of Calgary, Calgary, AB, Canada; Department of Biomedical Data Science and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California; Tenaya Therapeutics, South San Francisco, California.
| | - Matthias Amrein
- Department of Medical Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
5
|
O’Dowling AT, Rodriguez BJ, Gallagher TK, Thorpe SD. Machine learning and artificial intelligence: Enabling the clinical translation of atomic force microscopy-based biomarkers for cancer diagnosis. Comput Struct Biotechnol J 2024; 24:661-671. [PMID: 39525667 PMCID: PMC11543504 DOI: 10.1016/j.csbj.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
The influence of biomechanics on cell function has become increasingly defined over recent years. Biomechanical changes are known to affect oncogenesis; however, these effects are not yet fully understood. Atomic force microscopy (AFM) is the gold standard method for measuring tissue mechanics on the micro- or nano-scale. Due to its complexity, however, AFM has yet to become integrated in routine clinical diagnosis. Artificial intelligence (AI) and machine learning (ML) have the potential to make AFM more accessible, principally through automation of analysis. In this review, AFM and its use for the assessment of cell and tissue mechanics in cancer is described. Research relating to the application of artificial intelligence and machine learning in the analysis of AFM topography and force spectroscopy of cancer tissue and cells are reviewed. The application of machine learning and artificial intelligence to AFM has the potential to enable the widespread use of nanoscale morphologic and biomechanical features as diagnostic and prognostic biomarkers in cancer treatment.
Collapse
Affiliation(s)
- Aidan T. O’Dowling
- UCD School of Medicine, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Department of Hepatobiliary and Transplant Surgery, St Vincent’s University Hospital, Dublin, Ireland
| | - Brian J. Rodriguez
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- UCD School of Physics, University College Dublin, Dublin, Ireland
| | - Tom K. Gallagher
- UCD School of Medicine, University College Dublin, Dublin, Ireland
- Department of Hepatobiliary and Transplant Surgery, St Vincent’s University Hospital, Dublin, Ireland
| | - Stephen D. Thorpe
- UCD School of Medicine, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Aubry C, Kebbi-Beghdadi C, Luraschi-Eggemann A, Cathomen G, Cichocka D, Sturm A, Greub G, The Eradiamr Consortium. Nanomotion technology: an innovative method to study cell metabolism in Escherichia coli, as a potential indicator for tolerance. J Med Microbiol 2024; 73. [PMID: 39513692 DOI: 10.1099/jmm.0.001912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Introduction. Antibiotic tolerance corresponds to the bacterial ability to survive a transient exposure to antibiotics and is often associated with treatment failure. Current methods of identifying tolerance based on bacterial growth are time-consuming. This study explores the use of a growth-independent method utilizing nanomotion technology to detect antibiotic-tolerant bacteria.Hypothesis. The nanomotion signal obtained from a nanomechanical sensor measures real-time metabolic activity and cellular processes and could provide valuable information about the tolerance of bacteria to antibiotics that cannot be detected by standard antibiotic susceptibility tests.Aim. The aim of this study is to investigate the potential of nanomotion technology to record antibiotic-tolerant bacteria.Methodology. We generated a slow-growing Escherichia coli strain by manipulating mazF expression levels and confirmed its viability by several standard methods. We subsequently measured its nanomotion and the nanomotion of the WT E. coli in the presence or absence of antibiotics. Supervised machine learning was employed to distinguish slow-growing from exponentially growing bacteria. Observations for bacterial nanomotions were confirmed by standard kill curves.Results. We distinguished slow-growing from exponentially growing bacteria using specific features from the nanomotion signal. Furthermore, the exposition of both growth phenotypes to polymyxin decreased the nanomotion signal indicating cell death. Similarly, when exponentially growing cells were exposed to ampicillin, an antibiotic whose efficacy depends on the growth rate, the nanomotion signal also decreased. In contrast, the nanomotion signal remained unchanged for slow-growing bacteria upon exposure to ampicillin. In addition, antibiotic exposure can cause bacterial elongation, in which the biomass of a cell increases without cell division. By overexpressing sulA, we mimicked antibiotic-induced elongation. Differences in the nanomotion signal were observed when comparing elongating and non-elongating phenotypes.Conclusion. This work shows that nanomotion signals entail information about the reaction to antibiotics that standard MIC-based antibiotic susceptibility tests cannot detect. In the future, nanomotion-based antibiotic tolerance tests could be developed for clinical use in chronic or relapsing infections.
Collapse
Affiliation(s)
- Christèle Aubry
- Institute of Microbiology, Lausanne University Hospital and Lausanne University, CH-1011 Lausanne, Switzerland
| | - Carole Kebbi-Beghdadi
- Institute of Microbiology, Lausanne University Hospital and Lausanne University, CH-1011 Lausanne, Switzerland
| | - Amanda Luraschi-Eggemann
- Institute of Microbiology, Lausanne University Hospital and Lausanne University, CH-1011 Lausanne, Switzerland
- Resistell AG, Hofackerstrasse 40, CH-4132 Muttenz, Switzerland
| | - Gino Cathomen
- Resistell AG, Hofackerstrasse 40, CH-4132 Muttenz, Switzerland
| | - Danuta Cichocka
- Resistell AG, Hofackerstrasse 40, CH-4132 Muttenz, Switzerland
| | - Alexander Sturm
- Resistell AG, Hofackerstrasse 40, CH-4132 Muttenz, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital and Lausanne University, CH-1011 Lausanne, Switzerland
| | | |
Collapse
|
7
|
Dietert RR, Dietert JM. Examining Sound, Light, and Vibrations as Tools to Manage Microbes and Support Holobionts, Ecosystems, and Technologies. Microorganisms 2024; 12:905. [PMID: 38792734 PMCID: PMC11123986 DOI: 10.3390/microorganisms12050905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
The vast array of interconnected microorganisms across Earth's ecosystems and within holobionts has been called the "Internet of Microbes." Bacteria and archaea are masters of energy and information collection, storage, transformation, and dissemination using both "wired" and wireless (at a distance) functions. Specific tools affecting microbial energy and information functions offer effective strategies for managing microbial populations within, between, and beyond holobionts. This narrative review focuses on microbial management using a subset of physical modifiers of microbes: sound and light (as well as related vibrations). These are examined as follows: (1) as tools for managing microbial populations, (2) as tools to support new technologies, (3) as tools for healing humans and other holobionts, and (4) as potential safety dangers for microbial populations and their holobionts. Given microbial sensitivity to sound, light, and vibrations, it is critical that we assign a higher priority to the effects of these physical factors on microbial populations and microbe-laden holobionts. We conclude that specific sound, light, and/or vibrational conditions are significant therapeutic tools that can help support useful microbial populations and help to address the ongoing challenges of holobiont disease. We also caution that inappropriate sound, light, and/or vibration exposure can represent significant hazards that require greater recognition.
Collapse
Affiliation(s)
- Rodney R. Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
8
|
Sturm A, Jóźwiak G, Verge MP, Munch L, Cathomen G, Vocat A, Luraschi-Eggemann A, Orlando C, Fromm K, Delarze E, Świątkowski M, Wielgoszewski G, Totu RM, García-Castillo M, Delfino A, Tagini F, Kasas S, Lass-Flörl C, Gstir R, Cantón R, Greub G, Cichocka D. Accurate and rapid antibiotic susceptibility testing using a machine learning-assisted nanomotion technology platform. Nat Commun 2024; 15:2037. [PMID: 38499536 PMCID: PMC10948838 DOI: 10.1038/s41467-024-46213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Antimicrobial resistance (AMR) is a major public health threat, reducing treatment options for infected patients. AMR is promoted by a lack of access to rapid antibiotic susceptibility tests (ASTs). Accelerated ASTs can identify effective antibiotics for treatment in a timely and informed manner. We describe a rapid growth-independent phenotypic AST that uses a nanomotion technology platform to measure bacterial vibrations. Machine learning techniques are applied to analyze a large dataset encompassing 2762 individual nanomotion recordings from 1180 spiked positive blood culture samples covering 364 Escherichia coli and Klebsiella pneumoniae isolates exposed to cephalosporins and fluoroquinolones. The training performances of the different classification models achieve between 90.5 and 100% accuracy. Independent testing of the AST on 223 strains, including in clinical setting, correctly predict susceptibility and resistance with accuracies between 89.5% and 98.9%. The study shows the potential of this nanomotion platform for future bacterial phenotype delineation.
Collapse
Affiliation(s)
- Alexander Sturm
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland.
| | | | - Marta Pla Verge
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Laura Munch
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Gino Cathomen
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Anthony Vocat
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | | | - Clara Orlando
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Katja Fromm
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Eric Delarze
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | | | | | - Roxana M Totu
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - María García-Castillo
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Km 9,1, 28034, Madrid, Spain
| | - Alexandre Delfino
- Institute of Microbiology, Lausanne University Hospital (CHUV) & University of Lausanne (UNIL), 1011, Lausanne, Switzerland
| | - Florian Tagini
- Institute of Microbiology, Lausanne University Hospital (CHUV) & University of Lausanne (UNIL), 1011, Lausanne, Switzerland
| | - Sandor Kasas
- Laboratory of Biological Electron Microscopy (LBEM), École Polytechnique Fédérale de Lausanne (EPFL) and University of Lausanne (UNIL), 1015, Lausanne, Switzerland
- Centre Universitaire Romand de Médecine Légale (UFAM) & Université de Lausanne (UNIL), 1015, Lausanne, Switzerland
| | - Cornelia Lass-Flörl
- Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Universität Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria
| | - Ronald Gstir
- Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Universität Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria
| | - Rafael Cantón
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Km 9,1, 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC). Instituto de Salud Carlos III. Sinesio Delgado 4, 28029, Madrid, Spain
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital (CHUV) & University of Lausanne (UNIL), 1011, Lausanne, Switzerland
| | - Danuta Cichocka
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| |
Collapse
|
9
|
Zhou J, Liao C, Zou M, Villalba MI, Xiong C, Zhao C, Venturelli L, Liu D, Kohler AC, Sekatskii SK, Dietler G, Wang Y, Kasas S. An Optical Fiber-Based Nanomotion Sensor for Rapid Antibiotic and Antifungal Susceptibility Tests. NANO LETTERS 2024; 24:2980-2988. [PMID: 38311846 PMCID: PMC10941246 DOI: 10.1021/acs.nanolett.3c03781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
The emergence of antibiotic and antifungal resistant microorganisms represents nowadays a major public health issue that might push humanity into a post-antibiotic/antifungal era. One of the approaches to avoid such a catastrophe is to advance rapid antibiotic and antifungal susceptibility tests. In this study, we present a compact, optical fiber-based nanomotion sensor to achieve this goal by monitoring the dynamic nanoscale oscillation of a cantilever related to microorganism viability. High detection sensitivity was achieved that was attributed to the flexible two-photon polymerized cantilever with a spring constant of 0.3 N/m. This nanomotion device showed an excellent performance in the susceptibility tests of Escherichia coli and Candida albicans with a fast response in a time frame of minutes. As a proof-of-concept, with the simplicity of use and the potential of parallelization, our innovative sensor is anticipated to be an interesting candidate for future rapid antibiotic and antifungal susceptibility tests and other biomedical applications.
Collapse
Affiliation(s)
- Jiangtao Zhou
- Laboratory
of Physics of Living Matter (LPMV), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department
of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Changrui Liao
- Guangdong
and Hong Kong Joint Research Centre for Optical Fiber Sensors and
Key Laboratory of Optoelectronic Devices and Systems of the Ministry
of Education and Guangdong Province, College of Physics and Optoelectronic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mengqiang Zou
- Guangdong
and Hong Kong Joint Research Centre for Optical Fiber Sensors and
Key Laboratory of Optoelectronic Devices and Systems of the Ministry
of Education and Guangdong Province, College of Physics and Optoelectronic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Maria Ines Villalba
- Laboratory
of Biological Electron Microscopy (LBEM), École Polytechnique Fédérale de Lausanne (EPFL),
and Department of Fundamental Biology, Faculty of Biology and Medicine,
University of Lausanne (UNIL), CH-1015 Lausanne, Switzerland
| | - Cong Xiong
- Guangdong
and Hong Kong Joint Research Centre for Optical Fiber Sensors and
Key Laboratory of Optoelectronic Devices and Systems of the Ministry
of Education and Guangdong Province, College of Physics and Optoelectronic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Cong Zhao
- Guangdong
and Hong Kong Joint Research Centre for Optical Fiber Sensors and
Key Laboratory of Optoelectronic Devices and Systems of the Ministry
of Education and Guangdong Province, College of Physics and Optoelectronic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Leonardo Venturelli
- Laboratory
of Physics of Living Matter (LPMV), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Dan Liu
- Guangdong
and Hong Kong Joint Research Centre for Optical Fiber Sensors and
Key Laboratory of Optoelectronic Devices and Systems of the Ministry
of Education and Guangdong Province, College of Physics and Optoelectronic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Anne-Celine Kohler
- Laboratory
of Physics of Living Matter (LPMV), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sergey K. Sekatskii
- Laboratory
of Physics of Living Matter (LPMV), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Laboratory
of Biological Electron Microscopy (LBEM), École Polytechnique Fédérale de Lausanne (EPFL),
and Department of Fundamental Biology, Faculty of Biology and Medicine,
University of Lausanne (UNIL), CH-1015 Lausanne, Switzerland
| | - Giovanni Dietler
- Laboratory
of Physics of Living Matter (LPMV), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yiping Wang
- Guangdong
and Hong Kong Joint Research Centre for Optical Fiber Sensors and
Key Laboratory of Optoelectronic Devices and Systems of the Ministry
of Education and Guangdong Province, College of Physics and Optoelectronic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Sandor Kasas
- Laboratory
of Biological Electron Microscopy (LBEM), École Polytechnique Fédérale de Lausanne (EPFL),
and Department of Fundamental Biology, Faculty of Biology and Medicine,
University of Lausanne (UNIL), CH-1015 Lausanne, Switzerland
- International
Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine, 1050 Brussels, Belgium
- Centre
Universitaire Romand de Médecine Légale, UFAM, Université de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Villalba MI, Gligorovski V, Rahi SJ, Willaert RG, Kasas S. A simplified version of rapid susceptibility testing of bacteria and yeasts using optical nanomotion detection. Front Microbiol 2024; 15:1328923. [PMID: 38516011 PMCID: PMC10956355 DOI: 10.3389/fmicb.2024.1328923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
We present a novel optical nanomotion-based rapid antibiotic and antifungal susceptibility test. The technique consisted of studying the effects of antibiotics or antifungals on the nanometric scale displacements of bacteria or yeasts to assess their sensitivity or resistance to drugs. The technique relies on a traditional optical microscope, a video camera, and custom-made image analysis software. It provides reliable results in a time frame of 2-4 h and can be applied to motile, non-motile, fast, and slowly growing microorganisms. Due to its extreme simplicity and low cost, the technique can be easily implemented in laboratories and medical centers in developing countries.
Collapse
Affiliation(s)
- Maria I. Villalba
- Laboratory of Biological Electron Microscopy (LBEM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Université de Lausanne, Lausanne, Switzerland
- International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine (NANO), Brussels, Switzerland
| | - Vojislav Gligorovski
- Laboratory of the Physics of Biological Systems (LPBS), Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sahand J. Rahi
- Laboratory of the Physics of Biological Systems (LPBS), Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ronnie G. Willaert
- International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine (NANO), Brussels, Switzerland
- Research Group Structural Biology Brussels, Alliance Research Group VUB-UGhent NanoMicrobiology (NAMI), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Sandor Kasas
- Laboratory of Biological Electron Microscopy (LBEM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Université de Lausanne, Lausanne, Switzerland
- International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine (NANO), Brussels, Switzerland
- Centre Universitaire Romand de Médecine Légale (UFAM), Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Kweku D, Villalba MI, Willaert RG, Yantorno OM, Vela ME, Panorska AK, Kasas S. Machine learning method for the classification of the state of living organisms' oscillations. Front Bioeng Biotechnol 2024; 12:1348106. [PMID: 38515626 PMCID: PMC10955466 DOI: 10.3389/fbioe.2024.1348106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
The World Health Organization highlights the urgent need to address the global threat posed by antibiotic-resistant bacteria. Efficient and rapid detection of bacterial response to antibiotics and their virulence state is crucial for the effective treatment of bacterial infections. However, current methods for investigating bacterial antibiotic response and metabolic state are time-consuming and lack accuracy. To address these limitations, we propose a novel method for classifying bacterial virulence based on statistical analysis of nanomotion recordings. We demonstrated the method by classifying living Bordetella pertussis bacteria in the virulent or avirulence phase, and dead bacteria, based on their cellular nanomotion signal. Our method offers significant advantages over current approaches, as it is faster and more accurate. Additionally, its versatility allows for the analysis of cellular nanomotion in various applications beyond bacterial virulence classification.
Collapse
Affiliation(s)
- David Kweku
- Department of Mathematics and Statistics, University of Nevada Reno, Reno, NV, United States
| | - Maria I. Villalba
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL) and University of Lausanne, Lausanne, Switzerland
- International Joint Research Group VUB-EPFL BioNanotechnology and NanoMedicine (NANO), Brussels, Switzerland
| | - Ronnie G. Willaert
- International Joint Research Group VUB-EPFL BioNanotechnology and NanoMedicine (NANO), Brussels, Switzerland
- Research Group Structural Biology Brussels, Alliance Research Group VUB-UGhent NanoMicrobiology (NAMI), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Osvaldo M. Yantorno
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Facultad de Ciencias Exactas, Universidad Nacional de La Plata—CONICET, Buenos Aires, Argentina
| | - Maria E. Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata—CONICET, Buenos Aires, Argentina
| | - Anna K. Panorska
- Department of Mathematics and Statistics, University of Nevada Reno, Reno, NV, United States
| | - Sandor Kasas
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL) and University of Lausanne, Lausanne, Switzerland
- International Joint Research Group VUB-EPFL BioNanotechnology and NanoMedicine (NANO), Brussels, Switzerland
- Centre Universitaire Romand de Médecine Légale, Unité facultaire d’anatomie et de morphologie (UFAM), Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Vocat A, Sturm A, Jóźwiak G, Cathomen G, Świątkowski M, Buga R, Wielgoszewski G, Cichocka D, Greub G, Opota O. Nanomotion technology in combination with machine learning: a new approach for a rapid antibiotic susceptibility test for Mycobacterium tuberculosis. Microbes Infect 2023; 25:105151. [PMID: 37207717 DOI: 10.1016/j.micinf.2023.105151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Nanomotion technology is a growth-independent approach that can be used to detect and record the vibrations of bacteria attached to cantilevers. We have developed a nanomotion-based antibiotic susceptibility test (AST) protocol for Mycobacterium tuberculosis (MTB). The protocol was used to predict strain phenotype towards isoniazid (INH) and rifampicin (RIF) using a leave-one-out cross-validation (LOOCV) and machine learning techniques. This MTB-nanomotion protocol takes 21 h, including cell suspension preparation, optimized bacterial attachment to functionalized cantilever, and nanomotion recording before and after antibiotic exposure. We applied this protocol to MTB isolates (n = 40) and were able to discriminate between susceptible and resistant strains for INH and RIF with a maximum sensitivity of 97.4% and 100%, respectively, and a maximum specificity of 100% for both antibiotics when considering each nanomotion recording to be a distinct experiment. Grouping recordings as triplicates based on source isolate improved sensitivity and specificity to 100% for both antibiotics. Nanomotion technology can potentially reduce time-to-result significantly compared to the days and weeks currently needed for current phenotypic ASTs for MTB. It can further be extended to other anti-TB drugs to help guide more effective TB treatment.
Collapse
Affiliation(s)
- Anthony Vocat
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland; Resistell AG, Muttenz, 4132, Switzerland
| | | | | | | | | | | | | | | | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland; Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland
| | - Onya Opota
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland.
| |
Collapse
|
13
|
Walther-Antonio M, Schulze-Makuch D. The Hypothesis of a "Living Pulse" in Cells. Life (Basel) 2023; 13:1506. [PMID: 37511881 PMCID: PMC10381587 DOI: 10.3390/life13071506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Motility is a great biosignature and its pattern is characteristic for specific microbes. However, motion does also occur within the cell by the myriads of ongoing processes within the cell and the exchange of gases and nutrients with the outside environment. Here, we propose that the sum of these processes in a microbial cell is equivalent to a pulse in complex organisms and suggest a first approach to measure the "living pulse" in microorganisms. We emphasize that if a "living pulse" can be shown to exist, it would have far-reaching applications, such as for finding life in extreme environments on Earth and in extraterrestrial locations, as well as making sure that life is not present where it should not be, such as during medical procedures and in the food processing industry.
Collapse
Affiliation(s)
- Marina Walther-Antonio
- Department of Surgery, Division of Surgical Research, Mayo Clinic, Rochester, MN 55905, USA
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN 55905, USA
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Dirk Schulze-Makuch
- Astrobiology Group, Center of Astronomy and Astrophysics, Technical University, 10623 Berlin, Germany
- German Research Centre for Geosciences (GFZ), Section Geomicrobiology, 14473 Potsdam, Germany
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany
- School of the Environment, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
14
|
Girasole M, Dinarelli S, Longo G. Correlating nanoscale motion and ATP production in healthy and favism erythrocytes: a real-time nanomotion sensor study. Front Microbiol 2023; 14:1196764. [PMID: 37333637 PMCID: PMC10272347 DOI: 10.3389/fmicb.2023.1196764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Red blood cells (RBCs) are among the simplest, yet physiologically relevant biological specimens, due to their peculiarities, such as their lack of nucleus and simplified metabolism. Indeed, erythrocytes can be seen as biochemical machines, capable of performing a limited number of metabolic pathways. Along the aging path, the cells' characteristics change as they accumulate oxidative and non-oxidative damages, and their structural and functional properties degrade. Methods In this work, we have studied RBCs and the activation of their ATP-producing metabolism using a real-time nanomotion sensor. This device allowed time-resolved analyses of the activation of this biochemical pathway, measuring the characteristics and the timing of the response at different points of their aging and the differences observed in favism erythrocytes in terms of the cellular reactivity and resilience to aging. Favism is a genetic defect of erythrocytes, which affects their ability to respond to oxidative stresses but that also determines differences in the metabolic and structural characteristic of the cells. Results Our work shows that RBCs from favism patients exhibit a different response to the forced activation of the ATP synthesis compared to healthy cells. In particular, the favism cells, compared to healthy erythrocytes, show a greater resilience to the aging-related insults which was in good accord with the collected biochemical data on ATP consumption and reload. Conclusion This surprisingly higher endurance against cell aging can be addressed to a special mechanism of metabolic regulation that permits lower energy consumption in environmental stress conditions.
Collapse
|
15
|
Zhou J, Huang J, Huang H, Zhao C, Zou M, Liu D, Weng X, Liu L, Qu J, Liu L, Liao C, Wang Y. Fiber-integrated cantilever-based nanomechanical biosensors as a tool for rapid antibiotic susceptibility testing. BIOMEDICAL OPTICS EXPRESS 2023; 14:1862-1873. [PMID: 37206142 PMCID: PMC10191643 DOI: 10.1364/boe.484015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/19/2023] [Accepted: 03/10/2023] [Indexed: 05/21/2023]
Abstract
There is an urgent need for developing rapid and affordable antibiotic susceptibility testing (AST) technologies to inhibit the overuse of antibiotics. In this study, a novel microcantilever nanomechanical biosensor based on Fabry-Pérot interference demodulation was developed for AST. To construct the biosensor, a cantilever was integrated with the single mode fiber in order to form the Fabry-Pérot interferometer (FPI). After the attachment of bacteria on the cantilever, the fluctuations of cantilever caused by the bacterial movements were detected by monitoring the changes of resonance wavelength in the interference spectrum. We applied this methodology to Escherichia coli and Staphylococcus aureus, showing the amplitude of cantilever's fluctuations was positively related on the quantity of bacteria immobilized on the cantilever and associated with the bacterial metabolism. The response of bacteria to antibiotics was dependent on the types of bacteria, the types and concentrations of antibiotics. Moreover, the minimum inhibitory and bactericidal concentrations for Escherichia coli were obtained within 30 minutes, demonstrating the capacity of this method for rapid AST. Benefiting from the simplicity and portability of the optical fiber FPI-based nanomotion detection device, the developed nanomechanical biosensor in this study provides a promising technique for AST and a more rapid alternative for clinical laboratories.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, Shenzhen University, Shenzhen 518060, China
| | - Jiabin Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, Shenzhen University, Shenzhen 518060, China
| | - Haoqiang Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, Shenzhen University, Shenzhen 518060, China
| | - Cong Zhao
- Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518000, China
| | - Mengqiang Zou
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, Shenzhen University, Shenzhen 518060, China
| | - Dejun Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyu Weng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Li Liu
- Department of Electronic Engineering, Chinese University of Hong Kong, Hong Kong, China
| | - Changrui Liao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
16
|
Pleskova SN, Lazarenko EV, Sudakova IS, Kriukov RN, Bezrukov NA. A New Method for Express Detection of Antibiotic Resistance. APPL BIOCHEM MICRO+ 2023. [DOI: 10.1134/s0003683823010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
17
|
Wang Z, Li D, Shi Y, Sun Y, Okeke SI, Yang L, Zhang W, Zhang Z, Shi Y, Xiao L. Recent Implementations of Hydrogel-Based Microbial Electrochemical Technologies (METs) in Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:641. [PMID: 36679438 PMCID: PMC9866333 DOI: 10.3390/s23020641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Hydrogel materials have been used extensively in microbial electrochemical technology (MET) and sensor development due to their high biocompatibility and low toxicity. With an increasing demand for sensors across different sectors, it is crucial to understand the current state within the sectors of hydrogel METs and sensors. Surprisingly, a systematic review examining the application of hydrogel-based METs to sensor technologies has not yet been conducted. This review aimed to identify the current research progress surrounding the incorporation of hydrogels within METs and sensors development, with a specific focus on microbial fuel cells (MFCs) and microbial electrolysis cells (MECs). The manufacturing process/cost, operational performance, analysis accuracy and stability of typical hydrogel materials in METs and sensors were summarised and analysed. The current challenges facing the technology as well as potential direction for future research were also discussed. This review will substantially promote the understanding of hydrogel materials used in METs and benefit the development of electrochemical biosensors using hydrogel-based METs.
Collapse
Affiliation(s)
- Zeena Wang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Dunzhu Li
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yunhong Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yifan Sun
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Saviour I. Okeke
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Luming Yang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Wen Zhang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Zihan Zhang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yanqi Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- TrinityHaus, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
18
|
Parmar P, Villalba MI, Horii Huber AS, Kalauzi A, Bartolić D, Radotić K, Willaert RG, MacFabe DF, Kasas S. Mitochondrial nanomotion measured by optical microscopy. Front Microbiol 2023; 14:1133773. [PMID: 37032884 PMCID: PMC10078959 DOI: 10.3389/fmicb.2023.1133773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Nanometric scale size oscillations seem to be a fundamental feature of all living organisms on Earth. Their detection usually requires complex and very sensitive devices. However, some recent studies demonstrated that very simple optical microscopes and dedicated image processing software can also fulfill this task. This novel technique, termed as optical nanomotion detection (ONMD), was recently successfully used on yeast cells to conduct rapid antifungal sensitivity tests. In this study, we demonstrate that the ONMD method can monitor motile sub-cellular organelles, such as mitochondria. Here, mitochondrial isolates (from HEK 293 T and Jurkat cells) undergo predictable motility when viewed by ONMD and triggered by mitochondrial toxins, citric acid intermediates, and dietary and bacterial fermentation products (short-chain fatty acids) at various doses and durations. The technique has superior advantages compared to classical methods since it is rapid, possesses a single organelle sensitivity, and is label- and attachment-free.
Collapse
Affiliation(s)
- Priyanka Parmar
- Laboratory of Biological Electron Microscopy, École Polytechnique Fédérale de Lausanne (EPFL) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Maria Ines Villalba
- Laboratory of Biological Electron Microscopy, École Polytechnique Fédérale de Lausanne (EPFL) and University of Lausanne (UNIL), Lausanne, Switzerland
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel and École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- *Correspondence: Maria I. Villalba, ; Sandor Kasas,
| | - Alexandre Seiji Horii Huber
- Laboratory of Biological Electron Microscopy, École Polytechnique Fédérale de Lausanne (EPFL) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Aleksandar Kalauzi
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Dragana Bartolić
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ksenija Radotić
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ronnie Guy Willaert
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel and École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), Research Group Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Derrick F. MacFabe
- Kilee Patchell-Evans Autism Research Group, London, ON, Canada
- Department of Microbiology, Faculty of Medicine, Centre of Healthy Eating and Food Innovation (HEFI), Maastricht University, Maastricht, Netherlands
| | - Sandor Kasas
- Laboratory of Biological Electron Microscopy, École Polytechnique Fédérale de Lausanne (EPFL) and University of Lausanne (UNIL), Lausanne, Switzerland
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel and École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Centre Universitaire Romand de Médecine Légale, UFAM, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Maria I. Villalba, ; Sandor Kasas,
| |
Collapse
|
19
|
Pleskova SN, Lazarenko EV, Bezrukov NA, Bobyk SZ, Boryakov AV, Kriukov RN. Differences in bacteria nanomotion profiles and neutrophil nanomotion during phagocytosis. Front Microbiol 2023; 14:1113353. [PMID: 37032906 PMCID: PMC10076590 DOI: 10.3389/fmicb.2023.1113353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
The main goal of this work is to highlight the connection between nanomotion and the metabolic activity of living cells. We therefore monitored the nanomotion of four different clinical strains of bacteria (prokaryotes) and the bacterial phagocytosis by neutrophil granulocytes (eukaryotes). All clinical strains of bacteria, regardless of their biochemical profile, showed pronounced fluctuations. Importantly, the nature of their nanomotions was different for the different strains. Flagellated bacteria (Escherichia coli, Proteus mirabilis) showed more pronounced movements than the non-flagellated forms (Staphylococcus aureus, Klebsiella pneumoniae). The unprimed neutrophil did not cause any difference in cantilever oscillations with control. However, in the process of phagocytosis of S. aureus (metabolically active state), a significant activation of neutrophil granulocytes was observed and cell nanomotions were maintained at a high level for up to 30 min of observation. These preliminary results indicate that nanomotion seems to be specific to different bacterial species and could be used to monitor, in a label free manner, basic cellular processes.
Collapse
Affiliation(s)
- Svetlana Nikolaevna Pleskova
- Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Nanotechnology and Biotechnology, R.E. Alekseev Nizhny Novgorod State Technical University, Nizhny Novgorod, Russia
- *Correspondence: Svetlana Nikolaevna Pleskova,
| | - Ekaterina Vladimirovna Lazarenko
- Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Nanotechnology and Biotechnology, R.E. Alekseev Nizhny Novgorod State Technical University, Nizhny Novgorod, Russia
| | | | - Sergey Zenonovich Bobyk
- Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | | | - Ruslan Nikolaevich Kriukov
- Department of Semiconductors, Electronics and Nanoelectronics Physics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
20
|
Starodubtseva MN, Chelnokova IA, Shkliarava NM, Villalba MI, Tapalski DV, Kasas S, Willaert RG. Modulation of the nanoscale motion rate of Candida albicans by X-rays. Front Microbiol 2023; 14:1133027. [PMID: 37025638 PMCID: PMC10070863 DOI: 10.3389/fmicb.2023.1133027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Patients undergoing cancer treatment by radiation therapy commonly develop Candida albicans infections (candidiasis). Such infections are generally treated by antifungals that unfortunately also induce numerous secondary effects in the patient. Additional to the effect on the immune system, ionizing radiation influences the vital activity of C. albicans cells themselves; however, the reaction of C. albicans to ionizing radiation acting simultaneously with antifungals is much less well documented. In this study, we explored the effects of ionizing radiation and an antifungal drug and their combined effect on C. albicans. Methods The study essentially relied on a novel technique, referred to as optical nanomotion detection (ONMD) that monitors the viability and metabolic activity of the yeast cells in a label and attachment-free manner. Results and discussion Our findings demonstrate that after exposure to X-ray radiation alone or in combination with fluconazole, low-frequency nanoscale oscillations of whole cells are suppressed and the nanomotion rate depends on the phase of the cell cycle, absorbed dose, fluconazole concentration, and post-irradiation period. In a further development, the ONMD method can help in rapidly determining the sensitivity of C. albicans to antifungals and the individual concentration of antifungals in cancer patients undergoing radiation therapy.
Collapse
Affiliation(s)
- Maria N. Starodubtseva
- Department of Medical and Biological Physics, Gomel State Medical University, Gomel, Belarus
- Laboratory of Bionanoscopy, Institute of Radiobiology of NAS of Belarus, Gomel, Belarus
- *Correspondence: Maria N. Starodubtseva,
| | - Irina A. Chelnokova
- Laboratory of Bionanoscopy, Institute of Radiobiology of NAS of Belarus, Gomel, Belarus
| | | | - María Inés Villalba
- Laboratory of Biological Electron Microscopy, École Polytechnique Fédérale de Lausanne (EPFL), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Dmitry V. Tapalski
- Department of Microbiology, Gomel State Medical University, Gomel, Belarus
| | - Sandor Kasas
- Laboratory of Biological Electron Microscopy, École Polytechnique Fédérale de Lausanne (EPFL), University of Lausanne (UNIL), Lausanne, Switzerland
- Centre Universitaire Romand de Médecine Légale, Unité Facultaire d’Anatomie et de Morphologie (UFAM), University of Lausanne (UNIL), Lausanne, Switzerland
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel and École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ronnie G. Willaert
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel and École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), Research Group Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
21
|
Panchenko AY, Tchaicheeyan O, Berinskii IE, Lesman A. Does the Extracellular Matrix Support Cell-Cell Communication by Elastic Wave Packets? ACS Biomater Sci Eng 2022; 8:5155-5170. [PMID: 36346743 DOI: 10.1021/acsbiomaterials.2c01049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The extracellular matrix (ECM) is a fibrous network supporting biological cells and provides them a medium for interaction. Cells modify the ECM by applying traction forces, and these forces can propagate to long ranges and establish a mechanism of mechanical communication between neighboring cells. Previous studies have mainly focused on analysis of static force transmission across the ECM. In this study, we explore the plausibility of dynamic mechanical interaction, expressed as vibrations or abrupt fluctuations, giving rise to elastic waves propagating along ECM fibers. We use a numerical mass-spring model to simulate the longitudinal and transversal waves propagating along a single ECM fiber and across a 2D random fiber network. The elastic waves are induced by an active contracting cell (signaler) and received by a passive neighboring cell (receiver). We show that dynamic wave propagation may amplify the signal at the receiver end and support up to an order of magnitude stronger mechanical cues and longer-ranged communication relative to static transmission. Also, we report an optimal impulse duration corresponding to the most effective transmission, as well as extreme fast impulses, in which the waves are encaged around the active cell and do not reach the neighboring cell, possibly due to the Anderson localization effect. Finally, we also demonstrate that extracellular fluid viscosity reduces, but still allows, dynamic propagation along embedded ECM fibers. Our results motivate future biological experiments in mechanobiology to investigate, on the one hand, the mechanosensitivity of cells to dynamic forces traveling and guided by the ECM and, on the other hand, the impact of ECM architecture and remodeling on dynamic force transmission and its spectral filtering, dispersion, and decay.
Collapse
Affiliation(s)
- Artem Y Panchenko
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv69978, Israel
| | - Oren Tchaicheeyan
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv69978, Israel
| | - Igor E Berinskii
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv69978, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv69978, Israel.,The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
22
|
Conti M, Andolfi L, Betz-Güttner E, Zilio SD, Lazzarino M. Half-wet nanomechanical sensors for cellular dynamics investigations. BIOMATERIALS ADVANCES 2022; 144:213222. [PMID: 36493536 DOI: 10.1016/j.bioadv.2022.213222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Testing devices based on cell tracking are particularly interesting as diagnostic tools in medicine for antibiotics susceptibility testing and in vitro chemotherapeutic screening. In this framework, the application of nanomechanical sensors has attracted much attention, although some crucial aspects such as the effects of the viscous damping, when operating in physiological conditions environment, still need to be properly solved. To address this problem, we have designed and fabricated a nanomechanical force sensor that operates at the interface between liquid and air. Our sensor consists of a silicon chip including a 500 μm wide Si3N4 suspended membrane where three rectangular silicon nitride cantilevers are defined by a lithographically etched gap. The cantilevers can be operated in air, fully immersed in a liquid environment and in half wetting condition, with one side in contact with the solution and the opposite one in air. The formation of a water meniscus in the gap prevents the leakage of medium to the opposite side, which remained dry and is used to reflect a laser to measure the cantilever deflection. This configuration enables to keep the cells in physiological environment while operating the sensor in dry conditions. The performance of the sensor has been applied to monitor the motion and measures the forces developed by migrating breast cancer cell. The functionalization of one side of the cantilever and the use of a purposely designed chamber of measurements enable the confinement of the cell only on one side of the cantilever. Our data demonstrate that this approach can distinguish the adhesion and contraction forces developed by different cell lines and may represents valuable tool for a fast and quantitative in-vitro screening of new chemotherapeutic drugs targeting cancer cell adhesion and motility.
Collapse
Affiliation(s)
- Martina Conti
- University of Trieste, Department of Physics, PhD in Nanotechnology, 34100 Trieste, Italy; CNR-IOM, Istituto Officina dei Materiali - Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy.
| | - Laura Andolfi
- CNR-IOM, Istituto Officina dei Materiali - Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
| | - Erik Betz-Güttner
- University of Trieste, Department of Physics, PhD in Nanotechnology, 34100 Trieste, Italy; CNR-IOM, Istituto Officina dei Materiali - Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
| | - Simone Dal Zilio
- CNR-IOM, Istituto Officina dei Materiali - Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
| | - Marco Lazzarino
- CNR-IOM, Istituto Officina dei Materiali - Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
| |
Collapse
|
23
|
Rao D, Yan T, Qiao Z, Wang Y, Peng Y, Tu H, Wu S, Zhang Q. Relay-type sensing mode: A strategy to push the limit on nanomechanical sensor sensitivity based on the magneto lever. NANO RESEARCH 2022; 16:3231-3239. [PMID: 36405983 PMCID: PMC9661467 DOI: 10.1007/s12274-022-5049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Ultrasensitive molecular detection and quantization are crucial for many applications including clinical diagnostics, functional proteomics, and drug discovery; however, conventional biochemical sensors cannot satisfy the stringent requirements, and this has resulted in a long-standing dilemma regarding sensitivity improvement. To this end, we have developed an ultrasensitive relay-type nanomechanical sensor based on a magneto lever. By establishing the link between very weak molecular interaction and five orders of magnitude larger magnetic force, analytes at ultratrace level can produce a clearly observable mechanical response. Initially, proof-of-concept studies showed an improved detection limit up to five orders of magnitude when employing the magneto lever, as compared with direct detection using probe alone. In this study, we subsequently demonstrated that the relay-type sensing mode was universal in application ranging from micromolecule to macromolecule detection, which can be easily extended to detect enzymes, DNA, proteins, cells, viruses, bacteria, chemicals, etc. Importantly, we found that, sensitivity was no longer subject to probe affinity when the magneto lever was sufficiently high, theoretically, even reaching single-molecule resolution. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (experimental section) is available in the online version of this article at 10.1007/s12274-022-5049-0.
Collapse
Affiliation(s)
- Depeng Rao
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Tianhao Yan
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Zihan Qiao
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Yu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Yongpei Peng
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Han Tu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| |
Collapse
|
24
|
Lee T, Kim W, Park J, Lee G. Hemolysis-Inspired, Highly Sensitive, Label-Free IgM Detection Using Erythrocyte Membrane-Functionalized Nanomechanical Resonators. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7738. [PMID: 36363329 PMCID: PMC9654754 DOI: 10.3390/ma15217738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Immunoglobulin detection is important for immunoassays, such as diagnosing infectious diseases, evaluating immune status, and determining neutralizing antibody concentrations. However, since most immunoassays rely on labeling methods, there are limitations on determining the limit of detection (LOD) of biosensors. In addition, although the antigen must be immobilized via complex chemical treatment, it is difficult to precisely control the immobilization concentration. This reduces the reproducibility of the biosensor. In this study, we propose a label-free method for antibody detection using microcantilever-based nanomechanical resonators functionalized with erythrocyte membrane (EM). This label-free method focuses on the phenomenon of antibody binding to oligosaccharides (blood type antigen) on the surface of the erythrocyte. We established a method for extracting the EM from erythrocytes and fabricated an EM-functionalized microcantilever (MC), termed EMMC, by surface-coating EM layers on the MC. When the EMMC was treated with immunoglobulin M (IgM), the bioassay was successfully performed in the linear range from 2.2 pM to 22 nM, and the LOD was 2.0 pM. The EMMC also exhibited excellent selectivity compared to other biomolecules such as serum albumin, γ-globulin, and IgM with different paratopes. These results demonstrate that EMMC-based nanotechnology may be utilized in criminal investigations to identify blood types with minimal amounts of blood or to evaluate individual immunity through virus-neutralizing antibody detection.
Collapse
Affiliation(s)
- Taeha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Korea
| | - Woong Kim
- Department of Mechanical Engineering, Hanyang University, Seoul 04763, Korea
| | - Jinsung Park
- Department of Biomechatronics Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Korea
| |
Collapse
|
25
|
Weng X, Mao Z, Fu HM, Chen YP, Guo JS, Fang F, Xu XW, Yan P. Biofilm formation during wastewater treatment: Motility and physiological response of aerobic denitrifying bacteria under ammonia stress based on surface plasmon resonance imaging. BIORESOURCE TECHNOLOGY 2022; 361:127712. [PMID: 35908635 DOI: 10.1016/j.biortech.2022.127712] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
A bacterial image analysis system based on surface plasmon resonance imaging was established to investigate the effect of bacterial motility on biofilm formation under high ammonia nitrogen at the single-cell level. The results showed that the bacterial mean rotation speed and vertical motility distance decreased with the increasing concentration of ammonia nitrogen. Ammonia nitrogen inhibited the metabolic activity of the bacteria, decreasing bacterial motility. Bacterial motility was negatively correlated with the biofilm-formation ability. The biofilm formation ability of Enterobacter cloacae strain HNR exposed to ammonia nitrogen was enhanced by reducing its movement and promoting EPS secretion. Genes related to the tricarboxylic acid cycle and oxidative phosphorylation were down-regulated, indicating inhibition of microbial energy metabolism. Genes related to bacterial secretion and lipopolysaccharide synthesis were up-regulated, facilitating the formation of biofilms and enabling the bacteria to resist ammonia nitrogen stress. This study provides new insights into the biofilm formation under ammonia stress.
Collapse
Affiliation(s)
- Xun Weng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zheng Mao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xiao-Wei Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
26
|
Jiang C, Wang W, Yan B, Chen P, Xu K, Sun Y, Cong Z, Dong T, Zhou Y, Wang Z, Wang X. Nanovibration detection based on a microsphere. OPTICS LETTERS 2022; 47:4560-4563. [PMID: 36048704 DOI: 10.1364/ol.464848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
We propose a novel, to the best of our knowledge, sensor for nanovibration detection based on a microsphere. The sensor consists of a stretched single-mode fiber and a 2 µm microsphere. The light from the optical fiber passes through the microsphere, forming a photonic nanojet (PNJ) phenomenon at the front of the microsphere. The evanescent field in the PNJ enhances the light reflected from the measured object to the single-mode fiber-microsphere probe (SMFMP). Results showed that the system can detect arbitrary nanovibration waveforms in real time with an SMFMP detection resolution of 1 nm. The voltage signal received and the vibration amplitude showed a good linear relationship within the range of 0-100 nm, with a sensitivity of 0.7 mV/nm and a linearity of more than 99%. The sensor is expected to have potential applications in the field of cell nanovibration detection.
Collapse
|
27
|
Al-madani H, Du H, Yao J, Peng H, Yao C, Jiang B, Wu A, Yang F. Living Sample Viability Measurement Methods from Traditional Assays to Nanomotion. BIOSENSORS 2022; 12:453. [PMID: 35884256 PMCID: PMC9313330 DOI: 10.3390/bios12070453] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/18/2022]
Abstract
Living sample viability measurement is an extremely common process in medical, pharmaceutical, and biological fields, especially drug pharmacology and toxicology detection. Nowadays, there are a number of chemical, optical, and mechanical methods that have been developed in response to the growing demand for simple, rapid, accurate, and reliable real-time living sample viability assessment. In parallel, the development trend of viability measurement methods (VMMs) has increasingly shifted from traditional assays towards the innovative atomic force microscope (AFM) oscillating sensor method (referred to as nanomotion), which takes advantage of the adhesion of living samples to an oscillating surface. Herein, we provide a comprehensive review of the common VMMs, laying emphasis on their benefits and drawbacks, as well as evaluating the potential utility of VMMs. In addition, we discuss the nanomotion technique, focusing on its applications, sample attachment protocols, and result display methods. Furthermore, the challenges and future perspectives on nanomotion are commented on, mainly emphasizing scientific restrictions and development orientations.
Collapse
Affiliation(s)
- Hamzah Al-madani
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Du
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junlie Yao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Peng
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyang Yao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Jiang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Fang Yang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| |
Collapse
|
28
|
Saxena S, Punjabi K, Ahamad N, Singh S, Bendale P, Banerjee R. Nanotechnology Approaches for Rapid Detection and Theranostics of Antimicrobial Resistant Bacterial Infections. ACS Biomater Sci Eng 2022; 8:2232-2257. [PMID: 35546526 DOI: 10.1021/acsbiomaterials.1c01516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As declared by WHO, antimicrobial resistance (AMR) is a high priority issue with a pressing need to develop impactful technologies to curb it. The rampant and inappropriate use of antibiotics due to the lack of adequate and timely diagnosis is a leading cause behind AMR evolution. Unfortunately, populations with poor economic status and those residing in densely populated areas are the most affected ones, frequently leading to emergence of AMR pathogens. Classical approaches for AMR diagnostics like phenotypic methods, biochemical assays, and molecular techniques are cumbersome and resource-intensive and involve a long turnaround time to yield confirmatory results. In contrast, recent emergence of nanotechnology-assisted approaches helps to overcome challenges in classical approaches and offer simpler, more sensitive, faster, and more affordable solutions for AMR diagnostics. Nanomaterial platforms (metallic, quantum-dot, carbon-based, upconversion, etc.), nanoparticle-based rapid point-of-care platforms, nano-biosensors (optical, mechanical, electrochemical), microfluidic-assisted devices, and importantly, nanotheranostic devices for diagnostics with treatment of AMR infections are examples of rapidly growing nanotechnology approaches used for AMR management. This review comprehensively summarizes the past 10 years of research progress on nanotechnology approaches for AMR diagnostics and for estimating antimicrobial susceptibility against commonly used antibiotics. This review also highlights several bottlenecks in nanotechnology approaches that need to be addressed prior to considering their translation to clinics.
Collapse
Affiliation(s)
- Survanshu Saxena
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Kapil Punjabi
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Nadim Ahamad
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Subhasini Singh
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Prachi Bendale
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rinti Banerjee
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
29
|
The Dynamics of Single-Cell Nanomotion Behaviour of Saccharomyces cerevisiae in a Microfluidic Chip for Rapid Antifungal Susceptibility Testing. FERMENTATION 2022. [DOI: 10.3390/fermentation8050195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The fast emergence of multi-resistant pathogenic yeasts is caused by the extensive—and sometimes unnecessary—use of broad-spectrum antimicrobial drugs. To rationalise the use of broad-spectrum antifungals, it is essential to have a rapid and sensitive system to identify the most appropriate drug. Here, we developed a microfluidic chip to apply the recently developed optical nanomotion detection (ONMD) method as a rapid antifungal susceptibility test. The microfluidic chip contains no-flow yeast imaging chambers in which the growth medium can be replaced by an antifungal solution without disturbing the nanomotion of the cells in the imaging chamber. This allows for recording the cellular nanomotion of the same cells at regular time intervals of a few minutes before and throughout the treatment with an antifungal. Hence, the real-time response of individual cells to a killing compound can be quantified. In this way, this killing rate provides a new measure to rapidly assess the susceptibility of a specific antifungal. It also permits the determination of the ratio of antifungal resistant versus sensitive cells in a population.
Collapse
|
30
|
Neel BL, Nisler CR, Walujkar S, Araya-Secchi R, Sotomayor M. Elastic versus brittle mechanical responses predicted for dimeric cadherin complexes. Biophys J 2022; 121:1013-1028. [PMID: 35151631 PMCID: PMC8943749 DOI: 10.1016/j.bpj.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/02/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Cadherins are a superfamily of adhesion proteins involved in a variety of biological processes that include the formation of intercellular contacts, the maintenance of tissue integrity, and the development of neuronal circuits. These transmembrane proteins are characterized by ectodomains composed of a variable number of extracellular cadherin (EC) repeats that are similar but not identical in sequence and fold. E-cadherin, along with desmoglein and desmocollin proteins, are three classical-type cadherins that have slightly curved ectodomains and engage in homophilic and heterophilic interactions through an exchange of conserved tryptophan residues in their N-terminal EC1 repeat. In contrast, clustered protocadherins are straighter than classical cadherins and interact through an antiparallel homophilic binding interface that involves overlapped EC1 to EC4 repeats. Here we present molecular dynamics simulations that model the adhesive domains of these cadherins using available crystal structures, with systems encompassing up to 2.8 million atoms. Simulations of complete classical cadherin ectodomain dimers predict a two-phased elastic response to force in which these complexes first softly unbend and then stiffen to unbind without unfolding. Simulated α, β, and γ clustered protocadherin homodimers lack a two-phased elastic response, are brittle and stiffer than classical cadherins and exhibit complex unbinding pathways that in some cases involve transient intermediates. We propose that these distinct mechanical responses are important for function, with classical cadherin ectodomains acting as molecular shock absorbers and with stiffer clustered protocadherin ectodomains facilitating overlap that favors binding specificity over mechanical resilience. Overall, our simulations provide insights into the molecular mechanics of single cadherin dimers relevant in the formation of cellular junctions essential for tissue function.
Collapse
Affiliation(s)
- Brandon L Neel
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio
| | - Collin R Nisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Raul Araya-Secchi
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Santiago, Chile
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio; Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
31
|
Neel BL, Nisler CR, Walujkar S, Araya-Secchi R, Sotomayor M. Collective mechanical responses of cadherin-based adhesive junctions as predicted by simulations. Biophys J 2022; 121:991-1012. [PMID: 35150618 PMCID: PMC8943820 DOI: 10.1016/j.bpj.2022.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/02/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cadherin-based adherens junctions and desmosomes help stabilize cell-cell contacts with additional function in mechano-signaling, while clustered protocadherin junctions are responsible for directing neuronal circuits assembly. Structural models for adherens junctions formed by epithelial cadherin (CDH1) proteins indicate that their long, curved ectodomains arrange to form a periodic, two-dimensional lattice stabilized by tip-to-tip trans interactions (across junction) and lateral cis contacts. Less is known about the exact architecture of desmosomes, but desmoglein (DSG) and desmocollin (DSC) cadherin proteins are also thought to form ordered junctions. In contrast, clustered protocadherin (PCDH)-based cell-cell contacts in neuronal tissues are thought to be responsible for self-recognition and avoidance, and structural models for clustered PCDH junctions show a linear arrangement in which their long and straight ectodomains form antiparallel overlapped trans complexes. Here, we report all-atom molecular dynamics simulations testing the mechanics of minimalistic adhesive junctions formed by CDH1, DSG2 coupled to DSC1, and PCDHγB4, with systems encompassing up to 3.7 million atoms. Simulations generally predict a favored shearing pathway for the adherens junction model and a two-phased elastic response to tensile forces for the adhesive adherens junction and the desmosome models. Complexes within these junctions first unbend at low tensile force and then become stiff to unbind without unfolding. However, cis interactions in both the CDH1 and DSG2-DSC1 systems dictate varied mechanical responses of individual dimers within the junctions. Conversely, the clustered protocadherin PCDHγB4 junction lacks a distinct two-phased elastic response. Instead, applied tensile force strains trans interactions directly, as there is little unbending of monomers within the junction. Transient intermediates, influenced by new cis interactions, are observed after the main rupture event. We suggest that these collective, complex mechanical responses mediated by cis contacts facilitate distinct functions in robust cell-cell adhesion for classical cadherins and in self-avoidance signaling for clustered PCDHs.
Collapse
Affiliation(s)
- Brandon L Neel
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio
| | - Collin R Nisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Raul Araya-Secchi
- Facultad de Ingenieria y Tecnologia, Universidad San Sebastian, Santiago, Chile
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio; Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
32
|
Generation of Electromagnetic Field by Microtubules. Int J Mol Sci 2021; 22:ijms22158215. [PMID: 34360980 PMCID: PMC8348406 DOI: 10.3390/ijms22158215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/02/2023] Open
Abstract
The general mechanism of controlling, information and organization in biological systems is based on the internal coherent electromagnetic field. The electromagnetic field is supposed to be generated by microtubules composed of identical tubulin heterodimers with periodic organization and containing electric dipoles. We used a classical dipole theory of generation of the electromagnetic field to analyze the space–time coherence. The structure of microtubules with the helical and axial periodicity enables the interaction of the field in time shifted by one or more periods of oscillation and generation of coherent signals. Inner cavity excitation should provide equal energy distribution in a microtubule. The supplied energy coherently excites oscillators with a high electrical quality, microtubule inner cavity, and electrons at molecular orbitals and in ‘semiconduction’ and ‘conduction’ bands. The suggested mechanism is supposed to be a general phenomenon for a large group of helical systems.
Collapse
|
33
|
Villalba MI, Venturelli L, Willaert R, Vela ME, Yantorno O, Dietler G, Longo G, Kasas S. Nanomotion Spectroscopy as a New Approach to Characterize Bacterial Virulence. Microorganisms 2021; 9:microorganisms9081545. [PMID: 34442624 PMCID: PMC8398272 DOI: 10.3390/microorganisms9081545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Atomic force microscopy (AFM)-based nanomotion detection is a label-free technique that has been used to monitor the response of microorganisms to antibiotics in a time frame of minutes. The method consists of attaching living organisms onto an AFM cantilever and in monitoring its nanometric scale oscillations as a function of different physical-chemical stimuli. Up to now, we only used the cantilever oscillations variance signal to assess the viability of the attached organisms. In this contribution, we demonstrate that a more precise analysis of the motion pattern of the cantilever can unveil relevant medical information about bacterial phenotype. We used B. pertussis as the model organism, it is a slowly growing Gram-negative bacteria which is the agent of whooping cough. It was previously demonstrated that B. pertussis can expresses different phenotypes as a function of the physical-chemical properties of the environment. In this contribution, we highlight that B. pertussis generates a cantilever movement pattern that depends on its phenotype. More precisely, we noticed that nanometric scale oscillations of B. pertussis can be correlated with the virulence state of the bacteria. The results indicate a correlation between metabolic/virulent bacterial states and bacterial nanomotion pattern and paves the way to novel rapid and label-free pathogenic microorganism detection assays.
Collapse
Affiliation(s)
- Maria I. Villalba
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (M.I.V.); (L.V.); (G.D.)
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, 1900 La Plata, Argentina;
| | - Leonardo Venturelli
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (M.I.V.); (L.V.); (G.D.)
| | - Ronnie Willaert
- Research Group Structural Biology Brussels, Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine, 1050 Brussels, Belgium
| | - Maria E. Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, 1900 La Plata, Argentina;
| | - Osvaldo Yantorno
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, 1900 La Plata, Argentina;
| | - Giovanni Dietler
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (M.I.V.); (L.V.); (G.D.)
- International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine, 1050 Brussels, Belgium
| | - Giovanni Longo
- Istituto Di Struttura Della Materia–CNR, 00133 Roma, Italy;
| | - Sandor Kasas
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (M.I.V.); (L.V.); (G.D.)
- International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine, 1050 Brussels, Belgium
- Centre Universitaire Romand de Médecine Légale, UFAM, Université de Lausanne, 1015 Lausanne, Switzerland
- Correspondence:
| |
Collapse
|
34
|
Beloglazova Y, Nikitiuk A, Voronina A, Gagarskikh O, Bayandin Y, Naimark O, Grishko V. Label-Free Single Cell Viability Assay Using Laser Interference Microscopy. BIOLOGY 2021; 10:590. [PMID: 34206974 PMCID: PMC8301067 DOI: 10.3390/biology10070590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
Laser interference microscopy (LIM) is a promising label-free method for single-cell research applicable to cell viability assessment in the studies of mammalian cells. This paper describes the development of a sensitive and reproducible method for assessing cell viability using LIM. The method, based on associated signal processing techniques, has been developed as a result of real-time investigation in phase thickness fluctuations of viable and non-viable MCF-7 cells, reflecting the presence and absence of their metabolic activity. As evinced by the values of the variable vc, this variable determines the viability of a cell only in the attached state (vc exceeds 20 nm2 for viable attached cells). The critical value of the power spectrum slope βc of the phase thickness fluctuations equals 1.00 for attached MCF-7 cells and 0.71 for suspended cells. The slope of the phase fluctuations' power spectrum for MCF-7 cells was determined to exceed the threshold value of βc for a living cell, otherwise the cell is dead. The results evince the power spectrum slope as the most appropriate indicator of cell viability, while the integrated evaluation criterion (vc and βc values) can be used to assay the viability of attached cells.
Collapse
Affiliation(s)
- Yulia Beloglazova
- Perm Federal Scientific Centre, Institute of Technical Chemistry UB RAS, Academician Korolev St. 3, 614013 Perm, Russia; (Y.B.); (A.V.); (O.G.)
| | - Aleksandr Nikitiuk
- Perm Federal Scientific Centre, Institute of Continuous Media Mechanics UB RAS, Academician Korolev St. 1, 614013 Perm, Russia; (A.N.); (Y.B.); (O.N.)
| | - Anna Voronina
- Perm Federal Scientific Centre, Institute of Technical Chemistry UB RAS, Academician Korolev St. 3, 614013 Perm, Russia; (Y.B.); (A.V.); (O.G.)
| | - Olga Gagarskikh
- Perm Federal Scientific Centre, Institute of Technical Chemistry UB RAS, Academician Korolev St. 3, 614013 Perm, Russia; (Y.B.); (A.V.); (O.G.)
| | - Yuriy Bayandin
- Perm Federal Scientific Centre, Institute of Continuous Media Mechanics UB RAS, Academician Korolev St. 1, 614013 Perm, Russia; (A.N.); (Y.B.); (O.N.)
| | - Oleg Naimark
- Perm Federal Scientific Centre, Institute of Continuous Media Mechanics UB RAS, Academician Korolev St. 1, 614013 Perm, Russia; (A.N.); (Y.B.); (O.N.)
| | - Victoria Grishko
- Perm Federal Scientific Centre, Institute of Technical Chemistry UB RAS, Academician Korolev St. 3, 614013 Perm, Russia; (Y.B.); (A.V.); (O.G.)
| |
Collapse
|
35
|
Nano-Motion Analysis for Rapid and Label Free Assessing of Cancer Cell Sensitivity to Chemotherapeutics. ACTA ACUST UNITED AC 2021; 57:medicina57050446. [PMID: 34064439 PMCID: PMC8147836 DOI: 10.3390/medicina57050446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022]
Abstract
Background and Objectives: Optimization of chemotherapy is crucial for cancer patients. Timely and costly efficient treatments are emerging due to the increasing incidence of cancer worldwide. Here, we present a methodology of nano-motion analysis that could be developed to serve as a screening tool able to determine the best chemotherapy option for a particular patient within hours. Materials and Methods: Three different human cancer cell lines and their multidrug resistant (MDR) counterparts were analyzed with an atomic force microscope (AFM) using tipless cantilevers to adhere the cells and monitor their nano-motions. Results: The cells exposed to doxorubicin (DOX) differentially responded due to their sensitivity to this chemotherapeutic. The death of sensitive cells corresponding to the drop in signal variance occurred in less than 2 h after DOX application, while MDR cells continued to move, even showing an increase in signal variance. Conclusions: Nano-motion sensing can be developed as a screening tool that will allow simple, inexpensive and quick testing of different chemotherapeutics for each cancer patient. Further investigations on patient-derived tumor cells should confirm the method’s applicability.
Collapse
|
36
|
Kasas S, Malovichko A, Villalba MI, Vela ME, Yantorno O, Willaert RG. Nanomotion Detection-Based Rapid Antibiotic Susceptibility Testing. Antibiotics (Basel) 2021; 10:287. [PMID: 33801939 PMCID: PMC7999052 DOI: 10.3390/antibiotics10030287] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 01/04/2023] Open
Abstract
Rapid antibiotic susceptibility testing (AST) could play a major role in fighting multidrug-resistant bacteria. Recently, it was discovered that all living organisms oscillate in the range of nanometers and that these oscillations, referred to as nanomotion, stop as soon the organism dies. This finding led to the development of rapid AST techniques based on the monitoring of these oscillations upon exposure to antibiotics. In this review, we explain the working principle of this novel technique, compare the method with current ASTs, explore its application and give some advice about its implementation. As an illustrative example, we present the application of the technique to the slowly growing and pathogenic Bordetella pertussis bacteria.
Collapse
Affiliation(s)
- Sandor Kasas
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.M.); (M.I.V.)
- Unité Facultaire d’Anatomie et de Morphologie (UFAM), CUMRL, University of Lausanne, 1005 Lausanne, Switzerland
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Anton Malovichko
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.M.); (M.I.V.)
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Maria Ines Villalba
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.M.); (M.I.V.)
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - María Elena Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, and CONICET, Diagonal 113 y 64, 1900 La Plata, Argentina;
| | - Osvaldo Yantorno
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina;
| | - Ronnie G. Willaert
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
- Research Group Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
37
|
Cieśluk M, Deptuła P, Piktel E, Fiedoruk K, Suprewicz Ł, Paprocka P, Kot P, Pogoda K, Bucki R. Physics Comes to the Aid of Medicine-Clinically-Relevant Microorganisms through the Eyes of Atomic Force Microscope. Pathogens 2020; 9:pathogens9110969. [PMID: 33233696 PMCID: PMC7699805 DOI: 10.3390/pathogens9110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/01/2022] Open
Abstract
Despite the hope that was raised with the implementation of antibiotics to the treatment of infections in medical practice, the initial enthusiasm has substantially faded due to increasing drug resistance in pathogenic microorganisms. Therefore, there is a need for novel analytical and diagnostic methods in order to extend our knowledge regarding the mode of action of the conventional and novel antimicrobial agents from a perspective of single microbial cells as well as their communities growing in infected sites, i.e., biofilms. In recent years, atomic force microscopy (AFM) has been mostly used to study different aspects of the pathophysiology of noninfectious conditions with attempts to characterize morphological and rheological properties of tissues, individual mammalian cells as well as their organelles and extracellular matrix, and cells’ mechanical changes upon exposure to different stimuli. At the same time, an ever-growing number of studies have demonstrated AFM as a valuable approach in studying microorganisms in regard to changes in their morphology and nanomechanical properties, e.g., stiffness in response to antimicrobial treatment or interaction with a substrate as well as the mechanisms behind their virulence. This review summarizes recent developments and the authors’ point of view on AFM-based evaluation of microorganisms’ response to applied antimicrobial treatment within a group of selected bacteria, fungi, and viruses. The AFM potential in development of modern diagnostic and therapeutic methods for combating of infections caused by drug-resistant bacterial strains is also discussed.
Collapse
Affiliation(s)
- Mateusz Cieśluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Paulina Paprocka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (P.P.); (P.K.)
| | - Patrycja Kot
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (P.P.); (P.K.)
| | - Katarzyna Pogoda
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
- Correspondence:
| |
Collapse
|
38
|
Shabi O, Natan S, Kolel A, Mukherjee A, Tchaicheeyan O, Wolfenson H, Kiryati N, Lesman A. Motion magnification analysis of microscopy videos of biological cells. PLoS One 2020; 15:e0240127. [PMID: 33151976 PMCID: PMC7644077 DOI: 10.1371/journal.pone.0240127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/21/2020] [Indexed: 11/18/2022] Open
Abstract
It is well recognized that isolated cardiac muscle cells beat in a periodic manner. Recently, evidence indicates that other, non-muscle cells, also perform periodic motions that are either imperceptible under conventional lab microscope lens or practically not easily amenable for analysis of oscillation amplitude, frequency, phase of movement and its direction. Here, we create a real-time video analysis tool to visually magnify and explore sub-micron rhythmic movements performed by biological cells and the induced movements in their surroundings. Using this tool, we suggest that fibroblast cells perform small fluctuating movements with a dominant frequency that is dependent on their surrounding substrate and its stiffness.
Collapse
Affiliation(s)
- Oren Shabi
- School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Sari Natan
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Avraham Kolel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Oren Tchaicheeyan
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Nahum Kiryati
- School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
39
|
Abstract
![]()
Growing
antimicrobial resistance (AMR) is a serious global threat to human
health. Current methods to detect resistance include phenotypic antibiotic
sensitivity testing (AST), which measures bacterial growth and is
therefore hampered by a slow time to obtain results (∼12–24
h). Therefore, new rapid phenotypic methods for AST are urgently needed.
Nanomechanical cantilever sensors have recently shown promise for
rapid AST but challenges of bacterial immobilization can lead to variable
results. Herein, a novel cantilever-based method is described for
detecting phenotypic antibiotic resistance within ∼45 min,
capable of detecting single bacteria. This method does not require
complex, variable bacterial immobilization and instead uses a laser
and detector system to detect single bacterial cells in media as they
pass through the laser focus. This provides a simple readout of bacterial
antibiotic resistance by detecting growth (resistant) or death (sensitive),
much faster than the current methods. The potential of this technique
is demonstrated by determining the resistance in both laboratory and
clinical strains of Escherichia coli (E. coli), a key species responsible
for clinically burdensome urinary tract infections. This work provides
the basis for a simple and fast diagnostic tool to detect antibiotic
resistance in bacteria, reducing the health and economic burdens of
AMR.
Collapse
Affiliation(s)
- Isabel Bennett
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
- Division of Medicine, University College London, Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Alice L. B. Pyne
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Rachel A. McKendry
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
- Division of Medicine, University College London, Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
40
|
Alunda BO, Lee YJ. Review: Cantilever-Based Sensors for High Speed Atomic Force Microscopy. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4784. [PMID: 32854193 PMCID: PMC7506678 DOI: 10.3390/s20174784] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
This review critically summarizes the recent advances of the microcantilever-based force sensors for atomic force microscope (AFM) applications. They are one the most common mechanical spring-mass systems and are extremely sensitive to changes in the resonant frequency, thus finding numerous applications especially for molecular sensing. Specifically, we comment on the latest progress in research on the deflection detection systems, fabrication, coating and functionalization of the microcantilevers and their application as bio- and chemical sensors. A trend on the recent breakthroughs on the study of biological samples using high-speed atomic force microscope is also reported in this review.
Collapse
Affiliation(s)
- Bernard Ouma Alunda
- School of Mines and Engineering, Taita Taveta University, P.O. Box 635-80300 Voi, Kenya;
| | - Yong Joong Lee
- School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
41
|
Scandurra R, Scotto d’Abusco A, Longo G. A Review of the Effect of a Nanostructured Thin Film Formed by Titanium Carbide and Titanium Oxides Clustered around Carbon in Graphitic Form on Osseointegration. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1233. [PMID: 32599955 PMCID: PMC7353133 DOI: 10.3390/nano10061233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 11/30/2022]
Abstract
Improving the biocompatibility of implants is an extremely important step towards improving their quality. In this review, we recount the technological and biological process for coating implants with thin films enriched in titanium carbide (TiC), which provide improved cell growth and osseointegration. At first, we discuss the use of a Pulsed Laser Ablation Deposition, which produced films with a good biocompatibility, cellular stimulation and osseointegration. We then describe how Ion Plating Plasma Assisted technology could be used to produce a nanostructured layer composed by graphitic carbon, whose biocompatibility is enhanced by titanium oxides and titanium carbide. In both cases, the nanostructured coating was compact and strongly bound to the bulk titanium, thus particularly useful to protect implants from the harsh oxidizing environment of biological tissues. The morphology and chemistry of the nanostructured coating were particularly desirable for osteoblasts, resulting in improved proliferation and differentiation. The cellular adhesion to the TiC-coated substrates was much stronger than to uncoated surfaces, and the number of philopodia and lamellipodia developed by the cells grown on the TiC-coated samples was higher. Finally, tests performed on rabbits confirmed in vivo that the osseointegration process of the TiC-coated implants is more efficient than that of uncoated titanium implants.
Collapse
Affiliation(s)
- Roberto Scandurra
- Department of Biochemical Sciences, Sapienza University of Roma, Piazzale A. Moro 5, 00185 Roma, Italy;
| | - Anna Scotto d’Abusco
- Department of Biochemical Sciences, Sapienza University of Roma, Piazzale A. Moro 5, 00185 Roma, Italy;
| | - Giovanni Longo
- Consiglio Nazionale delle Ricerche-Istituto di Struttura della Materia, Via del Fosso del Cavaliere, 00133 Roma, Italy;
| |
Collapse
|
42
|
Willaert RG, Vanden Boer P, Malovichko A, Alioscha-Perez M, Radotić K, Bartolić D, Kalauzi A, Villalba MI, Sanglard D, Dietler G, Sahli H, Kasas S. Single yeast cell nanomotions correlate with cellular activity. SCIENCE ADVANCES 2020; 6:eaba3139. [PMID: 32637604 PMCID: PMC7314535 DOI: 10.1126/sciadv.aba3139] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Living single yeast cells show a specific cellular motion at the nanometer scale with a magnitude that is proportional to the cellular activity of the cell. We characterized this cellular nanomotion pattern of nonattached single yeast cells using classical optical microscopy. The distribution of the cellular displacements over a short time period is distinct from random motion. The range and shape of such nanomotion displacement distributions change substantially according to the metabolic state of the cell. The analysis of the nanomotion frequency pattern demonstrated that single living yeast cells oscillate at relatively low frequencies of around 2 hertz. The simplicity of the technique should open the way to numerous applications among which antifungal susceptibility tests seem the most straightforward.
Collapse
Affiliation(s)
- Ronnie G. Willaert
- International Joint Research Group BioNanotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel—Ecole Polytechnique de Lausanne (EPFL), B-1050 Brussels, Belgium—B-1015 Lausanne, Switzerland
- Structural Biology Brussels (SBB), Department of Bioengineering Sciences, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Alliance Research Group NanoMicrobiology (NAMI), Vrije Universiteit Brussel, Brussels B-1050, Belgium—Ghent University, B-9000 Ghent, Belgium
- Visiting professor, Department of Bioscience Engineering, University Antwerp, B-2020 Antwerp, Belgium
| | - Pieterjan Vanden Boer
- International Joint Research Group BioNanotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel—Ecole Polytechnique de Lausanne (EPFL), B-1050 Brussels, Belgium—B-1015 Lausanne, Switzerland
- Structural Biology Brussels (SBB), Department of Bioengineering Sciences, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Alliance Research Group NanoMicrobiology (NAMI), Vrije Universiteit Brussel, Brussels B-1050, Belgium—Ghent University, B-9000 Ghent, Belgium
| | - Anton Malovichko
- International Joint Research Group BioNanotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel—Ecole Polytechnique de Lausanne (EPFL), B-1050 Brussels, Belgium—B-1015 Lausanne, Switzerland
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mitchel Alioscha-Perez
- International Joint Research Group BioNanotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel—Ecole Polytechnique de Lausanne (EPFL), B-1050 Brussels, Belgium—B-1015 Lausanne, Switzerland
- Electronics and Informatics Dept (ETRO), AVSP Lab, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Ksenija Radotić
- Institute for Multidisciplinary Research, University of Belgrade, 11000 Beograd, Serbia
| | - Dragana Bartolić
- Institute for Multidisciplinary Research, University of Belgrade, 11000 Beograd, Serbia
| | - Aleksandar Kalauzi
- Institute for Multidisciplinary Research, University of Belgrade, 11000 Beograd, Serbia
| | - Maria Ines Villalba
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | - Dominique Sanglard
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Giovanni Dietler
- International Joint Research Group BioNanotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel—Ecole Polytechnique de Lausanne (EPFL), B-1050 Brussels, Belgium—B-1015 Lausanne, Switzerland
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Hichem Sahli
- International Joint Research Group BioNanotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel—Ecole Polytechnique de Lausanne (EPFL), B-1050 Brussels, Belgium—B-1015 Lausanne, Switzerland
- Electronics and Informatics Dept (ETRO), AVSP Lab, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Interuniversity Microelectronics Centre (IMEC), B-3001 Heverlee, Belgium
- Visiting professor, Shaanxi Provincial Key Lab on Speech and Image Information Processing, Northwestern Polytechnical University (NPU), Xi’an, China
| | - Sandor Kasas
- International Joint Research Group BioNanotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel—Ecole Polytechnique de Lausanne (EPFL), B-1050 Brussels, Belgium—B-1015 Lausanne, Switzerland
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Unité Facultaire d’Anatomie et de Morphologie (UFAM), CUMRL, University of Lausanne, CH-1005 Lausanne, Switzerland
| |
Collapse
|
43
|
Venturelli L, Kohler AC, Stupar P, Villalba MI, Kalauzi A, Radotic K, Bertacchi M, Dinarelli S, Girasole M, Pešić M, Banković J, Vela ME, Yantorno O, Willaert R, Dietler G, Longo G, Kasas S. A perspective view on the nanomotion detection of living organisms and its features. J Mol Recognit 2020; 33:e2849. [PMID: 32227521 DOI: 10.1002/jmr.2849] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
Abstract
The insurgence of newly arising, rapidly developing health threats, such as drug-resistant bacteria and cancers, is one of the most urgent public-health issues of modern times. This menace calls for the development of sensitive and reliable diagnostic tools to monitor the response of single cells to chemical or pharmaceutical stimuli. Recently, it has been demonstrated that all living organisms oscillate at a nanometric scale and that these oscillations stop as soon as the organisms die. These nanometric scale oscillations can be detected by depositing living cells onto a micro-fabricated cantilever and by monitoring its displacements with an atomic force microscope-based electronics. Such devices, named nanomotion sensors, have been employed to determine the resistance profiles of life-threatening bacteria within minutes, to evaluate, among others, the effect of chemicals on yeast, neurons, and cancer cells. The data obtained so far demonstrate the advantages of nanomotion sensing devices in rapidly characterizing microorganism susceptibility to pharmaceutical agents. Here, we review the key aspects of this technique, presenting its major applications. and detailing its working protocols.
Collapse
Affiliation(s)
- Leonardo Venturelli
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anne-Céline Kohler
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Petar Stupar
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maria I Villalba
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Aleksandar Kalauzi
- Institute for Multidisciplinary Research, Department of Life Sciences, University of Belgrade, Belgrade, Serbia
| | - Ksenija Radotic
- Institute for Multidisciplinary Research, Department of Life Sciences, University of Belgrade, Belgrade, Serbia
| | | | - Simone Dinarelli
- Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, CNR-ISM, Rome, Italy
| | - Marco Girasole
- Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, CNR-ISM, Rome, Italy
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasna Banković
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maria E Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET-CCT La Plata), Universidad Nacional de La Plata, La Plata, Argentina
| | - Osvaldo Yantorno
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ronnie Willaert
- ARG VUB-UGent NanoMicrobiology, IJRG VUB-EPFL BioNanotechnology & NanoMedicine, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Giovanni Dietler
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Giovanni Longo
- Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, CNR-ISM, Rome, Italy
| | - Sandor Kasas
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Centre Universitaire Romand de Médecine Légale, UFAM, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
44
|
Abstract
Yeast resistance to antifungal drugs is a major public health issue. Fungal adhesion onto the host mucosal surface is still a partially unknown phenomenon that is modulated by several actors among which fibronectin plays an important role. Targeting the yeast adhesion onto the mucosal surface could lead to potentially highly efficient treatments. In this work, we explored the effect of fibronectin on the nanomotion pattern of different Candida albicans strains by atomic force microscopy (AFM)-based nanomotion detection and correlated the cellular oscillations to the yeast adhesion onto epithelial cells. Preliminary results demonstrate that strongly adhering strains reduce their nanomotion activity upon fibronectin exposure whereas low adhering Candida remain unaffected. These results open novel avenues to explore cellular reactions upon exposure to stimulating agents and possibly to monitor in a rapid and simple manner adhesive properties of C. albicans.
Collapse
|
45
|
Zhou XL, Yang Y, Wang S, Liu XW. Surface Plasmon Resonance Microscopy: From Single-Molecule Sensing to Single-Cell Imaging. Angew Chem Int Ed Engl 2020; 59:1776-1785. [PMID: 31531917 PMCID: PMC7020607 DOI: 10.1002/anie.201908806] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/30/2019] [Indexed: 12/20/2022]
Abstract
Surface plasmon resonance microscopy (SPRM) is a versatile platform for chemical and biological sensing and imaging. Great progress in exploring its applications, ranging from single-molecule sensing to single-cell imaging, has been made. In this Minireview, we introduce the principles and instrumentation of SPRM. We also summarize the broad and exciting applications of SPRM to the analysis of single entities. Finally, we discuss the challenges and limitations associated with SPRM and potential solutions.
Collapse
Affiliation(s)
- Xiao-Li Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Yunze Yang
- Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Shaopeng Wang
- Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Xian-Wei Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China
| |
Collapse
|
46
|
Liu YN, Chen HB, Liu XW. Rapid Assessment of Water Toxicity by Plasmonic Nanomechanical Sensing. Anal Chem 2020; 92:1309-1315. [PMID: 31820634 DOI: 10.1021/acs.analchem.9b04476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The ability to rapidly and accurately detect water toxicity is crucial for monitoring water quality and assessing toxic risk, but such detection remains a great challenge. Here, we present a plasmonic nanomechanical sensing (PNMS) system for the rapid assessment of water toxicity. This technique is based on the plasmonic sensing of the nanomechanical movement of single bacterial cells, which could be inhibited upon exposure to potential toxicants. By correlating the amplitude of nanomechanical movement with bacterial activity, we detected a variety of toxic substances in water. The direct readout of bacterial activity via PNMS allowed for a high sensitivity to toxicants in water, thereby enabling us to evaluate the acute toxicological effect of chemical compounds rapidly. The PNMS method is promising for online alerts of water quality safety and for assessing chemical hazards. We anticipate that PNMS is also suitable for a wide range of other applications, including bacterial detection and high-throughput screening of antibacterial materials.
Collapse
Affiliation(s)
- Yi-Nan Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei , 230026 , China
| | - Hai-Bo Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei , 230026 , China
| | - Xian-Wei Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei , 230026 , China
| |
Collapse
|
47
|
Vannocci T, Dinarelli S, Girasole M, Pastore A, Longo G. A new tool to determine the cellular metabolic landscape: nanotechnology to the study of Friedreich's ataxia. Sci Rep 2019; 9:19282. [PMID: 31848436 PMCID: PMC6917756 DOI: 10.1038/s41598-019-55799-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/12/2019] [Indexed: 11/23/2022] Open
Abstract
Understanding the cell response to oxidative stress in disease is an important but difficult task. Here, we demonstrate the feasibility of using a nanomotion sensor to study the cellular metabolic landscape. This nanosensor permits the non-invasive real-time detection at the single-cell level and offers high sensitivity and time resolution. We optimised the technique to study the effects of frataxin overexpression in a cellular model of Friedreich's ataxia, a neurodegenerative disease caused by partial silencing of the FXN gene. Previous studies had demonstrated that FXN overexpression are as toxic as silencing, thus indicating the importance of a tight regulation of the frataxin levels. We probed the effects of frataxin overexpression in the presence of oxidative stress insults and measured the metabolic response by the nanosensor. We show that the nanosensor provides new detailed information on the metabolic state of the cell as a function of time, that agrees with and complements data obtained by more traditional techniques. We propose that the nanosensor can be used in the future as a new and powerful tool to study directly how drugs modulate the effects of oxidative stress on Friedreich's ataxia patients and, more in general, on other neurodegenerative processes.
Collapse
Affiliation(s)
- Tommaso Vannocci
- UK Dementia Research Institute at King's College London, London, SE5 9RT, United Kingdom
- The Wohl Institute at King's College London, London, SE5 9RT, United Kingdom
| | - Simone Dinarelli
- Istituto di Struttura della Materia - CNR, Via del Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Marco Girasole
- Istituto di Struttura della Materia - CNR, Via del Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Annalisa Pastore
- UK Dementia Research Institute at King's College London, London, SE5 9RT, United Kingdom.
- The Wohl Institute at King's College London, London, SE5 9RT, United Kingdom.
| | - Giovanni Longo
- Istituto di Struttura della Materia - CNR, Via del Fosso del Cavaliere 100, 00133, Rome, Italy.
| |
Collapse
|
48
|
Kohler A, Venturelli L, Longo G, Dietler G, Kasas S. Nanomotion detection based on atomic force microscopy cantilevers. Cell Surf 2019; 5:100021. [PMID: 32743137 PMCID: PMC7388971 DOI: 10.1016/j.tcsw.2019.100021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/14/2019] [Accepted: 02/26/2019] [Indexed: 11/16/2022] Open
Abstract
Atomic force microscopes (AFM) or low-noise in-house dedicated devices can highlight nanomotion oscillations. The method consists of attaching the organism of interest onto a silicon-based sensor and following its nano-scale motion as a function of time. The nanometric scale oscillations exerted by biological specimens last as long the organism is viable and reflect the status of the microorganism metabolism upon exposure to different chemical or physical stimuli. During the last couple of years, the nanomotion pattern of several types of bacteria, yeasts and mammalian cells has been determined. This article reviews this technique in details, presents results obtained with dozens of different microorganisms and discusses the potential applications of nanomotion in fundamental research, medical microbiology and space exploration.
Collapse
Affiliation(s)
- A.C. Kohler
- Laboratoire de Physique de la Matière Vivante, EPFL, CH-1015 Lausanne, Switzerland
| | - L. Venturelli
- Laboratoire de Physique de la Matière Vivante, EPFL, CH-1015 Lausanne, Switzerland
| | - G. Longo
- Istituto di Struttura della Materia ISM-CNR, Rome, Italy
| | - G. Dietler
- Laboratoire de Physique de la Matière Vivante, EPFL, CH-1015 Lausanne, Switzerland
| | - S. Kasas
- Laboratoire de Physique de la Matière Vivante, EPFL, CH-1015 Lausanne, Switzerland
- Unité Facultaire d’Anatomie et de Morphologie, CUMRL, Université de Lausanne, CH-1005 Lausanne, Switzerland
| |
Collapse
|
49
|
Zhou X, Yang Y, Wang S, Liu X. Surface Plasmon Resonance Microscopy: From Single‐Molecule Sensing to Single‐Cell Imaging. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao‐Li Zhou
- CAS Key Laboratory of Urban Pollutant ConversionDepartment of Applied ChemistryUniversity of Science & Technology of China Hefei 230026 China
| | - Yunze Yang
- Center for Biosensors and Bioelectronics, Biodesign InstituteArizona State University Tempe AZ 85287 USA
| | - Shaopeng Wang
- Center for Biosensors and Bioelectronics, Biodesign InstituteArizona State University Tempe AZ 85287 USA
| | - Xian‐Wei Liu
- CAS Key Laboratory of Urban Pollutant ConversionDepartment of Applied ChemistryUniversity of Science & Technology of China Hefei 230026 China
| |
Collapse
|
50
|
Mertens J, Cuervo A, Carrascosa JL. Nanomechanical detection of Escherichia coli infection by bacteriophage T7 using cantilever sensors. NANOSCALE 2019; 11:17689-17698. [PMID: 31538998 DOI: 10.1039/c9nr05240b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Viruses that infect bacteria (bacteriophages) are a promising alternative treatment for bacterial diseases, especially in the case of antibiotic resistance. Due to a renewed interest in phage therapies, development of rapid and specific detection methods for bacteria/bacteriophage interaction are gaining attention for proper diagnosis and treatment. This paper describes a new method to detect the interaction between Escherichia coli and bacteriophage T7 in a sensitive and quantitative way, using the nanomechanical motion of bacteria adhered to a cantilever surface. Our approach combines both deflection and dynamic frequency-domain characterization. The device was able to determine the viability of a low amount of living bacteria attached to the cantilever, and was used to monitor T7 interaction with E. coli over a wide range of virus concentrations up to 109 PFU ml-1. The nanomechanical assay described here requires no protein labeling and can be performed in a single reaction without additional reagents. The system was able to detect the interaction between a few thousand particles through the fluctuation of mechanical energy over a broad range of frequencies. The presented data provides the basis for more detailed studies of the sequence of molecular events that contribute to the motion of the device.
Collapse
Affiliation(s)
- Johann Mertens
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanoscience), Campus Cantoblanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|