1
|
Xiong T, Luo Q, Chen Q, Shi L, Duan A, Liu S, Li K. Development of a repetitive traumatic brain injury risk function based on real-world accident reconstruction and wavelet packet energy analysis. Front Bioeng Biotechnol 2025; 13:1548265. [PMID: 40206829 PMCID: PMC11980440 DOI: 10.3389/fbioe.2025.1548265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/03/2025] [Indexed: 04/11/2025] Open
Abstract
Existing evaluation criteria for pedestrian head impact injuries focus only on single impacts, with less attention given to repetitive traumatic brain injury (rTBI), which is common in motor vehicle collisions, falls, and sports. Improving pedestrian collision protection safety requires a complete understanding of the tolerance of the repeated collisions of the human brain to injury. Therefore, this study aimed to collect data from 72 pedestrian collisions that were reconstructed using MADYMO and THUMS finite element head models (version 4.0.2). The evaluation metrics for rTBI were developed by integrating brain injury criteria based on time-domain features, including the head injury criterion (HIC), brain injury criterion (BrIC), diffuse axonal multi-axial general evaluation (DAMAGE), and maximum principal strain (MPS), with frequency-domain features obtained from wavelet packet transform energy analysis of head motion responses. The proposed brain tolerance for mild and severe rTBI was estimated through parametric survival analysis and presented as injury risk curves based on the selected injury metrics. The results showed a significant difference in brain injury tolerance between repetitive and single collisions. For the 50% probability of mild and severe brain injury in real accidents, the thresholds for rTBI metrics based on BrIC and DAMAGE were 1.085 and 1.513 and 0.494 and 0.678, respectively, all higher than the thresholds of single-impact reported in previous studies. However, the thresholds for repetitive head injury criteria based on MPS were 0.604 and 0.838, which were lower than the thresholds of single impact reported in previous studies, implying that the prediction of tolerance to repetitive brain more consistent with tissue-level than head kinematics level. This study developed injury risk functions (IRFs) for rTBI by integrating the amplitude-frequency characteristics of head responses and brain injury criteria. This knowledge further provides crucial support for understanding the tolerance to rTBI and enhancing pedestrian safety.
Collapse
Affiliation(s)
- Tao Xiong
- College of Medical Information, Chongqing Medical University, Chongqing, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Qinghang Luo
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Qiuju Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Liangliang Shi
- China Automotive Engineering Research Institute Co., Ltd., Chongqing, China
| | - Aowen Duan
- Department of Medical Engineering, Daping Hospital, Army Medical University, Chongqing, China
| | - Shengxiong Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Kui Li
- College of Medical Information, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Norris C, Murphy SF, Talty CE, VandeVord PJ. Spatial Intracranial Pressure Fields Driven by Blast Overpressure in Rats. Ann Biomed Eng 2024; 52:2641-2654. [PMID: 38851659 PMCID: PMC11402848 DOI: 10.1007/s10439-024-03544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/08/2024] [Indexed: 06/10/2024]
Abstract
Free-field blast exposure imparts a complex, dynamic response within brain tissue that can trigger a cascade of lasting neurological deficits. Full body mechanical and physiological factors are known to influence the body's adaptation to this seemingly instantaneous insult, making it difficult to accurately pinpoint the brain injury mechanisms. This study examined the intracranial pressure (ICP) profile characteristics in a rat model as a function of blast overpressure magnitude and brain location. Metrics such as peak rate of change of pressure, peak pressure, rise time, and ICP frequency response were found to vary spatially throughout the brain, independent of blast magnitude, emphasizing unique spatial pressure fields as a primary biomechanical component to blast injury. This work discusses the ICP characteristics and considerations for finite element models, in vitro models, and translational in vivo models to improve understanding of biomechanics during primary blast exposure.
Collapse
Affiliation(s)
- Carly Norris
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Susan F Murphy
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
- Veterans Affairs Medical Center, Salem, VA, USA
| | - Caiti-Erin Talty
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, USA
| | - Pamela J VandeVord
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA.
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA.
- Veterans Affairs Medical Center, Salem, VA, USA.
| |
Collapse
|
3
|
Bradfield C, Voo L, Bhaduri A, Ramesh KT. Validation of a computational biomechanical mouse brain model for rotational head acceleration. Biomech Model Mechanobiol 2024; 23:1347-1367. [PMID: 38662175 DOI: 10.1007/s10237-024-01843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/17/2024] [Indexed: 04/26/2024]
Abstract
Recent mouse brain injury experiments examine diffuse axonal injury resulting from accelerative head rotations. Evaluating brain deformation during these events would provide valuable information on tissue level thresholds for brain injury, but there are many challenges to imaging the brain's mechanical response during dynamic loading events, such as a blunt head impact. To address this shortcoming, we present an experimentally validated computational biomechanics model of the mouse brain that predicts tissue deformation, given the motion of the mouse head during laboratory experiments. First, we developed a finite element model of the mouse brain that computes tissue strains, given the same head rotations as previously conducted in situ hemicephalic mouse brain experiments. Second, we calibrated the model using a single brain segment, and then validated the model based on the spatial and temporal strain responses of other regions. The result is a computational tool that will provide researchers with the ability to predict brain tissue strains that occur during mouse laboratory experiments, and to link the experiments to the resulting neuropathology, such as diffuse axonal injury.
Collapse
Affiliation(s)
- Connor Bradfield
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street.
| | - Liming Voo
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| | - Anindya Bhaduri
- Department of Civil Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| | - K T Ramesh
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| |
Collapse
|
4
|
Crabtree A, McEvoy C, Muench P, Ivory RA, Rodriguez J, Omer M, Charles T, Meabon JS. Modeling Highly Repetitive Low-level Blast Exposure in Mice. J Vis Exp 2024:10.3791/66592. [PMID: 38856207 PMCID: PMC11837845 DOI: 10.3791/66592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Exposure to explosive blasts is a significant risk factor for brain trauma among exposed persons. Although the effects of large blasts on the brain are well understood, the effects of smaller blasts such as those that occur during military training are less understood. This small, low-level blast exposure also varies highly according to military occupation and training tempo, with some units experiencing few exposures over the course of several years whereas others experience hundreds within a few weeks. Animal models are an important tool in identifying both the injury mechanisms and long-term clinical health risks following low-level blast exposure. Models capable of recapitulating this wide range of exposures are necessary to inform acute and chronic injury outcomes across these disparate risk profiles. Although outcomes following a few low-level blast exposures are easily modeled for mechanistic study, chronic exposures that occur over a career may be better modeled by blast injury paradigms with repeated exposures that occur frequently over weeks and months. Shown here are methods for modeling highly repetitive low-level blast exposure in mice. The procedures are based on established and widely used pneumatic shocktube models of open-field blast exposure that can be scaled to adjust the overpressure parameters and the number or interval of the exposures. These methods can then be used to either enable mechanistic investigations or recapitulate the routine blast exposures of clinical groups under study.
Collapse
Affiliation(s)
| | - Cory McEvoy
- United States Army Special Operations Command; CU Anschutz Center for COMBAT Research, Department of Emergency Medicine, University of Colorado School of Medicine
| | | | - Rebecca A Ivory
- University of Washington School of Nursing; University of Delaware School of Nursing; Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System
| | - Josh Rodriguez
- Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System
| | - Mohamed Omer
- Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System
| | - Trinity Charles
- Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System
| | - James S Meabon
- Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System; Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine;
| |
Collapse
|
5
|
Sachdeva T, Ganpule SG. Twenty Years of Blast-Induced Neurotrauma: Current State of Knowledge. Neurotrauma Rep 2024; 5:243-253. [PMID: 38515548 PMCID: PMC10956535 DOI: 10.1089/neur.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Blast-induced neurotrauma (BINT) is an important injury paradigm of neurotrauma research. This short communication summarizes the current knowledge of BINT. We divide the BINT research into several broad categories-blast wave generation in laboratory, biomechanics, pathology, behavioral outcomes, repetitive blast in animal models, and clinical and neuroimaging investigations in humans. Publications from 2000 to 2023 in each subdomain were considered. The analysis of the literature has brought out salient aspects. Primary blast waves can be simulated reasonably in a laboratory using carefully designed shock tubes. Various biomechanics-based theories of BINT have been proposed; each of these theories may contribute to BINT by generating a unique biomechanical signature. The injury thresholds for BINT are in the nascent stages. Thresholds for rodents are reasonably established, but such thresholds (guided by primary blast data) are unavailable in humans. Single blast exposure animal studies suggest dose-dependent neuronal pathologies predominantly initiated by blood-brain barrier permeability and oxidative stress. The pathologies were typically reversible, with dose-dependent recovery times. Behavioral changes in animals include anxiety, auditory and recognition memory deficits, and fear conditioning. The repetitive blast exposure manifests similar pathologies in animals, however, at lower blast overpressures. White matter irregularities and cortical volume and thickness alterations have been observed in neuroimaging investigations of military personnel exposed to blast. Behavioral changes in human cohorts include sleep disorders, poor motor skills, cognitive dysfunction, depression, and anxiety. Overall, this article provides a concise synopsis of current understanding, consensus, controversies, and potential future directions.
Collapse
Affiliation(s)
- Tarun Sachdeva
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shailesh G. Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Design, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
6
|
Campos-Pires R, Ong BE, Koziakova M, Ujvari E, Fuller I, Boyles C, Sun V, Ko A, Pap D, Lee M, Gomes L, Gallagher K, Mahoney PF, Dickinson R. Repetitive, but Not Single, Mild Blast TBI Causes Persistent Neurological Impairments and Selective Cortical Neuronal Loss in Rats. Brain Sci 2023; 13:1298. [PMID: 37759899 PMCID: PMC10526452 DOI: 10.3390/brainsci13091298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Exposure to repeated mild blast traumatic brain injury (mbTBI) is common in combat soldiers and the training of Special Forces. Evidence suggests that repeated exposure to a mild or subthreshold blast can cause serious and long-lasting impairments, but the mechanisms causing these symptoms are unclear. In this study, we characterise the effects of single and tightly coupled repeated mbTBI in Sprague-Dawley rats exposed to shockwaves generated using a shock tube. The primary outcomes are functional neurologic function (unconsciousness, neuroscore, weight loss, and RotaRod performance) and neuronal density in brain regions associated with sensorimotor function. Exposure to a single shockwave does not result in functional impairments or histologic injury, which is consistent with a mild or subthreshold injury. In contrast, exposure to three tightly coupled shockwaves results in unconsciousness, along with persistent neurologic impairments. Significant neuronal loss following repeated blast was observed in the motor cortex, somatosensory cortex, auditory cortex, and amygdala. Neuronal loss was not accompanied by changes in astrocyte reactivity. Our study identifies specific brain regions particularly sensitive to repeated mbTBI. The reasons for this sensitivity may include exposure to less attenuated shockwaves or proximity to tissue density transitions, and this merits further investigation. Our novel model will be useful in elucidating the mechanisms of sensitisation to injury, the temporal window of sensitivity and the evaluation of new treatments.
Collapse
Affiliation(s)
- Rita Campos-Pires
- Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
- Royal British Legion Centre for Blast Injury Studies, Imperial College London, London SW7 2AZ, UK
| | - Bee Eng Ong
- Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Mariia Koziakova
- Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Eszter Ujvari
- Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Isobel Fuller
- Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Charlotte Boyles
- Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Valerie Sun
- Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Andy Ko
- Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Daniel Pap
- Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Matthew Lee
- Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Lauren Gomes
- Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Kate Gallagher
- Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Peter F. Mahoney
- Royal British Legion Centre for Blast Injury Studies, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Robert Dickinson
- Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
- Royal British Legion Centre for Blast Injury Studies, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
7
|
Knutsen AK, Vidhate S, McIlvain G, Luster J, Galindo EJ, Johnson CL, Pham DL, Butman JA, Mejia-Alvarez R, Tartis M, Willis AM. Characterization of material properties and deformation in the ANGUS phantom during mild head impacts using MRI. J Mech Behav Biomed Mater 2023; 138:105586. [PMID: 36516544 PMCID: PMC10169236 DOI: 10.1016/j.jmbbm.2022.105586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/26/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a major health concern affecting both military and civilian populations. Despite notable advances in TBI research in recent years, there remains a significant gap in linking the impulsive loadings from a blast or a blunt impact to the clinical injury patterns observed in TBI. Synthetic head models or phantoms can be used to establish this link as they can be constructed with geometry, anatomy, and material properties that match the human brain, and can be used as an alternative to animal models. This study presents one such phantom called the Anthropomorphic Neurologic Gyrencephalic Unified Standard (ANGUS) phantom, which is an idealized gyrencephalic brain phantom composed of polyacrylamide gel. Here we mechanically characterized the ANGUS phantom using tagged magnetic resonance imaging (MRI) and magnetic resonance elastography (MRE), and then compared the outcomes to data obtained in healthy volunteers. The direct comparison between the phantom's response and the data from a cohort of in vivo human subjects demonstrate that the ANGUS phantom may be an appropriate model for bulk tissue response and gyral dynamics of the human brain under small amplitude linear impulses. However, the phantom's response differs from that of the in vivo human brain under rotational impacts, suggesting avenues for future improvements to the phantom.
Collapse
Affiliation(s)
- Andrew K Knutsen
- Center for Neuroscience and Regenerative Medicine, The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20814, USA
| | - Suhas Vidhate
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Grace McIlvain
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Josh Luster
- Department of Neurology, Brooke Army Medical Center, Fort Sam Houston, TX, 78234, USA
| | - Eric J Galindo
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Dzung L Pham
- Center for Neuroscience and Regenerative Medicine, The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20814, USA
| | - John A Butman
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ricardo Mejia-Alvarez
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Michaelann Tartis
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Adam M Willis
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA; 59th Medical Wing, Office of the Chief Scientist, Lackland AFB, TX, 78236, USA
| |
Collapse
|
8
|
Pickard D, Martynowych D, Lem J, Koshakji A, Lin S, Zhao X, Nelson K, Giovanardi B, Radovitzky R. Converging-diverging shock-driven instabilities along soft hydrogel surfaces. Phys Rev E 2023; 107:L022601. [PMID: 36932538 DOI: 10.1103/physreve.107.l022601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Intense surface eruptions are observed along the curved surface of a confined cylindrical film of hydrogel subject to laser-induced converging-diverging shock loading. Detailed numerical simulations are used to identify the dominant mechanisms causing mechanical instability. The mechanisms that produce surface instability are found to be fundamentally different from both acoustic parametric instability and shock-driven Richtmyer-Meshkov instability. The time scale of observed and simulated eruption formation is much larger than that of a single shock reflection, in stark contrast to previously studied shock-driven instabilities. Moreover, surface undulations are only found along external, as opposed to internal, soft solid boundaries. Specifically, classic bubble surface instability mechanisms do not occur in our experiments and here we comment only on the new surface undulations found along the outer boundary of solid hydrogel cylinders. Our findings indicate a new class of impulsively excited surface instability that is driven by cycles of internal shock reflections.
Collapse
Affiliation(s)
- Daniel Pickard
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Dmitro Martynowych
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jet Lem
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Anwar Koshakji
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Keith Nelson
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bianca Giovanardi
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Faculty of Aerospace Engineering, Delft University of Technology, 2628 CD Delft, Netherlands
| | - Raul Radovitzky
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
9
|
Rubio JE, Subramaniam DR, Unnikrishnan G, Sajja VSSS, Van Albert S, Rossetti F, Frock A, Nguyen G, Sundaramurthy A, Long JB, Reifman J. A biomechanical-based approach to scale blast-induced molecular changes in the brain. Sci Rep 2022; 12:14605. [PMID: 36028539 PMCID: PMC9418170 DOI: 10.1038/s41598-022-17967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
Animal studies provide valuable insights on how the interaction of blast waves with the head may injure the brain. However, there is no acceptable methodology to scale the findings from animals to humans. Here, we propose an experimental/computational approach to project observed blast-induced molecular changes in the rat brain to the human brain. Using a shock tube, we exposed rats to a range of blast overpressures (BOPs) and used a high-fidelity computational model of a rat head to correlate predicted biomechanical responses with measured changes in glial fibrillary acidic protein (GFAP) in rat brain tissues. Our analyses revealed correlates between model-predicted strain rate and measured GFAP changes in three brain regions. Using these correlates and a high-fidelity computational model of a human head, we determined the equivalent BOPs in rats and in humans that induced similar strain rates across the two species. We used the equivalent BOPs to project the measured GFAP changes in the rat brain to the human. Our results suggest that, relative to the rat, the human requires an exposure to a blast wave of a higher magnitude to elicit similar brain-tissue responses. Our proposed methodology could assist in the development of safety guidelines for blast exposure.
Collapse
Affiliation(s)
- Jose E Rubio
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720-A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Dhananjay Radhakrishnan Subramaniam
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720-A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Ginu Unnikrishnan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720-A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Venkata Siva Sai Sujith Sajja
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Stephen Van Albert
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Franco Rossetti
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Andrew Frock
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720-A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Giang Nguyen
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720-A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Aravind Sundaramurthy
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720-A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Joseph B Long
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.
| |
Collapse
|
10
|
Yu X, Nguyen TT, Wu T, Ghajari M. Non-Lethal Blasts can Generate Cavitation in Cerebrospinal Fluid While Severe Helmeted Impacts Cannot: A Novel Mechanism for Blast Brain Injury. Front Bioeng Biotechnol 2022; 10:808113. [PMID: 35875481 PMCID: PMC9302597 DOI: 10.3389/fbioe.2022.808113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebrospinal fluid (CSF) cavitation is a likely physical mechanism for producing traumatic brain injury (TBI) under mechanical loading. In this study, we investigated CSF cavitation under blasts and helmeted impacts which represented loadings in battlefield and road traffic/sports collisions. We first predicted the human head response under the blasts and impacts using computational modelling and found that the blasts can produce much lower negative pressure at the contrecoup CSF region than the impacts. Further analysis showed that the pressure waves transmitting through the skull and soft tissue are responsible for producing the negative pressure at the contrecoup region. Based on this mechanism, we hypothesised that blast, and not impact, can produce CSF cavitation. To test this hypothesis, we developed a one-dimensional simplified surrogate model of the head and exposed it to both blasts and impacts. The test results confirmed the hypothesis and computational modelling of the tests validated the proposed mechanism. These findings have important implications for prevention and diagnosis of blast TBI.
Collapse
Affiliation(s)
- Xiancheng Yu
- HEAD lab, Dyson School of Design Engineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
- *Correspondence: Xiancheng Yu,
| | - Thuy-Tien Nguyen
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Tianchi Wu
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Mazdak Ghajari
- HEAD lab, Dyson School of Design Engineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Silvosa MJ, Romo Mercado N, Merlock N, Vidhate S, Mejia-Alvarez R, Yuan T, Willis AM, Lybrand ZR. Understanding primary blast injury: High frequency pressure acutely disrupts neuronal network dynamics in cerebral organoids. J Neurotrauma 2022; 39:1575-1590. [PMID: 35765922 DOI: 10.1089/neu.2022.0044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Blast exposure represents a common occupational risk capable of generating mild to severe traumatic brain injuries (TBI). During blast exposure, a pressure shockwave passes through the skull and exposes brain tissue to complex pressure waveforms. The primary neurophysiological response to blast-induced pressure waveforms remains poorly understood. Here, we use a computer-controlled table-top pressure chamber to expose human stem cell-derived cerebral organoids to varied frequency of pressure waves and characterize the neurophysiological response. Pressure waves that reach a maximum amplitude of 250kPa were used to model a less severe TBI and 350kPa for a more severe blast TBI event. With each amplitude, a frequency range of 500Hz, 3000Hz, and 5000Hz was tested. Following the 250 kPa overpressure a multielectrode array recorded organoid neural activity. We observed an acute suppression neuronal activity in single unit events, population events, and network oscillations that recovered within 24 hours. Additionally, we observed a network desynchronization after exposure higher frequency waveforms. Conversely, organoids exposed to higher amplitude pressure (350kPa) displayed drastic neurophysiological differences that failed to recover within 24 hours. Furthermore, lower amplitude 'blast' (250kPa) did not induce cellular damage whereas the higher amplitude 'blast' (350kPa) generated greater apoptosis throughout each organoid. Our data indicate that specific features of pressure waves found intracranially during blast TBI have varied effects on neurophysiological activity that can occur even without cellular damage.
Collapse
Affiliation(s)
| | | | - Nikolas Merlock
- UTSA, 12346, Department of Neuroscience, Developmental and Regenerative Biology, San Antonio, Texas, United States;
| | - Suhas Vidhate
- National Institutes of Health, 2511, Department of Radiology and Imaging Sciences, Clinical Center, Bethesda, Maryland, United States;
| | - Ricardo Mejia-Alvarez
- Michigan State University, 3078, Department of Mechanical Engineering, East Lansing, Michigan, United States;
| | - Tony Yuan
- 59th Medical Wing, 495529, Diagnostic and Therapeutic, 1632 Nellis Street, Bldg. 5406, Rm: B-207, Joint Base San Antonio-Lackland, Texas, United States, 78236-5415;
| | - Adam M Willis
- Michigan State University, 3078, Department of Mechanical Engineering, East Lansing, Michigan, United States.,59th Medical Wing, 495529, Diagnostic and Therapeutic, Joint Base San Antonio-Lackland, Texas, United States;
| | - Zane R Lybrand
- Texas Woman's University, 2910, Biology, P.O. Box 425799, Denton, Denton, Texas, United States, 76204;
| |
Collapse
|
12
|
Bishop R, Won SJ, Irvine KA, Basu J, Rome ES, Swanson RA. Blast-induced axonal degeneration in the rat cerebellum in the absence of head movement. Sci Rep 2022; 12:143. [PMID: 34996954 PMCID: PMC8741772 DOI: 10.1038/s41598-021-03744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Blast exposure can injure brain by multiple mechanisms, and injury attributable to direct effects of the blast wave itself have been difficult to distinguish from that caused by rapid head displacement and other secondary processes. To resolve this issue, we used a rat model of blast exposure in which head movement was either strictly prevented or permitted in the lateral plane. Blast was found to produce axonal injury even with strict prevention of head movement. This axonal injury was restricted to the cerebellum, with the exception of injury in visual tracts secondary to ocular trauma. The cerebellar axonal injury was increased in rats in which blast-induced head movement was permitted, but the pattern of injury was unchanged. These findings support the contentions that blast per se, independent of head movement, is sufficient to induce axonal injury, and that axons in cerebellar white matter are particularly vulnerable to direct blast-induced injury.
Collapse
Affiliation(s)
- Robin Bishop
- Department of Neurology, University of California at San Francisco, San Francisco, CA, 94158, USA
- (127)Neurology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA
| | - Seok Joon Won
- Department of Neurology, University of California at San Francisco, San Francisco, CA, 94158, USA.
- (127)Neurology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA.
| | - Karen-Amanda Irvine
- Department of Neurology, University of California at San Francisco, San Francisco, CA, 94158, USA
- (127)Neurology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA, 94304, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Jayinee Basu
- Department of Neurology, University of California at San Francisco, San Francisco, CA, 94158, USA
- (127)Neurology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA
| | - Eric S Rome
- Department of Neurology, University of California at San Francisco, San Francisco, CA, 94158, USA
- (127)Neurology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA
| | - Raymond A Swanson
- Department of Neurology, University of California at San Francisco, San Francisco, CA, 94158, USA
- (127)Neurology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94121, USA
| |
Collapse
|
13
|
Sundaramurthy A, Kote VB, Pearson N, Boiczyk GM, McNeil EM, Nelson AJ, Subramaniam DR, Rubio JE, Monson K, Hardy WN, VandeVord PJ, Unnikrishnan G, Reifman J. A 3-D Finite-Element Minipig Model to Assess Brain Biomechanical Responses to Blast Exposure. Front Bioeng Biotechnol 2022; 9:757755. [PMID: 34976963 PMCID: PMC8719465 DOI: 10.3389/fbioe.2021.757755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/17/2021] [Indexed: 12/05/2022] Open
Abstract
Despite years of research, it is still unknown whether the interaction of explosion-induced blast waves with the head causes injury to the human brain. One way to fill this gap is to use animal models to establish “scaling laws” that project observed brain injuries in animals to humans. This requires laboratory experiments and high-fidelity mathematical models of the animal head to establish correlates between experimentally observed blast-induced brain injuries and model-predicted biomechanical responses. To this end, we performed laboratory experiments on Göttingen minipigs to develop and validate a three-dimensional (3-D) high-fidelity finite-element (FE) model of the minipig head. First, we performed laboratory experiments on Göttingen minipigs to obtain the geometry of the cerebral vasculature network and to characterize brain-tissue and vasculature material properties in response to high strain rates typical of blast exposures. Next, we used the detailed cerebral vasculature information and species-specific brain tissue and vasculature material properties to develop the 3-D high-fidelity FE model of the minipig head. Then, to validate the model predictions, we performed laboratory shock-tube experiments, where we exposed Göttingen minipigs to a blast overpressure of 210 kPa in a laboratory shock tube and compared brain pressures at two locations. We observed a good agreement between the model-predicted pressures and the experimental measurements, with differences in maximum pressure of less than 6%. Finally, to evaluate the influence of the cerebral vascular network on the biomechanical predictions, we performed simulations where we compared results of FE models with and without the vasculature. As expected, incorporation of the vasculature decreased brain strain but did not affect the predictions of brain pressure. However, we observed that inclusion of the cerebral vasculature in the model changed the strain distribution by as much as 100% in regions near the interface between the vasculature and the brain tissue, suggesting that the vasculature does not merely decrease the strain but causes drastic redistributions. This work will help establish correlates between observed brain injuries and predicted biomechanical responses in minipigs and facilitate the creation of scaling laws to infer potential injuries in the human brain due to exposure to blast waves.
Collapse
Affiliation(s)
- Aravind Sundaramurthy
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Vivek Bhaskar Kote
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Noah Pearson
- Department of Mechanical Engineering, The University of Utah, Salt Lake City, UT, United States
| | - Gregory M Boiczyk
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, United States
| | - Elizabeth M McNeil
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Allison J Nelson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States.,Center for Injury Biomechanics, Virginia Tech, Blacksburg, VA, United States
| | - Dhananjay Radhakrishnan Subramaniam
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Jose E Rubio
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Kenneth Monson
- Department of Mechanical Engineering, The University of Utah, Salt Lake City, UT, United States.,Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, United States
| | - Warren N Hardy
- Center for Injury Biomechanics, Virginia Tech, Blacksburg, VA, United States
| | - Pamela J VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States.,Center for Injury Biomechanics, Virginia Tech, Blacksburg, VA, United States
| | - Ginu Unnikrishnan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States
| |
Collapse
|
14
|
Wu T, Sato F, Antona-Makoshi J, Gabler L, Giudice JS, Alshareef A, Yaguchi M, Masuda M, Margulies S, Panzer MB. Integrating Human and Non-Human Primate Data to Estimate Human Tolerances for Traumatic Brain Injury. J Biomech Eng 2021; 144:1129238. [PMID: 34897386 DOI: 10.1115/1.4053209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 11/08/2022]
Abstract
Traumatic brain injury (TBI) contributes to a significant portion of the injuries resulting from motor vehicle crashes, falls, and sports collisions. The development of advanced countermeasures to mitigate these injuries requires a complete understanding of the tolerance of the human brain to injury. In this study, we developed a new method to establish human injury tolerance levels using an integrated database of reconstructed football impacts, sub-injurious human volunteer data, and non-human primate data. The human tolerance levels were analyzed using tissue-level metrics determined using harmonized species-specific finite element brain models. Kinematics-based metrics involving complete characterization of angular motion (e.g., DAMAGE) showed better power of predicting tissue-level deformation in a variety of impact conditions and were subsequently used to characterize injury tolerance. The proposed human brain tolerances for mild and severe TBI were estimated and presented in the form of injury risk curves based on selected tissue-level and kinematics-based injury metrics. The application of the estimated injury tolerances was finally demonstrated using real-world automotive crash data.
Collapse
Affiliation(s)
- Taotao Wu
- Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, USA
| | - Fusako Sato
- Safety Research Division, Japan Automobile Research Institute, Tsukuba, Japan
| | | | - Lee Gabler
- Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, USA
| | - J Sebastian Giudice
- Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, USA
| | - Ahmed Alshareef
- Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, USA
| | - Masayuki Yaguchi
- Safety Research Division, Japan Automobile Research Institute, Tsukuba, Japan
| | - Mitsutoshi Masuda
- Safety Subcommittee, Japan Automobile Manufacturers Association, Inc., Tokyo, Japan
| | - Susan Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Matthew B Panzer
- Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
15
|
Sundar S, Ponnalagu A. Biomechanical Analysis of Head Subjected to Blast Waves and the Role of Combat Protective Headgear Under Blast Loading: A Review. J Biomech Eng 2021; 143:100801. [PMID: 33954580 DOI: 10.1115/1.4051047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 01/10/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) is a rising health concern of soldiers deployed in modern-day military conflicts. For bTBI, blast wave loading is a cause, and damage incurred to brain tissue is the effect. There are several proposed mechanisms for the bTBI, such as direct cranial entry, skull flexure, thoracic compression, blast-induced acceleration, and cavitation that are not mutually exclusive. So the cause-effect relationship is not straightforward. The efficiency of protective headgears against blast waves is relatively unknown as compared with other threats. Proper knowledge about standard problem space, underlying mechanisms, blast reconstruction techniques, and biomechanical models are essential for protective headgear design and evaluation. Various researchers from cross disciplines analyze bTBI from different perspectives. From the biomedical perspective, the physiological response, neuropathology, injury scales, and even the molecular level and cellular level changes incurred during injury are essential. From a combat protective gear designer perspective, the spatial and temporal variation of mechanical correlates of brain injury such as surface overpressure, acceleration, tissue-level stresses, and strains are essential. This paper outlines the key inferences from bTBI studies that are essential in the protective headgear design context.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Alagappan Ponnalagu
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
16
|
Gomez AD, Bayly PV, Butman JA, Pham DL, Prince JL, Knutsen AK. Group characterization of impact-induced, in vivo human brain kinematics. J R Soc Interface 2021; 18:20210251. [PMID: 34157896 DOI: 10.1098/rsif.2021.0251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Brain movement during an impact can elicit a traumatic brain injury, but tissue kinematics vary from person to person and knowledge regarding this variability is limited. This study examines spatio-temporal brain-skull displacement and brain tissue deformation across groups of subjects during a mild impact in vivo. The heads of two groups of participants were imaged while subjected to a mild (less than 350 rad s-2) impact during neck extension (NE, n = 10) and neck rotation (NR, n = 9). A kinematic atlas of displacement and strain fields averaged across all participants was constructed and compared against individual participant data. The atlas-derived mean displacement magnitude was 0.26 ± 0.13 mm for NE and 0.40 ± 0.26 mm for NR, which is comparable to the displacement magnitudes from individual participants. The strain tensor from the atlas displacement field exhibited maximum shear strain (MSS) of 0.011 ± 0.006 for NE and 0.017 ± 0.009 for NR and was lower than the individual MSS averaged across participants. The atlas illustrates common patterns, containing some blurring but visible relationships between anatomy and kinematics. Conversely, the direction of the impact, brain size, and fluid motion appear to underlie kinematic variability. These findings demonstrate the biomechanical roles of key anatomical features and illustrate common features of brain response for model evaluation.
Collapse
Affiliation(s)
- Arnold D Gomez
- School of Medicine, Department of Neurology, Johns Hopkins University, 600 North Wolfe Street, 200 Carnegie Hall, Baltimore, MD, USA
| | - Philip V Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St Louis, 1 Brookings Drive, Box 1185, Saint Louis, MI, USA
| | - John A Butman
- Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Dzung L Pham
- Center for Neuroscience and Regenerative Medicine, Henry M Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew K Knutsen
- Center for Neuroscience and Regenerative Medicine, Henry M Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| |
Collapse
|
17
|
Farajzadeh Khosroshahi S, Yin X, K Donat C, McGarry A, Yanez Lopez M, Baxan N, J Sharp D, Sastre M, Ghajari M. Multiscale modelling of cerebrovascular injury reveals the role of vascular anatomy and parenchymal shear stresses. Sci Rep 2021; 11:12927. [PMID: 34155289 PMCID: PMC8217506 DOI: 10.1038/s41598-021-92371-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/07/2021] [Indexed: 01/28/2023] Open
Abstract
Neurovascular injury is often observed in traumatic brain injury (TBI). However, the relationship between mechanical forces and vascular injury is still unclear. A key question is whether the complex anatomy of vasculature plays a role in increasing forces in cerebral vessels and producing damage. We developed a high-fidelity multiscale finite element model of the rat brain featuring a detailed definition of the angioarchitecture. Controlled cortical impacts were performed experimentally and in-silico. The model was able to predict the pattern of blood-brain barrier damage. We found strong correlation between the area of fibrinogen extravasation and the brain area where axial strain in vessels exceeds 0.14. Our results showed that adjacent vessels can sustain profoundly different axial stresses depending on their alignment with the principal direction of stress in parenchyma, with a better alignment leading to larger stresses in vessels. We also found a strong correlation between axial stress in vessels and the shearing component of the stress wave in parenchyma. Our multiscale computational approach explains the unrecognised role of the vascular anatomy and shear stresses in producing distinct distribution of large forces in vasculature. This new understanding can contribute to improving TBI diagnosis and prevention.
Collapse
Affiliation(s)
| | - Xianzhen Yin
- Shanghai Institute of Materia Medica, Shanghai, China
| | - Cornelius K Donat
- Department of Brain Sciences, Imperial College London, London, UK
- Centre for Blast Injury Studies, Imperial College London, London, UK
| | - Aisling McGarry
- Department of Brain Sciences, Imperial College London, London, UK
| | | | - Nicoleta Baxan
- Biological Imaging Centre, Imperial College London, London, UK
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London, UK
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, London, UK
| | - Mazdak Ghajari
- Dyson School of Design Engineering, Imperial College London, London, UK
| |
Collapse
|
18
|
Mazurkiewicz A, Xu S, Frei H, Banton R, Piehler T, Petel OE. Impact-Induced Cortical Strain Concentrations at the Sulcal Base and Its Implications for Mild Traumatic Brain Injury. J Biomech Eng 2021; 143:061015. [PMID: 33625494 DOI: 10.1115/1.4050283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 11/08/2022]
Abstract
This study investigated impact-induced strain fields within brain tissue surrogates having different cortical gyrification. Two elastomeric surrogates, one representative of a lissencephalic brain and the other of a gyrencephalic brain, were drop impacted in unison at four different heights and in two different orientations. Each surrogate contained a radiopaque speckle pattern that was used to calculate strain fields. Two different approaches, digital image correlation (DIC) and a particle tracking method, enabled comparisons of full-field and localized strain responses. The DIC results demonstrated increased localized deviations from the mean strain field in the surrogate with a gyrified cortex. Particle tracking algorithms, defining four-node quadrilateral elements, were used to investigate the differences in the strain response of three regions: the base of a sulcus, the adjacent gyrus, and the internal capsule of the surrogates. The results demonstrated that the strains in the cortex were concentrated at the sulcal base. This mechanical mechanism of increased strain is consistent with neurodegenerative markers observed in postmortem analyses, suggesting a potential mechanism of local damage due to strain amplification at the sulcal bases in gyrencephalic brains. This strain amplification mechanism may be responsible for cumulative neurodegeneration from repeated subconcussive impacts. The observed results suggest that lissencephalic animal models, such as rodents, would not have the same modes of injury present in a gyrencephalic brain, such as that of a human. As such, a shift toward representative mild traumatic brain injury animal models having gyrencephalic cortical structures should be strongly considered.
Collapse
Affiliation(s)
- Ashley Mazurkiewicz
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Sheng Xu
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Hanspeter Frei
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Rohan Banton
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD 21005-5066
| | - Thuvan Piehler
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD 21005-5066; U.S. Army Medical Research and Development Command, Fort Detrick, MD 21702
| | - Oren E Petel
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
19
|
Miller ST, Cooper CF, Elsbernd P, Kerwin J, Mejia-Alvarez R, Willis AM. Localizing Clinical Patterns of Blast Traumatic Brain Injury Through Computational Modeling and Simulation. Front Neurol 2021; 12:547655. [PMID: 34093380 PMCID: PMC8173077 DOI: 10.3389/fneur.2021.547655] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Blast traumatic brain injury is ubiquitous in modern military conflict with significant morbidity and mortality. Yet the mechanism by which blast overpressure waves cause specific intracranial injury in humans remains unclear. Reviewing of both the clinical experience of neurointensivists and neurosurgeons who treated service members exposed to blast have revealed a pattern of injury to cerebral blood vessels, manifested as subarachnoid hemorrhage, pseudoaneurysm, and early diffuse cerebral edema. Additionally, a seminal neuropathologic case series of victims of blast traumatic brain injury (TBI) showed unique astroglial scarring patterns at the following tissue interfaces: subpial glial plate, perivascular, periventricular, and cerebral gray-white interface. The uniting feature of both the clinical and neuropathologic findings in blast TBI is the co-location of injury to material interfaces, be it solid-fluid or solid-solid interface. This motivates the hypothesis that blast TBI is an injury at the intracranial mechanical interfaces. In order to investigate the intracranial interface dynamics, we performed a novel set of computational simulations using a model human head simplified but containing models of gyri, sulci, cerebrospinal fluid (CSF), ventricles, and vasculature with high spatial resolution of the mechanical interfaces. Simulations were performed within a hybrid Eulerian—Lagrangian simulation suite (CTH coupled via Zapotec to Sierra Mechanics). Because of the large computational meshes, simulations required high performance computing resources. Twenty simulations were performed across multiple exposure scenarios—overpressures of 150, 250, and 500 kPa with 1 ms overpressure durations—for multiple blast exposures (front blast, side blast, and wall blast) across large variations in material model parameters (brain shear properties, skull elastic moduli). All simulations predict fluid cavitation within CSF (where intracerebral vasculature reside) with cavitation occurring deep and diffusely into cerebral sulci. These cavitation events are adjacent to high interface strain rates at the subpial glial plate. Larger overpressure simulations (250 and 500kPa) demonstrated intraventricular cavitation—also associated with adjacent high periventricular strain rates. Additionally, models of embedded intraparenchymal vascular structures—with diameters as small as 0.6 mm—predicted intravascular cavitation with adjacent high perivascular strain rates. The co-location of local maxima of strain rates near several of the regions that appear to be preferentially damaged in blast TBI (vascular structures, subpial glial plate, perivascular regions, and periventricular regions) suggest that intracranial interface dynamics may be important in understanding how blast overpressures leads to intracranial injury.
Collapse
Affiliation(s)
- Scott T Miller
- Computational Solid Mechanics & Structural Dynamics, Sandia National Laboratories, Albuquerque, NM, United States
| | - Candice F Cooper
- Terminal Ballistics Technology, Sandia National Laboratories, Albuquerque, NM, United States
| | - Paul Elsbernd
- Department of Neurology, Brooke Army Medical Center, Fort Sam Houston, TX, United States
| | - Joseph Kerwin
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Ricardo Mejia-Alvarez
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Adam M Willis
- Department of Neurology, Brooke Army Medical Center, Fort Sam Houston, TX, United States.,Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
20
|
Testing the blast response of foam inserts for helmets. Heliyon 2021; 7:e06990. [PMID: 34036190 PMCID: PMC8134979 DOI: 10.1016/j.heliyon.2021.e06990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/25/2021] [Accepted: 04/29/2021] [Indexed: 11/20/2022] Open
Abstract
Modern era combat helmets have different iterations and configurations to offer greater protection from blunt impact or ballistic penetration to suit the theatre of operation, although there are currently no standards for blast protection. Moreover, incorporation of blast protection into the same constrained mass-volume envelope is extremely challenging as there is very little space for a material to absorb or dissipate the shockwave. Foam padding is fitted in contemporary combat helmet designs for comfort and standoff purposes. Examples were subjected to blastwaves generated from an air-driven shocktube, along with open cell polyurethane foam specimens of varying pores per inch and thicknesses to. Whilst the range of samples tested did not afford any superior blast mitigation behaviour over the foam already present in helmets, they exhibited comparable performance with a lower mass. There also appears to be positive correlation between increased mass and increased impulse transmitted through the foam. The literature suggests that multiple mechanisms of damage for blast induced mild Traumatic Brain Injury (bTBI) can be caused by the helmet itself, therefore additional protection from a blunt or ballistic impact may increase the risk of damage from a blast insult.
Collapse
|
21
|
Rutter B, Song H, DePalma RG, Hubler G, Cui J, Gu Z, Johnson CE. Shock Wave Physics as Related to Primary Non-Impact Blast-Induced Traumatic Brain Injury. Mil Med 2021; 186:601-609. [PMID: 33499439 DOI: 10.1093/milmed/usaa290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/24/2020] [Accepted: 08/21/2020] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Blast overpressure exposure, an important cause of traumatic brain injury (TBI), may occur during combat or military training. TBI, most commonly mild TBI, is considered a signature injury of recent combat in Iraq and Afghanistan. Low intensity primary blast-induced TBI (bTBI), caused by exposure to an explosive shock wave, commonly leaves no obvious physical external signs. Numerous studies have been conducted to understand its biological effects; however, the role of shock wave energy as related to bTBI remains poorly understood. This report combines shock wave analysis with established biological effects on the mouse brain to provide insights into the effects of shock wave physics as related to low intensity bTBI outcomes from both open-air and shock tube environments. METHODS Shock wave peak pressure, rise time, positive phase duration, impulse, shock velocity, and particle velocity were measured using the Missouri open-air blast model from 16 blast experiments totaling 122 mice to quantify physical shock wave properties. Open-air shock waves were generated by detonating 350-g 1-m suspended Composition C-4 charges with targets on 1-m elevated stands at 2.15, 3, 4, and 7 m from the source. RESULTS All mice sustained brain injury with no observable head movement, because of mice experiencing lower dynamic pressures than calculated in shock tubes. Impulse, pressure loading over time, was found to be directly related to bTBI severity and is a primary shock physics variable that relates to bTBI. DISCUSSION The physical blast properties including shock wave peak pressure, rise time, positive phase duration, impulse, shock velocity, and particle velocity were examined using the Missouri open-air blast model in mice with associated neurobehavioral deficits. The blast-exposed mice sustained ultrastructural abnormalities in mitochondria, myelinated axons, and synapses, implicating that primary low intensity blast leads to nanoscale brain damage by providing the link to its pathogenesis. The velocity of the shock wave reflected back from the target stand was calculated from high-speed video and compared with that of the incident shock wave velocity. Peak incident pressure measured from high sample rate sensors was found to be within 1% of the velocity recorded by the high-speed camera, concluding that using sensors in or close to an animal brain can provide useful information regarding shock velocity within the brain, leading to more advanced knowledge between shock wave physics and tissue damage that leads to bTBIs.
Collapse
Affiliation(s)
- Barbara Rutter
- Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Hailong Song
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Ralph G DePalma
- Department of Veterans Affairs, Washington, DC, Office of Research and Development, NW 20420, USA.,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Graham Hubler
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Jiankun Cui
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Truman VA Hospital Research Service, Columbia, MO 65201, USA
| | - Zezong Gu
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Truman VA Hospital Research Service, Columbia, MO 65201, USA
| | - Catherine E Johnson
- Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
| |
Collapse
|
22
|
Shin MK, Vázquez-Rosa E, Cintrón-Pérez CJ, Riegel WA, Harper MM, Ritzel D, Pieper AA. Characterization of the Jet-Flow Overpressure Model of Traumatic Brain Injury in Mice. Neurotrauma Rep 2021; 2:1-13. [PMID: 33748810 PMCID: PMC7962691 DOI: 10.1089/neur.2020.0020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The jet-flow overpressure chamber (OPC) has been previously reported as a model of blast-mediated traumatic brain injury (bTBI). However, rigorous characterization of the features of this injury apparatus shows that it fails to recapitulate exposure to an isolated blast wave. Through combined experimental and computational modeling analysis of gas-dynamic flow conditions, we show here that the jet-flow OPC produces a collimated high-speed jet flow with extreme dynamic pressure that delivers a severe compressive impulse. Variable rupture dynamics of the diaphragm through which the jet flow originates also generate a weak and infrequent shock front. In addition, there is a component of acceleration-deceleration injury to the head as it is agitated in the headrest. Although not a faithful model of free-field blast exposure, the jet-flow OPC produces a complex multi-modal model of TBI that can be useful in laboratory investigation of putative TBI therapies and fundamental neurophysiological processes after brain injury.
Collapse
Affiliation(s)
- Min-Kyoo Shin
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA.,Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio, USA
| | - Edwin Vázquez-Rosa
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA.,Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio, USA
| | - Coral J Cintrón-Pérez
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA.,Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio, USA
| | - William A Riegel
- Stumptown Research and Development, LLC, Black Mountain, North Carolina, USA
| | - Matthew M Harper
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, Iowa, USA.,Departments of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - David Ritzel
- Dyn-FX Consulting, Ltd., Amherstburg, Ontario, Canada
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA.,Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio, USA
| |
Collapse
|
23
|
Wermer A, Kerwin J, Welsh K, Mejia-Alvarez R, Tartis M, Willis A. Materials Characterization of Cranial Simulants for Blast-Induced Traumatic Brain Injury. Mil Med 2020; 185:205-213. [PMID: 32074306 DOI: 10.1093/milmed/usz228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION The mechanical response of brain tissue to high-speed forces in the blast and blunt traumatic brain injury is poorly understood. Object-to-object variation and interspecies differences are current limitations in animal and cadaver studies conducted to study damage mechanisms. Biofidelic and transparent tissue simulants allow the use of high-speed optical diagnostics during a blast event, making it possible to observe deformations and damage patterns for comparison to observed injuries seen post-mortem in traumatic brain injury victims. METHODS Material properties of several tissue simulants were quantified using standard mechanical characterization techniques, that is, shear rheometric, tensile, and compressive testing. RESULTS Polyacrylamide simulants exhibited the best optical and mechanical property matching with the fewest trade-offs in the design of a cranial test object. Polyacrylamide gels yielded densities of ~1.04 g/cc and shear moduli ranging 1.3-14.55 kPa, allowing gray and white matter simulant tuning to a 30-35% difference in shear for biofidelity. CONCLUSIONS These materials are intended for use as layered cranial phantoms in a shock tube and open field blasts, with focus on observing phenomena occurring at the interfaces of adjacent tissue simulant types or material-fluid boundaries. Mechanistic findings from these studies may be used to inform the design of protective gear to mitigate blast injuries.
Collapse
Affiliation(s)
- Anna Wermer
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801
| | - Joseph Kerwin
- Department of Mechanical Engineering, Michigan State University, 1449 Engineering Research Ct. A117, East Lansing, MI 48824
| | - Kelsea Welsh
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801
| | - Ricardo Mejia-Alvarez
- Department of Mechanical Engineering, Michigan State University, 1449 Engineering Research Ct. A117, East Lansing, MI 48824
| | - Michaelann Tartis
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801
| | - Adam Willis
- Department of Neurology, San Antonio Military Medical Center, 3551 Roger Brooke Dr, San Antonio, TX 78219
| |
Collapse
|
24
|
Abstract
For more than a decade, we have witnessed an acceleration in the development and the adoption of artificial intelligence (AI) technologies. In medicine, it impacts clinical and fundamental research, hospital practices, medical examinations, hospital care or logistics. These in turn contribute to improvements in diagnostics and prognostics, and to improvements in personalised and targeted medicine, advanced observation and analysis technologies, or surgery and other assistance robots. Many challenges in AI and medicine, such as data digitalisation, medical data privacy, algorithm explicability, inclusive AI system development or their reproducibility, have to be tackled in order to build the confidence of medical practitioners in these technologies. This will be possible by mastering the key concepts via a brief history of artificial intelligence.
Collapse
Affiliation(s)
- Aurélie Jean
- In Silico Veritas, 4 rue Joseph Granier, 75007 Paris, France
| |
Collapse
|
25
|
McCabe JT, Tucker LB. Sex as a Biological Variable in Preclinical Modeling of Blast-Related Traumatic Brain Injury. Front Neurol 2020; 11:541050. [PMID: 33101170 PMCID: PMC7554632 DOI: 10.3389/fneur.2020.541050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Approaches to furthering our understanding of the bioeffects, behavioral changes, and treatment options following exposure to blast are a worldwide priority. Of particular need is a more concerted effort to employ animal models to determine possible sex differences, which have been reported in the clinical literature. In this review, clinical and preclinical reports concerning blast injury effects are summarized in relation to sex as a biological variable (SABV). The review outlines approaches that explore the pertinent role of sex chromosomes and gonadal steroids for delineating sex as a biological independent variable. Next, underlying biological factors that need exploration for blast effects in light of SABV are outlined, including pituitary, autonomic, vascular, and inflammation factors that all have evidence as having important SABV relevance. A major second consideration for the study of SABV and preclinical blast effects is the notable lack of consistent model design—a wide range of devices have been employed with questionable relevance to real-life scenarios—as well as poor standardization for reporting of blast parameters. Hence, the review also provides current views regarding optimal design of shock tubes for approaching the problem of primary blast effects and sex differences and outlines a plan for the regularization of reporting. Standardization and clear description of blast parameters will provide greater comparability across models, as well as unify consensus for important sex difference bioeffects.
Collapse
Affiliation(s)
- Joseph T McCabe
- Pre-clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Bethesda, IL, United States.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Laura B Tucker
- Pre-clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Bethesda, IL, United States.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
26
|
Dhanesha N, Schnell T, Rahmatalla S, DeShaw J, Thedens D, Parker BM, Zimmerman MB, Pieper AA, Chauhan AK, Leira EC. Low-Frequency Vibrations Enhance Thrombolytic Therapy and Improve Stroke Outcomes. Stroke 2020; 51:1855-1861. [PMID: 32397935 PMCID: PMC7263385 DOI: 10.1161/strokeaha.120.029405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background and Purpose- We aim to determine the potential impact on stroke thrombolysis of drip-and-ship helicopter flights and specifically of their low-frequency vibrations (LFVs). Methods- Mice with a middle cerebral artery autologous thromboembolic occlusion were randomized to receive rtPA (recombinant tissue-type plasminogen activator; or saline) 90 minutes later in 3 different settings: (1) a motion platform simulator that reproduced the LFV signature of the helicopter, (2) a standardized actual helicopter flight, and (3) a ground control. Results- Mice assigned to the LFV simulation while receiving tPA had smaller infarctions (31.6 versus 54.9 mm3; P=0.007) and increased favorable neurological outcomes (86% versus 28%; P=0.0001) when compared with ground controls. Surprisingly, mice receiving tPA in the helicopter did not exhibit smaller infarctions (47.8 versus 54.9 mm3; P=0.58) nor improved neurological outcomes (37% versus 28%; P=0.71). This could be due to a causative effect of the 20- to 30-Hz band, which was inadvertently attenuated during actual flights. Mice using saline showed no differences between the LFV simulator and controls with respect to infarct size (80.9 versus 95.3; P=0.81) or neurological outcomes (25% versus 11%; P=0.24), ruling out an effect of LFV alone. There were no differences in blood-brain barrier permeability between LFV simulator or helicopter, compared with controls (2.45-3.02 versus 4.82 mm3; P=0.14). Conclusions- Vibration in the low-frequency range (0.5-120 Hz) is synergistic with rtPA, significantly improving the effectiveness of thrombolysis without impairing blood-brain barrier permeability. Our findings reveal LFV as a novel, safe, and simple-to-deliver intervention that could improve the outcomes of patients. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Nirav Dhanesha
- Department of Internal Medicine, Carver College of Medicine, University of Iowa
| | - Thomas Schnell
- Operator Performance Laboratory, Department of Industrial and System Engineering, College of Engineering, University of Iowa
| | - Salam Rahmatalla
- Center for Computer-Aided Design, Department of Civil and Environmental Engineering, College of Engineering, University of Iowa
| | - Jonathan DeShaw
- Center for Computer-Aided Design, Department of Civil and Environmental Engineering, College of Engineering, University of Iowa
| | - Daniel Thedens
- Department of Radiology, Carver College of Medicine, University of Iowa
| | - Bradley M. Parker
- Operator Performance Laboratory, Department of Industrial and System Engineering, College of Engineering, University of Iowa
| | | | - Andrew A. Pieper
- Harrington Discovery Institute, University Hospitals of Cleveland
- Department of Psychiatry, Case Western Reserve University
- Geriatric Research Education & Clinical Centers, Louis Stokes VA Medical Center, Cleveland
| | - Anil K. Chauhan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa
| | - Enrique C. Leira
- Department of Neurology, Carver College of Medicine, University of Iowa
- Department of Neurosurgery, Carver College of Medicine, University of Iowa
- Department of Epidemiology, College of Public Health, University of Iowa
| |
Collapse
|
27
|
Wu T, Antona-Makoshi J, Alshareef A, Giudice JS, Panzer MB. Investigation of Cross-Species Scaling Methods for Traumatic Brain Injury Using Finite Element Analysis. J Neurotrauma 2020; 37:410-422. [DOI: 10.1089/neu.2019.6576] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Taotao Wu
- Center for Applied Biomechanics, University of Virginia, Charlottesville, Virginia
| | | | - Ahmed Alshareef
- Center for Applied Biomechanics, University of Virginia, Charlottesville, Virginia
| | - J. Sebastian Giudice
- Center for Applied Biomechanics, University of Virginia, Charlottesville, Virginia
| | - Matthew B. Panzer
- Center for Applied Biomechanics, University of Virginia, Charlottesville, Virginia
- Brain Injury and Sports Concussion Center, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
28
|
|
29
|
Michel BF, Sambuchi N, Vogt BA. Impact of mild traumatic brain injury on cingulate functions. HANDBOOK OF CLINICAL NEUROLOGY 2019; 166:151-162. [PMID: 31731910 DOI: 10.1016/b978-0-444-64196-0.00010-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mild traumatic brain injury (mTBI) is a condition of normal neuroimaging, because conventional MRI is not sensitive to brain lesions. Neurocognitive deficits persist for years after injury in 15% of patients. Persistent TAI can continue after the trauma and contribute to progressive disability. Neuropathologic studies underestimate the total axonal damage, by failure to identify fine-caliber unmyelinated fiber. Swollen axons represent the "tip of the iceberg" of damage. Progression of molecular changes, including mitochondrial dysfunction, leads to secondary injuries. Primary low-intensity "invisible injury" is solely detectable at ultrastructural levels. Over the long term, mTBI is not a static event but a progressive injury, increasing risk of neurodegenerative diseases. Lack of evidence of brain injury has led to the development of more sensitive methods: morphometric MRI (VBM, DTI) and functional techniques (fMRI, PET, SPECT). By deformation of the surface of gray matter cingulate gyrus and disruption of long-coursing WM of CB structures, striking the falx, mTBI causes alteration of cingulate functions. Postconcussion, blast, and whiplash-associated disorders are the main mechanisms providing behavior and cognitive symptoms after mTBI.
Collapse
Affiliation(s)
| | - Nathalie Sambuchi
- Neurogeriatric Department, Sainte Marguerite's Hospital, Marseille, France
| | - Brent Alan Vogt
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
30
|
Townsend MT, Alay E, Skotak M, Chandra N. Effect of Tissue Material Properties in Blast Loading: Coupled Experimentation and Finite Element Simulation. Ann Biomed Eng 2018; 47:2019-2032. [PMID: 30523466 DOI: 10.1007/s10439-018-02178-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/28/2018] [Indexed: 01/26/2023]
Abstract
Computational models of blast-induced traumatic brain injury (bTBI) require a robust definition of the material models of the brain. The mechanical constitutive models of these tissues are difficult to characterize, leading to a wide range of values reported in literature. Therefore, the sensitivity of the intracranial pressure (ICP) and maximum principal strain to variations in the material model of the brain was investigated through a combined computational and experimental approach. A finite element model of a rat was created to simulate a shock wave exposure, guided by the experimental measurements of rats subjected to shock loading conditions corresponding to that of mild traumatic brain injury in a field-validated shock tube. In the numerical model, the properties of the brain were parametrically varied. A comparison of the ICP measured at two locations revealed that experimental and simulated ICP were higher in the cerebellum (p < 0.0001), highlighting the significance of pressure sensor locations within the cranium. The ICP and strain were correlated with the long-term bulk (p < 0.0001) and shear moduli (p < 0.0001), with an 80 MPa effective bulk modulus value matching best with experimental measurements. In bTBI, the solution is sensitive to the brain material model, necessitating robust validation methods.
Collapse
Affiliation(s)
- Molly T Townsend
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, USA
| | - Eren Alay
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, USA
| | - Maciej Skotak
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, USA
| | - Namas Chandra
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, USA.
| |
Collapse
|
31
|
Towards Identification of Correspondence Rules to Relate Traumatic Brain Injury in Different Species. Ann Biomed Eng 2018; 47:2005-2018. [DOI: 10.1007/s10439-018-02157-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022]
|
32
|
Studlack PE, Keledjian K, Farooq T, Akintola T, Gerzanich V, Simard JM, Keller A. Blast-induced brain injury in rats leads to transient vestibulomotor deficits and persistent orofacial pain. Brain Inj 2018; 32:1866-1878. [PMID: 30346868 PMCID: PMC6381394 DOI: 10.1080/02699052.2018.1536282] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 09/18/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022]
Abstract
Blast-induced traumatic brain injury (blast-TBI) is associated with vestibulomotor dysfunction, persistent post-traumatic headaches and post-traumatic stress disorder, requiring extensive treatments and reducing quality-of-life. Treatment and prevention of these devastating outcomes require an understanding of their underlying pathophysiology through studies that take advantage of animal models. Here, we report that cranium-directed blast-TBI in rats results in signs of pain that last at least 8 weeks after injury. These occur without significantly elevated behavioural markers of anxiety-like conditions and are not associated with glial up-regulation in sensory thalamic nuclei. These injuries also produce transient vestibulomotor abnormalities that resolve within 3 weeks of injury. Thus, blast-TBI in rats recapitulates aspects of the human condition.
Collapse
Affiliation(s)
- Paige E. Studlack
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St., HSFII S251, Baltimore, MD 21201, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, 10 S. Pine St., MSTF 634B, Baltimore, MD 21201, USA
| | - Tayyiaba Farooq
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St., HSFII S251, Baltimore, MD 21201, USA
| | - Titilola Akintola
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St., HSFII S251, Baltimore, MD 21201, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, 10 S. Pine St., MSTF 634B, Baltimore, MD 21201, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, 10 S. Pine St., MSTF 634B, Baltimore, MD 21201, USA
| | - Asaf Keller
- Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St., HSFII S251, Baltimore, MD 21201, USA
| |
Collapse
|
33
|
Agoston DV. Modeling the Long-Term Consequences of Repeated Blast-Induced Mild Traumatic Brain Injuries. J Neurotrauma 2018; 34:S44-S52. [PMID: 28937952 DOI: 10.1089/neu.2017.5317] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Repeated mild traumatic brain injury (rmTBI) caused by playing collision sports or by exposure to blasts during military operations can lead to late onset, chronic diseases such as chronic traumatic encephalopathy (CTE), a progressive neurodegenerative condition that manifests in increasingly severe neuropsychiatric abnormalities years after the last injury. Currently, because of the heterogeneity of the clinical presentation, confirmation of a CTE diagnosis requires post-mortem examination of the brain. The hallmarks of CTE are abnormal accumulation of phosphorylated tau protein, TDP-43 immunoreactive neuronal cytoplasmic inclusions, and astroglial abnormalities, but the pathomechanism leading to these terminal findings remains unknown. Animal modeling can play an important role in the identification of CTE pathomechanisms, the development of early stage diagnostic and prognostic biomarkers, and pharmacological interventions. Modeling the long-term consequences of blast rmTBI in animals is especially challenging because of the complexities of blast physics and animal-to-human scaling issues. This review summarizes current knowledge about the pathobiologies of CTE and rmbTBI and discusses problems as well as potential solutions related to high-fidelity modeling of rmbTBI and determining its long-term consequences.
Collapse
Affiliation(s)
- Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University , Bethesda, Maryland; Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
34
|
Weickenmeier J, Kurt M, Ozkaya E, de Rooij R, Ovaert TC, Ehman RL, Butts Pauly K, Kuhl E. Brain stiffens post mortem. J Mech Behav Biomed Mater 2018; 84:88-98. [PMID: 29754046 PMCID: PMC6751406 DOI: 10.1016/j.jmbbm.2018.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022]
Abstract
Alterations in brain rheology are increasingly recognized as a diagnostic marker for various neurological conditions. Magnetic resonance elastography now allows us to assess brain rheology repeatably, reproducibly, and non-invasively in vivo. Recent elastography studies suggest that brain stiffness decreases one percent per year during normal aging, and is significantly reduced in Alzheimer’s disease and multiple sclerosis. While existing studies successfully compare brain stiffnesses across different populations, they fail to provide insight into changes within the same brain. Here we characterize rheological alterations in one and the same brain under extreme metabolic changes: alive and dead. Strikingly, the storage and loss moduli of the cerebrum increased by 26% and 60% within only three minutes post mortem and continued to increase by 40% and 103% within 45 minutes. Immediate post mortem stiffening displayed pronounced regional variations; it was largest in the corpus callosum and smallest in the brainstem. We postulate that post mortem stiffening is a manifestation of alterations in polarization, oxidation, perfusion, and metabolism immediately after death. Our results suggest that the stiffness of our brain–unlike any other organ–is a dynamic property that is highly sensitive to the metabolic environment Our findings emphasize the importance of characterizing brain tissue in vivo and question the relevance of ex vivo brain tissue testing as a whole. Knowing the true stiffness of the living brain has important consequences in diagnosing neurological conditions, planning neurosurgical procedures, and modeling the brain’s response to high impact loading.
Collapse
Affiliation(s)
- J Weickenmeier
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - M Kurt
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - E Ozkaya
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - R de Rooij
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - T C Ovaert
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - R L Ehman
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - K Butts Pauly
- Department of Radiology Stanford University Stanford, CA 94305, USA
| | - E Kuhl
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
35
|
Song H, Cui J, Simonyi A, Johnson CE, Hubler GK, DePalma RG, Gu Z. Linking blast physics to biological outcomes in mild traumatic brain injury: Narrative review and preliminary report of an open-field blast model. Behav Brain Res 2018; 340:147-158. [DOI: 10.1016/j.bbr.2016.08.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/13/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022]
|
36
|
Jongpairojcosit N, Glunrawd C, Jearanaisilawong P. Compressive behavior of Sulcata Tortoise’s carapace at high rate of deformation. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1757-899x/297/1/012015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Song H, Konan LM, Cui J, Johnson CE, Hubler GK, DePalma RG, Gu Z. Nanometer ultrastructural brain damage following low intensity primary blast wave exposure. Neural Regen Res 2018; 13:1516-1519. [PMID: 30127104 PMCID: PMC6126131 DOI: 10.4103/1673-5374.237110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Blast-induced mild traumatic brain injury (mTBI) is of particular concern among military personnel due to exposure to blast energy during military training and combat. The impact of primary low-intensity blast mediated pathophysiology upon later neurobehavioral disorders has been controversial. Developing a military preclinical blast model to simulate the pathophysiology of human blast injury is an important first step. This article provides an overview of primary blast effects and perspectives of our recent studies demonstrating ultrastructural changes in the brain and behavioral disorders resulting from open-field blast exposures up to 46.6 kPa using a murine model. The model is scalable and permits exposure to varying magnitudes of primary blast injuries by placing animals at different distances from the blast center or by changing the amount of C4 charge. We here review the implications and future applications and directions of using this animal model to uncover the underlying mechanisms related to primary blast injury. Overall, these studies offer the prospect of enhanced understanding of the pathogenesis of primary low-intensity blast-induced TBI and insights for prevention, diagnosis and treatment of blast induced TBI, particularly mTBI/concussion related to current combat exposures.
Collapse
Affiliation(s)
- Hailong Song
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, USA
| | - Landry M Konan
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, USA
| | - Jiankun Cui
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine; Truman VA Hospital Research Service, Columbia, MO, USA
| | - Catherine E Johnson
- Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| | - Graham K Hubler
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, USA
| | - Ralph G DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, USA
| | - Zezong Gu
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine; Truman VA Hospital Research Service, Columbia, MO, USA
| |
Collapse
|
38
|
Weickenmeier J, Kurt M, Ozkaya E, Wintermark M, Pauly KB, Kuhl E. Magnetic resonance elastography of the brain: A comparison between pigs and humans. J Mech Behav Biomed Mater 2018; 77:702-710. [DOI: 10.1016/j.jmbbm.2017.08.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
|
39
|
Somayaji MR, Przekwas AJ, Gupta RK. Combination Therapy for Multi-Target Manipulation of Secondary Brain Injury Mechanisms. Curr Neuropharmacol 2018; 16:484-504. [PMID: 28847295 PMCID: PMC6018188 DOI: 10.2174/1570159x15666170828165711] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/10/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a major healthcare problem that affects millions of people worldwide. Despite advances in understanding and developing preventative and treatment strategies using preclinical animal models, clinical trials to date have failed, and a 'magic bullet' for effectively treating TBI-induced damage does not exist. Thus, novel pharmacological strategies to effectively manipulate the complex and heterogeneous pathophysiology of secondary injury mechanisms are needed. Given that goal, this paper discusses the relevance and advantages of combination therapies (COMTs) for 'multi-target manipulation' of the secondary injury cascade by administering multiple drugs to achieve an optimal therapeutic window of opportunity (e.g., temporally broad window) and compares these regimens to monotherapies that manipulate a single target with a single drug at a given time. Furthermore, we posit that integrated mechanistic multiscale models that combine primary injury biomechanics, secondary injury mechanobiology/neurobiology, physiology, pharmacology and mathematical programming techniques could account for vast differences in the biological space and time scales and help to accelerate drug development, to optimize pharmacological COMT protocols and to improve treatment outcomes.
Collapse
Affiliation(s)
| | | | - Raj K. Gupta
- Department of Defense Blast Injury Research Program Coordinating Office, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA
| |
Collapse
|
40
|
DeWalt GJ, Eldred WD. Visual system pathology in humans and animal models of blast injury. J Comp Neurol 2017; 525:2955-2967. [PMID: 28560719 DOI: 10.1002/cne.24252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/12/2017] [Accepted: 05/14/2017] [Indexed: 12/20/2022]
Abstract
Injury from blast exposure is becoming a more prevalent cause of death and disability worldwide. The devastating neurological impairments that result from blasts are significant and lifelong. Progress in the development of effective therapies to treat injury has been slowed by its heterogeneous pathology and the dearth of information regarding the cellular mechanisms involved. Within the last decade, a number of studies have documented visual dysfunction following injury. This brief review examines damage to the visual system in both humans and animal models of blast injury. The in vivo use of the retina as a surrogate to evaluate brain injury following exposure to blast is also highlighted.
Collapse
Affiliation(s)
- Gloria J DeWalt
- Department of Biology, Boston University, Boston, Massachusetts
| | | |
Collapse
|
41
|
Wojnarowicz MW, Fisher AM, Minaeva O, Goldstein LE. Considerations for Experimental Animal Models of Concussion, Traumatic Brain Injury, and Chronic Traumatic Encephalopathy-These Matters Matter. Front Neurol 2017; 8:240. [PMID: 28620350 PMCID: PMC5451508 DOI: 10.3389/fneur.2017.00240] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/16/2017] [Indexed: 12/14/2022] Open
Abstract
Animal models of concussion, traumatic brain injury (TBI), and chronic traumatic encephalopathy (CTE) are widely available and routinely deployed in laboratories around the world. Effective animal modeling requires careful consideration of four basic principles. First, animal model use must be guided by clarity of definitions regarding the human disease or condition being modeled. Concussion, TBI, and CTE represent distinct clinical entities that require clear differentiation: concussion is a neurological syndrome, TBI is a neurological event, and CTE is a neurological disease. While these conditions are all associated with head injury, the pathophysiology, clinical course, and medical management of each are distinct. Investigators who use animal models of these conditions must take into account these clinical distinctions to avoid misinterpretation of results and category mistakes. Second, model selection must be grounded by clarity of purpose with respect to experimental questions and frame of reference of the investigation. Distinguishing injury context ("inputs") from injury consequences ("outputs") may be helpful during animal model selection, experimental design and execution, and interpretation of results. Vigilance is required to rout out, or rigorously control for, model artifacts with potential to interfere with primary endpoints. The widespread use of anesthetics in many animal models illustrates the many ways that model artifacts can confound preclinical results. Third, concordance between key features of the animal model and the human disease or condition being modeled is required to confirm model biofidelity. Fourth, experimental results observed in animals must be confirmed in human subjects for model validation. Adherence to these principles serves as a bulwark against flawed interpretation of results, study replication failure, and confusion in the field. Implementing these principles will advance basic science discovery and accelerate clinical translation to benefit people affected by concussion, TBI, and CTE.
Collapse
Affiliation(s)
- Mark W Wojnarowicz
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, United States
| | - Andrew M Fisher
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, United States.,Boston University College of Engineering, Boston, MA, United States
| | - Olga Minaeva
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, United States.,Boston University College of Engineering, Boston, MA, United States
| | - Lee E Goldstein
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, United States.,Boston University College of Engineering, Boston, MA, United States.,CTE Program, Boston University Alzheimer's Disease Center, Boston, MA, United States
| |
Collapse
|
42
|
Lucke-Wold BP, Turner RC, Logsdon AF, Rosen CL, Qaiser R. Blast Scaling Parameters: Transitioning from Lung to Skull Base Metrics. JOURNAL OF SURGERY AND EMERGENCY MEDICINE 2017; 1. [PMID: 28386605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/28/2022]
Abstract
Neurotrauma from blast exposure is one of the single most characteristic injuries of modern warfare. Understanding blast traumatic brain injury is critical for developing new treatment options for warfighters and civilians exposed to improvised explosive devices. Unfortunately, the pre-clinical models that are widely utilized to investigate blast exposure are based on archaic lung based parameters developed in the early 20th century. Improvised explosive devices produce a different type of injury paradigm than the typical mortar explosion. Protective equipment for the chest cavity has also improved over the past 100 years. In order to improve treatments, it is imperative to develop models that are based more on skull-based parameters. In this mini-review, we discuss the important anatomical and biochemical features necessary to develop a skull-based model.
Collapse
Affiliation(s)
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University, Morgantown, WV, USA
| | | | - Charles L Rosen
- Department of Neurosurgery, West Virginia University, Morgantown, WV, USA
| | - Rabia Qaiser
- Department of Neurosurgery, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
43
|
Lucke-Wold BP, Phillips M, Turner RC, Logsdon AF, Smith KE, Huber JD, Rosen CL, Regele JD. Elucidating the role of compression waves and impact duration for generating mild traumatic brain injury in rats. Brain Inj 2016; 31:98-105. [PMID: 27880054 PMCID: PMC5247354 DOI: 10.1080/02699052.2016.1218547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/12/2016] [Accepted: 07/11/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND In total, 3.8 million concussions occur each year in the US leading to acute functional deficits, but the underlying histopathologic changes that occur are relatively unknown. In order to improve understanding of acute injury mechanisms, appropriately designed pre-clinical models must be utilized. METHODS The clinical relevance of compression wave injury models revolves around the ability to produce consistent histopathologic deficits. Mild traumatic brain injuries activate similar neuroinflammatory cascades, cell death markers and increases in amyloid precursor protein in both humans and rodents. Humans, however, infrequently succumb to mild traumatic brain injuries and, therefore, the intensity and magnitude of impacts must be inferred. Understanding compression wave properties and mechanical loading could help link the histopathologic deficits seen in rodents to what might be happening in human brains following concussions. RESULTS While the concept of linking duration and intensity of impact to subsequent histopathologic deficits makes sense, numerical modelling of compression waves has not been performed in this context. In this interdisciplinary work, numerical simulations were performed to study the creation of compression waves in an experimental model. CONCLUSION This work was conducted in conjunction with a repetitive compression wave injury paradigm in rats in order to better understand how the wave generation correlates with histopathologic deficits.
Collapse
Affiliation(s)
- Brandon P Lucke-Wold
- a Department of Neurosurgery
- b Center for Neuroscience, School of Medicine , West Virginia University , Morgantown , WV , USA
| | - Michael Phillips
- c Department of Aerospace Engineering , College of Engineering, Iowa State University , Ames , IA , USA
| | | | - Aric F Logsdon
- b Center for Neuroscience, School of Medicine , West Virginia University , Morgantown , WV , USA
- d Department of Pharmaceutical Sciences , School of Pharmacy, West Virginia University , Morgantown , WV , USA
| | - Kelly E Smith
- b Center for Neuroscience, School of Medicine , West Virginia University , Morgantown , WV , USA
- d Department of Pharmaceutical Sciences , School of Pharmacy, West Virginia University , Morgantown , WV , USA
| | - Jason D Huber
- d Department of Pharmaceutical Sciences , School of Pharmacy, West Virginia University , Morgantown , WV , USA
| | | | - Jonathan D Regele
- c Department of Aerospace Engineering , College of Engineering, Iowa State University , Ames , IA , USA
| |
Collapse
|
44
|
Beamer M, Tummala SR, Gullotti D, Kopil C, Gorka S, Bass CRD, Morrison B, Cohen AS, Meaney DF. Primary blast injury causes cognitive impairments and hippocampal circuit alterations. Exp Neurol 2016. [PMID: 27246999 DOI: 10.1016/j.expneurol.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) and its long term consequences are a major health concern among veterans. Despite recent work enhancing our knowledge about bTBI, very little is known about the contribution of the blast wave alone to the observed sequelae. Herein, we isolated its contribution in a mouse model by constraining the animals' heads during exposure to a shockwave (primary blast). Our results show that exposure to primary blast alone results in changes in hippocampus-dependent behaviors that correspond with electrophysiological changes in area CA1 and are accompanied by reactive gliosis. Specifically, five days after exposure, behavior in an open field and performance in a spatial object recognition (SOR) task were significantly different from sham. Network electrophysiology, also performed five days after injury, demonstrated a significant decrease in excitability and increase in inhibitory tone. Immunohistochemistry for GFAP and Iba1 performed ten days after injury showed a significant increase in staining. Interestingly, a threefold increase in the impulse of the primary blast wave did not exacerbate these measures. However, we observed a significant reduction in the contribution of the NMDA receptors to the field EPSP at the highest blast exposure level. Our results emphasize the need to account for the effects of primary blast loading when studying the sequelae of bTBI.
Collapse
Affiliation(s)
- Matthew Beamer
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | - Shanti R Tummala
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | - David Gullotti
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine Kopil
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel Gorka
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | | | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Akiva S Cohen
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David F Meaney
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Mishra V, Skotak M, Schuetz H, Heller A, Haorah J, Chandra N. Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model. Sci Rep 2016; 6:26992. [PMID: 27270403 PMCID: PMC4895217 DOI: 10.1038/srep26992] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/27/2016] [Indexed: 11/25/2022] Open
Abstract
Injury severity in blast induced Traumatic Brain Injury (bTBI) increases with blast overpressure (BOP) and impulse in dose-dependent manner. Pure primary blast waves were simulated in compressed gas shock-tubes in discrete increments. Present work demonstrates 24 hour survival of rats in 0–450 kPa (0–800 Pa∙s impulse) range at 10 discrete levels (60, 100, 130, 160, 190, 230, 250, 290, 350 and 420 kPa) and determines the mortality rate as a non-linear function of BOP. Using logistic regression model, predicted mortality rate (PMR) function was calculated, and used to establish TBI severities. We determined a BOP of 145 kPa as upper mild TBI threshold (5% PMR). Also we determined 146–220 kPa and 221–290 kPa levels as moderate and severe TBI based on 35%, and 70% PMR, respectively, while BOP above 290 kPa is lethal. Since there are no standards for animal bTBI injury severity, these thresholds need further refinements using histopathology, immunohistochemistry and behavior. Further, we specifically investigated mild TBI range (0–145 kPa) using physiological (heart rate), pathological (lung injury), immuno-histochemical (oxidative/nitrosative and blood-brain barrier markers) as well as blood borne biomarkers. With these additional data, we conclude that mild bTBI occurs in rats when the BOP is in the range of 85–145 kPa.
Collapse
Affiliation(s)
- Vikas Mishra
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | - Maciej Skotak
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | - Heather Schuetz
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, 68198, NE,USA
| | - Abi Heller
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, 68198, NE,USA
| | - James Haorah
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | - Namas Chandra
- Center for Injury Biomechanics, Materials and Medicine (CIBM3), Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| |
Collapse
|
46
|
Beamer M, Tummala SR, Gullotti D, Kopil C, Gorka S, Bass CRD, Morrison B, Cohen AS, Meaney DF. Primary blast injury causes cognitive impairments and hippocampal circuit alterations. Exp Neurol 2016; 283:16-28. [PMID: 27246999 DOI: 10.1016/j.expneurol.2016.05.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/14/2016] [Accepted: 05/20/2016] [Indexed: 11/17/2022]
Abstract
Blast-induced traumatic brain injury (bTBI) and its long term consequences are a major health concern among veterans. Despite recent work enhancing our knowledge about bTBI, very little is known about the contribution of the blast wave alone to the observed sequelae. Herein, we isolated its contribution in a mouse model by constraining the animals' heads during exposure to a shockwave (primary blast). Our results show that exposure to primary blast alone results in changes in hippocampus-dependent behaviors that correspond with electrophysiological changes in area CA1 and are accompanied by reactive gliosis. Specifically, five days after exposure, behavior in an open field and performance in a spatial object recognition (SOR) task were significantly different from sham. Network electrophysiology, also performed five days after injury, demonstrated a significant decrease in excitability and increase in inhibitory tone. Immunohistochemistry for GFAP and Iba1 performed ten days after injury showed a significant increase in staining. Interestingly, a threefold increase in the impulse of the primary blast wave did not exacerbate these measures. However, we observed a significant reduction in the contribution of the NMDA receptors to the field EPSP at the highest blast exposure level. Our results emphasize the need to account for the effects of primary blast loading when studying the sequelae of bTBI.
Collapse
Affiliation(s)
- Matthew Beamer
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | - Shanti R Tummala
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | - David Gullotti
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine Kopil
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel Gorka
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | | | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Akiva S Cohen
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David F Meaney
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
47
|
Ahmed F, Plantman S, Cernak I, Agoston DV. The Temporal Pattern of Changes in Serum Biomarker Levels Reveals Complex and Dynamically Changing Pathologies after Exposure to a Single Low-Intensity Blast in Mice. Front Neurol 2015; 6:114. [PMID: 26124743 PMCID: PMC4464198 DOI: 10.3389/fneur.2015.00114] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/05/2015] [Indexed: 01/05/2023] Open
Abstract
Time-dependent changes in blood-based protein biomarkers can help identify the pathological processes in blast-induced traumatic brain injury (bTBI), assess injury severity, and monitor disease progression. We obtained blood from control and injured mice (exposed to a single, low-intensity blast) at 2-h, 1-day, 1–week, and 1-month post-injury. We then determined the serum levels of biomarkers related to metabolism (4-HNE, HIF-1α, ceruloplasmin), vascular function (AQP1, AQP4, VEGF, vWF, Flk-1), inflammation (OPN, CINC1, fibrinogen, MIP-1a, OX-44, p38, MMP-8, MCP-1 CCR5, CRP, galectin-1), cell adhesion and the extracellular matrix (integrin α6, TIMP1, TIMP4, Ncad, connexin-43), and axonal (NF-H, Tau), neuronal (NSE, CK-BB) and glial damage (GFAP, S100β, MBP) at various post-injury time points. Our findings indicate that the exposure to a single, low-intensity blast results in metabolic and vascular changes, altered cell adhesion, and axonal and neuronal injury in the mouse model of bTBI. Interestingly, serum levels of several inflammatory and astroglial markers were either unchanged or elevated only during the acute and subacute phases of injury. Conversely, serum levels of the majority of biomarkers related to metabolic and vascular functions, cell adhesion, as well as neuronal and axonal damage remained elevated at the termination of the experiment (1 month), indicating long-term systemic and cerebral alterations due to blast. Our findings show that the exposure to a single, low-intensity blast induces complex pathological processes with distinct temporal profiles. Hence, monitoring serum biomarker levels at various post-injury time points may provide enhanced diagnostics in blast-related neurological and multi-system deficits.
Collapse
Affiliation(s)
- Farid Ahmed
- Department of Anatomy, Physiology and Genetics, Uniformed Services University , Bethesda, MD , USA
| | - Stefan Plantman
- Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Ibolja Cernak
- Faculty of Rehabilitation Medicine, Canadian Military and Veterans' Clinical Rehabilitation Research, University of Alberta , Edmonton, AB , Canada
| | - Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University , Bethesda, MD , USA ; Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
48
|
Needham CE, Ritzel D, Rule GT, Wiri S, Young L. Blast Testing Issues and TBI: Experimental Models That Lead to Wrong Conclusions. Front Neurol 2015; 6:72. [PMID: 25904891 PMCID: PMC4389725 DOI: 10.3389/fneur.2015.00072] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/16/2015] [Indexed: 11/17/2022] Open
Abstract
Over the past several years, we have noticed an increase in the number of blast injury studies published in peer-reviewed biomedical journals that have utilized improperly conceived experiments. Data from these studies will lead to false conclusions and more confusion than advancement in the understanding of blast injury, particularly blast neurotrauma. Computational methods to properly characterize the blast environment have been available for decades. These methods, combined with a basic understanding of blast wave phenomena, enable researchers to extract useful information from well-documented experiments. This basic understanding must include the differences and interrelationships of static pressure, dynamic pressure, reflected pressure, and total or stagnation pressure in transient shockwave flows, how they relate to loading of objects, and how they are properly measured. However, it is critical that the research community effectively overcomes the confusion that has been compounded by a misunderstanding of the differences between the loading produced by a free field explosive blast and loading produced by a conventional shock tube. The principles of blast scaling have been well established for decades and when properly applied will do much to repair these problems. This paper provides guidance regarding proper experimental methods and offers insights into the implications of improperly designed and executed tests. Through application of computational methods, useful data can be extracted from well-documented historical tests, and future work can be conducted in a way to maximize the effectiveness and use of valuable biological test data.
Collapse
Affiliation(s)
- Charles E Needham
- Southwest Division, Applied Research Associates, Inc. , Albuquerque, NM , USA
| | - David Ritzel
- Dyn-FX Consulting Ltd. , Amherstburg, ON , Canada
| | - Gregory T Rule
- Security Engineering and Applied Sciences Sector, Applied Research Associates, Inc. , San Antonio, TX , USA
| | - Suthee Wiri
- Southwest Division, Applied Research Associates, Inc. , Albuquerque, NM , USA
| | - Leanne Young
- Security Engineering and Applied Sciences Sector, Applied Research Associates, Inc. , Dallas, TX , USA
| |
Collapse
|
49
|
Reid MW, Velez CS. Discriminating military and civilian traumatic brain injuries. Mol Cell Neurosci 2015; 66:123-8. [PMID: 25827093 DOI: 10.1016/j.mcn.2015.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) occurs at higher rates among service members than civilians. Explosions from improvised explosive devices and mines are the leading cause of TBI in the military. As such, TBI is frequently accompanied by other injuries, which makes its diagnosis and treatment difficult. In addition to postconcussion symptoms, those who sustain a TBI commonly report chronic pain and posttraumatic stress symptoms. This combination of symptoms is so typical they have been referred to as the "polytrauma clinical triad" among injured service members. We explore whether these symptoms discriminate civilian occurrences of TBI from those of service members, as well as the possibility that repeated blast exposure contributes to the development of chronic traumatic encephalopathy (CTE). This article is part of a Special Issue entitled 'Traumatic Brain Injury'.
Collapse
Affiliation(s)
- Matthew W Reid
- Defense and Veterans Brain Injury Center, United States; San Antonio Military Medical Center, United States.
| | | |
Collapse
|
50
|
Goriely A, Geers MGD, Holzapfel GA, Jayamohan J, Jérusalem A, Sivaloganathan S, Squier W, van Dommelen JAW, Waters S, Kuhl E. Mechanics of the brain: perspectives, challenges, and opportunities. Biomech Model Mechanobiol 2015; 14:931-65. [PMID: 25716305 PMCID: PMC4562999 DOI: 10.1007/s10237-015-0662-4] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 02/14/2015] [Indexed: 12/24/2022]
Abstract
The human brain is the continuous subject of extensive investigation aimed at understanding its behavior and function. Despite a clear evidence that mechanical factors play an important role in regulating brain activity, current research efforts focus mainly on the biochemical or electrophysiological activity of the brain. Here, we show that classical mechanical concepts including deformations, stretch, strain, strain rate, pressure, and stress play a crucial role in modulating both brain form and brain function. This opinion piece synthesizes expertise in applied mathematics, solid and fluid mechanics, biomechanics, experimentation, material sciences, neuropathology, and neurosurgery to address today’s open questions at the forefront of neuromechanics. We critically review the current literature and discuss challenges related to neurodevelopment, cerebral edema, lissencephaly, polymicrogyria, hydrocephaly, craniectomy, spinal cord injury, tumor growth, traumatic brain injury, and shaken baby syndrome. The multi-disciplinary analysis of these various phenomena and pathologies presents new opportunities and suggests that mechanical modeling is a central tool to bridge the scales by synthesizing information from the molecular via the cellular and tissue all the way to the organ level.
Collapse
Affiliation(s)
- Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK,
| | | | | | | | | | | | | | | | | | | |
Collapse
|