1
|
Billard JM, Ploux E, Largilliere S, Corvaisier S, Gorisse-Hussonnois L, Radzishevsky I, Wolosker H, Freret T. Early involvement of D-serine in β-amyloid-dependent pathophysiology. Cell Mol Life Sci 2025; 82:179. [PMID: 40293541 PMCID: PMC12037454 DOI: 10.1007/s00018-025-05691-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/04/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
The N-methyl-D-aspartate subtype of glutamate receptors (NMDAR) is a key regulator of brain plasticity encoding learning and memory. In addition to glutamate, NMDAR activation requires the binding of the co-agonist D-serine. The beta-amyloid (Aß) peptide which accumulates in Alzheimer's disease (AD), affects the D-serine-dependent NMDAR activation in vitro, but whether this alteration would significantly contribute to AD-related pathophysiology and memory deficits remains unclear. Herein, we report a decrease in the maximal pool of recruitable NMDAR and in the expression of NMDAR-dependent long-term potentiation together with impaired basal neurotransmission at CA3/CA1 synapses from hippocampal slices of 5xFAD mouse, an AD-related model with elevated Aß levels. The NMDAR synaptic impairments develop from 1.5 to 2 months of age with the initial rise of Aß and is correlated to a transient increase in D-serine levels. Deficits in working and spatial memories as well as cognitive flexibility then occurred in 10-12 months-old animals. Importantly, the NMDA-related synaptic deregulations (but not the altered basal neurotransmission) and behavioral impairments (working and cognitive flexibility) are prevented or reduced (spatial memory) in 5xFAD mice devoid of D-serine after genetic deletion of its synthesis enzyme serine racemase. Altogether, these results therefore provide in vivo evidence for the implication of D-serine at least in the early pathogenic signatures of AD driven by the increase in amyloid load suggesting that the recent proposal of preventive therapy of AD by administration of the precursor L-serine remains questionable.
Collapse
Affiliation(s)
- J-M Billard
- Normandie University, UNICAEN, INSERM, GIP CYCERON, COMETE, Caen, France.
- UNICAEN COMETE, INSERM UMR S-1075, GIP CYCERON, Bat GMPc, Campus Horowitz, Bd Henri Becquerel, Caen, CS14032, France.
| | - E Ploux
- Normandie University, UNICAEN, INSERM, GIP CYCERON, COMETE, Caen, France
| | - S Largilliere
- Normandie University, UNICAEN, INSERM, GIP CYCERON, COMETE, Caen, France
| | - S Corvaisier
- Normandie University, UNICAEN, INSERM, GIP CYCERON, COMETE, Caen, France
| | | | - I Radzishevsky
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - H Wolosker
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - T Freret
- Normandie University, UNICAEN, INSERM, GIP CYCERON, COMETE, Caen, France.
| |
Collapse
|
2
|
Ringlet S, Motta Z, Vandries L, Seutin V, Jehasse K, Caldinelli L, Pollegioni L, Engel D. Glycine-gated extrasynaptic NMDARs activated during glutamate spillover drive burst firing in nigral dopamine neurons. Prog Neurobiol 2025; 249:102773. [PMID: 40294743 DOI: 10.1016/j.pneurobio.2025.102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/17/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
Burst firing in substantia nigra pars compacta dopamine neurons is a critical biomarker temporally associated to movement initiation. This phasic change is generated by the tonic activation of NMDARs but the respective role of synaptic versus extrasynaptic NMDARs in the ignition of a burst and what is their level of activation remains unknown. Using ex vivo electrophysiological recordings from adolescent rats, we demonstrate that extrasynaptic NMDARs are the primary driver of burst firing. This pool of receptors is recruited during intense synaptic activity via spillover of glutamate and require the binding of NMDAR co-agonist glycine for full activation. Basal synaptic transmission activating only synaptic NMDARs with the support of D-serine is insufficient to generate a burst. Notably, both synaptic and extrasynaptic NMDARs share the same subunit composition but are regulated by distinct co-agonists. Location of NMDARs and regionalization of co-agonists but not NMDAR subunit composition underly burst generation and may serve as a guideline in understanding the physiological role of dopamine in signaling movement.
Collapse
Affiliation(s)
- Sofian Ringlet
- GIGA-Neurosciences, Laboratory of Molecular Regulation of Neurogenesis, University of Liege, Avenue Hippocrate 15, Liege B-4000, Belgium; GIGA-Neurosciences, Neurophysiology group, University of Liege, Avenue Hippocrate 15, Liege B-4000, Belgium
| | - Zoraide Motta
- The Protein Factory 2.0 Lab, Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via Dunant, Varese 3-21100, Italy
| | - Laura Vandries
- GIGA-Neurosciences, Neurophysiology group, University of Liege, Avenue Hippocrate 15, Liege B-4000, Belgium
| | - Vincent Seutin
- GIGA-Neurosciences, Neurophysiology group, University of Liege, Avenue Hippocrate 15, Liege B-4000, Belgium
| | - Kevin Jehasse
- Montefiore Institute of Electrical Engineering and Computer Science, Systems and Modeling research unit at University of Liège, Quartier Polytech 1, allée de la Découverte 10, Liège 4000, Belgium
| | - Laura Caldinelli
- The Protein Factory 2.0 Lab, Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via Dunant, Varese 3-21100, Italy
| | - Loredano Pollegioni
- The Protein Factory 2.0 Lab, Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via Dunant, Varese 3-21100, Italy
| | - Dominique Engel
- GIGA-Neurosciences, Laboratory of Molecular Regulation of Neurogenesis, University of Liege, Avenue Hippocrate 15, Liege B-4000, Belgium.
| |
Collapse
|
3
|
Kambali M, Li Y, Unichenko P, Feria Pliego JA, Yadav R, Liu J, McGuinness P, Cobb JG, Wang M, Nagarajan R, Lyu J, Vongsouthi V, Jackson CJ, Engin E, Coyle JT, Shin J, Hodgson NW, Hensch TK, Talkowski ME, Homanics GE, Bolshakov VY, Henneberger C, Rudolph U. An increased copy number of glycine decarboxylase (GLDC) associated with psychosis reduces extracellular glycine and impairs NMDA receptor function. Mol Psychiatry 2025; 30:927-942. [PMID: 39210012 PMCID: PMC11835546 DOI: 10.1038/s41380-024-02711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Glycine is an obligatory co-agonist at excitatory NMDA receptors in the brain, especially in the dentate gyrus, which has been postulated to be crucial for the development of psychotic associations and memories with psychotic content. Drugs modulating glycine levels are in clinical development for improving cognition in schizophrenia. However, the functional relevance of the regulation of glycine metabolism by endogenous enzymes is unclear. Using a chromosome-engineered allelic series in mice, we report that a triplication of the gene encoding the glycine-catabolizing enzyme glycine decarboxylase (GLDC) - as found on a small supernumerary marker chromosome in patients with psychosis - reduces extracellular glycine levels as determined by optical fluorescence resonance energy transfer (FRET) in dentate gyrus (DG) and suppresses long-term potentiation (LTP) in mPP-DG synapses but not in CA3-CA1 synapses, reduces the activity of biochemical pathways implicated in schizophrenia and mitochondrial bioenergetics, and displays deficits in schizophrenia-like behaviors which are in part known to be dependent on the activity of the dentate gyrus, e.g., prepulse inhibition, startle habituation, latent inhibition, working memory, sociability and social preference. Our results demonstrate that Gldc negatively regulates long-term synaptic plasticity in the dentate gyrus in mice, suggesting that an increase in GLDC copy number possibly contributes to the development of psychosis in humans.
Collapse
Affiliation(s)
- Maltesh Kambali
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yan Li
- Cellular Neurobiology Laboratory, McLean Hospital Belmont, Belmont, MA, USA
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Petr Unichenko
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jing Liu
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Patrick McGuinness
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Johanna G Cobb
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Muxiao Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rajasekar Nagarajan
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jinrui Lyu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Vanessa Vongsouthi
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Elif Engin
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Joseph T Coyle
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jaeweon Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nathaniel W Hodgson
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Takao K Hensch
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregg E Homanics
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vadim Y Bolshakov
- Cellular Neurobiology Laboratory, McLean Hospital Belmont, Belmont, MA, USA
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA.
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
4
|
Liu X, Yang C, Lin Z, Li J, Yin B, Lei X, Han W, Qiang B, Shu P, Zhang C, Peng X. DTD1 modulates synaptic efficacy by maintaining D-serine and D-aspartate homeostasis. SCIENCE CHINA. LIFE SCIENCES 2025; 68:467-483. [PMID: 39428430 DOI: 10.1007/s11427-023-2681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 07/09/2024] [Indexed: 10/22/2024]
Abstract
D-serine and D-aspartate are involved in N-methyl-D-aspartate receptor (NMDAR)-related physiological and pathological processes. D-aminoacyl-tRNA deacylase 1 (DTD1) may biochemically contribute to D-serine or D-aspartate production. However, it is unclear thus far whether DTD1 regulates D-serine or D-aspartate content in neurobiological processes. In the present research, we found that DTD1 was essential to maintain the D-serine or D-aspartate homeostasis, which was consistent with the phenomenon that DTD1-deficiency resulted in changes in the quantity changes of functional NMDAR subunits in postsynaptic compartments. Moreover, DTD1 played a considerable role in regulating dendritic morphology and synaptic structure. As a consequence, DTD1 affected neurobiological events, including the synaptic strength of the CA3-to-CA1 circuit, dendritic spine density of hippocampal pyramidal neurons, and behavioral performance of mice in the Morris water maze. These findings highlight the important role of DTD1 in synaptic transmission, neuronal morphology, and spatial learning and memory and suggest an undisclosed mechanism of DTD1 that participates the regulation of D-serine or D-aspartate homeostasis in hippocampal neurons.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Chaojuan Yang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Zhuoran Lin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jianing Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Bin Yin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xuepei Lei
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Wei Han
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Boqin Qiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Pengcheng Shu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Xiaozhong Peng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, 100005, China.
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Odeh M, Sajrawi C, Majcher A, Zubedat S, Shaulov L, Radzishevsky A, Mizrahi L, Chung WK, Avital A, Hornemann T, Liebl DJ, Radzishevsky I, Wolosker H. A new type of blood-brain barrier aminoacidopathy underlies metabolic microcephaly associated with SLC1A4 mutations. Brain 2024; 147:3874-3889. [PMID: 38662784 PMCID: PMC11531853 DOI: 10.1093/brain/awae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 04/05/2024] [Indexed: 10/20/2024] Open
Abstract
Mutations in the SLC1A4 transporter lead to neurodevelopmental impairments, spastic tetraplegia, thin corpus callosum and microcephaly in children. SLC1A4 catalyses obligatory amino acid exchange between neutral amino acids, but the physiopathology of SLC1A4 disease mutations and progressive microcephaly remain unclear. Here, we examined the phenotype and metabolic profile of three Slc1a4 mouse models: a constitutive Slc1a4-knockout mouse; a knock-in mouse with the major human Slc1a4 mutation (Slc1a4-K256E); and a selective knockout of Slc1a4 in brain endothelial cells (Slc1a4tie2-cre). We show that Slc1a4 is a bona fideL-serine transporter at the blood-brain barrier (BBB) and that acute inhibition or deletion of Slc1a4 leads to a decrease in serine influx into the brain. This results in microcephaly associated with decreased L-serine content in the brain, accumulation of atypical and cytotoxic 1-deoxysphingolipids, neurodegeneration, synaptic and mitochondrial abnormalities and behavioural impairments. Prenatal and early postnatal oral administration of L-serine at levels that replenish the serine pool in the brain rescued the observed biochemical and behavioural changes. Administration of L-serine until the second postnatal week also normalized brain weight in Slc1a4-E256K mice. Our observations suggest that the transport of 'non-essential' amino acids from the blood through the BBB is at least as important as that of essential amino acids for brain metabolism and development. We propose that SLC1A4 mutations cause a BBB aminoacidopathy with deficits in serine import across the BBB, required for optimal brain growth, leading to a metabolic microcephaly, which may be amenable to treatment with L-serine.
Collapse
Affiliation(s)
- Maali Odeh
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Inst of Technology, Haifa 3109601, Israel
| | - Clara Sajrawi
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Inst of Technology, Haifa 3109601, Israel
| | - Adam Majcher
- Institute of Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Salman Zubedat
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa 3498838, Israel
| | - Lihi Shaulov
- Electron Microscopy Unit, B. Rappaport Faculty of Medicine, Technion-Israel Inst of Technology, Haifa 3109601, Israel
| | | | | | - Wendy K Chung
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Avi Avital
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa 3498838, Israel
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Inna Radzishevsky
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Inst of Technology, Haifa 3109601, Israel
| | - Herman Wolosker
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Inst of Technology, Haifa 3109601, Israel
- Laura and Isaac Perlmutter Metabolomics Center, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Inst of Technology, Haifa 3109601, Israel
| |
Collapse
|
6
|
Onimus O, Arrivet F, Souza INDO, Bertrand B, Castel J, Luquet S, Mothet JP, Heck N, Gangarossa G. The gut-brain vagal axis scales hippocampal memory processes and plasticity. Neurobiol Dis 2024; 199:106569. [PMID: 38885849 DOI: 10.1016/j.nbd.2024.106569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
The vagus nerve serves as an interoceptive relay between the body and the brain. Despite its well-established role in feeding behaviors, energy metabolism, and cognitive functions, the intricate functional processes linking the vagus nerve to the hippocampus and its contribution to learning and memory dynamics remain still elusive. Here, we investigated whether and how the gut-brain vagal axis contributes to hippocampal learning and memory processes at behavioral, functional, cellular, and molecular levels. Our results indicate that the integrity of the vagal axis is essential for long-term recognition memories, while sparing other forms of memory. In addition, by combing multi-scale approaches, our findings show that the gut-brain vagal tone exerts a permissive role in scaling intracellular signaling events, gene expressions, hippocampal dendritic spines density as well as functional long-term plasticities (LTD and LTP). These results highlight the critical role of the gut-brain vagal axis in maintaining the spontaneous and homeostatic functions of hippocampal ensembles and in regulating their learning and memory functions. In conclusion, our study provides comprehensive insights into the multifaceted involvement of the gut-brain vagal axis in shaping time-dependent hippocampal learning and memory dynamics. Understanding the mechanisms underlying this interoceptive body-brain neuronal communication may pave the way for novel therapeutic approaches in conditions associated with cognitive decline, including neurodegenerative disorders.
Collapse
Affiliation(s)
- Oriane Onimus
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Faustine Arrivet
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine, Institut de Biologie Paris Seine, F-75005 Paris, France
| | - Isis Nem de Oliveira Souza
- Biophotonics and Synapse Physiopathology Team, Laboratoire LuMIn UMR9024 Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupelec, 91190 Gif-sur-Yvette, France; Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Brazil
| | - Benoit Bertrand
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Julien Castel
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Jean-Pierre Mothet
- Biophotonics and Synapse Physiopathology Team, Laboratoire LuMIn UMR9024 Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupelec, 91190 Gif-sur-Yvette, France
| | - Nicolas Heck
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine, Institut de Biologie Paris Seine, F-75005 Paris, France
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France; Institut Universitaire de France, France.
| |
Collapse
|
7
|
Barragan EV, Anisimova M, Vijayakumar V, Coblentz A, Park DK, Salaka RJ, Nisan AFK, Petshow S, Dore K, Zito K, Gray JA. d-Serine Inhibits Non-ionotropic NMDA Receptor Signaling. J Neurosci 2024; 44:e0140242024. [PMID: 38942470 PMCID: PMC11308331 DOI: 10.1523/jneurosci.0140-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
NMDA-type glutamate receptors (NMDARs) are widely recognized as master regulators of synaptic plasticity, most notably for driving long-term changes in synapse size and strength that support learning. NMDARs are unique among neurotransmitter receptors in that they require binding of both neurotransmitter (glutamate) and co-agonist (e.g., d-serine) to open the receptor channel, which leads to the influx of calcium ions that drive synaptic plasticity. Over the past decade, evidence has accumulated that NMDARs also support synaptic plasticity via ion flux-independent (non-ionotropic) signaling upon the binding of glutamate in the absence of co-agonist, although conflicting results have led to significant controversy. Here, we hypothesized that a major source of contradictory results might be attributed to variable occupancy of the co-agonist binding site under different experimental conditions. To test this hypothesis, we manipulated co-agonist availability in acute hippocampal slices from mice of both sexes. We found that enzymatic scavenging of endogenous co-agonists enhanced the magnitude of long-term depression (LTD) induced by non-ionotropic NMDAR signaling in the presence of the NMDAR pore blocker MK801. Conversely, a saturating concentration of d-serine completely inhibited LTD and spine shrinkage induced by glutamate binding in the presence of MK801 or Mg2+ Using a Förster resonance energy transfer (FRET)-based assay in cultured neurons, we further found that d-serine completely blocked NMDA-induced conformational movements of the GluN1 cytoplasmic domains in the presence of MK801. Our results support a model in which d-serine availability serves to modulate NMDAR signaling and synaptic plasticity even when the NMDAR is blocked by magnesium.
Collapse
Affiliation(s)
- Eden V Barragan
- Center for Neuroscience, University of California, Davis, California 95618
| | - Margarita Anisimova
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - Vishnu Vijayakumar
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego, San Diego, California 92093
| | - Azariah Coblentz
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - Deborah K Park
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - Raghava Jagadeesh Salaka
- Center for Neuroscience, University of California, Davis, California 95618
- Neurology, University of California, Davis, California 95618
| | - Atheer F K Nisan
- Center for Neuroscience, University of California, Davis, California 95618
| | - Samuel Petshow
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - Kim Dore
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego, San Diego, California 92093
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - John A Gray
- Center for Neuroscience, University of California, Davis, California 95618
- Neurology, University of California, Davis, California 95618
- Psychiatry and Behavioral Sciences, University of California, Davis, California 95618
| |
Collapse
|
8
|
Murthy V, Hanson E, DeMartinis N, Asgharnejad M, Dong C, Evans R, Ge T, Dunayevich E, Singh JB, Ratti E, Galderisi S. INTERACT: a randomized phase 2 study of the DAAO inhibitor luvadaxistat in adults with schizophrenia. Schizophr Res 2024; 270:249-257. [PMID: 38943928 DOI: 10.1016/j.schres.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 07/01/2024]
Abstract
Deficits in N-methyl-d-aspartate receptor (NMDAR) signaling are implicated in the pathogenesis of schizophrenia. Luvadaxistat (TAK-831/NBI-1065844) is an investigational d-amino acid oxidase (DAAO) inhibitor that increases d-serine levels at NMDAR coagonist sites. INTERACT is a phase 2 randomized, placebo-controlled study that evaluated the efficacy and safety of three doses of luvadaxistat, covering a range of DAAO occupancy and d-serine levels, in patients with schizophrenia with persistent negative symptoms. The study included a 14-day, single-blinded placebo run-in period and a 12-week, double-blinded treatment period. The primary efficacy endpoint was the 12-week change from baseline in Positive and Negative Syndrome Scale-Negative Symptom Factor Score (PANSS NSFS). Secondary efficacy endpoints included the 12-week changes from baseline in Brief Assessment of Cognition in Schizophrenia (BACS) score and Schizophrenia Cognition Rating Scale (SCoRS) score. Safety endpoints included adverse event assessments. The full analysis set included all randomized patients (N = 256 [placebo, n = 87; luvadaxistat 50 mg, n = 58; 125 mg, n = 56; 500 mg, n = 55]); 228 patients completed the study. No significant improvements in PANSS NSFS were observed at any dose versus placebo at week 12. Improvements were observed with luvadaxistat 50 mg versus placebo in cognitive endpoints: BACS composite score (nominal one-sided p = 0.031) and SCoRS interviewer total score (nominal one-sided p = 0.011). Luvadaxistat did not significantly improve negative symptoms of schizophrenia. However, luvadaxistat 50 mg met the prespecified secondary endpoints for cognitive performance (BACS) and function (SCoRS), warranting further investigation in patients with cognitive impairment associated with schizophrenia. Luvadaxistat was well-tolerated in INTERACT, with no new safety signals observed. ClinicalTrials.gov: NCT03382639.
Collapse
Affiliation(s)
- Venkatesha Murthy
- Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, United States.
| | - Elizabeth Hanson
- Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, United States
| | - Nicholas DeMartinis
- Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, United States
| | - Mahnaz Asgharnejad
- Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, United States
| | - Cheng Dong
- Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, United States
| | - Rebecca Evans
- Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, United States
| | - Tingting Ge
- Neurocrine Biosciences, Inc., San Diego, California, United States
| | - Eduardo Dunayevich
- Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, United States; Neurocrine Biosciences, Inc., San Diego, California, United States
| | - Jaskaran B Singh
- Neurocrine Biosciences, Inc., San Diego, California, United States
| | - Emiliangelo Ratti
- Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, United States
| | | |
Collapse
|
9
|
Barragan EV, Anisimova M, Vijayakumar V, Coblentz AC, Park DK, Salaka RJ, Nisan AFK, Petshow S, Dore K, Zito K, Gray JA. D-Serine inhibits non-ionotropic NMDA receptor signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596266. [PMID: 38854020 PMCID: PMC11160797 DOI: 10.1101/2024.05.29.596266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
NMDA-type glutamate receptors (NMDARs) are widely recognized as master regulators of synaptic plasticity, most notably for driving long-term changes in synapse size and strength that support learning. NMDARs are unique among neurotransmitter receptors in that they require binding of both neurotransmitter (glutamate) and co-agonist (e.g. d -serine) to open the receptor channel, which leads to the influx of calcium ions that drive synaptic plasticity. Over the past decade, evidence has accumulated that NMDARs also support synaptic plasticity via ion flux-independent (non-ionotropic) signaling upon the binding of glutamate in the absence of co-agonist, although conflicting results have led to significant controversy. Here, we hypothesized that a major source of contradictory results can be attributed to variable occupancy of the co-agonist binding site under different experimental conditions. To test this hypothesis, we manipulated co-agonist availability in acute hippocampal slices from mice of both sexes. We found that enzymatic scavenging of endogenous co-agonists enhanced the magnitude of LTD induced by non-ionotropic NMDAR signaling in the presence of the NMDAR pore blocker, MK801. Conversely, a saturating concentration of d -serine completely inhibited both LTD and spine shrinkage induced by glutamate binding in the presence of MK801. Using a FRET-based assay in cultured neurons, we further found that d -serine completely blocked NMDA-induced conformational movements of the GluN1 cytoplasmic domains in the presence of MK801. Our results support a model in which d -serine inhibits ion flux-independent NMDAR signaling and plasticity, and thus d -serine availability could serve to modulate NMDAR signaling even when the NMDAR is blocked by magnesium. Significance Statement NMDARs are glutamate-gated cation channels that are key regulators of neurodevelopment and synaptic plasticity and unique in their requirement for binding of a co-agonist (e.g. d -serine) in order for the channel to open. NMDARs have been found to drive synaptic plasticity via non-ionotropic (ion flux-independent) signaling upon the binding of glutamate in the absence of co-agonist, though conflicting results have led to controversy. Here, we found that d -serine inhibits non-ionotropic NMDAR-mediated LTD and LTD-associated spine shrinkage. Thus, a major source of the contradictory findings might be attributed to experimental variability in d -serine availability. In addition, the developmental regulation of d -serine levels suggests a role for non-ionotropic NMDAR plasticity during critical periods of plasticity.
Collapse
|
10
|
Pollegioni L, Campanini B, Good JM, Motta Z, Murtas G, Buoli Comani V, Pavlidou DC, Mercier N, Mittaz-Crettol L, Sacchi S, Marchesani F. L-serine deficiency: on the properties of the Asn133Ser variant of human phosphoserine phosphatase. Sci Rep 2024; 14:12463. [PMID: 38816452 PMCID: PMC11139964 DOI: 10.1038/s41598-024-63164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024] Open
Abstract
The non-essential amino acid L-serine is involved in a number of metabolic pathways and in the brain its level is largely due to the biosynthesis from the glycolytic intermediate D-3-phosphoglycerate by the phosphorylated pathway (PP). This cytosolic pathway is made by three enzymes proposed to generate a reversible metabolon named the "serinosome". Phosphoserine phosphatase (PSP) catalyses the last and irreversible step, representing the driving force pushing L-serine synthesis. Genetic defects of the PP enzymes result in strong neurological phenotypes. Recently, we identified the homozygous missense variant [NM_004577.4: c.398A > G p.(Asn133Ser)] in the PSPH, the PSP encoding gene, in two siblings with a neurodevelopmental syndrome and a myelopathy. The recombinant Asn133Ser enzyme does not show significant alterations in protein conformation and dimeric oligomerization state, as well as in enzymatic activity and functionality of the reconstructed PP. However, the Asn133Ser variant is less stable than wild-type PSP, a feature also apparent at cellular level. Studies on patients' fibroblasts also highlight a strong decrease in the level of the enzymes of the PP, a partial nuclear and perinuclear localization of variant PSP and a stronger perinuclear aggregates formation. We propose that these alterations contribute to the formation of a dysfunctional serinosome and thus to the observed reduction of L-serine, glycine and D-serine levels (the latter playing a crucial role in modulating NMDA receptors). The characterization of patients harbouring the Asn133Ser PSP substitution allows to go deep into the molecular mechanisms related to L-serine deficit and to suggest treatments to cope with the observed amino acids alterations.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy.
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Jean-Marc Good
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Zoraide Motta
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | | | - Despina-Christina Pavlidou
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Noëlle Mercier
- Department of Epileptology, Institution of Lavigny, Lavigny, Switzerland
| | - Laureane Mittaz-Crettol
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | | |
Collapse
|
11
|
Mony L, Paoletti P. Mechanisms of NMDA receptor regulation. Curr Opin Neurobiol 2023; 83:102815. [PMID: 37988826 DOI: 10.1016/j.conb.2023.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels widely expressed in the central nervous system that play key role in brain development and plasticity. On the downside, NMDAR dysfunction, be it hyperactivity or hypofunction, is harmful to neuronal function and has emerged as a common theme in various neuropsychiatric disorders including autism spectrum disorders, epilepsy, intellectual disability, and schizophrenia. Not surprisingly, NMDAR signaling is under a complex set of regulatory mechanisms that maintain NMDAR-mediated transmission in check. These include an unusual large number of endogenous agents that directly bind NMDARs and tune their activity in a subunit-dependent manner. Here, we review current knowledge on the regulation of NMDAR signaling. We focus on the regulation of the receptor by its microenvironment as well as by external (i.e. pharmacological) factors and their underlying molecular and cellular mechanisms. Recent developments showing how NMDAR dysregulation participate to disease mechanisms are also highlighted.
Collapse
Affiliation(s)
- Laetitia Mony
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France.
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France.
| |
Collapse
|
12
|
Souza INDO, Roychaudhuri R, de Belleroche J, Mothet JP. d-Amino acids: new clinical pathways for brain diseases. Trends Mol Med 2023; 29:1014-1028. [PMID: 37770379 DOI: 10.1016/j.molmed.2023.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Free d-amino acids (d-AAs) are emerging as a novel and important class of signaling molecules in many organs, including the brain and endocrine systems. There has been considerable progress in our understanding of the fundamental roles of these atypical messengers, with increasingly recognized implications in a wide range of neuropathologies, including schizophrenia (SCZ), epilepsy, Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), substance abuse, and chronic pain, among others. Research has enabled the discovery that d-serine, d-aspartate and more recently d-cysteine are essential for the healthy development and function of the central nervous system (CNS). We discuss recent progress that has profoundly transformed our vision of numerous physiological processes but has also shown how d-AAs are now offering therapeutic promise in clinical settings for several human diseases.
Collapse
Affiliation(s)
- Isis Nem de Oliveira Souza
- Biophotonics and Synapse Physiopathology Team, Laboratoire LuMIn UMR9024 Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupelec, 91190 Gif-sur-Yvette, France; Molecular Pharmacology Laboratory, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robin Roychaudhuri
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Birth Defects, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jacqueline de Belleroche
- Neurogenetics Group, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Jean-Pierre Mothet
- Biophotonics and Synapse Physiopathology Team, Laboratoire LuMIn UMR9024 Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupelec, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
13
|
Fu R, Zhao QY, Han H, Li WL, Chen FY, Tang C, Zhang W, Guo SD, Li DY, Geng WC, Guo DS, Cai K. A Chiral Emissive Conjugated Macrocycle for High-Affinity and Highly Enantioselective Recognition in Water. Angew Chem Int Ed Engl 2023:e202315990. [PMID: 37917047 DOI: 10.1002/anie.202315990] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
Accurately distinguishing between enantiomeric molecules is a fundamental challenge in the field of chemistry. However, there is still significant room for improvement in both the enantiomeric selectivity (KR(S) /KS(R) ) and binding strength of most reported macrocyclic chiral receptors to meet the demands of practical application scenarios. Herein, we synthesized a water-soluble conjugated tubular host-namely, corral[4]BINOL-using a chiral 1,1'-bi-2-naphthol (BINOL) derivative as the repeating unit. The conjugated chiral backbone endows corral[4]BINOL with good fluorescent emission (QY=34 % ) and circularly polarized luminescence (|glum | up to 1.4×10-3 ) in water. Notably, corral[4]BINOL exhibits high recognition affinity up to 8.6×1010 M-1 towards achiral guests in water, and manifested excellent enantioselectivity up to 18.7 towards chiral substrates, both of which represent the highest values observed among chiral macrocycles in aqueous solution. The ultrastrong binding strength, outstanding enantioselectivity, and facile accessibility, together with the superior fluorescent and chiroptical properties, endow corral[4]BINOL with great potential for a wide range of applications.
Collapse
Affiliation(s)
- Rong Fu
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Qing-Yu Zhao
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Han Han
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Wen-Li Li
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Fang-Yuan Chen
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Chun Tang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Wei Zhang
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Si-Dan Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Dai-Yuan Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Wen-Chao Geng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Kang Cai
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
14
|
Arizanovska D, Emodogo JA, Lally AP, Palavicino-Maggio CB, Liebl DJ, Folorunso OO. Cross species review of the physiological role of D-serine in translationally relevant behaviors. Amino Acids 2023; 55:1501-1517. [PMID: 37833512 PMCID: PMC10689556 DOI: 10.1007/s00726-023-03338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Bridging the gap between preclinical models of neurological and psychiatric disorders with their human manifestations is necessary to understand their underlying mechanisms, identify biomarkers, and develop novel therapeutics. Cognitive and social impairments underlie multiple neuropsychiatric and neurological disorders and are often comorbid with sleep disturbances, which can exacerbate poor outcomes. Importantly, many symptoms are conserved between vertebrates and invertebrates, although they may have subtle differences. Therefore, it is essential to determine the molecular mechanisms underlying these behaviors across different species and their translatability to humans. Genome-wide association studies have indicated an association between glutamatergic gene variants and both the risk and frequency of psychiatric disorders such as schizophrenia, bipolar disorder, and autism spectrum disorder. For example, changes in glutamatergic neurotransmission, such as glutamate receptor subtype N-methyl-D-aspartate receptor (NMDAR) hypofunction, have been shown to contribute to the pathophysiology of schizophrenia. Furthermore, in neurological disorders, such as traumatic brain injury and Alzheimer's disease, hyperactivation of NMDARs leads to synaptic damage. In addition to glutamate binding, NMDARs require the binding of a co-agonist D-serine or glycine to the GluN1 subunit to open. D-serine, which is racemized from L-serine by the neuronal enzyme serine racemase (SRR), and both SRR and D-serine are enriched in cortico-limbic brain regions. D-serine is critical for complex behaviors, such as cognition and social behavior, where dysregulation of its synthesis and release has been implicated in many pathological conditions. In this review, we explore the role of D-serine in behaviors that are translationally relevant to multiple psychiatric and neurological disorders in different models across species.
Collapse
Affiliation(s)
- Dena Arizanovska
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jada A Emodogo
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA
| | - Anna P Lally
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA, USA
| | - Caroline B Palavicino-Maggio
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Neurobiological Mechanisms of Aggression Laboratory, McLean Hospital, Belmont, MA, USA
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Oluwarotimi O Folorunso
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
15
|
Radzishevsky I, Odeh M, Bodner O, Zubedat S, Shaulov L, Litvak M, Esaki K, Yoshikawa T, Agranovich B, Li WH, Radzishevsky A, Gottlieb E, Avital A, Wolosker H. Impairment of serine transport across the blood-brain barrier by deletion of Slc38a5 causes developmental delay and motor dysfunction. Proc Natl Acad Sci U S A 2023; 120:e2302780120. [PMID: 37812701 PMCID: PMC10589673 DOI: 10.1073/pnas.2302780120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/08/2023] [Indexed: 10/11/2023] Open
Abstract
Brain L-serine is critical for neurodevelopment and is thought to be synthesized solely from glucose. In contrast, we found that the influx of L-serine across the blood-brain barrier (BBB) is essential for brain development. We identified the endothelial Slc38a5, previously thought to be a glutamine transporter, as an L-serine transporter expressed at the BBB in early postnatal life. Young Slc38a5 knockout (KO) mice exhibit developmental alterations and a decrease in brain L-serine and D-serine, without changes in serum or liver amino acids. Slc38a5-KO brains exhibit accumulation of neurotoxic deoxysphingolipids, synaptic and mitochondrial abnormalities, and decreased neurogenesis at the dentate gyrus. Slc38a5-KO pups exhibit motor impairments that are affected by the administration of L-serine at concentrations that replenish the serine pool in the brain. Our results highlight a critical role of Slc38a5 in supplying L-serine via the BBB for proper brain development.
Collapse
Affiliation(s)
- Inna Radzishevsky
- Department of Biochemistry, B. Rappaport Faculty of Medicine, Technion-Israel Institue of Technology, Haifa3109601, Israel
| | - Maali Odeh
- Department of Biochemistry, B. Rappaport Faculty of Medicine, Technion-Israel Institue of Technology, Haifa3109601, Israel
| | - Oded Bodner
- Department of Biochemistry, B. Rappaport Faculty of Medicine, Technion-Israel Institue of Technology, Haifa3109601, Israel
| | - Salman Zubedat
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa3498838, Israel
| | - Lihi Shaulov
- Electron Microscopy Unit, B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa3109601, Israel
| | - Maxim Litvak
- Department of Biochemistry, B. Rappaport Faculty of Medicine, Technion-Israel Institue of Technology, Haifa3109601, Israel
| | - Kayoko Esaki
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto860-0082, Japan
| | - Takeo Yoshikawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Saitama351-0198, Japan
| | - Bella Agranovich
- Laura and Isaac Perlmutter Metabolomics Center, B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa3109601, Israel
| | - Wen-Hong Li
- Department of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390-9039
| | | | - Eyal Gottlieb
- Technion-Integrated Cancer Center, B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa3109601, Israel
| | - Avi Avital
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa3498838, Israel
| | - Herman Wolosker
- Department of Biochemistry, B. Rappaport Faculty of Medicine, Technion-Israel Institue of Technology, Haifa3109601, Israel
- Laura and Isaac Perlmutter Metabolomics Center, B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa3109601, Israel
| |
Collapse
|
16
|
Beesley S, Kumar SS. The t-N-methyl-d-aspartate receptor: Making the case for d-Serine to be considered its inverse co-agonist. Neuropharmacology 2023:109654. [PMID: 37437688 DOI: 10.1016/j.neuropharm.2023.109654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
The N-methyl-d-aspartate receptor (NMDAR) is an enigmatic macromolecule that has garnered a good deal of attention on account of its involvement in the cellular processes that underlie learning and memory, following its discovery in the mid twentieth century (Baudry and Davis, 1991). Yet, despite advances in knowledge about its function, there remains much more to be uncovered regarding the receptor's biophysical properties, subunit composition, and role in CNS physiology and pathophysiology. The motivation for this review stems from the need for synthesizing new information gathered about these receptors that sheds light on their role in synaptic plasticity and their dichotomous relationship with the amino acid d-serine through which they influence the pathogenesis of neurodegenerative diseases like temporal lobe epilepsy (TLE), the most common type of adult epilepsies (Beesley et al., 2020a). This review will outline pertinent ideas relating structure and function of t-NMDARs (GluN3 subunit-containing triheteromeric NMDARs) for which d-serine might serve as an inverse co-agonist. We will explore how tracing d-serine's origins blends glutamate-receptor biology with glial biology to help provide fresh perspectives on how neurodegeneration might interlink with neuroinflammation to initiate and perpetuate the disease state. Taken together, we envisage the review to deepen our understanding of endogenous d-serine's new role in the brain while also recognizing its therapeutic potential in the treatment of TLE that is oftentimes refractory to medications.
Collapse
Affiliation(s)
- Stephen Beesley
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience Florida State University, 1115 W. Call Street, Tallahassee, FL, 32306-4300, USA
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience Florida State University, 1115 W. Call Street, Tallahassee, FL, 32306-4300, USA.
| |
Collapse
|
17
|
Kambali M, Li Y, Unichenko P, Pliego JF, Yadav R, Liu J, McGuinness P, Cobb JG, Wang M, Nagarajan R, Lyu J, Vongsouthi V, Jackson CJ, Engin E, Coyle JT, Shin J, Talkowski ME, Homanics GE, Bolshakov VY, Henneberger C, Rudolph U. A marker chromosome in psychosis identifies glycine decarboxylase (GLDC) as a novel regulator of neuronal and synaptic function in the hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542745. [PMID: 37398055 PMCID: PMC10312439 DOI: 10.1101/2023.05.29.542745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The biological significance of a small supernumerary marker chromosome that results in dosage alterations to chromosome 9p24.1, including triplication of the GLDC gene encoding glycine decarboxylase, in two patients with psychosis is unclear. In an allelic series of copy number variant mouse models, we identify that triplication of Gldc reduces extracellular glycine levels as determined by optical fluorescence resonance energy transfer (FRET) in dentate gyrus (DG) but not in CA1, suppresses long-term potentiation (LTP) in mPP-DG synapses but not in CA3-CA1 synapses, reduces the activity of biochemical pathways implicated in schizophrenia and mitochondrial bioenergetics, and displays deficits in prepulse inhibition, startle habituation, latent inhibition, working memory, sociability and social preference. Our results thus provide a link between a genomic copy number variation, biochemical, cellular and behavioral phenotypes, and further demonstrate that GLDC negatively regulates long-term synaptic plasticity at specific hippocampal synapses, possibly contributing to the development of neuropsychiatric disorders.
Collapse
|
18
|
Chen JZ, Church WB, Bastard K, Duff AP, Balle T. Binding and Dynamics Demonstrate the Destabilization of Ligand Binding for the S688Y Mutation in the NMDA Receptor GluN1 Subunit. Molecules 2023; 28:molecules28104108. [PMID: 37241849 DOI: 10.3390/molecules28104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Encephalopathies are brain dysfunctions that lead to cognitive, sensory, and motor development impairments. Recently, the identification of several mutations within the N-methyl-D-aspartate receptor (NMDAR) have been identified as significant in the etiology of this group of conditions. However, a complete understanding of the underlying molecular mechanism and changes to the receptor due to these mutations has been elusive. We studied the molecular mechanisms by which one of the first mutations within the NMDAR GluN1 ligand binding domain, Ser688Tyr, causes encephalopathies. We performed molecular docking, randomly seeded molecular dynamics simulations, and binding free energy calculations to determine the behavior of the two major co-agonists: glycine and D-serine, in both the wild-type and S688Y receptors. We observed that the Ser688Tyr mutation leads to the instability of both ligands within the ligand binding site due to structural changes associated with the mutation. The binding free energy for both ligands was significantly more unfavorable in the mutated receptor. These results explain previously observed in vitro electrophysiological data and provide detailed aspects of ligand association and its effects on receptor activity. Our study provides valuable insight into the consequences of mutations within the NMDAR GluN1 ligand binding domain.
Collapse
Affiliation(s)
- Jake Zheng Chen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW 2050, Australia
| | - William Bret Church
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Karine Bastard
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Anthony P Duff
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Thomas Balle
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
19
|
Liu Y, Wu Z, Armstrong DW, Wolosker H, Zheng Y. Detection and analysis of chiral molecules as disease biomarkers. Nat Rev Chem 2023; 7:355-373. [PMID: 37117811 PMCID: PMC10175202 DOI: 10.1038/s41570-023-00476-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 04/30/2023]
Abstract
The chirality of small metabolic molecules is important in controlling physiological processes and indicating the health status of humans. Abnormal enantiomeric ratios of chiral molecules in biofluids and tissues occur in many diseases, including cancers and kidney and brain diseases. Thus, chiral small molecules are promising biomarkers for disease diagnosis, prognosis, adverse drug-effect monitoring, pharmacodynamic studies and personalized medicine. However, it remains difficult to achieve cost-effective and reliable analysis of small chiral molecules in clinical procedures, in part owing to their large variety and low concentration. In this Review, we describe current and emerging techniques that detect and quantify small-molecule enantiomers and their biological importance.
Collapse
Affiliation(s)
- Yaoran Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Zilong Wu
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
| | - Daniel W Armstrong
- Department of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, TX, USA.
| | - Herman Wolosker
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Yuebing Zheng
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA.
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
20
|
Osorio N, Martineau M, Fortea M, Rouget C, Penalba V, Lee CJ, Boesmans W, Rolli-Derkinderen M, Patel AV, Mondielli G, Conrod S, Labat-Gest V, Papin A, Sasabe J, Sweedler JV, Vanden Berghe P, Delmas P, Mothet JP. d-Serine agonism of GluN1-GluN3 NMDA receptors regulates the activity of enteric neurons and coordinates gut motility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537136. [PMID: 37131687 PMCID: PMC10153202 DOI: 10.1101/2023.04.19.537136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The enteric nervous system (ENS) is a complex network of diverse molecularly defined classes of neurons embedded in the gastrointestinal wall and responsible for controlling the major functions of the gut. As in the central nervous system, the vast array of ENS neurons is interconnected by chemical synapses. Despite several studies reporting the expression of ionotropic glutamate receptors in the ENS, their roles in the gut remain elusive. Here, by using an array of immunohistochemistry, molecular profiling and functional assays, we uncover a new role for d-serine (d-Ser) and non-conventional GluN1-GluN3 N-methyl d-aspartate receptors (NMDARs) in regulating ENS functions. We demonstrate that d-Ser is produced by serine racemase (SR) expressed in enteric neurons. By using both in situ patch clamp recording and calcium imaging, we show that d-Ser alone acts as an excitatory neurotransmitter in the ENS independently of the conventional GluN1-GluN2 NMDARs. Instead, d-Ser directly gates the non-conventional GluN1-GluN3 NMDARs in enteric neurons from both mouse and guinea-pig. Pharmacological inhibition or potentiation of GluN1-GluN3 NMDARs had opposite effects on mouse colonic motor activities, while genetically driven loss of SR impairs gut transit and fluid content of pellet output. Our results demonstrate the existence of native GluN1-GluN3 NMDARs in enteric neurons and open new perspectives on the exploration of excitatory d-Ser receptors in gut function and diseases.
Collapse
Affiliation(s)
- Nancy Osorio
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille-Université, CNRS, UMR 7291, Marseille, France
- Centre de Recherche en Neurophysiologie et Neuroscience de Marseille, UMR 7286, CNRS, Université Aix-Marseille, Marseille, France
| | | | - Marina Fortea
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | | | - Virginie Penalba
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille-Université, CNRS, UMR 7291, Marseille, France
- Centre de Recherche en Neurophysiologie et Neuroscience de Marseille, UMR 7286, CNRS, Université Aix-Marseille, Marseille, France
| | - Cindy J. Lee
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Werend Boesmans
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | | | - Amit V. Patel
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Grégoire Mondielli
- Centre de Recherche en Neurophysiologie et Neuroscience de Marseille, UMR 7286, CNRS, Université Aix-Marseille, Marseille, France
| | - Sandrine Conrod
- Centre de Recherche en Neurophysiologie et Neuroscience de Marseille, UMR 7286, CNRS, Université Aix-Marseille, Marseille, France
| | | | - Amandine Papin
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille-Université, CNRS, UMR 7291, Marseille, France
| | - Jumpei Sasabe
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Patrick Delmas
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille-Université, CNRS, UMR 7291, Marseille, France
- Centre de Recherche en Neurophysiologie et Neuroscience de Marseille, UMR 7286, CNRS, Université Aix-Marseille, Marseille, France
| | - Jean-Pierre Mothet
- Neurocentre Magendie, INSERM UMR U862, Bordeaux, France
- Centre de Recherche en Neurophysiologie et Neuroscience de Marseille, UMR 7286, CNRS, Université Aix-Marseille, Marseille, France
- Université Paris-Saclay, École Normale Supérieure Paris-Saclay, Centre National de la Recherche Scientifique, CentraleSupélec, LuMIn UMR9024, Gif-sur-Yvette 91190, France
| |
Collapse
|
21
|
Piniella D, Zafra F. Functional crosstalk of the glycine transporter GlyT1 and NMDA receptors. Neuropharmacology 2023; 232:109514. [PMID: 37003571 DOI: 10.1016/j.neuropharm.2023.109514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
NMDA-type glutamate receptors (NMDARs) constitute one of the main glutamate (Glu) targets in the central nervous system and are involved in synaptic plasticity, which is the molecular substrate of learning and memory. Hypofunction of NMDARs has been associated with schizophrenia, while overstimulation causes neuronal death in neurodegenerative diseases or in stroke. The function of NMDARs requires coincidental binding of Glu along with other cellular signals such as neuronal depolarization, and the presence of other endogenous ligands that modulate their activity by allosterism. Among these allosteric modulators are zinc, protons and Gly, which is an obligatory co-agonist. These characteristics differentiate NMDARs from other receptors, and their structural bases have begun to be established in recent years. In this review we focus on the crosstalk between Glu and glycine (Gly), whose concentration in the NMDAR microenvironment is maintained by various Gly transporters that remove or release it into the medium in a regulated manner. The GlyT1 transporter is particularly involved in this task, and has become a target of great interest for the treatment of schizophrenia since its inhibition leads to an increase in synaptic Gly levels that enhances the activity of NMDARs. However, the only drug that has completed phase III clinical trials did not yield the expected results. Notwithstanding, there are additional drugs that continue to be investigated, and it is hoped that knowledge gained from the recently published 3D structure of GlyT1 may allow the rational design of more effective new drugs.
Collapse
Affiliation(s)
- Dolores Piniella
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Institute of Health Carlos III (ISCIII), Spain
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Institute of Health Carlos III (ISCIII), Spain.
| |
Collapse
|
22
|
Leng L, Yuan Z, Su X, Chen Z, Yang S, Chen M, Zhuang K, Lin H, Sun H, Li H, Xue M, Xu J, Yan J, Chen Z, Yuan T, Zhang J. Hypothalamic Menin regulates systemic aging and cognitive decline. PLoS Biol 2023; 21:e3002033. [PMID: 36928253 PMCID: PMC10019680 DOI: 10.1371/journal.pbio.3002033] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 02/09/2023] [Indexed: 03/18/2023] Open
Abstract
Aging is a systemic process, which is a risk factor for impaired physiological functions, and finally death. The molecular mechanisms driving aging process and the associated cognitive decline are not fully understood. The hypothalamus acts as the arbiter that orchestrates systemic aging through neuroinflammatory signaling. Our recent findings revealed that Menin plays important roles in neuroinflammation and brain development. Here, we found that the hypothalamic Menin signaling diminished in aged mice, which correlates with systemic aging and cognitive deficits. Restoring Menin expression in ventromedial nucleus of hypothalamus (VMH) of aged mice extended lifespan, improved learning and memory, and ameliorated aging biomarkers, while inhibiting Menin in VMH of middle-aged mice induced premature aging and accelerated cognitive decline. We further found that Menin epigenetically regulates neuroinflammatory and metabolic pathways, including D-serine metabolism. Aging-associated Menin reduction led to impaired D-serine release by VMH-hippocampus neural circuit, while D-serine supplement rescued cognitive decline in aged mice. Collectively, VMH Menin serves as a key regulator of systemic aging and aging-related cognitive decline.
Collapse
Affiliation(s)
- Lige Leng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, China
- * E-mail: (LL); (JZ)
| | - Ziqi Yuan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiao Su
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhenlei Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shangchen Yang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Meiqin Chen
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kai Zhuang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hui Lin
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hao Sun
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Huifang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Maoqiang Xue
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jun Xu
- Institute for AI in Medicine, School of Automation, Nanjing University of Information Science and Technology, Nanjing, China
| | - Jingqi Yan
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, United States of America
| | - Zhenyi Chen
- Department of Anesthesiology, First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Tifei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai China
| | - Jie Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Anesthesiology, First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- * E-mail: (LL); (JZ)
| |
Collapse
|
23
|
Kruyer A, Kalivas PW, Scofield MD. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology 2023; 48:21-36. [PMID: 35577914 PMCID: PMC9700696 DOI: 10.1038/s41386-022-01338-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
Abstract
Over the last 15 years, the field of neuroscience has evolved toward recognizing the critical role of astroglia in shaping neuronal synaptic activity and along with the pre- and postsynapse is now considered an equal partner in tripartite synaptic transmission and plasticity. The relative youth of this recognition and a corresponding deficit in reagents and technologies for quantifying and manipulating astroglia relative to neurons continues to hamper advances in understanding tripartite synaptic physiology. Nonetheless, substantial advances have been made and are reviewed herein. We review the role of astroglia in synaptic function and regulation of behavior with an eye on how tripartite synapses figure into brain pathologies underlying behavioral impairments in psychiatric disorders, both from the perspective of measures in postmortem human brains and more subtle influences on tripartite synaptic regulation of behavior in animal models of psychiatric symptoms. Our goal is to provide the reader a well-referenced state-of-the-art understanding of current knowledge and predict what we may discover with deeper investigation of tripartite synapses using reagents and technologies not yet available.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
24
|
An astrocytic signaling loop for frequency-dependent control of dendritic integration and spatial learning. Nat Commun 2022; 13:7932. [PMID: 36566254 PMCID: PMC9789958 DOI: 10.1038/s41467-022-35620-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
Dendrites of hippocampal CA1 pyramidal cells amplify clustered glutamatergic input by activation of voltage-gated sodium channels and N-methyl-D-aspartate receptors (NMDARs). NMDAR activity depends on the presence of NMDAR co-agonists such as D-serine, but how co-agonists influence dendritic integration is not well understood. Using combinations of whole-cell patch clamp, iontophoretic glutamate application, two-photon excitation fluorescence microscopy and glutamate uncaging in acute rat and mouse brain slices we found that exogenous D-serine reduced the threshold of dendritic spikes and increased their amplitude. Triggering an astrocytic mechanism controlling endogenous D-serine supply via endocannabinoid receptors (CBRs) also increased dendritic spiking. Unexpectedly, this pathway was activated by pyramidal cell activity primarily in the theta range, which required HCN channels and astrocytic CB1Rs. Therefore, astrocytes close a positive and frequency-dependent feedback loop between pyramidal cell activity and their integration of dendritic input. Its disruption in mice led to an impairment of spatial memory, which demonstrated its behavioral relevance.
Collapse
|
25
|
Wang H, Qi S, Mu X, Yuan L, Li Y, Qiu J. Bisphenol F induces liver-gut alteration in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157974. [PMID: 35963407 DOI: 10.1016/j.scitotenv.2022.157974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The unease of consumers with bisphenol A has led to the increased industrial usage of bisphenol F (BPF), which is a new hazard to environmental health. Here, zebrafish were exposed to three BPF concentrations (0.5, 5, and 50 μg/L) from the embryonic stage for 180 days. Results showed that zebrafish body length and weight decreased and hepatosomatic index values increased, even at environmentally relevant concentration. Histological analysis identified the occurrence of hepatic fibrosis and steatosis in 5 and 50 μg/L groups, which indicated the liver injury caused by BPF. Based on the untargeted metabolomics results, a dose-dependent variation in the effects of BPF on liver metabolism was found, and amino acids, purines and one carbon metabolism were the main affected processes in the 0.5, 5, and 50 μg/L treatments, respectively. At the same time, BPF induced a shift in intestinal microbiome composition, including decreased abundance of Erysipelotrichaceae, Rhodobacteraceae and Gemmobacter. In addition, the correlation analysis suggested an association between gut microbiome changes and affected hepatic metabolites after BPF exposure. These findings indicate that a liver-gut alteration is induced by long-term BPF exposure.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China; Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, China
| | - Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China; Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, China.
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
26
|
Flux coupling, not specificity, shapes the transport and phylogeny of SLC6 glycine transporters. Proc Natl Acad Sci U S A 2022; 119:e2205874119. [PMID: 36191186 PMCID: PMC9564218 DOI: 10.1073/pnas.2205874119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATB[Formula: see text] (SLC6A14) is a member of the amino acid transporter branch of the SLC6 family along with GlyT1 (SLC6A9) and GlyT2 (SLC6A5), two glycine-specific transporters coupled to 2:1 and 3:1 Na[Formula: see text]:Cl[Formula: see text], respectively. In contrast, ATB[Formula: see text] exhibits broad substrate specificity for all neutral and cationic amino acids, and its ionic coupling remains unsettled. Using the reversal potential slope method, we demonstrate a 3:1:1 Na[Formula: see text]:Cl[Formula: see text]:Gly stoichiometry for ATB[Formula: see text] that is consistent with its 2.1 e/Gly charge coupling. Like GlyT2, ATB[Formula: see text] behaves as a unidirectional transporter with virtually no glycine efflux at negative potentials after uptake, except by heteroexchange as remarkably shown by leucine activation of NMDARs in Xenopus oocytes coexpressing both membrane proteins. Analysis and computational modeling of the charge movement of ATB[Formula: see text] reveal a higher affinity for sodium in the absence of substrate than GlyT2 and a gating mechanism that locks Na[Formula: see text] into the apo-transporter at depolarized potentials. A 3:1 Na[Formula: see text]:Cl[Formula: see text] stoichiometry justifies the concentrative transport properties of ATB[Formula: see text] and explains its trophic role in tumor growth, while rationalizing its phylogenetic proximity to GlyT2 despite their extreme divergence in specificity.
Collapse
|
27
|
GluN3A excitatory glycine receptors control adult cortical and amygdalar circuits. Neuron 2022; 110:2438-2454.e8. [PMID: 35700736 PMCID: PMC9365314 DOI: 10.1016/j.neuron.2022.05.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/05/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022]
Abstract
GluN3A is an atypical glycine-binding subunit of NMDA receptors (NMDARs) whose actions in the brain are mostly unknown. Here, we show that the expression of GluN3A subunits controls the excitability of mouse adult cortical and amygdalar circuits via an unusual signaling mechanism involving the formation of excitatory glycine GluN1/GluN3A receptors (eGlyRs) and their tonic activation by extracellular glycine. eGlyRs are mostly extrasynaptic and reside in specific neuronal populations, including the principal cells of the basolateral amygdala (BLA) and SST-positive interneurons (SST-INs) of the neocortex. In the BLA, tonic eGlyR currents are sensitive to fear-conditioning protocols, are subject to neuromodulation by the dopaminergic system, and control the stability of fear memories. In the neocortex, eGlyRs control the in vivo spiking of SST-INs and the behavior-dependent modulation of cortical activity. GluN3A-containing eGlyRs thus represent a novel and widespread signaling modality in the adult brain, with attributes that strikingly depart from those of conventional NMDARs. In mice, GluN3A is expressed by SST-INs in the cortex and pyramidal neurons in the BLA GluN3A assembles as excitatory glycine GluN1/GluN3A receptors (eGlyRs) eGlyRs detect extracellular glycine levels and generate tonic excitatory currents eGlyRs tune the function of SST-INs in cortex and alter the formation of fear memories in BLA
Collapse
|
28
|
Park DK, Petshow S, Anisimova M, Barragan EV, Gray JA, Stein IS, Zito K. Reduced d-serine levels drive enhanced non-ionotropic NMDA receptor signaling and destabilization of dendritic spines in a mouse model for studying schizophrenia. Neurobiol Dis 2022; 170:105772. [PMID: 35605760 PMCID: PMC9352378 DOI: 10.1016/j.nbd.2022.105772] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 10/31/2022] Open
Abstract
Schizophrenia is a psychiatric disorder that affects over 20 million people globally. Notably, schizophrenia is associated with decreased density of dendritic spines and decreased levels of d-serine, a co-agonist required for opening of the N-methyl-d-aspartate receptor (NMDAR). We hypothesized that lowered d-serine levels associated with schizophrenia would enhance ion flux-independent signaling by the NMDAR, driving destabilization and loss of dendritic spines. We tested our hypothesis using the serine racemase knockout (SRKO) mouse model, which lacks the enzyme for d-serine production. We show that activity-dependent spine growth is impaired in SRKO mice, but can be acutely rescued by exogenous d-serine. Moreover, we find a significant bias of synaptic plasticity toward spine shrinkage in the SRKO mice as compared to wild-type littermates. Notably, we demonstrate that enhanced ion flux-independent signaling through the NMDAR contributes to this bias toward spine destabilization, which is exacerbated by an increase in synaptic NMDARs in hippocampal synapses of SRKO mice. Our results support a model in which lowered d-serine levels associated with schizophrenia enhance ion flux-independent NMDAR signaling and bias toward spine shrinkage and destabilization.
Collapse
|
29
|
Keith RE, Ogoe RH, Dumas TC. Behind the scenes: Are latent memories supported by calcium independent plasticity? Hippocampus 2022; 32:73-88. [PMID: 33905147 PMCID: PMC8548406 DOI: 10.1002/hipo.23332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 02/03/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) can be considered to be the de facto "plasticity" receptors in the brain due to their central role in the activity-dependent modification of neuronal morphology and synaptic transmission. Since the 1980s, research on NMDARs has focused on the second messenger properties of calcium and the downstream signaling pathways that mediate alterations in neural form and function. Recently, NMDARs were shown to drive activity-dependent synaptic plasticity without calcium influx. How this "nonionotropic" plasticity occurs in vitro is becoming clearer, but research on its involvement in behavior and cognition is in its infancy. There is a partial overlap in the downstream signaling molecules that are involved in ionotropic and nonionotropic NMDAR-dependent plasticity. Given this, and prior studies of the cognitive impacts of ionotropic NMDAR plasticity, a preliminary model explaining how NMDAR nonionotropic plasticity affects learning and memory can be established. We hypothesize that nonionotropic NMDAR plasticity takes part in latent memory encoding in immature rodents through nonassociative depression of synaptic efficacy, and possibly shrinking of dendritic spines. Further, the late postnatal alteration in NMDAR composition in the hippocampus appears to reduce nonionotropic signaling and remove a restriction on memory retrieval. This framework substantially alters the canonical model of NMDAR involvement in spatial cognition and hippocampal maturation and provides novel and exciting inroads for future studies.
Collapse
Affiliation(s)
- Rachel E. Keith
- Interdisciplinary Program in Neuroscience, College of Science, George Mason University, Fairfax, Virginia
| | - Richard H. Ogoe
- Department of Psychology, College of Humanities and Social Sciences, George Mason University, Fairfax, Virginia
| | - Theodore C. Dumas
- Interdisciplinary Program in Neuroscience, College of Science, George Mason University, Fairfax, Virginia,Department of Psychology, College of Humanities and Social Sciences, George Mason University, Fairfax, Virginia
| |
Collapse
|
30
|
Wang J, Serratrice N, Lee CJ, François F, Sweedler JV, Puel JL, Mothet JP, Ruel J. Physiopathological Relevance of D-Serine in the Mammalian Cochlea. Front Cell Neurosci 2022; 15:733004. [PMID: 34975405 PMCID: PMC8718999 DOI: 10.3389/fncel.2021.733004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/29/2021] [Indexed: 12/02/2022] Open
Abstract
NMDA receptors (NMDARs) populate the complex between inner hair cell (IHC) and spiral ganglion neurons (SGNs) in the developing and mature cochlea. However, in the mature cochlea, activation of NMDARs is thought to mainly occur under pathological conditions such as excitotoxicity. Ototoxic drugs such as aspirin enable cochlear arachidonic-acid-sensitive NMDAR responses, and induced chronic tinnitus was blocked by local application of NMDAR antagonists into the cochlear fluids. We largely ignore if other modulators are also engaged. In the brain, D-serine is the primary physiological co-agonist of synaptic NMDARs. Whether D-serine plays a role in the cochlea had remained unexplored. We now reveal the presence of D-serine and its metabolic enzymes prior to, and at hearing onset, in the sensory and non-neuronal cells of the cochlea of several vertebrate species. In vivo intracochlear perfusion of D-serine in guinea pigs reduces sound-evoked activity of auditory nerve fibers without affecting the receptor potentials, suggesting that D-serine acts specifically on the postsynaptic auditory neurons without altering the functional state of IHC or of the stria vascularis. Indeed, we demonstrate in vitro that agonist-induced activation of NMDARs produces robust calcium responses in rat SGN somata only in the presence of D-serine, but not of glycine. Surprisingly, genetic deletion in mice of serine racemase (SR), the enzyme that catalyzes D-serine, does not affect hearing function, but offers protection against noise-induced permanent hearing loss as measured 3 months after exposure. However, the mechanisms of activation of NMDA receptors in newborn rats may be different from those in adult guinea pigs. Taken together, these results demonstrate for the first time that the neuro-messenger D-serine has a pivotal role in the cochlea by promoting the activation of silent cochlear NMDAR in pathological situations. Thus, D-serine and its signaling pathway may represent a new druggable target for treating sensorineural hearing disorders (i.e., hearing loss, tinnitus).
Collapse
Affiliation(s)
- Jing Wang
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France.,ENT Department, Hospital and University of Montpellier, Montpellier, France
| | - Nicolas Serratrice
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France
| | - Cindy J Lee
- Department of Chemistry, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Florence François
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France
| | - Jonathan V Sweedler
- Department of Chemistry, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jean-Luc Puel
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France
| | - Jean-Pierre Mothet
- Laboratoire LuMin, Biophotonics and Synapse Physiopathology Team, Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), ENS Paris Saclay, Centrale Supélec, Gif-sur-Yvette, France
| | - Jérôme Ruel
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France.,Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Laboratoire de Neurosciences Cognitives, Marseille, France
| |
Collapse
|
31
|
Moussa S, Rosini E, Chitsaz D, Pollegioni L, Kennedy TE, Mauzeroll J. High-Throughput Strategy for Glycine Oxidase Biosensor Development Reveals Glycine Release from Cultured Cells. Anal Chem 2021; 93:16504-16511. [PMID: 34843206 DOI: 10.1021/acs.analchem.1c03620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycine is an important biomarker in clinical analysis due to its involvement in multiple physiological processes. As such, the need for low-cost analytical tools for glycine detection is growing. As a neurotransmitter, glycine is involved in inhibitory and excitatory neurochemical transmission in the central nervous system. In this work, we present a 10 μM Pt-based electrochemical enzymatic biosensor based on the flavoenzyme glycine oxidase (GO) for localized real-time measurements of glycine. Among GO variants at position 244, the H244K variant with increased glycine turnover was selected to develop a functional biosensor. This biosensor relies on amperometric readouts and does not require additional redox mediators. The biosensor was characterized and applied for glycine detection from cells, mainly HEK 293 cells and primary rat astrocytes. We have identified an enzyme, GO H244K, with increased glycine turnover using mutagenesis but which can be developed into a functional biosensor. Noteworthy, a glycine release of 395.7 ± 123 μM from primary astrocytes was measured, which is ∼fivefold higher than glycine release from HEK 293 cells (75.4 ± 3.91 μM) using the GO H244K biosensor.
Collapse
Affiliation(s)
- Siba Moussa
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Elena Rosini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi deII'Insubria, via J. H. Dunant 3, Varese 21100, Italy
| | - Daryan Chitsaz
- Integrated Program in Neuroscience, McGill University, 1033 Pine Ave. W., Montreal, Quebec H3A 1A1, Canada
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi deII'Insubria, via J. H. Dunant 3, Varese 21100, Italy
| | - Timothy E Kennedy
- McGill Program in Neuroengineering, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
32
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 361] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
33
|
Piubelli L, Murtas G, Rabattoni V, Pollegioni L. The Role of D-Amino Acids in Alzheimer's Disease. J Alzheimers Dis 2021; 80:475-492. [PMID: 33554911 DOI: 10.3233/jad-201217] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD), the main cause of dementia worldwide, is characterized by a complex and multifactorial etiology. In large part, excitatory neurotransmission in the central nervous system is mediated by glutamate and its receptors are involved in synaptic plasticity. The N-methyl-D-aspartate (NMDA) receptors, which require the agonist glutamate and a coagonist such as glycine or the D-enantiomer of serine for activation, play a main role here. A second D-amino acid, D-aspartate, acts as agonist of NMDA receptors. D-amino acids, present in low amounts in nature and long considered to be of bacterial origin, have distinctive functions in mammals. In recent years, alterations in physiological levels of various D-amino acids have been linked to various pathological states, ranging from chronic kidney disease to neurological disorders. Actually, the level of NMDA receptor signaling must be balanced to promote neuronal survival and prevent neurodegeneration: this signaling in AD is affected mainly by glutamate availability and modulation of the receptor's functions. Here, we report the experimental findings linking D-serine and D-aspartate, through NMDA receptor modulation, to AD and cognitive functions. Interestingly, AD progression has been also associated with the enzymes related to D-amino acid metabolism as well as with glucose and serine metabolism. Furthermore, the D-serine and D-/total serine ratio in serum have been recently proposed as biomarkers of AD progression. A greater understanding of the role of D-amino acids in excitotoxicity related to the pathogenesis of AD will facilitate novel therapeutic treatments to cure the disease and improve life expectancy.
Collapse
Affiliation(s)
- Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Valentina Rabattoni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
34
|
Astrocytic contribution to glutamate-related central respiratory chemoreception in vertebrates. Respir Physiol Neurobiol 2021; 294:103744. [PMID: 34302992 DOI: 10.1016/j.resp.2021.103744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/18/2021] [Indexed: 12/24/2022]
Abstract
Central respiratory chemoreceptors play a key role in the respiratory homeostasis by sensing CO2 and H+ in brain and activating the respiratory neural network. This ability of specific brain regions to respond to acidosis and hypercapnia is based on neuronal and glial mechanisms. Several decades ago, glutamatergic transmission was proposed to be involved as a main mechanism in central chemoreception. However, a complete identification of mechanism has been elusive. At the rostral medulla, chemosensitive neurons of the retrotrapezoid nucleus (RTN) are glutamatergic and they are stimulated by ATP released by RTN astrocytes in response to hypercapnia. In addition, recent findings show that caudal medullary astrocytes in brainstem can also contribute as CO2 and H+ sensors that release D-serine and glutamate, both gliotransmitters able to activate the respiratory neural network. In this review, we describe the mammalian astrocytic glutamatergic contribution to the central respiratory chemoreception trying to trace in vertebrates the emergence of several components involved in this process.
Collapse
|
35
|
Pereira MF, Amaral IM, Lopes C, Leitão C, Madeira D, Lopes JP, Gonçalves FQ, Canas PM, Cunha RA, Agostinho P. l-α-aminoadipate causes astrocyte pathology with negative impact on mouse hippocampal synaptic plasticity and memory. FASEB J 2021; 35:e21726. [PMID: 34196433 DOI: 10.1096/fj.202100336r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/26/2022]
Abstract
Increasing evidence shows that astrocytes, by releasing and uptaking neuroactive molecules, regulate synaptic plasticity, considered the neurophysiological basis of memory. This study investigated the impact of l-α-aminoadipate (l-AA) on astrocytes which sense and respond to stimuli at the synaptic level and modulate hippocampal long-term potentiation (LTP) and memory. l-AA selectivity toward astrocytes was proposed in the early 70's and further tested in different systems. Although it has been used for impairing the astrocytic function, its effects appear to be variable in different brain regions. To test the effects of l-AA in the hippocampus of male C57Bl/6 mice we performed two different treatments (ex vivo and in vivo) and took advantage of other compounds that were reported to affect astrocytes. l-AA superfusion did not affect the basal synaptic transmission but decreased LTP magnitude. Likewise, trifluoroacetate and dihydrokainate decreased LTP magnitude and occluded the effect of l-AA on synaptic plasticity, confirming l-AA selectivity. l-AA superfusion altered astrocyte morphology, increasing the length and complexity of their processes. In vivo, l-AA intracerebroventricular injection not only reduced the astrocytic markers but also LTP magnitude and impaired hippocampal-dependent memory in mice. Interestingly, d-serine administration recovered hippocampal LTP reduction triggered by l-AA (2 h exposure in hippocampal slices), whereas in mice injected with l-AA, the superfusion of d-serine did not fully rescue LTP magnitude. Overall, these data show that both l-AA treatments affect astrocytes differently, astrocytic activation or loss, with similar negative outcomes on hippocampal LTP, implying that opposite astrocytic adaptive alterations are equally detrimental for synaptic plasticity.
Collapse
Affiliation(s)
| | - Inês M Amaral
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Cátia Lopes
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Catarina Leitão
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Daniela Madeira
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Coimbra, Portugal
| | - João P Lopes
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | | | - Paula M Canas
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Rodrigo A Cunha
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Coimbra, Portugal
| | - Paula Agostinho
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Coimbra, Portugal
| |
Collapse
|
36
|
Sherwood MW, Oliet SHR, Panatier A. NMDARs, Coincidence Detectors of Astrocytic and Neuronal Activities. Int J Mol Sci 2021; 22:7258. [PMID: 34298875 PMCID: PMC8307462 DOI: 10.3390/ijms22147258] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
Synaptic plasticity is an extensively studied cellular correlate of learning and memory in which NMDARs play a starring role. One of the most interesting features of NMDARs is their ability to act as a co-incident detector. It is unique amongst neurotransmitter receptors in this respect. Co-incident detection is possible because the opening of NMDARs requires membrane depolarisation and the binding of glutamate. Opening of NMDARs also requires a co-agonist. Although the dynamic regulation of glutamate and membrane depolarization have been well studied in coincident detection, the role of the co-agonist site is unexplored. It turns out that non-neuronal glial cells, astrocytes, regulate co-agonist availability, giving them the ability to influence synaptic plasticity. The unique morphology and spatial arrangement of astrocytes at the synaptic level affords them the capacity to sample and integrate information originating from unrelated synapses, regardless of any pre-synaptic and post-synaptic commonality. As astrocytes are classically considered slow responders, their influence at the synapse is widely recognized as modulatory. The aim herein is to reconsider the potential of astrocytes to participate directly in ongoing synaptic NMDAR activity and co-incident detection.
Collapse
Affiliation(s)
- Mark W. Sherwood
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France;
| | | | - Aude Panatier
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France;
| |
Collapse
|
37
|
Beltrán-Matas P, Hartveit E, Veruki ML. Different glutamate sources and endogenous co-agonists activate extrasynaptic NMDA receptors on amacrine cells of the rod pathway microcircuit. Eur J Neurosci 2021; 54:4456-4474. [PMID: 34048091 DOI: 10.1111/ejn.15325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/09/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022]
Abstract
The NMDA receptors (NMDARs) expressed by AII and A17 amacrine cells, the two main inhibitory interneurons of the rod pathway microcircuit in the mammalian retina, are exclusively extrasynaptic, activated by ambient levels of glutamate, and molecularly distinct, with AII and A17 amacrines expressing GluN2B- and GluN2A-containing receptors, respectively. This important sensory microcircuit thus provides a unique model to study the activation and function of extrasynaptic NMDARs. Here, we investigated the sources of glutamate and the endogenous co-agonists (d-serine or glycine) that activate these distinct populations of NMDARs. With acute slices from rat retina, we used whole-cell voltage-clamp recording and measurement of current noise to monitor levels of NMDAR activity. Pre-incubation of retina with bafilomycin A1 (an inhibitor of neurotransmitter uptake into synaptic vesicles) abolished NMDAR-mediated noise in AII, but not A17 amacrines, suggesting a vesicular source of glutamate activates AII NMDARs, whereas a non-vesicular source activates A17 NMDARs. Pre-incubation of retina with l-methionine sulfoximine (an inhibitor of glutamine synthetase) also abolished NMDAR-mediated noise in AII, but not A17 amacrines, suggesting a neuronal source of glutamate activates AII NMDARs, whereas a glial source activates A17 NMDARs. Enzymatic breakdown of d-serine reduced NMDAR-mediated noise in AII, but not A17 amacrines, suggesting d-serine is the endogenous co-agonist at AII, but not A17 NMDARs. Our results reveal unique characteristics of these two populations of extrasynaptic NMDARs. The differential and independent activation of these receptors is likely to provide specific contributions to the signal processing and plasticity of the cellular components of the rod pathway microcircuit.
Collapse
Affiliation(s)
| | - Espen Hartveit
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | |
Collapse
|
38
|
Pollegioni L, Molla G, Sacchi S, Murtas G. Human D-aspartate Oxidase: A Key Player in D-aspartate Metabolism. Front Mol Biosci 2021; 8:689719. [PMID: 34250021 PMCID: PMC8260693 DOI: 10.3389/fmolb.2021.689719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 11/15/2022] Open
Abstract
In recent years, the D-enantiomers of amino acids have been recognized as natural molecules present in all kingdoms, playing a variety of biological roles. In humans, d-serine and d-aspartate attracted attention for their presence in the central nervous system. Here, we focus on d-aspartate, which is involved in glutamatergic neurotransmission and the synthesis of various hormones. The biosynthesis of d-aspartate is still obscure, while its degradation is due to the peroxisomal flavin adenine dinucleotide (FAD)-containing enzyme d-aspartate oxidase. d-Aspartate emergence is strictly controlled: levels decrease in brain within the first days of life while increasing in endocrine glands postnatally and through adulthood. The human d-aspartate oxidase (hDASPO) belongs to the d-amino acid oxidase-like family: its tertiary structure closely resembles that of human d-amino acid oxidase (hDAAO), the enzyme that degrades neutral and basic d-amino acids. The structure-function relationships of the physiological isoform of hDASPO (named hDASPO_341) and the regulation of gene expression and distribution and properties of the longer isoform hDASPO_369 have all been recently elucidated. Beyond the substrate preference, hDASPO and hDAAO also differ in kinetic efficiency, FAD-binding affinity, pH profile, and oligomeric state. Such differences suggest that evolution diverged to create two different ways to modulate d-aspartate and d-serine levels in the human brain. Current knowledge about hDASPO is shedding light on the molecular mechanisms underlying the modulation of d-aspartate levels in human tissues and is pushing novel, targeted therapeutic strategies. Now, it has been proposed that dysfunction in NMDA receptor-mediated neurotransmission is caused by disrupted d-aspartate metabolism in the nervous system during the onset of various disorders (such as schizophrenia): the design of suitable hDASPO inhibitors aimed at increasing d-aspartate levels thus represents a novel and useful form of therapy.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
39
|
Dopaminergic neuromodulation of prefrontal cortex activity requires the NMDA receptor coagonist d-serine. Proc Natl Acad Sci U S A 2021; 118:2023750118. [PMID: 34083436 DOI: 10.1073/pnas.2023750118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Prefrontal control of cognitive functions critically depends upon glutamatergic transmission and N-methyl D-aspartate (NMDA) receptors, the activity of which is regulated by dopamine. Yet whether the NMDA receptor coagonist d-serine is implicated in the dopamine-glutamate dialogue in the prefrontal cortex (PFC) and other brain areas remains unexplored. Here, using electrophysiological recordings, we show that d-serine is required for the fine-tuning of glutamatergic neurotransmission, neuronal excitability, and synaptic plasticity in the PFC through the actions of dopamine at D1 and D3 receptors. Using in vivo microdialysis, we show that D1 and D3 receptors exert a respective facilitatory and inhibitory influence on extracellular levels and activity of d-serine in the PFC, with actions expressed primarily via the cAMP/protein kinase A (PKA) signaling cascade. Further, using functional magnetic resonance imaging (fMRI) and behavioral assessment, we show that d-serine is required for the potentiation of cognition by D3R blockade as revealed in a test of novel object recognition memory. Collectively, these results unveil a key role for d-serine in the dopaminergic neuromodulation of glutamatergic transmission and PFC activity, findings with clear relevance to the pathogenesis and treatment of diverse brain disorders involving alterations in dopamine-glutamate cross-talk.
Collapse
|
40
|
Stroebel D, Mony L, Paoletti P. Glycine agonism in ionotropic glutamate receptors. Neuropharmacology 2021; 193:108631. [PMID: 34058193 DOI: 10.1016/j.neuropharm.2021.108631] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate the majority of excitatory neurotransmission in the vertebrate CNS. Classified as AMPA, kainate, delta and NMDA receptors, iGluRs are central drivers of synaptic plasticity widely considered as a major cellular substrate of learning and memory. Surprisingly however, five out of the eighteen vertebrate iGluR subunits do not bind glutamate but glycine, a neurotransmitter known to mediate inhibitory neurotransmission through its action on pentameric glycine receptors (GlyRs). This is the case of GluN1, GluN3A, GluN3B, GluD1 and GluD2 subunits, all also binding the D amino acid d-serine endogenously present in many brain regions. Glycine and d-serine action and affinities broadly differ between glycinergic iGluR subtypes. On 'conventional' GluN1/GluN2 NMDA receptors, glycine (or d-serine) acts in concert with glutamate as a mandatory co-agonist to set the level of receptor activity. It also regulates the receptor's trafficking and expression independently of glutamate. On 'unconventional' GluN1/GluN3 NMDARs, glycine acts as the sole agonist directly triggering opening of excitatory glycinergic channels recently shown to be physiologically relevant. On GluD receptors, d-serine on its own mediates non-ionotropic signaling involved in excitatory and inhibitory synaptogenesis, further reinforcing the concept of glutamate-insensitive iGluRs. Here we present an overview of our current knowledge on glycine and d-serine agonism in iGluRs emphasizing aspects related to molecular mechanisms, cellular function and pharmacological profile. The growing appreciation of the critical influence of glycine and d-serine on iGluR biology reshapes our understanding of iGluR signaling diversity and complexity, with important implications in neuropharmacology.
Collapse
Affiliation(s)
- David Stroebel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France.
| | - Laetitia Mony
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France.
| |
Collapse
|
41
|
Folorunso OO, Harvey TL, Brown SE, Cruz C, Shahbo E, Ajjawi I, Balu DT. Forebrain expression of serine racemase during postnatal development. Neurochem Int 2021; 145:104990. [PMID: 33592203 PMCID: PMC8012237 DOI: 10.1016/j.neuint.2021.104990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 12/23/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are important for synaptogenesis, synaptic maturation and refinement during the early postnatal weeks after birth. Defective synapse formation or refinement underlie cognitive and emotional abnormalities in various neurodevelopmental disorders (NDDs), including schizophrenia (Sz) and autism spectrum disorder (ASD). Serine racemase (SR) is a neuronal enzyme that produces D-serine, a co-agonist required for full NMDAR activation. NMDAR hypofunction as a result of genetic SR elimination and reduced synaptic availability of D-serine reduces neuronal dendritic arborization and spine density. In adult mouse brain, the expression of SR parallels that of NMDARs across forebrain regions including the striatum, amygdala, hippocampus, and medial prefrontal cortex (mPFC). However, there have yet to be studies providing a detailed characterization of the spatial and temporal expression of SR during early periods of synaptogenesis. Here, we examined the postnatal expression of SR in cortical and subcortical brain regions important for learning, memory and emotional regulation, during the first four weeks after birth. Using dual-antigen immunofluorescence, we demonstrate that the number of SR+ neurons steadily increases with postnatal age across the mPFC, amygdala, hippocampus and striatum. We also identified differences in the rate of SR protein induction both across and within brain regions. Analyzing existing human post-mortem brain in situ data, there was a similar developmental mRNA expression profile of SRR and GRIN1 (GluN1 subunit) from infancy through the first decade of life. Our findings further support a developmental role for D-serine mediated NMDAR activation regulating synaptogenesis and neural circuit refinement, which has important implications for the pathophysiology of Sz and other NDDs.
Collapse
Affiliation(s)
- Oluwarotimi O Folorunso
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, United States; Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States
| | - Theresa L Harvey
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States
| | - Stephanie E Brown
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States
| | - Cristina Cruz
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States; Harvard University, Cambridge, MA, 02138, United States
| | - Ellie Shahbo
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States; Harvard University, Cambridge, MA, 02138, United States
| | - Ismail Ajjawi
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States; Harvard University, Cambridge, MA, 02138, United States
| | - Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, United States; Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, 02478, United States.
| |
Collapse
|
42
|
Rabattoni V, Pollegioni L, Tedeschi G, Maffioli E, Sacchi S. Cellular studies of the two main isoforms of human d-aspartate oxidase. FEBS J 2021; 288:4939-4954. [PMID: 33650155 DOI: 10.1111/febs.15797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/21/2021] [Accepted: 02/26/2021] [Indexed: 01/01/2023]
Abstract
Human d-aspartate oxidase (hDASPO) is a FAD-dependent enzyme responsible for the degradation of d-aspartate (d-Asp). In the mammalian central nervous system, d-Asp behaves as a classical neurotransmitter, it is thought to be involved in neural development, brain morphology and behavior, and appears to be involved in several pathological states, such as schizophrenia and Alzheimer's disease. Apparently, the human DDO gene produces alternative transcripts encoding for three putative hDASPO isoforms, constituted by 341 (the 'canonical' form), 369, and 282 amino acids. Despite the increasing interest in hDASPO and its physiological role, little is known about these different isoforms. Here, the additional N-terminal peptide present in the hDASPO_369 isoform only has been identified in hippocampus of Alzheimer's disease female patients, while peptides corresponding to the remaining part of the protein were present in samples from male and female healthy controls and Alzheimer's disease patients. The hDASPO_369 isoform was largely expressed in E. coli as insoluble protein, hampering with its biochemical characterization. Furthermore, we generated U87 human glioblastoma cell clones stably expressing hDASPO_341 and, for the first time, hDASPO_369 isoforms; the latter protein showed a lower expression compared with the canonical isoform. Both protein isoforms are active (showing similar kinetic properties), localize to the peroxisomes, are very stable (a half-life of approximately 100 h has been estimated), and are primarily degraded through the ubiquitin-proteasome system. These studies shed light on the properties of hDASPO isoforms with the final aim to clarify the mechanisms controlling brain levels of the neuromodulator d-Asp.
Collapse
Affiliation(s)
- Valentina Rabattoni
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Varese, Italy
| | - Loredano Pollegioni
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Varese, Italy
| | - Gabriella Tedeschi
- Università degli Studi di Milano, DIMEVET - Dipartimento di Medicina Veterinaria, Milano, Italy
| | - Elisa Maffioli
- Università degli Studi di Milano, DIMEVET - Dipartimento di Medicina Veterinaria, Milano, Italy
| | - Silvia Sacchi
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Varese, Italy
| |
Collapse
|
43
|
Jiménez E, Piniella D, Giménez C, Zafra F. Regulation of the Glycine Transporter GLYT1 by microRNAs. Neurochem Res 2021; 47:138-147. [PMID: 33484385 DOI: 10.1007/s11064-021-03228-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/18/2020] [Accepted: 01/02/2021] [Indexed: 12/28/2022]
Abstract
The glycine transporter GLYT1 participates in inhibitory and excitatory neurotransmission by controlling the reuptake of this neuroactive substance from synapses. Over the past few years, microRNAs have emerged as potent negative regulators of gene expression. In this report, we investigate the possible regulation of GLYT1 by microRNAs. TargetScan software predicted the existence of multiple targets for microRNAs within the 3' UTR of the human GLYT1 (miR-7, miR-30, miR-96, miR-137 and miR-141), and as they are all conserved among mammalian orthologues, their effects on GLYT1 expression were determined experimentally. Dual reporter bioluminescent assays showed that only miR-96 and miR-137 down-regulated expression of the Renilla reporter fused to the 3' UTR of GLYT1. Mutations introduced into the target sequences blocked this inhibitory effect. Consistently, these two microRNAs downregulated the uptake of [3H]glycine into glial C6 cells, a cell line where GLYT1 is the main carrier for glycine. Moreover, the expression of endogenous GLYT1 in primary mixed cultures from rat spinal cord was decreased upon lentiviral expression of miR-96 and miR-137. Although the bulk of GLYT1 is glial, it is abundantly expressed in glycinergic neurons of the retina and in smaller amounts in glutamatergic neurons though the brain. Since miR-96 in the retina is strongly downregulated by light exposure, when rats were maintained in darkness for a few hours we observed a concomitant increase of GLYT1 expression, suggesting that at least miR-96 might be an important negative regulator of GLYT1 under physiological conditions.
Collapse
Affiliation(s)
- Esperanza Jiménez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, Madrid, 28049, Spain.,IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Dolores Piniella
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, Madrid, 28049, Spain.,IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Cecilio Giménez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, Madrid, 28049, Spain.,IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, Madrid, 28049, Spain. .,IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
44
|
Ploux E, Bouet V, Radzishevsky I, Wolosker H, Freret T, Billard JM. Serine Racemase Deletion Affects the Excitatory/Inhibitory Balance of the Hippocampal CA1 Network. Int J Mol Sci 2020; 21:E9447. [PMID: 33322577 PMCID: PMC7763099 DOI: 10.3390/ijms21249447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
d-serine is the major co-agonist of N-methyl-D-aspartate receptors (NMDAR) at CA3/CA1 hippocampal synapses, the activation of which drives long-term potentiation (LTP). The use of mice with targeted deletion of the serine racemase (SR) enzyme has been an important tool to uncover the physiological and pathological roles of D-serine. To date, some uncertainties remain regarding the direction of LTP changes in SR-knockout (SR-KO) mice, possibly reflecting differences in inhibitory GABAergic tone in the experimental paradigms used in the different studies. On the one hand, our extracellular recordings in hippocampal slices show that neither isolated NMDAR synaptic potentials nor LTP were altered in SR-KO mice. This was associated with a compensatory increase in hippocampal levels of glycine, another physiologic NMDAR co-agonist. SR-KO mice displayed no deficits in spatial learning, reference memory and cognitive flexibility. On the other hand, SR-KO mice showed a weaker LTP and a lower increase in NMDAR potentials compared to controls when GABAA receptors were pharmacologically blocked. Our results indicate that depletion of endogenous D-serine caused a reduced inhibitory activity in CA1 hippocampal networks, altering the excitatory/inhibitory balance, which contributes to preserve functional plasticity at synapses and to maintain related cognitive abilities.
Collapse
Affiliation(s)
- Eva Ploux
- UNICAEN, INSERM, COMETE, Cyceron, CHU Caen, Normandie University, 14000 Caen, France; (E.P.); (V.B.); (T.F.)
| | - Valentine Bouet
- UNICAEN, INSERM, COMETE, Cyceron, CHU Caen, Normandie University, 14000 Caen, France; (E.P.); (V.B.); (T.F.)
| | - Inna Radzishevsky
- Department of Biochemistry, Technion-Israel Institute of Technology, Rappaport Faculty of Medicine, Haifa 31096, Israel; (I.R.); (H.W.)
| | - Herman Wolosker
- Department of Biochemistry, Technion-Israel Institute of Technology, Rappaport Faculty of Medicine, Haifa 31096, Israel; (I.R.); (H.W.)
| | - Thomas Freret
- UNICAEN, INSERM, COMETE, Cyceron, CHU Caen, Normandie University, 14000 Caen, France; (E.P.); (V.B.); (T.F.)
| | - Jean-Marie Billard
- UNICAEN, INSERM, COMETE, Cyceron, CHU Caen, Normandie University, 14000 Caen, France; (E.P.); (V.B.); (T.F.)
| |
Collapse
|
45
|
Postsynaptic Serine Racemase Regulates NMDA Receptor Function. J Neurosci 2020; 40:9564-9575. [PMID: 33158959 DOI: 10.1523/jneurosci.1525-20.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/23/2020] [Accepted: 11/01/2020] [Indexed: 01/03/2023] Open
Abstract
d-serine is the primary NMDAR coagonist at mature forebrain synapses and is synthesized by the enzyme serine racemase (SR). However, our understanding of the mechanisms regulating the availability of synaptic d-serine remains limited. Though early studies suggested d-serine is synthesized and released from astrocytes, more recent studies have demonstrated a predominantly neuronal localization of SR. More specifically, recent work intriguingly suggests that SR may be found at the postsynaptic density, yet the functional implications of postsynaptic SR on synaptic transmission are not yet known. Here, we show an age-dependent dendritic and postsynaptic localization of SR and d-serine by immunohistochemistry and electron microscopy in mouse CA1 pyramidal neurons. In addition, using a single-neuron genetic approach in SR conditional KO mice from both sexes, we demonstrate a cell-autonomous role for SR in regulating synaptic NMDAR function at Schaffer collateral (CA3)-CA1 synapses. Importantly, single-neuron genetic deletion of SR resulted in the elimination of LTP at 1 month of age, which could be rescued by exogenous d-serine. Interestingly, there was a restoration of LTP by 2 months of age that was associated with an upregulation of synaptic GluN2B. Our findings support a cell-autonomous role for postsynaptic neuronal SR in regulating synaptic NMDAR function and suggests a possible autocrine mode of d-serine action.SIGNIFICANCE STATEMENT NMDARs are key regulators of neurodevelopment and synaptic plasticity and are unique in their requirement for binding of a coagonist, which is d-serine at most forebrain synapses. However, our understanding of the mechanisms regulating synaptic d-serine availability remains limited. d-serine is synthesized in the brain by the neuronal enzyme serine racemase (SR). Here, we show dendritic and postsynaptic localization of SR and d-serine in CA1 pyramidal neurons. In addition, using single-neuron genetic deletion of SR, we establish a role of postsynaptic SR in regulating NMDAR function. These results support an autocrine mode of d-serine action at synapses.
Collapse
|
46
|
Carenzi G, Sacchi S, Abbondi M, Pollegioni L. Direct chromatographic methods for enantioresolution of amino acids: recent developments. Amino Acids 2020; 52:849-862. [DOI: 10.1007/s00726-020-02873-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/05/2020] [Indexed: 12/24/2022]
|
47
|
D-Serine Signaling and NMDAR-Mediated Synaptic Plasticity Are Regulated by System A-Type of Glutamine/D-Serine Dual Transporters. J Neurosci 2020; 40:6489-6502. [PMID: 32661027 DOI: 10.1523/jneurosci.0801-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/22/2020] [Accepted: 06/25/2020] [Indexed: 02/03/2023] Open
Abstract
D-serine is a physiologic coagonist of NMDA receptors (NMDARs) required for synaptic plasticity, but mechanisms that terminate D-serine signaling are unclear. In particular, the identity of unidirectional plasma membrane transporters that mediate D-serine reuptake has remained elusive. We report that D-serine and glutamine share the same neuronal transport system, consisting of the classic system A transporters Slc38a1 and Slc38a2. We show that these transporters are not saturated with glutamine in vivo and regulate the extracellular levels of D-serine and NMDAR activity. Glutamine increased the NMDAR-dependent long-term potentiation and the isolated NMDAR potentials at the Schaffer collateral-CA1 synapses, but without affecting basal neurotransmission in male mice. Glutamine did not increase the NMDAR potentials in slices from serine racemase knock-out mice, which are devoid of D-serine, indicating that the effect of glutamine is caused by outcompeting D-serine for a dual glutamine-D-serine transport system. Inhibition of the system A reduced the uptake of D-serine in synaptosomes and neuronal cultures of mice of either sex, while increasing the extracellular D-serine concentration in slices and in vivo by microdialysis. When compared with Slc38a2, the Slc38a1 transporter displayed more favorable kinetics toward the D-enantiomer. Biochemical experiments with synaptosomes from Slc38a1 knock-down mice of either sex further support its role as a D-serine reuptake system. Our study identifies the first concentrative and electrogenic transporters mediating D-serine reuptake in vivo In addition to their classical role in the glutamine-glutamate cycle, system A transporters regulate the synaptic turnover of D-serine and its effects on NMDAR synaptic plasticity.SIGNIFICANCE STATEMENT Despite the plethora of roles attributed to D-serine, the regulation of its synaptic turnover is poorly understood. We identified the system A transporters Slc38a1 and Slc38a2 as the main pathway for neuronal reuptake of D-serine. These transporters are not saturated with glutamine in vivo and provide an unexpected link between the serine shuttle pathway, responsible for regulating D-serine synaptic turnover, and the glutamine-glutamate cycle. Our observations suggest that Slc38a1 and Slc38a2 have a dual role in regulating neurotransmission. In addition to their classical role as the glutamine providers, the system A transporters regulate extracellular D-serine and therefore affect NMDAR-dependent synaptic plasticity. Higher glutamine export from astrocytes would increase extracellular D-serine, providing a feedforward mechanism to increase synaptic NMDAR activation.
Collapse
|
48
|
Rosini E, D’Antona P, Pollegioni L. Biosensors for D-Amino Acids: Detection Methods and Applications. Int J Mol Sci 2020; 21:E4574. [PMID: 32605078 PMCID: PMC7369756 DOI: 10.3390/ijms21134574] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
D-enantiomers of amino acids (D-AAs) are only present in low amounts in nature, frequently at trace levels, and for this reason, their biological function was undervalued for a long time. In the past 25 years, the improvements in analytical methods, such as gas chromatography, HPLC, and capillary electrophoresis, allowed to detect D-AAs in foodstuffs and biological samples and to attribute them specific biological functions in mammals. These methods are time-consuming, expensive, and not suitable for online application; however, life science investigations and industrial applications require rapid and selective determination of D-AAs, as only biosensors can offer. In the present review, we provide a status update concerning biosensors for detecting and quantifying D-AAs and their applications for safety and quality of foods, human health, and neurological research. The review reports the main challenges in the field, such as selectivity, in order to distinguish the different D-AAs present in a solution, the simultaneous assay of both L- and D-AAs, the production of implantable devices, and surface-scanning biosensors. These innovative tools will push future research aimed at investigating the neurological role of D-AAs, a vibrant field that is growing at an accelerating pace.
Collapse
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (P.D.); (L.P.)
| | | | | |
Collapse
|
49
|
Puggioni V, Savinelli A, Miceli M, Molla G, Pollegioni L, Sacchi S. Biochemical characterization of mouse d-aspartate oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140472. [PMID: 32553892 DOI: 10.1016/j.bbapap.2020.140472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
D-amino acids research field has recently gained an increased interest since these atypical molecules have been discovered to play a plethora of different roles. In the mammalian central nervous system, d-aspartate (D-Asp) is critically involved in the regulation of glutamatergic neurotransmission by acting as an agonist of NMDA receptor. Accordingly, alterations in its metabolism have been related to different pathologies. D-Asp shows a peculiar temporal pattern of emergence during ontogenesis and soon after birth its brain levels are strictly regulated by the catabolic enzyme d-aspartate oxidase (DASPO), a FAD-dependent oxidase. Rodents have been widely used as in vivo models for deciphering molecular mechanisms and for testing novel therapeutic targets and drugs, but human targets can significantly differ. Based on these considerations, here we investigated the structural and functional properties of the mouse DASPO, in particular kinetic properties, ligand and flavin binding, oligomerization state and protein stability. We compared the obtained findings with those of the human enzyme (80% sequence identity) highlighting a different oligomeric state and a lower activity for the mouse DASPO, which apoprotein species exists in solution in two forms differing in FAD affinity. The features that distinguish mouse and human DASPO suggest that this flavoenzyme might control in a distinct way the brain D-Asp levels in different organisms.
Collapse
Affiliation(s)
- Vincenzo Puggioni
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Antonio Savinelli
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Matteo Miceli
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Gianluca Molla
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Loredano Pollegioni
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy; International Research Center on D-amino acids DAAIR, via Lepetit 34, 21040, Gerenzano (VA), Italy
| | - Silvia Sacchi
- "The Protein Factory 2.0", Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy; International Research Center on D-amino acids DAAIR, via Lepetit 34, 21040, Gerenzano (VA), Italy.
| |
Collapse
|
50
|
Wolosker H, Balu DT. D-Serine as the gatekeeper of NMDA receptor activity: implications for the pharmacologic management of anxiety disorders. Transl Psychiatry 2020; 10:184. [PMID: 32518273 PMCID: PMC7283225 DOI: 10.1038/s41398-020-00870-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Fear, anxiety, and trauma-related disorders, including post-traumatic stress disorder (PTSD), are quite common and debilitating, with an estimated lifetime prevalence of ~28% in Western populations. They are associated with excessive fear reactions, often including an inability to extinguish learned fear, increased avoidance behavior, as well as altered cognition and mood. There is an extensive literature demonstrating the importance of N-methyl-D-aspartate receptor (NMDAR) function in regulating these behaviors. NMDARs require the binding of a co-agonist, D-serine or glycine, at the glycine modulatory site (GMS) to function. D-serine is now garnering attention as the primary NMDAR co-agonist in limbic brain regions implicated in neuropsychiatric disorders. L-serine is synthesized by astrocytes, which is then transported to neurons for conversion to D-serine by serine racemase (SR), a model we term the 'serine shuttle.' The neuronally-released D-serine is what regulates NMDAR activity. Our review discusses how the systems that regulate the synaptic availability of D-serine, a critical gatekeeper of NMDAR-dependent activation, could be targeted to improve the pharmacologic management of anxiety-related disorders where the desired outcomes are the facilitation of fear extinction, as well as mood and cognitive enhancement.
Collapse
Affiliation(s)
- Herman Wolosker
- grid.6451.60000000121102151Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096 Israel
| | - Darrick T. Balu
- grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA 02115 USA ,grid.240206.20000 0000 8795 072XTranslational Psychiatry Laboratory, McLean Hospital, Belmont, MA 02478 USA
| |
Collapse
|