1
|
Mitra A, Deats SP, Dickson PE, Zhu J, Gardin J, Nieman BJ, Henkelman RM, Tsai NP, Chesler EJ, Zhang ZW, Kumar V. Tmod2 Is a Regulator of Cocaine Responses through Control of Striatal and Cortical Excitability and Drug-Induced Plasticity. J Neurosci 2024; 44:e1389232024. [PMID: 38508714 PMCID: PMC11063827 DOI: 10.1523/jneurosci.1389-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 03/22/2024] Open
Abstract
Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets. Tropomodulin 2 (Tmod2) is an actin-regulating gene that plays an important role in synapse maturation and dendritic arborization and has been implicated in substance abuse and intellectual disability in humans. Here, we mine the KOMP2 data and find that Tmod2 knock-out mice show emotionality phenotypes that are predictive of addiction vulnerability. Detailed addiction phenotyping shows that Tmod2 deletion does not affect the acute locomotor response to cocaine administration. However, sensitized locomotor responses are highly attenuated in these knock-outs, indicating perturbed drug-induced plasticity. In addition, Tmod2 mutant animals do not self-administer cocaine indicating lack of hedonic responses to cocaine. Whole-brain MR imaging shows differences in brain volume across multiple regions, although transcriptomic experiments did not reveal perturbations in gene coexpression networks. Detailed electrophysiological characterization of Tmod2 KO neurons showed increased spontaneous firing rate of early postnatal and adult cortical and striatal neurons. Cocaine-induced synaptic plasticity that is critical for sensitization is either missing or reciprocal in Tmod2 KO nucleus accumbens shell medium spiny neurons, providing a mechanistic explanation of the cocaine response phenotypes. Combined, these data, collected from both males and females, provide compelling evidence that Tmod2 is a major regulator of plasticity in the mesolimbic system and regulates the reinforcing and addictive properties of cocaine.
Collapse
Affiliation(s)
| | | | | | - Jiuhe Zhu
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | - Brian J Nieman
- Mouse Imaging Centre and Translational Medicine, Hospital for Sick Children; Ontario Institute for Cancer Research; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 3H7, Canada
| | - R Mark Henkelman
- Mouse Imaging Centre and Translational Medicine, Hospital for Sick Children; Ontario Institute for Cancer Research; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 3H7, Canada
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | | | - Vivek Kumar
- The Jackson Laboratory, Bar Harbor, Maine 04609
| |
Collapse
|
2
|
Larnerd C, Kachewar N, Wolf FW. Drosophila learning and memory centers and the actions of drugs of abuse. Learn Mem 2024; 31:a053815. [PMID: 38862166 PMCID: PMC11199947 DOI: 10.1101/lm.053815.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/27/2024] [Indexed: 06/13/2024]
Abstract
Drug addiction and the circuitry for learning and memory are intimately intertwined. Drugs of abuse create strong, inappropriate, and lasting memories that contribute to many of their destructive properties, such as continued use despite negative consequences and exceptionally high rates of relapse. Studies in Drosophila melanogaster are helping us understand how drugs of abuse, especially alcohol, create memories at the level of individual neurons and in the circuits where they function. Drosophila is a premier organism for identifying the mechanisms of learning and memory. Drosophila also respond to drugs of abuse in ways that remarkably parallel humans and rodent models. An emerging consensus is that, for alcohol, the mushroom bodies participate in the circuits that control acute drug sensitivity, not explicitly associative forms of plasticity such as tolerance, and classical associative memories of their rewarding and aversive properties. Moreover, it is becoming clear that drugs of abuse use the mushroom body circuitry differently from other behaviors, potentially providing a basis for their addictive properties.
Collapse
Affiliation(s)
- Caleb Larnerd
- Quantitative and Systems Biology Graduate Group, University of California, Merced, California 95343, USA
| | - Neha Kachewar
- Department of Molecular and Cell Biology, University of California, Merced, California 95343, USA
- Health Sciences Research Institute, University of California, Merced, California 95343, USA
| | - Fred W Wolf
- Quantitative and Systems Biology Graduate Group, University of California, Merced, California 95343, USA
- Department of Molecular and Cell Biology, University of California, Merced, California 95343, USA
| |
Collapse
|
3
|
Chvilicek MM, Seguin A, Lathen DR, Titos I, Cummins‐Beebee PN, Pabon MA, Miščević M, Nickel E, Merrill CB, Rodan AR, Rothenfluh A. Large analysis of genetic manipulations reveals an inverse correlation between initial alcohol resistance and rapid tolerance phenotypes. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12884. [PMID: 38968320 PMCID: PMC10825885 DOI: 10.1111/gbb.12884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/07/2024]
Abstract
Tolerance occurs when, following an initial experience with a substance, more of the substance is required subsequently to induce identical behavioral effects. Tolerance is not well-understood, and numerous researchers have turned to model organisms, particularly Drosophila melanogaster, to unravel its mechanisms. Flies have high translational relevance for human alcohol responses, and there is substantial overlap in disease-causing genes between flies and humans, including those associated with Alcohol Use Disorder. Numerous Drosophila tolerance mutants have been described; however, approaches used to identify and characterize these mutants have varied across time and labs and have mostly disregarded any impact of initial resistance/sensitivity to ethanol on subsequent tolerance development. Here, we analyzed our own, as well as data published by other labs to uncover an inverse correlation between initial ethanol resistance and tolerance phenotypes. This inverse correlation suggests that initial resistance phenotypes can explain many 'perceived' tolerance phenotypes, thus classifying such mutants as 'secondary' tolerance mutants. Additionally, we show that tolerance should be measured as a relative increase in time to sedation between an initial and second exposure rather than an absolute change in time to sedation. Finally, based on our analysis, we provide a method for using a linear regression equation to assess the residuals of potential tolerance mutants. These residuals provide predictive insight into the likelihood of a mutant being a 'primary' tolerance mutant, where a tolerance phenotype is not solely a consequence of initial resistance, and we offer a framework for understanding the relationship between initial resistance and tolerance.
Collapse
Affiliation(s)
- Maggie M. Chvilicek
- Department of Psychiatry, Huntsman Mental Health Institute, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Neuroscience Graduate ProgramUniversity of UtahSalt Lake CityUtahUSA
| | - Alexandra Seguin
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Daniel R. Lathen
- Department of Psychiatry, Huntsman Mental Health Institute, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Neuroscience Graduate ProgramUniversity of UtahSalt Lake CityUtahUSA
| | - Iris Titos
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Pearl N. Cummins‐Beebee
- Department of Psychiatry, Huntsman Mental Health Institute, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Neuroscience Graduate ProgramUniversity of UtahSalt Lake CityUtahUSA
| | - Miguel A. Pabon
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Maša Miščević
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Present address:
Department of Neuroscience, Physiological Sciences Graduate Interdisciplinary ProgramUniversity of ArizonaTucsonArizonaUSA
| | - Emily Nickel
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Collin B. Merrill
- Department of Psychiatry, Huntsman Mental Health Institute, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Aylin R. Rodan
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Division of Nephrology, Department of Internal Medicine, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Medical ServiceVeterans Affairs Salt Lake City Health Care SystemSalt Lake CityUtahUSA
- Department of Human Genetics, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Adrian Rothenfluh
- Department of Psychiatry, Huntsman Mental Health Institute, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Neuroscience Graduate ProgramUniversity of UtahSalt Lake CityUtahUSA
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Department of Human Genetics, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Department of Neurobiology, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
4
|
Chvilicek MM, Seguin A, Lathen DR, Titos I, Cummins-Beebe PN, Pabon MA, Miscevic M, Nickel EA, Merrill CB, Rodan AR, Rothenfluh A. Large genetic analysis of alcohol resistance and tolerance reveals an inverse correlation and suggests 'true' tolerance mutants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561599. [PMID: 37873285 PMCID: PMC10592763 DOI: 10.1101/2023.10.09.561599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Tolerance occurs when, following an initial experience with a substance, more of the substance is required subsequently to induce the same behavioral effects. Tolerance is historically not well-understood, and numerous researchers have turned to model organisms, particularly Drosophila melanogaster, to unravel its mechanisms. Flies have high translational relevance for human alcohol responses, and there is substantial overlap in disease-causing genes between flies and humans, including those associated with Alcohol Use Disorder. Numerous Drosophila tolerance mutants have been described; however, approaches used to identify and characterize these mutants have varied across time and between labs and have mostly disregarded any impact of initial resistance/sensitivity to ethanol on subsequent tolerance development. Here, we have analyzed a large amount of data - our own published and unpublished data and data published by other labs - to uncover an inverse correlation between initial ethanol resistance and tolerance phenotypes. This inverse correlation suggests that initial resistance phenotypes can explain many 'perceived' tolerance phenotypes. Additionally, we show that tolerance should be measured as a relative increase in time to sedation between an initial and second exposure rather than an absolute change in time to sedation. Finally, based on our analysis, we provide a method for using a linear regression equation to assess the residuals of potential tolerance mutants. We show that these residuals provide predictive insight into the likelihood of a mutant being a 'true' tolerance mutant, and we offer a framework for understanding the relationship between initial resistance and tolerance.
Collapse
Affiliation(s)
- Maggie M. Chvilicek
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, USA
| | - Alexandra Seguin
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
| | - Daniel R. Lathen
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, USA
| | - Iris Titos
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
| | - Pearl N Cummins-Beebe
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, USA
| | - Miguel A. Pabon
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
| | - Masa Miscevic
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
| | - Emily A. Nickel
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
| | - Collin B Merrill
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
| | - Aylin R. Rodan
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
- Division of Nephrology, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, USA
- Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, USA
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, USA
| | - Adrian Rothenfluh
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, USA
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, USA
- Department of Neurobiology, School of Medicine, University of Utah, Salt Lake City, USA
| |
Collapse
|
5
|
Pagano R, Salamian A, Skonieczna E, Wojtas B, Gielniewski B, Harda Z, Cały A, Havekes R, Abel T, Radwanska K. Molecular fingerprints in the hippocampus of alcohol seeking during withdrawal. RESEARCH SQUARE 2023:rs.3.rs-3337670. [PMID: 37841864 PMCID: PMC10571638 DOI: 10.21203/rs.3.rs-3337670/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Alcohol use disorder (AUD) is characterized by pathological motivation to consume alcohol and cognitive inflexibility, leading to excessive alcohol seeking and use. Due to limited understanding of the molecular basis of the disease, there are few pharmacological interventions available to combat AUD. In this study, we aimed to investigate the molecular correlates of impaired extinction of alcohol seeking during alcohol withdrawal using a mouse model of AUD implemented in the automated IntelliCage social system. This model enabled us to distinguish between animals exhibiting AUD-prone and AUD-resistant phenotypes, based on the presence of ≥ 2 or < 2 criteria of AUD, respectively. We utilized new generation RNA sequencing to identify genes that were differentially expressed in the hippocampus and amygdala of mice meeting ≥ 2 or < 2 criteria, as these brain regions are implicated in alcohol motivation, seeking, consumption and the cognitive inflexibility characteristic of AUD. To complement the sequencing studies, we conducted ex vivo electrophysiology experiments. Our findings revealed significant dysregulation of the hippocampal genes associated with the actin cytoskeleton and synaptic function, including actin binding molecule cofilin, during alcohol withdrawal in mice meeting ≥ 2 criteria compared to those meeting < 2 criteria. Moreover, this dysregulation was accompanied by impaired synaptic transmission in the molecular layer of the hippocampal dentate gyrus (ML-DG). Additionally, we demonstrated that overexpression of cofilin in the polymorphic layer of the hippocampal dentate gyrus (PoDG) inhibited ML-DG synapses, increased motivation to seek alcohol, impaired extinction of alcohol seeking and increased correlation between AUD behaviors, resembling the phenotype observed in mice meeting ≥ 2 criteria. Overall, our study uncovers a novel mechanism linking increased hippocampal cofilin expression with the AUD phenotype.
Collapse
Affiliation(s)
- Roberto Pagano
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Ahmad Salamian
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Edyta Skonieczna
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Bartosz Wojtas
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Bartek Gielniewski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Zofia Harda
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
- current address: Department Molecular Neuropharmacology, Maj Institute of Pharmacology of Polish Academy of Sciences, Krakow, Poland
| | - Anna Cały
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Robbert Havekes
- Neurobiology expertise group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ted Abel
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kasia Radwanska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| |
Collapse
|
6
|
Pagano R, Salamian A, Skonieczna E, Wojtas B, Gielniewski B, Harda Z, Cały A, Havekes R, Abel T, Radwanska K. Molecular fingerprints in the hippocampus of alcohol seeking during withdrawal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554622. [PMID: 37662388 PMCID: PMC10473700 DOI: 10.1101/2023.08.24.554622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Alcohol use disorder (AUD) is characterized by excessive alcohol seeking and use. Here, we investigated the molecular correlates of impaired extinction of alcohol seeking using a multidimentional mouse model of AUD. We distinguished AUD-prone and AUD-resistant mice, based on the presence of ≥ 2 or < 2 criteria of AUD and utilized RNA sequencing to identify genes that were differentially expressed in the hippocampus and amygdala of mice meeting ≥ 2 or < 2 criteria, as these brain regions are implicated in alcohol motivation, seeking, consumption and the cognitive inflexibility characteristic of AUD. Our findings revealed dysregulation of the genes associated with the actin cytoskeleton, including actin binding molecule cofilin, and impaired synaptic transmission in the hippocampi of mice meeting ≥ 2 criteria. Overexpression of cofilin in the polymorphic layer of the dentate gyrus (PoDG) inhibited ML-DG synapses, increased motivation to seek alcohol and impaired extinction of alcohol seeking, resembling the phenotype observed in mice meeting ≥ 2 criteria. Overall, our study uncovers a novel mechanism linking increased hippocampal cofilin expression with the AUD phenotype.
Collapse
Affiliation(s)
- Roberto Pagano
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Ahmad Salamian
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Edyta Skonieczna
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Bartosz Wojtas
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Bartek Gielniewski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Zofia Harda
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
- current address: Department Molecular Neuropharmacology, Maj Institute of Pharmacology of Polish Academy of Sciences, Krakow, Poland
| | - Anna Cały
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Robbert Havekes
- Neurobiology expertise group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ted Abel
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kasia Radwanska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| |
Collapse
|
7
|
Cummins-Beebee PN, Chvilicek MM, Rothenfluh A. The Stage-Based Model of Addiction-Using Drosophila to Investigate Alcohol and Psychostimulant Responses. Int J Mol Sci 2023; 24:10909. [PMID: 37446084 PMCID: PMC10341944 DOI: 10.3390/ijms241310909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Addiction is a progressive and complex disease that encompasses a wide range of disorders and symptoms, including substance use disorder (SUD), for which there are few therapeutic treatments. SUD is the uncontrolled and chronic use of substances despite the negative consequences resulting from this use. The progressive nature of addiction is organized into a testable framework, the neurobiological stage-based model, that includes three behavioral stages: (1) binge/intoxication, (2) withdrawal/negative affect, and (3) preoccupation/anticipation. Human studies offer limited opportunities for mechanistic insights into these; therefore, model organisms, like Drosophila melanogaster, are necessary for understanding SUD. Drosophila is a powerful model organism that displays a variety of SUD-like behaviors consistent with human and mammalian substance use, making flies a great candidate to study mechanisms of behavior. Additionally, there are an abundance of genetic tools like the GAL4/UAS and CRISPR/Cas9 systems that can be used to gain insight into the molecular mechanisms underlying the endophenotypes of the three-stage model. This review uses the three-stage framework and discusses how easily testable endophenotypes have been examined with experiments using Drosophila, and it outlines their potential for investigating other endophenotypes.
Collapse
Affiliation(s)
- Pearl N. Cummins-Beebee
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Maggie M. Chvilicek
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
8
|
Scholz H. From Natural Behavior to Drug Screening: Invertebrates as Models to Study Mechanisms Associated with Alcohol Use Disorders. Curr Top Behav Neurosci 2023. [PMID: 36598738 DOI: 10.1007/7854_2022_413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Humans consume ethanol-containing beverages, which may cause an uncontrollable or difficult-to-control intake of ethanol-containing liquids and may result in alcohol use disorders. How the transition at the molecular level from "normal" ethanol-associated behaviors to addictive behaviors occurs is still unknown. One problem is that the components contributing to normal ethanol intake and their underlying molecular adaptations, especially in neurons that regulate behavior, are not clear. The fruit fly Drosophila melanogaster and the earthworm Caenorhabditis elegans show behavioral similarities to humans such as signs of intoxication, tolerance, and withdrawal. Underlying the phenotypic similarities, invertebrates and vertebrates share mechanistic similarities. For example in Drosophila melanogaster, the dopaminergic neurotransmitter system regulates the positive reinforcing properties of ethanol and in Caenorhabditis elegans, serotonergic neurons regulate feeding behavior. Since these mechanisms are fundamental molecular mechanisms and are highly conserved, invertebrates are good models for uncovering the basic principles of neuronal adaptation underlying the behavioral response to ethanol. This review will focus on the following aspects that might shed light on the mechanisms underlying normal ethanol-associated behaviors. First, the current status of what is required at the behavioral and cellular level to respond to naturally occurring levels of ethanol is summarized. Low levels of ethanol delay the development and activate compensatory mechanisms that in turn might be beneficial for some aspects of the animal's physiology. Repeated exposure to ethanol however might change brain structures involved in mediating learning and memory processes. The smell of ethanol is already a key component in the environment that is able to elicit behavioral changes and molecular programs. Minimal networks have been identified that regulate normal ethanol consumption. Other environmental factors that influence ethanol-induced behaviors include the diet, dietary supplements, and the microbiome. Second, the molecular mechanisms underlying neuronal adaptation to the cellular stressor ethanol are discussed. Components of the heat shock and oxidative stress pathways regulate adaptive responses to low levels of ethanol and in turn change behavior. The adaptive potential of the brain cells is challenged when the organism encounters additional cellular stressors caused by aging, endosymbionts or environmental toxins or excessive ethanol intake. Finally, to underline the conserved nature of these mechanisms between invertebrates and higher organisms, recent approaches to identify drug targets for ethanol-induced behaviors are provided. Already approved drugs regulate ethanol-induced behaviors and they do so in part by interfering with cellular stress pathways. In addition, invertebrates have been used to identify new compounds targeting molecules involved in the regulation in ethanol withdrawal-like symptoms. This review primarily highlights the advances of the last 5 years concerning Drosophila melanogaster, but also provides intriguing examples of Caenorhabditis elegans and Apis mellifera in support.
Collapse
Affiliation(s)
- Henrike Scholz
- Department of Biology, Institute for Zoology, University of Köln, Köln, Germany.
| |
Collapse
|
9
|
Merrill CB, Pabon MA, Montgomery AB, Rodan AR, Rothenfluh A. Optimized assay for transposase-accessible chromatin by sequencing (ATAC-seq) library preparation from adult Drosophila melanogaster neurons. Sci Rep 2022; 12:6043. [PMID: 35411004 PMCID: PMC9001676 DOI: 10.1038/s41598-022-09869-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
Assay for transposase-accessible chromatin by sequencing (ATAC-seq) is rapidly becoming the assay of choice to investigate chromatin-mediated gene regulation, largely because of low input requirements, a fast workflow, and the ability to interrogate the entire genome in an untargeted manner. Many studies using ATAC-seq use mammalian or human-derived tissues, and established protocols work well in these systems. However, ATAC-seq is not yet widely used in Drosophila. Vinegar flies present several advantages over mammalian systems that make them an excellent model for ATAC-seq studies, including abundant genetic tools that allow straightforward targeting, transgene expression, and genetic manipulation that are not available in mammalian models. Because current ATAC-seq protocols are not optimized to use flies, we developed an optimized workflow that accounts for several complicating factors present in Drosophila. We examined parameters affecting nuclei isolation, including input size, freezing time, washing, and possible confounds from retinal pigments. Then, we optimized the enzymatic steps of library construction to account for the smaller Drosophila genome size. Finally, we used our optimized protocol to generate ATAC-seq libraries that meet ENCODE quality metrics. Our optimized protocol enables extensive ATAC-seq experiments in Drosophila, thereby leveraging the advantages of this powerful model system to understand chromatin-mediated gene regulation.
Collapse
Affiliation(s)
- Collin B. Merrill
- grid.223827.e0000 0001 2193 0096Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108 USA
| | - Miguel A. Pabon
- grid.223827.e0000 0001 2193 0096Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112 USA
| | - Austin B. Montgomery
- grid.223827.e0000 0001 2193 0096Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112 USA
| | - Aylin R. Rodan
- grid.223827.e0000 0001 2193 0096Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112 USA ,grid.223827.e0000 0001 2193 0096Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112 USA ,grid.223827.e0000 0001 2193 0096Department of Human Genetics, University of Utah, Salt Lake City, UT 84112 USA ,grid.280807.50000 0000 9555 3716Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT 84148 USA
| | - Adrian Rothenfluh
- grid.223827.e0000 0001 2193 0096Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108 USA ,grid.223827.e0000 0001 2193 0096Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112 USA ,grid.223827.e0000 0001 2193 0096Department of Human Genetics, University of Utah, Salt Lake City, UT 84112 USA ,grid.223827.e0000 0001 2193 0096Department of Neurobiology, University of Utah, Salt Lake City, UT 84112 USA
| |
Collapse
|
10
|
Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, Torres-Perez JV, Busch-Nentwich EM, Malanchini M, Brennan CH. Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neurosci Biobehav Rev 2022; 135:104559. [PMID: 35124155 PMCID: PMC9016269 DOI: 10.1016/j.neubiorev.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eva Sheardown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Aleksandra M Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Agnieszka Gidziela
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Ian M Sealy
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK.
| |
Collapse
|
11
|
Philyaw TJ, Rothenfluh A, Titos I. The Use of Drosophila to Understand Psychostimulant Responses. Biomedicines 2022; 10:119. [PMID: 35052798 PMCID: PMC8773124 DOI: 10.3390/biomedicines10010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 01/27/2023] Open
Abstract
The addictive properties of psychostimulants such as cocaine, amphetamine, methamphetamine, and methylphenidate are based on their ability to increase dopaminergic neurotransmission in the reward system. While cocaine and methamphetamine are predominately used recreationally, amphetamine and methylphenidate also work as effective therapeutics to treat symptoms of disorders including attention deficit and hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Although both the addictive properties of psychostimulant drugs and their therapeutic efficacy are influenced by genetic variation, very few genes that regulate these processes in humans have been identified. This is largely due to population heterogeneity which entails a requirement for large samples. Drosophila melanogaster exhibits similar psychostimulant responses to humans, a high degree of gene conservation, and allow performance of behavioral assays in a large population. Additionally, amphetamine and methylphenidate reduce impairments in fly models of ADHD-like behavior. Therefore, Drosophila represents an ideal translational model organism to tackle the genetic components underlying the effects of psychostimulants. Here, we break down the many assays that reliably quantify the effects of cocaine, amphetamine, methamphetamine, and methylphenidate in Drosophila. We also discuss how Drosophila is an efficient and cost-effective model organism for identifying novel candidate genes and molecular mechanisms involved in the behavioral responses to psychostimulant drugs.
Collapse
Affiliation(s)
- Travis James Philyaw
- Molecular Biology Graduate Program, University of Utah, Salt Lake City, UT 84112, USA;
| | - Adrian Rothenfluh
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
12
|
Egervari G, Siciliano CA, Whiteley EL, Ron D. Alcohol and the brain: from genes to circuits. Trends Neurosci 2021; 44:1004-1015. [PMID: 34702580 PMCID: PMC8616825 DOI: 10.1016/j.tins.2021.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 01/27/2023]
Abstract
Alcohol use produces wide-ranging and diverse effects on the central nervous system. It influences intracellular signaling mechanisms, leading to changes in gene expression, chromatin remodeling, and translation. As a result of these molecular alterations, alcohol affects the activity of neuronal circuits. Together, these mechanisms produce long-lasting cellular adaptations in the brain that in turn can drive the development and maintenance of alcohol use disorder (AUD). We provide an update on alcohol research, focusing on multiple levels of alcohol-induced adaptations, from intracellular changes to changes in neural circuits. A better understanding of how alcohol affects these diverse and interlinked mechanisms may lead to the identification of novel therapeutic targets and to the development of much-needed novel and efficacious treatment options.
Collapse
Affiliation(s)
- Gabor Egervari
- Department of Cell and Developmental Biology, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37203, USA.
| | - Ellanor L Whiteley
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
13
|
Oepen AS, Catalano JL, Azanchi R, Kaun KR. The foraging gene affects alcohol sensitivity, metabolism and memory in Drosophila. J Neurogenet 2021; 35:236-248. [PMID: 34092172 PMCID: PMC9215342 DOI: 10.1080/01677063.2021.1931178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
The genetic basis of alcohol use disorder (AUD) is complex. Understanding how natural genetic variation contributes to alcohol phenotypes can help us identify and understand the genetic basis of AUD. Recently, a single nucleotide polymorphism in the human foraging (for) gene ortholog, Protein Kinase cGMP-Dependent 1 (PRKG1), was found to be associated with stress-induced risk for alcohol abuse. However, the mechanistic role that PRKG1 plays in AUD is not well understood. We use natural variation in the Drosophila for gene to describe how variation of cGMP-dependent protein kinase (PKG) activity modifies ethanol-induced phenotypes. We found that variation in for affects ethanol-induced increases in locomotion and memory of the appetitive properties of ethanol intoxication. Further, these differences may stem from the ability to metabolize ethanol. Together, this data suggests that natural variation in PKG modulates cue reactivity for alcohol, and thus could influence alcohol cravings by differentially modulating metabolic and behavioral sensitivities to alcohol.
Collapse
Affiliation(s)
- Anne S. Oepen
- Department of Neuroscience, Brown University, Providence,
RI, USA
- Masters Program in Developmental, Neuronal and Behavioral
Biology, Georg-August-University, Göttingen, Germany
| | - Jamie L. Catalano
- Department of Neuroscience, Brown University, Providence,
RI, USA
- Molecular Pharmacology and Physiology Graduate Program,
Brown University, Providence, RI, USA
| | - Reza Azanchi
- Department of Neuroscience, Brown University, Providence,
RI, USA
| | - Karla R. Kaun
- Department of Neuroscience, Brown University, Providence,
RI, USA
| |
Collapse
|
14
|
Yang H, Lin L, Sun K, Zhang T, Chen W, Li L, Xie Y, Wu C, Wei Z, Yu C. Complex structures of Rsu1 and PINCH1 reveal a regulatory mechanism of the ILK/PINCH/Parvin complex for F-actin dynamics. eLife 2021; 10:64395. [PMID: 33587032 PMCID: PMC7909951 DOI: 10.7554/elife.64395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
Communications between actin filaments and integrin-mediated focal adhesion (FA) are crucial for cell adhesion and migration. As a core platform to organize FA proteins, the tripartite ILK/PINCH/Parvin (IPP) complex interacts with actin filaments to regulate the cytoskeleton-FA crosstalk. Rsu1, a Ras suppressor, is enriched in FA through PINCH1 and plays important roles in regulating F-actin structures. Here, we solved crystal structures of the Rsu1/PINCH1 complex, in which the leucine-rich-repeats of Rsu1 form a solenoid structure to tightly associate with the C-terminal region of PINCH1. Further structural analysis uncovered that the interaction between Rsu1 and PINCH1 blocks the IPP-mediated F-actin bundling by disrupting the binding of PINCH1 to actin. Consistently, overexpressing Rsu1 in HeLa cells impairs stress fiber formation and cell spreading. Together, our findings demonstrated that Rsu1 is critical for tuning the communication between F-actin and FA by interacting with the IPP complex and negatively modulating the F-actin bundling.
Collapse
Affiliation(s)
- Haibin Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Faculty of Health Sciences, University of Macau, Macau, China
| | - Leishu Lin
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Kang Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Ting Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Wan Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Lianghui Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuchen Xie
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, School of Medicine and University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, United States
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Cong Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, China
| |
Collapse
|
15
|
Kanno M, Hiramatsu S, Kondo S, Tanimoto H, Ichinose T. Voluntary intake of psychoactive substances is regulated by the dopamine receptor Dop1R1 in Drosophila. Sci Rep 2021; 11:3432. [PMID: 33564023 PMCID: PMC7873259 DOI: 10.1038/s41598-021-82813-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/21/2021] [Indexed: 11/09/2022] Open
Abstract
Dysregulated motivation to consume psychoactive substances leads to addictive behaviors that often result in serious health consequences. Understanding the neuronal mechanisms that drive drug consumption is crucial for developing new therapeutic strategies. The fruit fly Drosophila melanogaster offers a unique opportunity to approach this problem with a battery of sophisticated neurogenetic tools available, but how they consume these drugs remains largely unknown. Here, we examined drug self-administration behavior of Drosophila and the underlying neuronal mechanisms. We measured the preference of flies for five different psychoactive substances using a two-choice feeding assay and monitored its long-term changes. We found that flies show acute preference for ethanol and methamphetamine, but not for cocaine, caffeine or morphine. Repeated intake of ethanol, but not methamphetamine, increased over time. Preference for methamphetamine and the long-term escalation of ethanol preference required the dopamine receptor Dop1R1 in the mushroom body. The protein level of Dop1R1 increased after repeated intake of ethanol, but not methamphetamine, which correlates with the acquired preference. Genetic overexpression of Dop1R1 enhanced ethanol preference. These results reveal a striking diversity of response to individual drugs in the fly and the role of dopamine signaling and its plastic changes in controlling voluntary intake of drugs.
Collapse
Affiliation(s)
- Mai Kanno
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Shun Hiramatsu
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Toshiharu Ichinose
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan. .,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8578, Japan. .,Center for Transdisciplinary Research, Niigata University, Niigata, 950-2181, Japan. .,Department of Neuropharmacology, Nagoya City University, Nagoya, 467-8603, Japan.
| |
Collapse
|
16
|
Mascarell Maričić L, Walter H, Rosenthal A, Ripke S, Quinlan EB, Banaschewski T, Barker GJ, Bokde ALW, Bromberg U, Büchel C, Desrivières S, Flor H, Frouin V, Garavan H, Itterman B, Martinot JL, Martinot MLP, Nees F, Orfanos DP, Paus T, Poustka L, Hohmann S, Smolka MN, Fröhner JH, Whelan R, Kaminski J, Schumann G, Heinz A. The IMAGEN study: a decade of imaging genetics in adolescents. Mol Psychiatry 2020; 25:2648-2671. [PMID: 32601453 PMCID: PMC7577859 DOI: 10.1038/s41380-020-0822-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 04/10/2020] [Accepted: 06/12/2020] [Indexed: 11/17/2022]
Abstract
Imaging genetics offers the possibility of detecting associations between genotype and brain structure as well as function, with effect sizes potentially exceeding correlations between genotype and behavior. However, study results are often limited due to small sample sizes and methodological differences, thus reducing the reliability of findings. The IMAGEN cohort with 2000 young adolescents assessed from the age of 14 onwards tries to eliminate some of these limitations by offering a longitudinal approach and sufficient sample size for analyzing gene-environment interactions on brain structure and function. Here, we give a systematic review of IMAGEN publications since the start of the consortium. We then focus on the specific phenotype 'drug use' to illustrate the potential of the IMAGEN approach. We describe findings with respect to frontocortical, limbic and striatal brain volume, functional activation elicited by reward anticipation, behavioral inhibition, and affective faces, and their respective associations with drug intake. In addition to describing its strengths, we also discuss limitations of the IMAGEN study. Because of the longitudinal design and related attrition, analyses are underpowered for (epi-) genome-wide approaches due to the limited sample size. Estimating the generalizability of results requires replications in independent samples. However, such densely phenotyped longitudinal studies are still rare and alternative internal cross-validation methods (e.g., leave-one out, split-half) are also warranted. In conclusion, the IMAGEN cohort is a unique, very well characterized longitudinal sample, which helped to elucidate neurobiological mechanisms involved in complex behavior and offers the possibility to further disentangle genotype × phenotype interactions.
Collapse
Affiliation(s)
- Lea Mascarell Maričić
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Annika Rosenthal
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Erin Burke Quinlan
- Department of Social Genetic & Developmental Psychiatry, Institute of Psychiatry, King's College London, London, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Büchel
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | - Sylvane Desrivières
- Department of Social Genetic & Developmental Psychiatry, Institute of Psychiatry, King's College London, London, UK
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131, Mannheim, Germany
| | - Vincent Frouin
- NeuroSpin, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, 05405, USA
| | - Bernd Itterman
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging& Psychiatry", University Paris Sud, University Paris Descartes-Sorbonne Paris Cité, and Maison de Solenn, Paris, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud, University Paris Descartes, Sorbonne Université, and AP-HP, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | | | - Tomáš Paus
- Rotman Research Institute, Baycrest and Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, M6A 2E1, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, TechnischeUniversität Dresden, Dresden, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, TechnischeUniversität Dresden, Dresden, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Jakob Kaminski
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Gunter Schumann
- Department of Social Genetic & Developmental Psychiatry, Institute of Psychiatry, King's College London, London, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
17
|
Witt SH, Frank J, Frischknecht U, Treutlein J, Streit F, Foo JC, Sirignano L, Dukal H, Degenhardt F, Koopmann A, Hoffmann S, Koller G, Pogarell O, Preuss UW, Zill P, Adorjan K, Schulze TG, Nöthen M, Spanagel R, Kiefer F, Rietschel M. Acute alcohol withdrawal and recovery in men lead to profound changes in DNA methylation profiles: a longitudinal clinical study. Addiction 2020; 115:2034-2044. [PMID: 32080920 DOI: 10.1111/add.15020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/24/2019] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Withdrawal is a serious and sometimes life-threatening event in alcohol-dependent individuals. It has been suggested that epigenetic processes may play a role in this context. This study aimed to identify genes and pathways involved in such processes which hint to relevant mechanisms underlying withdrawal. DESIGN Cross-sectional case-control study and longitudinal within-cases study during alcohol withdrawal and after 2 weeks of recovery SETTING: Addiction medicine departments in two university hospitals in southern Germany. PARTICIPANTS/CASES Ninety-nine alcohol-dependent male patients receiving in-patient treatment and suffering from severe withdrawal symptoms during detoxification and 95 age-matched male controls. MEASUREMENTS Epigenome-wide methylation patterns were analyzed in patients during acute alcohol withdrawal and after 2 weeks of recovery, as well as in age-matched controls using Illumina EPIC bead chips. Methylation levels of patients and controls were tested for association with withdrawal status. Tests were adjusted for technical and batch effects, age, smoking and cell type distribution. Single-site analysis, as well as an analysis of differentially methylated regions and gene ontology analysis, were performed. FINDINGS We found pronounced epigenome-wide significant [false discovery rate (FDR) < 0.05] differences between patients during withdrawal and after 2 weeks [2876 cytosine-phosphate-guanine (CpG) sites], as well as between patients and controls (9845 and 6094 CpG sites comparing patients at time-point 1 and patients at time-point 2 versus controls, respectively). Analysis of differentially methylated regions and involved pathways revealed an over-representation of gene ontology terms related to the immune system response. Differences between patients and controls diminished after recovery (> 800 CpG sites less), suggesting a partial reversibility of alcohol- and withdrawal-related methylation. CONCLUSIONS Acute alcohol withdrawal in severely dependent male patients appears to be associated with extensive changes in epigenome-wide methylation patterns. In particular, genes involved in immune system response seem to be affected by this condition.
Collapse
Affiliation(s)
- Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Ulrich Frischknecht
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Jerome C Foo
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Helene Dukal
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Anne Koopmann
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Sabine Hoffmann
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Gabi Koller
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Ulrich W Preuss
- Department of Psychiatry, Psychotherapy, Psychosomatics, Martin-Luther-University (MLU), Halle/Saale, Germany
| | - Peter Zill
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Kristina Adorjan
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany.,Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Markus Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Falk Kiefer
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| |
Collapse
|
18
|
Lathen DR, Merrill CB, Rothenfluh A. Flying Together: Drosophila as a Tool to Understand the Genetics of Human Alcoholism. Int J Mol Sci 2020; 21:E6649. [PMID: 32932795 PMCID: PMC7555299 DOI: 10.3390/ijms21186649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Alcohol use disorder (AUD) exacts an immense toll on individuals, families, and society. Genetic factors determine up to 60% of an individual's risk of developing problematic alcohol habits. Effective AUD prevention and treatment requires knowledge of the genes that predispose people to alcoholism, play a role in alcohol responses, and/or contribute to the development of addiction. As a highly tractable and translatable genetic and behavioral model organism, Drosophila melanogaster has proven valuable to uncover important genes and mechanistic pathways that have obvious orthologs in humans and that help explain the complexities of addiction. Vinegar flies exhibit remarkably strong face and mechanistic validity as a model for AUDs, permitting many advancements in the quest to understand human genetic involvement in this disease. These advancements occur via approaches that essentially fall into one of two categories: (1) discovering candidate genes via human genome-wide association studies (GWAS), transcriptomics on post-mortem tissue from AUD patients, or relevant physiological connections, then using reverse genetics in flies to validate candidate genes' roles and investigate their molecular function in the context of alcohol. (2) Utilizing flies to discover candidate genes through unbiased screens, GWAS, quantitative trait locus analyses, transcriptomics, or single-gene studies, then validating their translational role in human genetic surveys. In this review, we highlight the utility of Drosophila as a model for alcoholism by surveying recent advances in our understanding of human AUDs that resulted from these various approaches. We summarize the genes that are conserved in alcohol-related function between humans and flies. We also provide insight into some advantages and limitations of these approaches. Overall, this review demonstrates how Drosophila have and can be used to answer important genetic questions about alcohol addiction.
Collapse
Affiliation(s)
- Daniel R. Lathen
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
| | - Collin B. Merrill
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
| | - Adrian Rothenfluh
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
19
|
Schmitt RE, Messick MR, Shell BC, Dunbar EK, Fang H, Shelton KL, Venton BJ, Pletcher SD, Grotewiel M. Dietary yeast influences ethanol sedation in Drosophila via serotonergic neuron function. Addict Biol 2020; 25:e12779. [PMID: 31169340 DOI: 10.1111/adb.12779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 03/23/2019] [Accepted: 05/02/2019] [Indexed: 01/10/2023]
Abstract
Abuse of alcohol is a major clinical problem with far-reaching health consequences. Understanding the environmental and genetic factors that contribute to alcohol-related behaviors is a potential gateway for developing novel therapeutic approaches for patients that abuse the drug. To this end, we have used Drosophila melanogaster as a model to investigate the effect of diet, an environmental factor, on ethanol sedation. Providing flies with diets high in yeast, a routinely used component of fly media, increased their resistance to ethanol sedation. The yeast-induced resistance to ethanol sedation occurred in several different genetic backgrounds, was observed in males and females, was elicited by yeast from different sources, was readily reversible, and was associated with increased nutrient intake as well as decreased internal ethanol levels. Inhibition of serotonergic neuron function using multiple independent genetic manipulations blocked the effect of yeast supplementation on ethanol sedation, nutrient intake, and internal ethanol levels. Our results demonstrate that yeast is a critical dietary component that influences ethanol sedation in flies and that serotonergic signaling is required for the effect of dietary yeast on nutrient intake, ethanol uptake/elimination, and ethanol sedation. Our studies establish the fly as a model for diet-induced changes in ethanol sedation and raise the possibility that serotonin might mediate the effect of diet on alcohol-related behavior in other species.
Collapse
Affiliation(s)
- Rebecca E. Schmitt
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Monica R. Messick
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Brandon C. Shell
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Ellyn K. Dunbar
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Huai‐Fang Fang
- Department of Chemistry and Neuroscience Graduate Program University of Virginia Charlottesville VA USA
| | - Keith L. Shelton
- Department of Pharmacology and Toxicology Virginia Commonwealth University Richmond VA USA
| | - B. Jill Venton
- Department of Chemistry and Neuroscience Graduate Program University of Virginia Charlottesville VA USA
| | - Scott D. Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center University of Michigan Ann Arbor MI USA
| | - Mike Grotewiel
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
- Virginia Commonwealth University Alcohol Research Center Richmond VA USA
| |
Collapse
|
20
|
Ras Suppressor-1 (RSU1) in Cancer Cell Metastasis: A Tale of a Tumor Suppressor. Int J Mol Sci 2020; 21:ijms21114076. [PMID: 32517326 PMCID: PMC7312364 DOI: 10.3390/ijms21114076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/14/2023] Open
Abstract
Cancer is a multifactorial disease responsible for millions of deaths worldwide. It has a strong genetic background, as mutations in oncogenes or tumor suppressor genes contribute to the initiation of cancer development. Integrin signaling as well as the signaling pathway of Ras oncogene, have been long implicated both in carcinogenesis and disease progression. Moreover, they have been involved in the promotion of metastasis, which accounts for the majority of cancer-related deaths. Ras Suppressor-1 (RSU1) was identified as a suppressor of Ras-induced transformation and was shown to localize to cell-extracellular matrix adhesions. Recent findings indicate that its expression is elevated in various cancer types, while its role in regulating metastasis-related cellular processes remains largely unknown. Interestingly, there is no in vivo work in the field to date, and thus, all relevant knowledge stems from in vitro studies. In this review, we summarize recent studies using breast, liver and brain cancer cell lines and highlight the role of RSU1 in regulating cancer cell invasion.
Collapse
|
21
|
Burke Quinlan E, Banaschewski T, Barker GJ, Bokde AL, Bromberg U, Büchel C, Desrivières S, Flor H, Frouin V, Garavan H, Heinz A, Brühl R, Martinot JL, Paillère Martinot ML, Nees F, Papadopoulos Orfanos D, Paus T, Poustka L, Hohmann S, Smolka MN, Fröhner JH, Walter H, Whelan R, Schumann G. Identifying biological markers for improved precision medicine in psychiatry. Mol Psychiatry 2020; 25:243-253. [PMID: 31676814 PMCID: PMC6978138 DOI: 10.1038/s41380-019-0555-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 01/24/2023]
Abstract
Mental disorders represent an increasing personal and financial burden and yet treatment development has stagnated in recent decades. Current disease classifications do not reflect psychobiological mechanisms of psychopathology, nor the complex interplay of genetic and environmental factors, likely contributing to this stagnation. Ten years ago, the longitudinal IMAGEN study was designed to comprehensively incorporate neuroimaging, genetics, and environmental factors to investigate the neural basis of reinforcement-related behavior in normal adolescent development and psychopathology. In this article, we describe how insights into the psychobiological mechanisms of clinically relevant symptoms obtained by innovative integrative methodologies applied in IMAGEN have informed our current and future research aims. These aims include the identification of symptom groups that are based on shared psychobiological mechanisms and the development of markers that predict disease course and treatment response in clinical groups. These improvements in precision medicine will be achieved, in part, by employing novel methodological tools that refine the biological systems we target. We will also implement our approach in low- and medium-income countries to understand how distinct environmental, socioeconomic, and cultural conditions influence the development of psychopathology. Together, IMAGEN and related initiatives strive to reduce the burden of mental disorders by developing precision medicine approaches globally.
Collapse
Affiliation(s)
- Erin Burke Quinlan
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King’s College London, United Kingdom
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Arun L.W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Büchel
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King’s College London, United Kingdom
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany,Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Vincent Frouin
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, Vermont, USA
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany [or depending on journal requirements can be: Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2 - 12, Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud – Paris Saclay, University Paris Descartes; DIGITEO labs, Gif sur Yvette; France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud – Paris Saclay, University Paris Descartes; and AP-HP.Sorbonne Université, Department of Adolescent Psychopathology and Medicine, Maison de Solenn, Cochin Hospital, Paris, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany,University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | | | - Tomáš Paus
- Rotman Research Institute, Baycrest and Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, M6A 2E1, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Gunter Schumann
- PONS Research Group, Dept of Psychiatry and Psychotherapy, Campus Charite Mitte, Humboldt University, Berlin and Leibniz Institute for Neurobiology, Magdeburg, Germany, and Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, P.R. China
| | | |
Collapse
|
22
|
Litten RZ, Falk DE, Ryan ML, Fertig J, Leggio L. Five Priority Areas for Improving Medications Development for Alcohol Use Disorder and Promoting Their Routine Use in Clinical Practice. Alcohol Clin Exp Res 2019; 44:23-35. [PMID: 31803968 DOI: 10.1111/acer.14233] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/02/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Raye Z Litten
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Daniel E Falk
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Megan L Ryan
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Joanne Fertig
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland.,Medication Development Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland.,Center for Alcohol and Addiction Studies, Brown University, Providence, Rhode Island
| |
Collapse
|
23
|
Scholz H. Unraveling the Mechanisms of Behaviors Associated With AUDs Using Flies and Worms. Alcohol Clin Exp Res 2019; 43:2274-2284. [PMID: 31529787 DOI: 10.1111/acer.14199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
Alcohol use disorders (AUDs) are very common worldwide and negatively affect both individuals and societies. To understand how normal behavior turns into uncontrollable use of alcohol, several approaches have been utilized in the last decades. However, we still do not completely understand how AUDs evolve or how they are maintained in the brains of affected individuals. In addition, efficient and effective treatment is still in need of development. This review focuses on alternative approaches developed over the last 20 years using Drosophila melanogaster (Drosophila) and Caenorhabditis elegans (C. elegans) as genetic model systems to determine the mechanisms underlying the action of ethanol (EtOH) and behaviors associated with AUDs. All the results and insights of studies over the last 20 years cannot be comprehensively summarized. Thus, a few prominent examples are provided highlighting the principles of the genes and mechanisms that have been uncovered and are involved in the action of EtOH at the cellular level. In addition, examples are provided of the genes and mechanisms that regulate behaviors relevant to acquiring and maintaining excessive alcohol intake, such as decision making, reward and withdrawal, and/or relapse regulation. How the insight gained from the results of Drosophila and C. elegans models can be translated to higher organisms, such as rodents and/or humans, is discussed, as well as whether these insights have any relevance or impact on our understanding of the mechanisms underlying AUDs in humans. Finally, future directions are presented that might facilitate the identification of drugs to treat AUDs.
Collapse
Affiliation(s)
- Henrike Scholz
- From the, Department of Biology, Institute for Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| |
Collapse
|
24
|
Altered Actin Filament Dynamics in the Drosophila Mushroom Bodies Lead to Fast Acquisition of Alcohol Consumption Preference. J Neurosci 2019; 39:8877-8884. [PMID: 31558618 DOI: 10.1523/jneurosci.0973-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/22/2019] [Accepted: 09/13/2019] [Indexed: 01/12/2023] Open
Abstract
Alcohol use is highly prevalent in the United States and across the world, and every year millions of people suffer from alcohol use disorders (AUDs). Although the genetic contribution to developing AUDs is estimated to be 50-60%, many of the underlying molecular mechanisms remain unclear. Previous studies from our laboratory revealed that Drosophila melanogaster lacking RhoGAP18B and Ras Suppressor 1 (Rsu1) display reduced sensitivity to ethanol-induced sedation. Both Rsu1 and RhoGAP18B are negative regulators of the small Rho-family GTPase, Rac1, a modulator of actin dynamics. Here we investigate the role of Rac1 and its downstream target, the actin-severing protein cofilin, in alcohol consumption preference. We show that these two regulators of actin dynamics can alter male experience-dependent alcohol preference in a bidirectional manner: expressing either activated Rac1 or dominant-negative cofilin in the mushroom bodies (MBs) abolishes experience-dependent alcohol preference. Conversely, dominant-negative Rac1 or activated cofilin MB expression lead to faster acquisition of alcohol preference. Our data show that Rac1 and cofilin activity are key to determining the rate of acquisition of alcohol preference, revealing a critical role of actin dynamics regulation in the development of voluntary self-administration in Drosophila SIGNIFICANCE STATEMENT The risks for developing an alcohol use disorder (AUD) are strongly determined by genetic factors. Understanding the genes and molecular mechanisms that contribute to that risk is therefore a necessary first step for the development of targeted therapeutic intervention. Here we show that regulators of actin cytoskeleton dynamics can bidirectionally determine the acquisition rate of alcohol self-administration, highlighting this process as a key mechanism contributing to the risk of AUD development.
Collapse
|
25
|
Evangelou E, Gao H, Chu C, Ntritsos G, Blakeley P, Butts AR, Pazoki R, Suzuki H, Koskeridis F, Yiorkas AM, Karaman I, Elliott J, Luo Q, Aeschbacher S, Bartz TM, Baumeister SE, Braund PS, Brown MR, Brody JA, Clarke TK, Dimou N, Faul JD, Homuth G, Jackson AU, Kentistou KA, Joshi PK, Lemaitre RN, Lind PA, Lyytikäinen LP, Mangino M, Milaneschi Y, Nelson CP, Nolte IM, Perälä MM, Polasek O, Porteous D, Ratliff SM, Smith JA, Stančáková A, Teumer A, Tuominen S, Thériault S, Vangipurapu J, Whitfield JB, Wood A, Yao J, Yu B, Zhao W, Arking DE, Auvinen J, Liu C, Männikkö M, Risch L, Rotter JI, Snieder H, Veijola J, Blakemore AI, Boehnke M, Campbell H, Conen D, Eriksson JG, Grabe HJ, Guo X, van der Harst P, Hartman CA, Hayward C, Heath AC, Jarvelin MR, Kähönen M, Kardia SLR, Kühne M, Kuusisto J, Laakso M, Lahti J, Lehtimäki T, McIntosh AM, Mohlke KL, Morrison AC, Martin NG, Oldehinkel AJ, Penninx BWJH, Psaty BM, Raitakari OT, Rudan I, Samani NJ, Scott LJ, Spector TD, Verweij N, Weir DR, Wilson JF, Levy D, Tzoulaki I, Bell JD, Matthews PM, Rothenfluh A, Desrivières S, Schumann G, Elliott P. New alcohol-related genes suggest shared genetic mechanisms with neuropsychiatric disorders. Nat Hum Behav 2019; 3:950-961. [PMID: 31358974 PMCID: PMC7711277 DOI: 10.1038/s41562-019-0653-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/11/2019] [Indexed: 12/19/2022]
Abstract
Excessive alcohol consumption is one of the main causes of death and disability worldwide. Alcohol consumption is a heritable complex trait. Here we conducted a meta-analysis of genome-wide association studies of alcohol consumption (g d-1) from the UK Biobank, the Alcohol Genome-Wide Consortium and the Cohorts for Heart and Aging Research in Genomic Epidemiology Plus consortia, collecting data from 480,842 people of European descent to decipher the genetic architecture of alcohol intake. We identified 46 new common loci and investigated their potential functional importance using magnetic resonance imaging data and gene expression studies. We identify genetic pathways associated with alcohol consumption and suggest genetic mechanisms that are shared with neuropsychiatric disorders such as schizophrenia.
Collapse
Affiliation(s)
- Evangelos Evangelou
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - He Gao
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Congying Chu
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Georgios Ntritsos
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Paul Blakeley
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- NIHR Imperial Biomedical Research Centre, ITMAT Data Science Group, Imperial College London, London, UK
| | - Andrew R Butts
- Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Raha Pazoki
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Hideaki Suzuki
- Centre for Restorative Neurosciences, Division of Brain Sciences, Department of Medicine, Hammersmith Campus, Imperial College London, London, UK
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Fotios Koskeridis
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Andrianos M Yiorkas
- Department of Life Sciences, Brunel University London, London, UK
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Ibrahim Karaman
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Joshua Elliott
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Qiang Luo
- Institute of Science and Technology for Brain-Inspired Intelligence, MOE-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Psychology and the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | | | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Sebastian E Baumeister
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- Chair of Epidemiology, Ludwig-Maximilians-Universitat Munchen, UNIKA-T Augsburg, Augsburg, Germany
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Toni-Kim Clarke
- Department of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Niki Dimou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Katherine A Kentistou
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Penelope A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and LHealth Technology, Tampere University, Tampere, Finland
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere, Finland
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre, Guy's and St Thomas Foundation Trust, London, UK
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Ilja M Nolte
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mia-Maria Perälä
- Folkhälsan Research Center, Helsinki, Finland
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
| | - David Porteous
- Generation Scotland, Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - Scott M Ratliff
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Alena Stančáková
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
| | - Samuli Tuominen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sébastien Thériault
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Quebec, Canada
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - John B Whitfield
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Alexis Wood
- Department of Pediatrics/Nutrition, Baylor College of Medicine, Houston, TX, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Bing Yu
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juha Auvinen
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Oulunkaari Health Center, Ii, Finland
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Minna Männikkö
- Northern Finland Birth Cohorts, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Lorenz Risch
- Institute of Clinical Chemistry, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland
- Labormedizinisches Zentrum Dr. Risch, Vaduz, Liechtenstein
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Harold Snieder
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Juha Veijola
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland
- Department of Psychiatry, University Hospital of Oulu, Oulu, Finland
- Medical research Center Oulu, University and University Hospital of Oulu, Oulu, Finland
| | - Alexandra I Blakemore
- Department of Life Sciences, Brunel University London, London, UK
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
- Unit of General Practice, Helsinki University Central Hospital, Helsinki, Finland
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Greifswald, Germany
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| | - Catharina A Hartman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Andrew C Heath
- Department of Psychiatry, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Michael Kühne
- Cardiology Division, University Hospital Basel, Basel, Switzerland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and LHealth Technology, Tampere University, Tampere, Finland
| | - Andrew M McIntosh
- Department of Psychiatry, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Albertine J Oldehinkel
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - James F Wilson
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Jimmy D Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| | - Paul M Matthews
- Centre for Restorative Neurosciences, Division of Brain Sciences, Department of Medicine, Hammersmith Campus, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Adrian Rothenfluh
- Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
- Departments of Psychiatry, Neurobiology & Anatomy, Human Genetics, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- PONS Research Group, Dept of Psychiatry and Psychotherapy, Campus Charite Mitte, Humboldt University, Berlin, Germany and Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, P.R. China.
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK.
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
- National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare NHS Trust and Imperial College London, London, UK.
- Health Data Research UK London Substantive Site, London, UK.
| |
Collapse
|
26
|
Schmitt RE, Shell BC, Lee KM, Shelton KL, Mathies LD, Edwards AC, Grotewiel M. Convergent Evidence From Humans and Drosophila melanogaster Implicates the Transcription Factor MEF2B/Mef2 in Alcohol Sensitivity. Alcohol Clin Exp Res 2019; 43:1872-1886. [PMID: 31241765 PMCID: PMC6721962 DOI: 10.1111/acer.14138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Self-Rating of the Effects of Alcohol (SRE) measures level of response to ethanol (EtOH) in humans. Interestingly, there is a positive relationship between the SRE and risk for abusing alcohol, suggesting mechanistic connections between SRE and alcohol abuse. METHODS To identify candidate genes with a role in SRE and alcohol-related behavior more generally, we coupled human genetic analyses with studies in Drosophila melanogaster. We first performed a gene-based analysis of Genomewide association studies (GWAS) summary statistics for SRE in the Avon Longitudinal Study of Parents and Children sample. Based on prior findings in humans, orthology to fly genes, and the availability of genetic reagents, we selected a subset of these genes for studies on EtOH behavior in Drosophila. RESULTS We found 37 genes with nominal associations in our SRE GWAS. We explored the role of 6 orthologous genes in Drosophila EtOH sedation and rapid tolerance. We found that the transcription factor Mef2 is required for normal EtOH sedation in flies. Pan-neuronal expression of 2 independent Mef2 RNAi transgenes significantly reduced Mef2 expression and made flies resistant to EtOH sedation. Additionally, flies with multiple independent mutant alleles of Mef2 were also resistant to EtOH sedation, confirming a role for Mef2 in this behavior. Altered expression of Mef2 did not change EtOH rapid tolerance or cause a net change in internal EtOH concentrations. CONCLUSIONS Our studies indicate that MEF2B influences SRE in humans and that Mef2 impacts EtOH sedation in Drosophila.
Collapse
Affiliation(s)
- Rebecca E. Schmitt
- Human Genetics Ph.D. Program, Virginia Commonwealth University, Richmond, VA
| | - Brandon C. Shell
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA
| | - Kristen M. Lee
- Neuroscience Ph.D. Program, Virginia Commonwealth University, Richmond, VA
| | - Keith L. Shelton
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA
| | - Laura D. Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA
- Virginia Commonwealth University Alcohol Research Center, Virginia Commonwealth University, Richmond, VA
| | - Alexis C. Edwards
- Virginia Commonwealth University Alcohol Research Center, Virginia Commonwealth University, Richmond, VA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Mike Grotewiel
- Human Genetics Ph.D. Program, Virginia Commonwealth University, Richmond, VA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA
- Neuroscience Ph.D. Program, Virginia Commonwealth University, Richmond, VA
- Virginia Commonwealth University Alcohol Research Center, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
27
|
Parkhurst SJ, Adhikari P, Navarrete JS, Legendre A, Manansala M, Wolf FW. Perineurial Barrier Glia Physically Respond to Alcohol in an Akap200-Dependent Manner to Promote Tolerance. Cell Rep 2019; 22:1647-1656. [PMID: 29444420 PMCID: PMC5831198 DOI: 10.1016/j.celrep.2018.01.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 12/04/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Ethanol is the most common drug of abuse. It exerts its behavioral effects by acting on widespread neural circuits; however, its impact on glial cells is less understood. We show that Drosophila perineurial glia are critical for ethanol tolerance, a simple form of behavioral plasticity. The perineurial glia form the continuous outer cellular layer of the blood-brain barrier and are the interface between the brain and the circulation. Ethanol tolerance development requires the A kinase anchoring protein Akap200 specifically in perineurial glia. Akap200 tightly coordinates protein kinase A, actin, and calcium signaling at the membrane to control tolerance. Furthermore, ethanol causes a structural remodeling of the actin cytoskeleton and perineurial membrane topology in an Akap200-dependent manner, without disrupting classical barrier functions. Our findings reveal an active molecular signaling process in the cells at the blood-brain interface that permits a form of behavioral plasticity induced by ethanol.
Collapse
Affiliation(s)
- Sarah J Parkhurst
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Pratik Adhikari
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Jovana S Navarrete
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Arièle Legendre
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Miguel Manansala
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Fred W Wolf
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA; Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA.
| |
Collapse
|
28
|
Signor S, Nuzhdin S. Dynamic changes in gene expression and alternative splicing mediate the response to acute alcohol exposure in Drosophila melanogaster. Heredity (Edinb) 2018; 121:342-360. [PMID: 30143789 PMCID: PMC6133934 DOI: 10.1038/s41437-018-0136-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/21/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Environmental changes typically cause rapid gene expression responses in the exposed organisms, including changes in the representation of gene isoforms with different functions or properties. Identifying the genes that respond to environmental change, including in genotype-specific ways, is an important step in treating the undesirable physiological effects of stress, such as exposure to toxins or ethanol. Ethanol is a unique environmental stress in that chronic exposure results in permanent physiological changes and the development of alcohol use disorders. Drosophila is a classic model for deciphering the mechanisms of the response to alcohol exposure, as it meets the criteria for the development of alcohol use disorders, and has similar physiological underpinnings with vertebrates. Because many studies on the response to ethanol have relied on a priori candidate genes, broad surveys of gene expression and splicing are required and have been investigated here. Further, we expose Drosophila to ethanol in an environment that is genetically, socially, and ecologically relevant. Both expression and splicing differences, inasmuch as they can be decomposed, contribute to the response to ethanol in Drosophila melanogaster. However, we find that while D. melanogaster responds to ethanol, there is very little genetic variation in how it responds to ethanol. In addition, the response to alcohol over time is dynamic, suggesting that incorporating time into studies on the response to the environment is important.
Collapse
Affiliation(s)
- Sarah Signor
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| | - Sergey Nuzhdin
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
29
|
The cytoskeleton in ‘couch potato-ism’: Insights from a murine model of impaired actin dynamics. Exp Neurol 2018; 306:34-44. [DOI: 10.1016/j.expneurol.2018.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 03/19/2018] [Accepted: 04/06/2018] [Indexed: 01/22/2023]
|
30
|
Ramirez-Roman ME, Billini CE, Ghezzi A. Epigenetic Mechanisms of Alcohol Neuroadaptation: Insights from Drosophila. J Exp Neurosci 2018; 12:1179069518779809. [PMID: 29899666 PMCID: PMC5990879 DOI: 10.1177/1179069518779809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
Alcohol addiction is a serious condition perpetuated by enduring physiological and behavioral adaptations. An important component of these adaptations is the long-term rearrangement of neuronal gene expression in the brain of the addicted individual. Epigenetic histone modifications have recently surfaced as important modulators of the transcriptional adaptation to alcohol as these are thought to represent a form of transcriptional memory that is directly imprinted on the chromosome. Some histone modifications affect transcription by modulating the accessibility of the underlying DNA, whereas others have been proposed to serve as marks read by transcription factors as a "histone code" that helps to specify the expression level of a gene. Although the effects of some epigenetic modifications on the transcriptional activity of genes are well known, the mechanisms by which alcohol consumption produces this rearrangement and leads to lasting changes in behavior remain unresolved. Recent advances using the Drosophila model system have started to unravel the epigenetic modulators underlying functional alcohol neuroadaptations. In this review, we discuss the role of 3 different histone modification systems in Drosophila, which have a direct impact on key alcohol neuroadaptations associated with the addictive process. These systems involve the histone deacetylase Sirt1, the histone acetyltransferase CREB-binding protein (CBP), and a subset of the Drosophila JmjC-Domain histone demethylase family.
Collapse
Affiliation(s)
| | - Carlos E Billini
- Department of Biology, University of Puerto Rico–Rio Piedras, San Juan, PR, USA
| | - Alfredo Ghezzi
- Department of Biology, University of Puerto Rico–Rio Piedras, San Juan, PR, USA
| |
Collapse
|
31
|
Ryvkin J, Bentzur A, Zer-Krispil S, Shohat-Ophir G. Mechanisms Underlying the Risk to Develop Drug Addiction, Insights From Studies in Drosophila melanogaster. Front Physiol 2018; 9:327. [PMID: 29740329 PMCID: PMC5928757 DOI: 10.3389/fphys.2018.00327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
The ability to adapt to environmental changes is an essential feature of biological systems, achieved in animals by a coordinated crosstalk between neuronal and hormonal programs that allow rapid and integrated organismal responses. Reward systems play a key role in mediating this adaptation by reinforcing behaviors that enhance immediate survival, such as eating or drinking, or those that ensure long-term survival, such as sexual behavior or caring for offspring. Drugs of abuse co-opt neuronal and molecular pathways that mediate natural rewards, which under certain circumstances can lead to addiction. Many factors can contribute to the transition from drug use to drug addiction, highlighting the need to discover mechanisms underlying the progression from initial drug use to drug addiction. Since similar responses to natural and drug rewards are present in very different animals, it is likely that the central systems that process reward stimuli originated early in evolution, and that common ancient biological principles and genes are involved in these processes. Thus, the neurobiology of natural and drug rewards can be studied using simpler model organisms that have their systems stripped of some of the immense complexity that exists in mammalian brains. In this paper we review studies in Drosophila melanogaster that model different aspects of natural and drug rewards, with an emphasis on how motivational states shape the value of the rewarding experience, as an entry point to understanding the mechanisms that contribute to the vulnerability of drug addiction.
Collapse
Affiliation(s)
- Julia Ryvkin
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Assa Bentzur
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Shir Zer-Krispil
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Galit Shohat-Ophir
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
32
|
Lowenstein EG, Velazquez-Ulloa NA. A Fly's Eye View of Natural and Drug Reward. Front Physiol 2018; 9:407. [PMID: 29720947 PMCID: PMC5915475 DOI: 10.3389/fphys.2018.00407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Animals encounter multiple stimuli each day. Some of these stimuli are innately appetitive or aversive, while others are assigned valence based on experience. Drugs like ethanol can elicit aversion in the short term and attraction in the long term. The reward system encodes the predictive value for different stimuli, mediating anticipation for attractive or punishing stimuli and driving animal behavior to approach or avoid conditioned stimuli. The neurochemistry and neurocircuitry of the reward system is partly evolutionarily conserved. In both vertebrates and invertebrates, including Drosophila melanogaster, dopamine is at the center of a network of neurotransmitters and neuromodulators acting in concert to encode rewards. Behavioral assays in D. melanogaster have become increasingly sophisticated, allowing more direct comparison with mammalian research. Moreover, recent evidence has established the functional modularity of the reward neural circuits in Drosophila. This functional modularity resembles the organization of reward circuits in mammals. The powerful genetic and molecular tools for D. melanogaster allow characterization and manipulation at the single-cell level. These tools are being used to construct a detailed map of the neural circuits mediating specific rewarding stimuli and have allowed for the identification of multiple genes and molecular pathways that mediate the effects of reinforcing stimuli, including their rewarding effects. This report provides an overview of the research on natural and drug reward in D. melanogaster, including natural rewards such as sugar and other food nutrients, and drug rewards including ethanol, cocaine, amphetamine, methamphetamine, and nicotine. We focused mainly on the known genetic and neural mechanisms underlying appetitive reward for sugar and reward for ethanol. We also include genes, molecular pathways, and neural circuits that have been identified using assays that test the palatability of the rewarding stimulus, the preference for the rewarding stimulus, or other effects of the stimulus that indicate how it can modify behavior. Commonalities between mechanisms of natural and drug reward are highlighted and future directions are presented, putting forward questions best suited for research using D. melanogaster as a model organism.
Collapse
Affiliation(s)
- Eve G Lowenstein
- Department of Biology, Lewis & Clark College, Portland, OR, United States
| | | |
Collapse
|
33
|
Gonzalez DA, Jia T, Pinzón JH, Acevedo SF, Ojelade SA, Xu B, Tay N, Desrivières S, Hernandez JL, Banaschewski T, Büchel C, Bokde AL, Conrod PJ, Flor H, Frouin V, Gallinat J, Garavan H, Gowland PA, Heinz A, Ittermann B, Lathrop M, Martinot JL, Paus T, Smolka MN, IMAGEN consortium, Rodan AR, Schumann G, Rothenfluh A. The Arf6 activator Efa6/PSD3 confers regional specificity and modulates ethanol consumption in Drosophila and humans. Mol Psychiatry 2018; 23:621-628. [PMID: 28607459 PMCID: PMC5729071 DOI: 10.1038/mp.2017.112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 03/21/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022]
Abstract
Ubiquitously expressed genes have been implicated in a variety of specific behaviors, including responses to ethanol. However, the mechanisms that confer this behavioral specificity have remained elusive. Previously, we showed that the ubiquitously expressed small GTPase Arf6 is required for normal ethanol-induced sedation in adult Drosophila. Here, we show that this behavioral response also requires Efa6, one of (at least) three Drosophila Arf6 guanine exchange factors. Ethanol-naive Arf6 and Efa6 mutants were sensitive to ethanol-induced sedation and lacked rapid tolerance upon re-exposure to ethanol, when compared with wild-type flies. In contrast to wild-type flies, both Arf6 and Efa6 mutants preferred alcohol-containing food without prior ethanol experience. An analysis of the human ortholog of Arf6 and orthologs of Efa6 (PSD1-4) revealed that the minor G allele of single nucleotide polymorphism (SNP) rs13265422 in PSD3, as well as a haplotype containing rs13265422, was associated with an increased frequency of drinking and binge drinking episodes in adolescents. The same haplotype was also associated with increased alcohol dependence in an independent European cohort. Unlike the ubiquitously expressed human Arf6 GTPase, PSD3 localization is restricted to the brain, particularly the prefrontal cortex (PFC). Functional magnetic resonance imaging revealed that the same PSD3 haplotype was also associated with a differential functional magnetic resonance imaging signal in the PFC during a Go/No-Go task, which engages PFC-mediated executive control. Our translational analysis, therefore, suggests that PSD3 confers regional specificity to ubiquitous Arf6 in the PFC to modulate human alcohol-drinking behaviors.
Collapse
Affiliation(s)
- Dante A. Gonzalez
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX,Program in Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Tianye Jia
- Institute of Psychiatry, King’s College London, United Kingdom,MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Jorge H. Pinzón
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Summer F. Acevedo
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Shamsideen A. Ojelade
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX,Program in Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bing Xu
- Institute of Psychiatry, King’s College London, United Kingdom,MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Nicole Tay
- Institute of Psychiatry, King’s College London, United Kingdom,MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Sylvane Desrivières
- Institute of Psychiatry, King’s College London, United Kingdom,MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Jeannie L. Hernandez
- Department of Psychiatry, Molecular Medicine Program, University of Utah, Salt Lake City
| | - Tobias Banaschewski
- Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | | | - Arun L.W. Bokde
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Patricia J. Conrod
- MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom,Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Canada
| | - Herta Flor
- Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Vincent Frouin
- Neurospin, Commissariat à l’Energie Atomique, Gif-sur-Yvette, France
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité – Universitätsmedizin Berlin, Germany
| | - Hugh Garavan
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland,Departments of Psychiatry and Psychology, University of Vermont, Burlington, USA
| | - Penny A. Gowland
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig und Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité – Universitätsmedizin Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig und Berlin, Germany
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Ontario, Canada
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM CEA Unit 1000 “Imaging & Psychiatry”, University Paris Sud, Orsay, and AP-HP Department of Adolescent Psychopathology and Medicine, Maison de Solenn, University Paris Descartes, Paris, France
| | - Tomás Paus
- School of Psychology, University of Nottingham, United Kingdom,Rotman Research Institute, University of Toronto, Toronto, Canada,Montreal Neurological Institute, McGill University, Canada
| | - Michael N. Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Germany,Neuroimaging Center, Department of Psychology, Technische Universität Dresden, Germany
| | | | - Aylin R. Rodan
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX,Department of Internal Medicine, Division of Nephrology, Molecular Medicine Program, University of Utah, Salt Lake City
| | - Gunter Schumann
- Institute of Psychiatry, King’s College London, United Kingdom,MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX,Program in Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX,Department of Psychiatry, Molecular Medicine Program, University of Utah, Salt Lake City
| |
Collapse
|
34
|
De Nobrega AK, Lyons LC. Drosophila: An Emergent Model for Delineating Interactions between the Circadian Clock and Drugs of Abuse. Neural Plast 2017; 2017:4723836. [PMID: 29391952 PMCID: PMC5748135 DOI: 10.1155/2017/4723836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/13/2017] [Indexed: 01/12/2023] Open
Abstract
Endogenous circadian oscillators orchestrate rhythms at the cellular, physiological, and behavioral levels across species to coordinate activity, for example, sleep/wake cycles, metabolism, and learning and memory, with predictable environmental cycles. The 21st century has seen a dramatic rise in the incidence of circadian and sleep disorders with globalization, technological advances, and the use of personal electronics. The circadian clock modulates alcohol- and drug-induced behaviors with circadian misalignment contributing to increased substance use and abuse. Invertebrate models, such as Drosophila melanogaster, have proven invaluable for the identification of genetic and molecular mechanisms underlying highly conserved processes including the circadian clock, drug tolerance, and reward systems. In this review, we highlight the contributions of Drosophila as a model system for understanding the bidirectional interactions between the circadian system and the drugs of abuse, alcohol and cocaine, and illustrate the highly conserved nature of these interactions between Drosophila and mammalian systems. Research in Drosophila provides mechanistic insights into the corresponding behaviors in higher organisms and can be used as a guide for targeted inquiries in mammals.
Collapse
Affiliation(s)
- Aliza K. De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C. Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
35
|
Pinzón JH, Reed AR, Shalaby NA, Buszczak M, Rodan AR, Rothenfluh A. Alcohol-Induced Behaviors Require a Subset of Drosophila JmjC-Domain Histone Demethylases in the Nervous System. Alcohol Clin Exp Res 2017; 41:2015-2024. [PMID: 28940624 DOI: 10.1111/acer.13508] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/15/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Long-lasting transcriptional changes underlie a number of adaptations that contribute to alcohol use disorders (AUD). Chromatin remodeling, including histone methylation, can confer distinct, long-lasting transcriptional changes, and histone methylases are known to play a role in the development of addiction. Conversely, little is known about the relevance of Jumonji (JmjC) domain-containing demethylases in AUDs. We systematically surveyed the alcohol-induced phenotypes of null mutations in all 13 Drosophila JmjC genes. METHODS We used a collection of JmjC mutants, the majority of which we generated by homologous recombination, and assayed them in the Booze-o-mat to determine their naïve sensitivity to sedation and their tolerance (change in sensitivity upon repeat exposure). Mutants with reproducible phenotypes had their phenotypes rescued with tagged genomic transgenes, and/or phenocopied by nervous system-specific knockdown using RNA interference (RNAi). RESULTS Four of the 13 JmjC genes (KDM3, lid, NO66, and HSPBAP1) showed reproducible ethanol (EtOH) sensitivity phenotypes. Some of the phenotypes were observed across doses, for example, the enhanced EtOH sensitivity of KDM3KO and NO66KO , but others were dose dependent, such as the reduced EtOH sensitivity of HSPBAP1KO , or the enhanced EtOH tolerance of NO66KO . These phenotypes were rescued by their respective genomic transgenes in KDM3KO and NO66KO mutants. While we were unable to rescue lidk mutants, knockdown of lid in the nervous system recapitulated the lidk phenotype, as was observed for KDM3KO and NO66KO RNAi-mediated knockdown. CONCLUSIONS Our study reveals that the Drosophila JmjC-domain histone demethylases Lid, KDM3, NO66, and HSPBAP1 are required for normal EtOH-induced sedation and tolerance. Three of 3 tested of those 4 JmjC genes are required in the nervous system for normal alcohol-induced behavioral responses, suggesting that this gene family is an intriguing avenue for future research.
Collapse
Affiliation(s)
- Jorge H Pinzón
- Department of Psychiatry, Southwestern Medical Center, University of Texas, Dallas, Texas.,Molecular Biology, Southwestern Medical Center, University of Texas, Dallas, Texas
| | - Addison R Reed
- Department of Psychiatry, University of Utah, Salt Lake City, Utah
| | - Nevine A Shalaby
- Molecular Biology, Southwestern Medical Center, University of Texas, Dallas, Texas
| | - Michael Buszczak
- Molecular Biology, Southwestern Medical Center, University of Texas, Dallas, Texas
| | - Aylin R Rodan
- Departments of Internal Medicine/Division of Nephrology, Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Adrian Rothenfluh
- Department of Psychiatry, Southwestern Medical Center, University of Texas, Dallas, Texas.,Department of Psychiatry, University of Utah, Salt Lake City, Utah
| |
Collapse
|
36
|
Preventing Illegitimate Extrasynaptic Acetylcholine Receptor Clustering Requires the RSU-1 Protein. J Neurosci 2017; 36:6525-37. [PMID: 27307240 DOI: 10.1523/jneurosci.3733-15.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/06/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Diffuse extrasynaptic neurotransmitter receptors constitute an abundant pool of receptors that can be recruited to modulate synaptic strength. Whether the diffuse distribution of receptors in extrasynaptic membranes is a default state or is actively controlled remains essentially unknown. Here we show that RSU-1 (Ras Suppressor-1) is required for the proper distribution of extrasynaptic acetylcholine receptors (AChRs) in Caenorhabditis elegans muscle cells. RSU-1 is an evolutionary conserved cytoplasmic protein that contains multiple leucine-rich repeats (LRRs) and interacts with integrin-dependent adhesion complexes. In rsu-1 mutants, neuromuscular junctions differentiate as in the wild type, but AChRs assemble into ectopic clusters that progressively enlarge during development. As a consequence, the synaptic content of AChRs is reduced. Our study provides the first evidence that an RSU-1-dependent active mechanism maintains extrasynaptic receptors dispersed and indirectly regulates synapse maturation. SIGNIFICANCE STATEMENT Using Caenorhabditis elegans neuromuscular junction as a model synapse, we uncovered a novel mechanism that regulates the distribution of acetylcholine receptors (AChRs). In an unbiased visual screen for mutants with abnormal AChR distribution, we isolated the ras suppressor 1 (rsu-1) mutant based on the presence of large extrasynaptic clusters. We show that disrupting rsu-1 causes spontaneous clustering of extrasynaptic receptors that are normally dispersed, independently of synaptic cues. These clusters outcompete synaptic domains and cause a decrease of synaptic receptor content. These results indicate that the diffuse state of extrasynaptic receptors is not a default state that is simply explained by the lack of synaptic cues but necessitates additional proteins to prevent spontaneous clustering, a concept that is relevant for developmental and pathological situations.
Collapse
|
37
|
Sir2/Sirt1 Links Acute Inebriation to Presynaptic Changes and the Development of Alcohol Tolerance, Preference, and Reward. J Neurosci 2017; 36:5241-51. [PMID: 27170122 DOI: 10.1523/jneurosci.0499-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/23/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Acute ethanol inebriation causes neuroadaptive changes in behavior that favor increased intake. Ethanol-induced alterations in gene expression, through epigenetic and other means, are likely to change cellular and neural circuit function. Ethanol markedly changes histone acetylation, and the sirtuin Sir2/SIRT1 that deacetylates histones and transcription factors is essential for the rewarding effects of long-term drug use. The molecular transformations leading from short-term to long-term ethanol responses mostly remain to be discovered. We find that Sir2 in the mushroom bodies of the fruit fly Drosophila promotes short-term ethanol-induced behavioral plasticity by allowing changes in the expression of presynaptic molecules. Acute inebriation strongly reduces Sir2 levels and increases histone H3 acetylation in the brain. Flies lacking Sir2 globally, in the adult nervous system, or specifically in the mushroom body α/β-lobes show reduced ethanol sensitivity and tolerance. Sir2-dependent ethanol reward is also localized to the mushroom bodies, and Sir2 mutants prefer ethanol even without a priming ethanol pre-exposure. Transcriptomic analysis reveals that specific presynaptic molecules, including the synaptic vesicle pool regulator Synapsin, depend on Sir2 to be regulated by ethanol. Synapsin is required for ethanol sensitivity and tolerance. We propose that the regulation of Sir2/SIRT1 by acute inebriation forms part of a transcriptional program in mushroom body neurons to alter presynaptic properties and neural responses to favor the development of ethanol tolerance, preference, and reward. SIGNIFICANCE STATEMENT We identify a mechanism by which acute ethanol inebriation leads to changes in nervous system function that may be an important basis for increasing ethanol intake and addiction liability. The findings are significant because they identify ethanol-driven transcriptional events that target presynaptic properties and direct behavioral plasticity. They also demonstrate that multiple forms of ethanol behavioral plasticity that are relevant to alcoholism are initiated by a shared mechanism. Finally, they link these events to the Drosophila brain region that associates context with innate approach and avoidance responses to code for reward and other higher-order behavior, similar in aspects to the role of the vertebrate mesolimbic system.
Collapse
|
38
|
Rinker JA, Mulholland PJ. Promising pharmacogenetic targets for treating alcohol use disorder: evidence from preclinical models. Pharmacogenomics 2017; 18:555-570. [PMID: 28346058 DOI: 10.2217/pgs-2016-0193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inherited genetic variants contribute to risk factors for developing an alcohol use disorder, and polymorphisms may inform precision medicine strategies for treating alcohol addiction. Targeting genetic mutations linked to alcohol phenotypes has provided promising initial evidence for reducing relapse rates in alcoholics. Although successful in some studies, there are conflicting findings and the reports of adverse effects may ultimately limit their clinical utility, suggesting that novel pharmacogenetic targets are necessary to advance precision medicine approaches. Here, we describe promising novel genetic variants derived from preclinical models of alcohol consumption and dependence that may uncover disease mechanisms that drive uncontrolled drinking and identify novel pharmacogenetic targets that facilitate therapeutic intervention for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Jennifer A Rinker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
39
|
Orbitofrontal Neuroadaptations and Cross-Species Synaptic Biomarkers in Heavy-Drinking Macaques. J Neurosci 2017; 37:3646-3660. [PMID: 28270566 DOI: 10.1523/jneurosci.0133-17.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/17/2017] [Accepted: 02/28/2017] [Indexed: 02/08/2023] Open
Abstract
Cognitive impairments, uncontrolled drinking, and neuropathological cortical changes characterize alcohol use disorder. Dysfunction of the orbitofrontal cortex (OFC), a critical cortical subregion that controls learning, decision-making, and prediction of reward outcomes, contributes to executive cognitive function deficits in alcoholic individuals. Electrophysiological and quantitative synaptomics techniques were used to test the hypothesis that heavy drinking produces neuroadaptations in the macaque OFC. Integrative bioinformatics and reverse genetic approaches were used to identify and validate synaptic proteins with novel links to heavy drinking in BXD mice. In drinking monkeys, evoked firing of OFC pyramidal neurons was reduced, whereas the amplitude and frequency of postsynaptic currents were enhanced compared with controls. Bath application of alcohol reduced evoked firing in neurons from control monkeys, but not drinking monkeys. Profiling of the OFC synaptome identified alcohol-sensitive proteins that control glutamate release (e.g., SV2A, synaptogyrin-1) and postsynaptic signaling (e.g., GluA1, PRRT2) with no changes in synaptic GABAergic proteins. Western blot analysis confirmed the increase in GluA1 expression in drinking monkeys. An exploratory analysis of the OFC synaptome found cross-species genetic links to alcohol intake in discrete proteins (e.g., C2CD2L, DIRAS2) that discriminated between low- and heavy-drinking monkeys. Validation studies revealed that BXD mouse strains with the D allele at the C2cd2l interval drank less alcohol than B allele strains. Thus, by profiling of the OFC synaptome, we identified changes in proteins controlling glutamate release and postsynaptic signaling and discovered several proteins related to heavy drinking that have potential as novel targets for treating alcohol use disorder.SIGNIFICANCE STATEMENT Clinical research identified cognitive deficits in alcoholic individuals as a risk factor for relapse, and alcoholic individuals display deficits on cognitive tasks that are dependent upon the orbitofrontal cortex (OFC). To identify neurobiological mechanisms that underpin OFC dysfunction, this study used electrophysiology and integrative synaptomics in a translational nonhuman primate model of heavy alcohol consumption. We found adaptations in synaptic proteins that control glutamatergic signaling in chronically drinking monkeys. Our functional genomic exploratory analyses identified proteins with genetic links to alcohol and cocaine intake across mice, monkeys, and humans. Future work is necessary to determine whether targeting these novel targets reduces excessive and harmful levels of alcohol drinking.
Collapse
|
40
|
Park A, Ghezzi A, Wijesekera TP, Atkinson NS. Genetics and genomics of alcohol responses in Drosophila. Neuropharmacology 2017; 122:22-35. [PMID: 28161376 DOI: 10.1016/j.neuropharm.2017.01.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 02/07/2023]
Abstract
Drosophila melanogaster has become a significant model organism for alcohol research. In flies, a rich variety of behaviors can be leveraged for identifying genes affecting alcohol responses and adaptations. Furthermore, almost all genes can be easily genetically manipulated. Despite the great evolutionary distance between flies and mammals, many of the same genes have been implicated in strikingly similar alcohol-induced behaviors. A major problem in medical research today is that it is difficult to extrapolate from any single model system to humans. Strong evolutionary conservation of a mechanistic response between distantly related organisms, such as flies and mammals, is a powerful predictor that conservation will continue all the way to humans. This review describes the state of the Drosophila alcohol research field. It describes common alcohol behavioral assays, the independent origins of resistance and tolerance, the results of classical genetic screens and candidate gene analysis, and the outcomes of recent genomics studies employing GWAS, transcriptome, miRNA, and genome-wide histone acetylation surveys. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Annie Park
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - Alfredo Ghezzi
- Department of Biology, University of Puerto Rico, Rio Piedras. San Juan, PR, United States
| | - Thilini P Wijesekera
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - Nigel S Atkinson
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
41
|
Reilly MT, Noronha A, Goldman D, Koob GF. Genetic studies of alcohol dependence in the context of the addiction cycle. Neuropharmacology 2017; 122:3-21. [PMID: 28118990 DOI: 10.1016/j.neuropharm.2017.01.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 12/16/2022]
Abstract
Family, twin and adoption studies demonstrate clearly that alcohol dependence and alcohol use disorders are phenotypically complex and heritable. The heritability of alcohol use disorders is estimated at approximately 50-60% of the total phenotypic variability. Vulnerability to alcohol use disorders can be due to multiple genetic or environmental factors or their interaction which gives rise to extensive and daunting heterogeneity. This heterogeneity makes it a significant challenge in mapping and identifying the specific genes that influence alcohol use disorders. Genetic linkage and (candidate gene) association studies have been used now for decades to map and characterize genomic loci and genes that underlie the genetic vulnerability to alcohol use disorders. These approaches have been moderately successful in identifying several genes that contribute to the complexity of alcohol use disorders. Recently, genome-wide association studies have become one of the major tools for identifying genes for alcohol use disorders by examining correlations between millions of common single-nucleotide polymorphisms with diagnosis status. Genome-wide association studies are just beginning to uncover novel biology; however, the functional significance of results remains a matter of extensive debate and uncertainty. In this review, we present a select group of genome-wide association studies of alcohol dependence, as one example of a way to generate functional hypotheses, within the addiction cycle framework. This analysis may provide novel directions for validating the functional significance of alcohol dependence candidate genes. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Matthew T Reilly
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Division of Neuroscience and Behavior, 5635 Fishers Lane, Bethesda, MD 20852, USA.
| | - Antonio Noronha
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Division of Neuroscience and Behavior, 5635 Fishers Lane, Bethesda, MD 20852, USA
| | - David Goldman
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Chief, Laboratory of Neurogenetics, 5635 Fishers Lane, Bethesda, MD 20852, USA
| | - George F Koob
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Director NIAAA, 5635 Fishers Lane, Bethesda, MD 20852, USA
| |
Collapse
|
42
|
Tao C, Nichols TE, Hua X, Ching CRK, Rolls ET, Thompson PM, Feng J. Generalized reduced rank latent factor regression for high dimensional tensor fields, and neuroimaging-genetic applications. Neuroimage 2016; 144:35-57. [PMID: 27666385 DOI: 10.1016/j.neuroimage.2016.08.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 08/01/2016] [Accepted: 08/14/2016] [Indexed: 11/18/2022] Open
Abstract
We propose a generalized reduced rank latent factor regression model (GRRLF) for the analysis of tensor field responses and high dimensional covariates. The model is motivated by the need from imaging-genetic studies to identify genetic variants that are associated with brain imaging phenotypes, often in the form of high dimensional tensor fields. GRRLF identifies from the structure in the data the effective dimensionality of the data, and then jointly performs dimension reduction of the covariates, dynamic identification of latent factors, and nonparametric estimation of both covariate and latent response fields. After accounting for the latent and covariate effects, GRLLF performs a nonparametric test on the remaining factor of interest. GRRLF provides a better factorization of the signals compared with common solutions, and is less susceptible to overfitting because it exploits the effective dimensionality. The generality and the flexibility of GRRLF also allow various statistical models to be handled in a unified framework and solutions can be efficiently computed. Within the field of neuroimaging, it improves the sensitivity for weak signals and is a promising alternative to existing approaches. The operation of the framework is demonstrated with both synthetic datasets and a real-world neuroimaging example in which the effects of a set of genes on the structure of the brain at the voxel level were measured, and the results compared favorably with those from existing approaches.
Collapse
Affiliation(s)
- Chenyang Tao
- Centre for Computational Systems Biology and School of Mathematical Sciences, Fudan University, Shanghai, PR China; Department of Computer Science, Warwick University, Coventry, UK
| | | | - Xue Hua
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA; Interdepartmental Neuroscience Graduate Program, UCLA School of Medicine, Los Angeles, CA, USA
| | - Edmund T Rolls
- Department of Computer Science, Warwick University, Coventry, UK; Oxford Centre for Computational Neuroscience, Oxford, UK
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA; Departments of Neurology, Psychiatry, Radiology, Engineering, Pediatrics, and Ophthalmology, USC, Los Angeles, CA, USA
| | - Jianfeng Feng
- Centre for Computational Systems Biology and School of Mathematical Sciences, Fudan University, Shanghai, PR China; Department of Computer Science, Warwick University, Coventry, UK; School of Life Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
43
|
Abstract
The main characteristic of alcohol use disorder is the consumption of large quantities of alcohol despite the negative consequences. The transition from the moderate use of alcohol to excessive, uncontrolled alcohol consumption results from neuroadaptations that cause aberrant motivational learning and memory processes. Here, we examine studies that have combined molecular and behavioural approaches in rodents to elucidate the molecular mechanisms that keep the social intake of alcohol in check, which we term 'stop pathways', and the neuroadaptations that underlie the transition from moderate to uncontrolled, excessive alcohol intake, which we term 'go pathways'. We also discuss post-transcriptional, genetic and epigenetic alterations that underlie both types of pathways.
Collapse
Affiliation(s)
- Dorit Ron
- Corresponding author: Dorit Ron, 675 Nelson Rising Lane, BOX 0663, San Francisco, CA 94143-0663,
| | - Segev Barak
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
44
|
da Silva E Silva DA, Frozino Ribeiro A, Damasceno S, Rocha CS, Berenguer de Matos AH, Boerngen-Lacerda R, Correia D, Brunialti Godard AL. Inflexible ethanol intake: A putative link with the Lrrk2 pathway. Behav Brain Res 2016; 313:30-37. [PMID: 27411784 DOI: 10.1016/j.bbr.2016.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/28/2016] [Accepted: 07/02/2016] [Indexed: 01/10/2023]
Abstract
Alcoholism is a complex multifactorial disorder with a strong genetic influence. Although several studies have shown the impact of high ethanol intake on the striatal gene expression, few have addressed the relationship between the patterns of gene expression underlying the compulsive behaviour associated with the two major concerns in addiction: the excessive drug consumption and relapsing. In this study, we used a chronic three-bottle free-choice murine model to address striatal transcript regulation among animals with different ethanol intakes and preferences: Light Drinkers (preference for water throughout the experiment), Heavy Drinkers (preference for ethanol with a non-compulsive intake) and Inflexible Drinkers (preference for ethanol and simultaneous loss of control over the drug intake). Our aim was to correlate the intake patterns observed in this model with gene expression changes in the striatum, a brain region critical for the development of alcohol addiction. We found that the transcripts of the Lrrk2 gene, which encodes a multifunctional protein with kinase and GTPase activities, is upregulated only in Inflexible Drinkers suggesting, for the first time, that the Lrrk2 pathway plays a major role in the compulsive ethanol intake behaviour of addicted subjects.
Collapse
Affiliation(s)
| | - Andrea Frozino Ribeiro
- Programa de Pós-Graduação em Neurociências, Faculdade de Filosofia de Ciências Humanas, Universidade Federal de Minas Gerais, MG 31270-901, Brazil
| | - Samara Damasceno
- Departmento de Biologia Geral, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP 31270-901, Brazil
| | - Cristiane S Rocha
- Departmento de Genética Médica, Faculdade de Ciências Medicas, Universidade de Campinas, Tessália Vieira de Camargo, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Alexandre H Berenguer de Matos
- Departmento de Genética Médica, Faculdade de Ciências Medicas, Universidade de Campinas, Tessália Vieira de Camargo, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Roseli Boerngen-Lacerda
- Departamento de Farmacologia, Jardim das Américas, Universidade Federal do Paraná, P.O. Box 19031, Curitiba, PR 81531-990, Brazil
| | - Diego Correia
- Departmento de Biologia Geral, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP 31270-901, Brazil; Departamento de Farmacologia, Jardim das Américas, Universidade Federal do Paraná, P.O. Box 19031, Curitiba, PR 81531-990, Brazil
| | - Ana Lúcia Brunialti Godard
- Departmento de Biologia Geral, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP 31270-901, Brazil.
| |
Collapse
|
45
|
Mulholland PJ, Chandler LJ, Kalivas PW. Signals from the Fourth Dimension Regulate Drug Relapse. Trends Neurosci 2016; 39:472-485. [PMID: 27173064 PMCID: PMC4930682 DOI: 10.1016/j.tins.2016.04.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 12/21/2022]
Abstract
Despite the enormous societal burden of alcohol and drug addiction and abundant research describing drug-induced maladaptive synaptic plasticity, there are few effective strategies for treating substance use disorders. Recent awareness that synaptic plasticity involves astroglia and the extracellular matrix is revealing new possibilities for understanding and treating addiction. We first review constitutive corticostriatal adaptations that are elicited by and shared between all abused drugs from the perspective of tetrapartite synapses, and integrate recent discoveries regarding cell type-specificity in striatal neurons. Next, we describe recent discoveries that drug-seeking is associated with transient synaptic plasticity that requires all four synaptic elements and is shared across drug classes. Finally, we prognosticate how considering tetrapartite synapses can provide new treatment strategies for addiction.
Collapse
Affiliation(s)
- Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, 67 President Street, Charleston, SC, 29425, USA.
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, 67 President Street, Charleston, SC, 29425, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
46
|
I Believe I Can Fly!: Use of Drosophila as a Model Organism in Neuropsychopharmacology Research. Neuropsychopharmacology 2016; 41:1439-46. [PMID: 26576740 PMCID: PMC4832023 DOI: 10.1038/npp.2015.322] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 01/03/2023]
Abstract
Neuropsychiatric disorders are of complex etiology, often including a large genetic component. In order to help identify and study the molecular and physiological mechanisms that such genes participate in, numerous animal models have been established in a variety of species. Over the past decade, this has increasingly included the vinegar fly, Drosophila melanogaster. Here, we outline why we study an invertebrate organism in the context of neuropsychiatric disorders, and we discuss how we can gain insight from studies in Drosophila. We focus on a few disorders and findings to make the larger point that modeling these diseases in flies can have both mechanistic and predictive validity. Highlighting some translational examples, we underline the fact that their brains works more like ours than one would have anticipated.
Collapse
|
47
|
Nonlinear association criterion, nonlinear Granger causality and related issues with applications to neuroimage studies. J Neurosci Methods 2016; 262:110-32. [PMID: 26791806 DOI: 10.1016/j.jneumeth.2016.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/21/2015] [Accepted: 01/02/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Quantifying associations in neuroscience (and many other scientific disciplines) is often challenged by high-dimensionality, nonlinearity and noisy observations. Many classic methods have either poor power or poor scalability on data sets of the same or different scales such as genetical, physiological and image data. NEW METHOD Based on the framework of reproducing kernel Hilbert spaces we proposed a new nonlinear association criteria (NAC) with an efficient numerical algorithm and p-value approximation scheme. We also presented mathematical justification that links the proposed method to related methods such as kernel generalized variance, kernel canonical correlation analysis and Hilbert-Schmidt independence criteria. NAC allows the detection of association between arbitrary input domain as long as a characteristic kernel is defined. A MATLAB package was provided to facilitate applications. RESULTS Extensive simulation examples and four real world neuroscience examples including functional MRI causality, Calcium imaging and imaging genetic studies on autism [Brain, 138(5):13821393 (2015)] and alcohol addiction [PNAS, 112(30):E4085-E4093 (2015)] are used to benchmark NAC. It demonstrates the superior performance over the existing procedures we tested and also yields biologically significant results for the real world examples. COMPARISON WITH EXISTING METHOD(S) NAC beats its linear counterparts when nonlinearity is presented in the data. It also shows more robustness against different experimental setups compared with its nonlinear counterparts. CONCLUSIONS In this work we presented a new and robust statistical approach NAC for measuring associations. It could serve as an interesting alternative to the existing methods for datasets where nonlinearity and other confounding factors are present.
Collapse
|
48
|
De Nobrega AK, Lyons LC. Circadian Modulation of Alcohol-Induced Sedation and Recovery in Male and Female Drosophila. J Biol Rhythms 2016; 31:142-60. [PMID: 26833081 DOI: 10.1177/0748730415627067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Delineating the factors that affect behavioral and neurological responses to alcohol is critical to facilitate measures for preventing or treating alcohol abuse. The high degree of conserved molecular and physiological processes makes Drosophila melanogaster a valuable model for investigating circadian interactions with alcohol-induced behaviors and examining sex-specific differences in alcohol sensitivity. We found that wild-type Drosophila exhibited rhythms in alcohol-induced sedation under light-dark and constant dark conditions with considerably greater alcohol exposure necessary to induce sedation during the late (subjective) day and peak sensitivity to alcohol occurring during the late (subjective) night. The circadian clock also modulated the recovery from alcohol-induced sedation with flies regaining motor control significantly faster during the late (subjective) day. As predicted, the circadian rhythms in sedation and recovery were absent in flies with a mutation in the circadian gene period or arrhythmic flies housed in constant light conditions. Flies lacking a functional circadian clock were more sensitive to the effects of alcohol with significantly longer recovery times. Similar to other animals and humans, Drosophila exhibit sex-specific differences in alcohol sensitivity. We investigated whether the circadian clock modulated the rhythms in the loss-of-righting reflex, alcohol-induced sedation, and recovery differently in males and females. We found that both sexes demonstrated circadian rhythms in the loss-of-righting reflex and sedation with the differences in alcohol sensitivity between males and females most pronounced during the late subjective day. Recovery of motor reflexes following alcohol sedation also exhibited circadian modulation in male and female flies, although the circadian clock did not modulate the difference in recovery times between the sexes. These studies provide a framework outlining how the circadian clock modulates alcohol-induced behaviors in Drosophila and identifies sexual dimorphisms in the circadian modulation of alcohol behaviors.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL
| |
Collapse
|
49
|
|
50
|
Ojelade SA, Acevedo SF, Kalahasti G, Rodan AR, Rothenfluh A. RhoGAP18B Isoforms Act on Distinct Rho-Family GTPases and Regulate Behavioral Responses to Alcohol via Cofilin. PLoS One 2015; 10:e0137465. [PMID: 26366560 PMCID: PMC4569326 DOI: 10.1371/journal.pone.0137465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/17/2015] [Indexed: 11/18/2022] Open
Abstract
Responses to the effects of ethanol are highly conserved across organisms, with reduced responses to the sedating effects of ethanol being predictive of increased risk for human alcohol dependence. Previously, we described that regulators of actin dynamics, such as the Rho-family GTPases Rac1, Rho1, and Cdc42, alter Drosophila's sensitivity to ethanol-induced sedation. The GTPase activating protein RhoGAP18B also affects sensitivity to ethanol. To better understand how different RhoGAP18B isoforms affect ethanol sedation, we examined them for their effects on cell shape, GTP-loading of Rho-family GTPase, activation of the actin-severing cofilin, and actin filamentation. Our results suggest that the RhoGAP18B-PA isoform acts on Cdc42, while PC and PD act via Rac1 and Rho1 to activate cofilin. In vivo, a loss-of-function mutation in the cofilin-encoding gene twinstar leads to reduced ethanol-sensitivity and acts in concert with RhoGAP18B. Different RhoGAP18B isoforms, therefore, act on distinct subsets of Rho-family GTPases to modulate cofilin activity, actin dynamics, and ethanol-induced behaviors.
Collapse
Affiliation(s)
- Shamsideen A. Ojelade
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States of America
- Program in Neuroscience, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Summer F. Acevedo
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Geetha Kalahasti
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Aylin R. Rodan
- Division of Nephrology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, United States of America
| | - Adrian Rothenfluh
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States of America
- Program in Neuroscience, UT Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail:
| |
Collapse
|