1
|
Toksoy Z, Ma Y, Goedeke L, Li W, Hu X, Wu X, Cacheux M, Liu Y, Akar FG, Shulman GI, Young LH. Role of AMPK in Atrial Metabolic Homeostasis and Substrate Preference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.608789. [PMID: 39257756 PMCID: PMC11383699 DOI: 10.1101/2024.08.29.608789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Atrial fibrillation is the most common clinical arrhythmia and may be due in part to metabolic stress. Atrial specific deletion of the master metabolic sensor, AMP-activated protein kinase (AMPK), induces atrial remodeling culminating in atrial fibrillation in mice, implicating AMPK signaling in the maintenance of atrial electrical and structural homeostasis. However, atrial substrate preference for mitochondrial oxidation and the role of AMPK in regulating atrial metabolism are unknown. Here, using LC-MS/MS methodology combined with infusions of [ 13 C 6 ]glucose and [ 13 C 4 ]β-hydroxybutyrate in conscious mice, we demonstrate that conditional deletion of atrial AMPK catalytic subunits shifts mitochondrial atrial metabolism away from fatty acid oxidation and towards pyruvate oxidation. LC-MS/MS-based quantification of acyl-CoAs demonstrated decreased atrial tissue content of long-chain fatty acyl-CoAs. Proteomic analysis revealed a broad downregulation of proteins responsible for fatty acid uptake (LPL, CD36, FABP3), acylation and oxidation. Atrial AMPK deletion reduced expression of atrial PGC1-α and downstream PGC1-α/PPARα/RXR regulated gene transcripts. In contrast, atrial [ 14 C]2-deoxyglucose uptake and GLUT1 expression increased with fasting in mice with AMPK deletion, while the expression of glycolytic enzymes exhibited heterogenous changes. Thus, these results highlight the crucial homeostatic role of AMPK in the atrium, with loss of atrial AMPK leading to downregulation of the PGC1-α/PPARα pathway and broad metabolic reprogramming with a loss of fatty acid oxidation, which may contribute to atrial remodeling and arrhythmia.
Collapse
|
2
|
Uda M, Yoshihara T, Ichinoseki‐Sekine N, Baba T. Effects of hindlimb unloading on the mevalonate and mechanistic target of rapamycin complex 1 signaling pathways in a fast-twitch muscle in rats. Physiol Rep 2024; 12:e15969. [PMID: 38453353 PMCID: PMC10920058 DOI: 10.14814/phy2.15969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Fast-twitch muscles are less susceptible to disuse atrophy, activate the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, and increase protein synthesis under prolonged muscle disuse conditions. However, the mechanism underlying prolonged muscle disuse-induced mTORC1 signaling activation remains unclear. The mevalonate pathway activates the mTORC1 signaling pathway via the prenylation and activation of Ras homolog enriched in brain (Rheb). Therefore, we investigated the effects of hindlimb unloading (HU) for 14 days on the mevalonate and mTORC1 signaling pathways in the plantaris muscle, a fast-twitch muscle, in adult male rats. Rats were divided into HU and control groups. The plantaris muscles of both groups were harvested after the treatment period, and the expression and phosphorylation levels of metabolic and intracellular signaling proteins were analyzed using Western blotting. We found that HU increased the expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, the rate-limiting enzyme of the mevalonate pathway, and activated the mTORC1 signaling pathway without activating AKT, an upstream activator of mTORC1. Furthermore, HU increased prenylated Rheb. Collectively, these findings suggest that the activated mevalonate pathway may be involved in the activation of the Rheb/mTORC1 signaling pathway without AKT activation in fast-twitch muscles under prolonged disuse conditions.
Collapse
Affiliation(s)
- Munehiro Uda
- School of NursingHirosaki Gakuin UniversityHirosakiAomoriJapan
| | - Toshinori Yoshihara
- Graduate School of Health and Sports ScienceJuntendo UniversityInzaiChibaJapan
| | - Noriko Ichinoseki‐Sekine
- Graduate School of Health and Sports ScienceJuntendo UniversityInzaiChibaJapan
- Faculty of Liberal ArtsThe Open University of JapanChibaJapan
| | - Takeshi Baba
- School of MedicineJuntendo UniversityInzaiChibaJapan
| |
Collapse
|
3
|
Walpot J, Van Herck P, Van de Heyning CM, Bosmans J, Massalha S, Malbrain ML, Heidbuchel H, Inácio JR. Computed tomography measured epicardial adipose tissue and psoas muscle attenuation: new biomarkers to predict major adverse cardiac events (MACE) and mortality in patients with heart disease and critically ill patients. Part I: Epicardial adipose tissue. Anaesthesiol Intensive Ther 2023; 55:141-157. [PMID: 37728441 PMCID: PMC10496106 DOI: 10.5114/ait.2023.130922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/28/2023] [Indexed: 09/21/2023] Open
Abstract
Over the last two decades, the potential role of epicardial adipocyte tissue (EAT) as a marker for major adverse cardiovascular events has been extensively studied. Unlike other visceral adipocyte tissues (VAT), EAT is not separated from the adjacent myocardium by a fascial layer and shares the same microcirculation with the myocardium. Adipocytokines, secreted by EAT, interact directly with the myocardium through paracrine and vasocrine pathways. The role of the Randle cycle, linking VAT accumulation to insulin resistance, and the relevance of blood flow and mitochondrial function of VAT, are briefly discussed. The three available imaging modalities for the assessment of EAT are discussed. The advantages of echocardiography, cardiac CT, and cardiac magnetic resonance (CMR) are compared. The last section summarises the current stage of knowledge on EAT as a clinical marker for major adverse cardiovascular events (MACE). The association between EAT volume and coronary artery disease (CAD) has robustly been validated. There is growing evidence that EAT volume is associated with computed tomography coronary angiography (CTCA) assessed high-risk plaque features. The EAT CT attenuation coefficient predicts coronary events. Many studies have established EAT volume as a predictor of atrial fibrillation after cardiac surgery. Moreover, EAT thickness has been independently associated with severe aortic stenosis and mitral annular calcification. Studies have demonstrated that EAT volume is associated with heart failure. Finally, we discuss the potential role of EAT in critically ill patients admitted to the intensive care unit. In conclusion, EAT seems to be a promising new biomarker to predict MACE.
Collapse
Affiliation(s)
| | - Paul Van Herck
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
- Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium
| | - Caroline M. Van de Heyning
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
- Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium
| | - Johan Bosmans
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
- Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Manu L.N.G. Malbrain
- International Fluid Academy, Lovenjoel, Belgium
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
| | - Hein Heidbuchel
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
- Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium
| | - João R. Inácio
- Centro Universitario Hospitalar Lisboa Norte, Faculdade de Medicina de Lisboa, UL, Portugal
| |
Collapse
|
4
|
Ito N, Takatsu A, Ito H, Koike Y, Yoshioka K, Kamei Y, Imai SI. Slc12a8 in the lateral hypothalamus maintains energy metabolism and skeletal muscle functions during aging. Cell Rep 2022; 40:111131. [PMID: 35905718 DOI: 10.1016/j.celrep.2022.111131] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/01/2022] [Accepted: 07/01/2022] [Indexed: 12/20/2022] Open
Abstract
Sarcopenia and frailty are urgent socio-economic problems worldwide. Here we demonstrate a functional connection between the lateral hypothalamus (LH) and skeletal muscle through Slc12a8, a recently identified nicotinamide mononucleotide transporter, and its relationship to sarcopenia and frailty. Slc12a8-expressing cells are mainly localized in the LH. LH-specific knockdown of Slc12a8 in young mice decreases activity-dependent energy and carbohydrate expenditure and skeletal muscle functions, including muscle mass, muscle force, intramuscular glycolysis, and protein synthesis. LH-specific Slc12a8 knockdown also decreases sympathetic nerve signals at neuromuscular junctions and β2-adrenergic receptors in skeletal muscle, indicating the importance of the LH-sympathetic nerve-β2-adrenergic receptor axis. LH-specific overexpression of Slc12a8 in aged mice significantly ameliorates age-associated decreases in energy expenditure and skeletal muscle functions. Our results highlight an important role of Slc12a8 in the LH for regulation of whole-body metabolism and skeletal muscle functions and provide insights into the pathogenesis of sarcopenia and frailty during aging.
Collapse
Affiliation(s)
- Naoki Ito
- AMED Frailty Research Laboratory (Teijin), AMED Cyclic Innovation for Clinical Empowerment (CiCLE), Osaka, Japan; Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation (IBRI), Foundation for Biomedical Research and Innovation (FBRI), Kobe, Japan
| | - Ai Takatsu
- AMED Frailty Research Laboratory (Teijin), AMED Cyclic Innovation for Clinical Empowerment (CiCLE), Osaka, Japan; Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation (IBRI), Foundation for Biomedical Research and Innovation (FBRI), Kobe, Japan
| | - Hiromi Ito
- AMED Frailty Research Laboratory (Teijin), AMED Cyclic Innovation for Clinical Empowerment (CiCLE), Osaka, Japan; Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation (IBRI), Foundation for Biomedical Research and Innovation (FBRI), Kobe, Japan
| | - Yuka Koike
- AMED Frailty Research Laboratory (Teijin), AMED Cyclic Innovation for Clinical Empowerment (CiCLE), Osaka, Japan; Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation (IBRI), Foundation for Biomedical Research and Innovation (FBRI), Kobe, Japan
| | - Kiyoshi Yoshioka
- Institute for Research on Productive Aging (IRPA), Tokyo, Japan; Laboratory of Molecular Nutrition, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yasutomi Kamei
- Laboratory of Molecular Nutrition, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Shin-Ichiro Imai
- AMED Frailty Research Laboratory (Teijin), AMED Cyclic Innovation for Clinical Empowerment (CiCLE), Osaka, Japan; Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation (IBRI), Foundation for Biomedical Research and Innovation (FBRI), Kobe, Japan; Department of Developmental Biology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Yiew NKH, Finck BN. The mitochondrial pyruvate carrier at the crossroads of intermediary metabolism. Am J Physiol Endocrinol Metab 2022; 323:E33-E52. [PMID: 35635330 PMCID: PMC9273276 DOI: 10.1152/ajpendo.00074.2022] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022]
Abstract
Pyruvate metabolism, a central nexus of carbon homeostasis, is an evolutionarily conserved process and aberrant pyruvate metabolism is associated with and contributes to numerous human metabolic disorders including diabetes, cancer, and heart disease. As a product of glycolysis, pyruvate is primarily generated in the cytosol before being transported into the mitochondrion for further metabolism. Pyruvate entry into the mitochondrial matrix is a critical step for efficient generation of reducing equivalents and ATP and for the biosynthesis of glucose, fatty acids, and amino acids from pyruvate. However, for many years, the identity of the carrier protein(s) that transported pyruvate into the mitochondrial matrix remained a mystery. In 2012, the molecular-genetic identification of the mitochondrial pyruvate carrier (MPC), a heterodimeric complex composed of protein subunits MPC1 and MPC2, enabled studies that shed light on the many metabolic and physiological processes regulated by pyruvate metabolism. A better understanding of the mechanisms regulating pyruvate transport and the processes affected by pyruvate metabolism may enable novel therapeutics to modulate mitochondrial pyruvate flux to treat a variety of disorders. Herein, we review our current knowledge of the MPC, discuss recent advances in the understanding of mitochondrial pyruvate metabolism in various tissue and cell types, and address some of the outstanding questions relevant to this field.
Collapse
Affiliation(s)
- Nicole K H Yiew
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Brian N Finck
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
6
|
Tüting C, Kyrilis FL, Müller J, Sorokina M, Skalidis I, Hamdi F, Sadian Y, Kastritis PL. Cryo-EM snapshots of a native lysate provide structural insights into a metabolon-embedded transacetylase reaction. Nat Commun 2021; 12:6933. [PMID: 34836937 PMCID: PMC8626477 DOI: 10.1038/s41467-021-27287-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Found across all kingdoms of life, 2-keto acid dehydrogenase complexes possess prominent metabolic roles and form major regulatory sites. Although their component structures are known, their higher-order organization is highly heterogeneous, not only across species or tissues but also even within a single cell. Here, we report a cryo-EM structure of the fully active Chaetomium thermophilum pyruvate dehydrogenase complex (PDHc) core scaffold at 3.85 Å resolution (FSC = 0.143) from native cell extracts. By combining cryo-EM with macromolecular docking and molecular dynamics simulations, we resolve all PDHc core scaffold interfaces and dissect the residing transacetylase reaction. Electrostatics attract the lipoyl domain to the transacetylase active site and stabilize the coenzyme A, while apolar interactions position the lipoate in its binding cleft. Our results have direct implications on the structural determinants of the transacetylase reaction and the role of flexible regions in the context of the overall 10 MDa PDHc metabolon architecture.
Collapse
Affiliation(s)
- Christian Tüting
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
| | - Fotis L Kyrilis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
| | - Johannes Müller
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
| | - Marija Sorokina
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
- RGCC International GmbH, Baarerstrasse 95, Zug, 6300, Switzerland
- BioSolutions GmbH Weinbergweg 22, 06120, Halle/Saale, Germany
| | - Ioannis Skalidis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
| | - Farzad Hamdi
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
| | - Yashar Sadian
- Bioimaging Center (cryoGEnic), Université de Genève, Sciences II, 1211, Genève 4, Switzerland
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany.
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany.
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany.
| |
Collapse
|
7
|
Park JM, Josan S, Hurd RE, Graham J, Havel PJ, Bendahan D, Mayer D, Chung Y, Spielman DM, Jue T. Hyperpolarized NMR study of the impact of pyruvate dehydrogenase kinase inhibition on the pyruvate dehydrogenase and TCA flux in type 2 diabetic rat muscle. Pflugers Arch 2021; 473:1761-1773. [PMID: 34415396 DOI: 10.1007/s00424-021-02613-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 01/06/2023]
Abstract
The role of pyruvate dehydrogenase in mediating lipid-induced insulin resistance stands as a central question in the pathogenesis of type 2 diabetes mellitus. Many researchers have invoked the Randle hypothesis to explain the reduced glucose disposal in skeletal muscle by envisioning an elevated acetyl CoA pool arising from increased oxidation of fatty acids. Over the years, in vivo NMR studies have challenged that monolithic view. The advent of the dissolution dynamic nuclear polarization NMR technique and a unique type 2 diabetic rat model provides an opportunity to clarify. Dynamic nuclear polarization enhances dramatically the NMR signal sensitivity and allows the measurement of metabolic kinetics in vivo. Diabetic muscle has much lower pyruvate dehydrogenase activity than control muscle, as evidenced in the conversion of [1-13C]lactate and [2-13C]pyruvate to HCO3- and acetyl carnitine. The pyruvate dehydrogenase kinase inhibitor, dichloroacetate, restores rapidly the diabetic pyruvate dehydrogenase activity to control level. However, diabetic muscle has a much larger dynamic change in pyruvate dehydrogenase flux than control. The dichloroacetate-induced surge in pyruvate dehydrogenase activity produces a differential amount of acetyl carnitine but does not affect the tricarboxylic acid flux. Further studies can now proceed with the dynamic nuclear polarization approach and a unique rat model to interrogate closely the biochemical mechanism interfacing oxidative metabolism with insulin resistance and metabolic inflexibility.
Collapse
Affiliation(s)
- Jae Mo Park
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.,Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA
| | - Sonal Josan
- Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA.,Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - Ralph E Hurd
- Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA.,Applied Science Laboratory, GE Healthcare, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA
| | - James Graham
- Department of Molecular Biosciences, University of California Davis, 3426 Meyer Hall, Davis, CA, 95616, USA
| | - Peter J Havel
- Department of Molecular Biosciences, University of California Davis, 3426 Meyer Hall, Davis, CA, 95616, USA
| | - David Bendahan
- CNRS, Aix-Marseille University, CRMBM, 13385, Marseille, France
| | - Dirk Mayer
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA.,Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, 22 S. Green St., Baltimore, MD, 21201, USA
| | - Youngran Chung
- Department of Biochemistry and Molecular Medicine, University of California-Davis, 4323 Tupper Hall, Davis, CA, 95616, USA
| | - Daniel M Spielman
- Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA
| | - Thomas Jue
- Department of Biochemistry and Molecular Medicine, University of California-Davis, 4323 Tupper Hall, Davis, CA, 95616, USA.
| |
Collapse
|
8
|
Haam JH, Lee YK, Suh E, Choi SW, Chun H, Kim YS. Urine organic acids may be useful biomarkers for metabolic syndrome and its components in Korean adults. Clin Chem Lab Med 2021; 59:1824-1831. [PMID: 34331849 DOI: 10.1515/cclm-2021-0598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Although metabolic syndrome (MetS) and its components are defined clinically, those with MetS may have various derangements in metabolic pathways. Thus, this study aimed to evaluate the traits of urine organic acid metabolites indicating the metabolic intermediates of the pathways in the subjects with MetS. METHODS This cross-sectional study included 246 men and 283 women in a hospital health check-up setting. Urine organic acid metabolites were assayed via high-performance liquid chromatography-mass spectrometry analyses. A high level of each metabolite was defined as the fifth quintile of the distribution. RESULTS The subjects with MetS had high levels of pyruvate, α-ketoglutarate, α-ketoisovalerate, α-ketoisocaproate, formiminoglutamate, and quinolinate (odds ratios from 1.915 to 2.809 in logistic models adjusted for age and sex). Among the metabolites, pyruvate, formiminoglutamate, and quinolinate were not independent of homeostatic model assessment of insulin resistance (HOMA2-IR). Several metabolites were associated with one or more components of MetS and HOMA2-IR. CONCLUSIONS Urine organic acid metabolites in MetS are characterized in altered carbohydrate and amino acid metabolism. MetS shared some traits in insulin resistance. These findings may promote the understanding of the pathophysiology of MetS.
Collapse
Affiliation(s)
- Ji-Hee Haam
- Chaum Life Center, CHA University, Seoul, Korea
| | | | | | | | - Hyejin Chun
- Department of Family medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Young-Sang Kim
- Department of Family medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
9
|
Lee H, Jose PA. Coordinated Contribution of NADPH Oxidase- and Mitochondria-Derived Reactive Oxygen Species in Metabolic Syndrome and Its Implication in Renal Dysfunction. Front Pharmacol 2021; 12:670076. [PMID: 34017260 PMCID: PMC8129499 DOI: 10.3389/fphar.2021.670076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS), a complex of interrelated risk factors for cardiovascular disease and diabetes, is comprised of central obesity (increased waist circumference), hyperglycemia, dyslipidemia (high triglyceride blood levels, low high-density lipoprotein blood levels), and increased blood pressure. Oxidative stress, caused by the imbalance between pro-oxidant and endogenous antioxidant systems, is the primary pathological basis of MetS. The major sources of reactive oxygen species (ROS) associated with MetS are nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases and mitochondria. In this review, we summarize the current knowledge regarding the generation of ROS from NADPH oxidases and mitochondria, discuss the NADPH oxidase- and mitochondria-derived ROS signaling and pathophysiological effects, and the interplay between these two major sources of ROS, which leads to chronic inflammation, adipocyte proliferation, insulin resistance, and other metabolic abnormalities. The mechanisms linking MetS and chronic kidney disease are not well known. The role of NADPH oxidases and mitochondria in renal injury in the setting of MetS, particularly the influence of the pyruvate dehydrogenase complex in oxidative stress, inflammation, and subsequent renal injury, is highlighted. Understanding the molecular mechanism(s) underlying MetS may lead to novel therapeutic approaches by targeting the pyruvate dehydrogenase complex in MetS and prevent its sequelae of chronic cardiovascular and renal diseases.
Collapse
Affiliation(s)
- Hewang Lee
- Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Pedro A Jose
- Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
10
|
Bruhn L, Kjøbsted R, Quist JS, Gram AS, Rosenkilde M, Færch K, Wojtaszewski JF, Stallknecht B, Blond MB. Effect of exercise training on skeletal muscle protein expression in relation to insulin sensitivity: Per-protocol analysis of a randomized controlled trial (GO-ACTIWE). Physiol Rep 2021; 9:e14850. [PMID: 34042297 PMCID: PMC8157763 DOI: 10.14814/phy2.14850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Exercise training improves peripheral insulin sensitivity and leads to molecular adaptations in the skeletal muscle. We investigated changes in the expression of key muscle proteins in the glucose metabolic pathway following active commuting by bike or leisure-time exercise at two different intensities. In addition, potential associations between insulin sensitivity and muscle protein expression were examined. This per-protocol analysis included 72 out of 130 physically inactive, healthy women and men (20-45 years) with overweight/obesity (BMI: 25-35 kg/m2 ) who completed 6 months of no intervention (CON, n = 12), active commuting by bike (BIKE, n = 14), or leisure-time exercise of moderate (MOD, n = 28) or vigorous (VIG, n = 18) intensity. Exercise was prescribed 5 days/week with a weekly exercise energy expenditure of 1,600 kcal for women and 2,100 kcal for men. Insulin sensitivity was determined by a hyperinsulinemic euglycemic clamp and skeletal muscle biopsies were obtained from m. vastus lateralis and analyzed for protein expression at baseline and after 3 and 6 months of intervention. We found an increased expression of pyruvate dehydrogenase (PDH) in the exercise groups compared with the control group following 6 months of training. No differential effects were observed on the protein expression following moderate versus vigorous intensity exercise. In addition, we found a positive association between insulin sensitivity and the expression of glucose transporter type 4 as well as PDH. The positive association and the increase in expression of PDH after exercise training points toward a role for PDH in the training-induced enhancement of insulin sensitivity.
Collapse
Affiliation(s)
- Lea Bruhn
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Steno Diabetes Center CopenhagenGentofteDenmark
| | - Rasmus Kjøbsted
- Section of Molecular PhysiologyAugust Krogh ClubDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Jonas Salling Quist
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Steno Diabetes Center CopenhagenGentofteDenmark
| | - Anne Sofie Gram
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Mads Rosenkilde
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Kristine Færch
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Steno Diabetes Center CopenhagenGentofteDenmark
| | - Jørgen F.P. Wojtaszewski
- Section of Molecular PhysiologyAugust Krogh ClubDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Bente Stallknecht
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Martin Bæk Blond
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Steno Diabetes Center CopenhagenGentofteDenmark
| |
Collapse
|
11
|
Broskey NT, Zou K, Dohm GL, Houmard JA. Plasma Lactate as a Marker for Metabolic Health. Exerc Sport Sci Rev 2020; 48:119-124. [PMID: 32271180 DOI: 10.1249/jes.0000000000000220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Blood lactate concentrations traditionally have been used as an index of exercise intensity or clinical hyperlactatemia. However, more recent data suggest that fasting plasma lactate can also be indicative of the risk for subsequent metabolic disease. The hypothesis presented is that fasting blood lactate accumulation reflects impaired mitochondrial substrate use, which in turn influences metabolic disease risk.
Collapse
Affiliation(s)
| | - Kai Zou
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA
| | | | | |
Collapse
|
12
|
Sulaeman A, Fine J, de Vargas-Machuca A, Vitorino SA, Wagner PD, Fruttiger M, Breen EC. Synergistic effect of vascular endothelial growth factor gene inactivation in endothelial cells and skeletal myofibres on muscle enzyme activity, capillary supply and endurance exercise in mice. Exp Physiol 2020; 105:2168-2177. [PMID: 32936962 DOI: 10.1113/ep088924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does vascular endothelial growth factor (VEGF) expressed by both endothelial cells and skeletal myofibres maintain the number of skeletal muscle capillaries and regulate endurance exercise? What is the main finding and its importance? VEGF expressed by both endothelial cells and skeletal myofibres is not essential for maintaining capillary number but does contribute to exercise performance. ABSTRACT Many chronic diseases lead to exercise intolerance, with loss of skeletal muscle capillaries. While many muscle cell types (myofibres, satellite cells, endothelial cells, macrophages and fibroblasts) express vascular endothelial growth factor (VEGF), most muscle VEGF is stored in myofibre vesicles which can release VEGF to signal VEGF receptor-expressing cells. VEGF gene ablation in myofibres or endothelial cells alone does not cause capillary regression. We hypothesized that simultaneously deleting the endothelial cell (EC) and skeletal myofibre (Skm) VEGF gene would cause capillary regression and impair exercise performance. This was tested in adult mice by simultaneous conditional deletion of the VEGF gene (Skm/EC-VEGF-/- mice) through the use of VEGFLoxP, HSA-Cre-ERT2 and PDGFb-iCre-ERT2 transgenes. These double-deletion mice were compared to three control groups - WT, EC VEGF gene deletion alone and myofibre VEGF gene deletion alone. Three weeks after initiating gene deletion, Skm/EC-VEGF-/- mice, but not SkmVEGF-/- or EC-VEGF-/- mice, reached exhaustion 40 min sooner than WT mice in treadmill tests (P = 0.002). WT, SkmVEGF-/- and EC-VEGF-/- , but not Skm/EC-VEGF-/- , mice gained weight over the 3 weeks. Capillary density, fibre area and capillary: fibre ratio in soleus, plantaris, gastrocnemius and cardiac papillary muscle were similar across the groups. Phosphofructokinase and pyruvate dehydrogenase activities increased only in Skm/EC-VEGF-/- mice. These data suggest that deletion of the VEGF gene simultaneously in endothelial cells and myofibres, while reducing treadmill endurance and despite compensatory augmentation of glycolysis, is not required for muscle capillary maintenance. Reduced endurance remains unexplained, but may possibly be related to a role for VEGF in controlling perfusion of contracting muscle.
Collapse
Affiliation(s)
- Alexis Sulaeman
- Department of Medicine, University of California, San Diego, CA, USA
| | - Janelle Fine
- Department of Medicine, University of California, San Diego, CA, USA
| | | | - Steven A Vitorino
- Department of Medicine, University of California, San Diego, CA, USA
| | - Peter D Wagner
- Department of Medicine, University of California, San Diego, CA, USA
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Ellen C Breen
- Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
13
|
da Silva Rosa SC, Nayak N, Caymo AM, Gordon JW. Mechanisms of muscle insulin resistance and the cross-talk with liver and adipose tissue. Physiol Rep 2020; 8:e14607. [PMID: 33038072 PMCID: PMC7547588 DOI: 10.14814/phy2.14607] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/18/2022] Open
Abstract
Insulin resistance is a metabolic disorder affecting multiple tissues and is a precursor event to type 2 diabetes (T2D). As T2D affects over 425 million people globally, there is an imperative need for research into insulin resistance to better understand the underlying mechanisms. The proposed mechanisms involved in insulin resistance include both whole body aspects, such as inflammation and metabolic inflexibility; as well as cellular phenomena, such as lipotoxicity, ER stress, and mitochondrial dysfunction. Despite numerous studies emphasizing the role of lipotoxicity in the pathogenesis of insulin resistance, an understanding of the interplay between tissues and these proposed mechanisms is still emerging. Furthermore, the tissue-specific and unique responses each of the three major insulin target tissues and how each interconnect to regulate the whole body insulin response has become a new priority in metabolic research. With an emphasis on skeletal muscle, this mini-review highlights key similarities and differences in insulin signaling and resistance between different target-tissues, and presents the latest findings related to how these tissues communicate to control whole body metabolism.
Collapse
Affiliation(s)
- Simone C. da Silva Rosa
- Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegCanada
- The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) ThemeUniversity of ManitobaWinnipegCanada
- Children’s Hospital Research Institute of Manitoba (CHRIM)University of ManitobaWinnipegCanada
| | - Nichole Nayak
- The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) ThemeUniversity of ManitobaWinnipegCanada
- Children’s Hospital Research Institute of Manitoba (CHRIM)University of ManitobaWinnipegCanada
- College of NursingUniversity of ManitobaWinnipegCanada
| | - Andrei Miguel Caymo
- The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) ThemeUniversity of ManitobaWinnipegCanada
- Children’s Hospital Research Institute of Manitoba (CHRIM)University of ManitobaWinnipegCanada
| | - Joseph W. Gordon
- Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegCanada
- The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) ThemeUniversity of ManitobaWinnipegCanada
- Children’s Hospital Research Institute of Manitoba (CHRIM)University of ManitobaWinnipegCanada
- College of NursingUniversity of ManitobaWinnipegCanada
| |
Collapse
|
14
|
Posa DK, Baba SP. Intracellular pH Regulation of Skeletal Muscle in the Milieu of Insulin Signaling. Nutrients 2020; 12:nu12102910. [PMID: 32977552 PMCID: PMC7598285 DOI: 10.3390/nu12102910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes (T2D), along with obesity, is one of the leading health problems in the world which causes other systemic diseases, such as cardiovascular diseases and kidney failure. Impairments in glycemic control and insulin resistance plays a pivotal role in the development of diabetes and its complications. Since skeletal muscle constitutes a significant tissue mass of the body, insulin resistance within the muscle is considered to initiate the onset of diet-induced metabolic syndrome. Insulin resistance is associated with impaired glucose uptake, resulting from defective post-receptor insulin responses, decreased glucose transport, impaired glucose phosphorylation, oxidation and glycogen synthesis in the muscle. Although defects in the insulin signaling pathway have been widely studied, the effects of cellular mechanisms activated during metabolic syndrome that cross-talk with insulin responses are not fully elucidated. Numerous reports suggest that pathways such as inflammation, lipid peroxidation products, acidosis and autophagy could cross-talk with insulin-signaling pathway and contribute to diminished insulin responses. Here, we review and discuss the literature about the defects in glycolytic pathway, shift in glucose utilization toward anaerobic glycolysis and change in intracellular pH [pH]i within the skeletal muscle and their contribution towards insulin resistance. We will discuss whether the derangements in pathways, which maintain [pH]i within the skeletal muscle, such as transporters (monocarboxylate transporters 1 and 4) and depletion of intracellular buffers, such as histidyl dipeptides, could lead to decrease in [pH]i and the onset of insulin resistance. Further we will discuss, whether the changes in [pH]i within the skeletal muscle of patients with T2D, could enhance the formation of protein aggregates and activate autophagy. Understanding the mechanisms by which changes in the glycolytic pathway and [pH]i within the muscle, contribute to insulin resistance might help explain the onset of obesity-linked metabolic syndrome. Finally, we will conclude whether correcting the pathways which maintain [pH]i within the skeletal muscle could, in turn, be effective to maintain or restore insulin responses during metabolic syndrome.
Collapse
Affiliation(s)
- Dheeraj Kumar Posa
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
| | - Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
15
|
Goedeke L, Perry RJ, Shulman GI. Emerging Pharmacological Targets for the Treatment of Nonalcoholic Fatty Liver Disease, Insulin Resistance, and Type 2 Diabetes. Annu Rev Pharmacol Toxicol 2020; 59:65-87. [PMID: 30625285 DOI: 10.1146/annurev-pharmtox-010716-104727] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) is characterized by persistent hyperglycemia despite hyperinsulinemia, affects more than 400 million people worldwide, and is a major cause of morbidity and mortality. Insulin resistance, of which ectopic lipid accumulation in the liver [nonalcoholic fatty liver disease (NAFLD)] and skeletal muscle is the root cause, plays a major role in the development of T2D. Although lifestyle interventions and weight loss are highly effective at reversing NAFLD and T2D, weight loss is difficult to sustain, and newer approaches aimed at treating the root cause of T2D are urgently needed. In this review, we highlight emerging pharmacological strategies aimed at improving insulin sensitivity and T2D by altering hepatic energy balance or inhibiting key enzymes involved in hepatic lipid synthesis. We also summarize recent research suggesting that liver-targeted mitochondrial uncoupling may be an attractive therapeutic approach to treat NAFLD, nonalcoholic steatohepatitis, and T2D.
Collapse
Affiliation(s)
- Leigh Goedeke
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , ,
| | - Rachel J Perry
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , , .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , , .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
16
|
Al Batran R, Gopal K, Capozzi ME, Chahade JJ, Saleme B, Tabatabaei-Dakhili SA, Greenwell AA, Niu J, Almutairi M, Byrne NJ, Masson G, Kim R, Eaton F, Mulvihill EE, Garneau L, Masters AR, Desta Z, Velázquez-Martínez CA, Aguer C, Crawford PA, Sutendra G, Campbell JE, Dyck JRB, Ussher JR. Pimozide Alleviates Hyperglycemia in Diet-Induced Obesity by Inhibiting Skeletal Muscle Ketone Oxidation. Cell Metab 2020; 31:909-919.e8. [PMID: 32275862 DOI: 10.1016/j.cmet.2020.03.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/31/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023]
Abstract
Perturbations in carbohydrate, lipid, and protein metabolism contribute to obesity-induced type 2 diabetes (T2D), though whether alterations in ketone body metabolism influence T2D pathology is unknown. We report here that activity of the rate-limiting enzyme for ketone body oxidation, succinyl-CoA:3-ketoacid-CoA transferase (SCOT/Oxct1), is increased in muscles of obese mice. We also found that the diphenylbutylpiperidine pimozide, which is approved to suppress tics in individuals with Tourette syndrome, is a SCOT antagonist. Pimozide treatment reversed obesity-induced hyperglycemia in mice, which was phenocopied in mice with muscle-specific Oxct1/SCOT deficiency. These actions were dependent on pyruvate dehydrogenase (PDH/Pdha1) activity, the rate-limiting enzyme of glucose oxidation, as pimozide failed to alleviate hyperglycemia in obese mice with a muscle-specific Pdha1/PDH deficiency. This work defines a fundamental contribution of enhanced ketone body oxidation to the pathology of obesity-induced T2D, while suggesting pharmacological SCOT inhibition as a new class of anti-diabetes therapy.
Collapse
Affiliation(s)
- Rami Al Batran
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Jadin J Chahade
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Jingjing Niu
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Malak Almutairi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Nikole J Byrne
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada; Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Grant Masson
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada; Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Ryekjang Kim
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Farah Eaton
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Léa Garneau
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada; Institut du Savoir Montfort, Ottawa, ON, Canada
| | - Andrea R Masters
- Indiana University School of Medicine, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - Zeruesenay Desta
- Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | | | - Céline Aguer
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada; Institut du Savoir Montfort, Ottawa, ON, Canada; School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Peter A Crawford
- Division of Molecular Medicine, Department of Medicine, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Jason R B Dyck
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada; Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
17
|
Sperm Proteomics Analysis of Diabetic Induced Male Rats as Influenced by Ficus carica Leaf Extract. Processes (Basel) 2020. [DOI: 10.3390/pr8040395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Diabetes mellitus is shown to bring negative effects on male reproductive health due to long-term effects of insulin deficiency or resistance and increased oxidative stress. Ficus carica (FC), an herbal plant, known to have high antioxidant activity and antidiabetic properties, has been used traditionally to treat diabetes. The objective of this study is to determine the potential of the FC leaf extract in improving sperm quality of streptozotocin (STZ) induced diabetic male rats from proteomics perspective. A total of 20 male rats were divided into four groups; normal (nondiabetic rats), negative control (diabetic rats without treatment), positive control (diabetic rats treated with 300 mg/kg metformin), and FC group (diabetic rats treated with 400 mg/kg FC extract). The treatments were given via oral gavage for 21 consecutive days. The fasting blood glucose (FBG) level of FC treated group demonstrated a significant (p < 0.05) decrease compared to negative group after 21 days of treatment, as well as a significant (p < 0.05) increase in the sperm quality parameters compared to negative group. Sperm proteomics analysis on FC treated group also exhibited the increase of total protein expression especially the proteins related to fertility compared to negative group. In conclusion, this study clearly justified that FC extract has good potential as antihyperglycemic and profertility agent that may be beneficial for male diabetic patients who have fertility problems.
Collapse
|
18
|
Zhao Y, Tran M, Wang L, Shin DJ, Wu J. PDK4-Deficiency Reprograms Intrahepatic Glucose and Lipid Metabolism to Facilitate Liver Regeneration in Mice. Hepatol Commun 2020; 4:504-517. [PMID: 32258946 PMCID: PMC7109344 DOI: 10.1002/hep4.1484] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/10/2020] [Indexed: 12/29/2022] Open
Abstract
Liver regeneration requires intrahepatic and extrahepatic metabolic reprogramming to meet the high hepatic bioenergy demand for liver cell repopulation. This study aims to elucidate how pyruvate dehydrogenase kinase 4 (PDK4), a critical regulator of glucose and lipid metabolism, coordinates metabolic regulation with efficient liver growth. We found that hepatic Pdk4 expression was elevated after two-thirds partial hepatectomy (PHx). In Pdk4 -/- PHx mice, the liver/body weight ratio was more rapidly restored, accompanied by more aggressive hepatic DNA replication; however, Pdk4 -/- mice developed more severe hypoglycemia. In Pdk4 -/- PHx livers, the pro-regenerative insulin signaling was potentiated, as demonstrated by early peaking of the phosphorylation of insulin receptor, more remarkable induction of the insulin receptor substrate proteins, IRS1 and IRS2, and more striking activation of Akt. The hepatic up-regulation of CD36 contributed to the enhanced transient regeneration-associated steatosis in Pdk4 -/- PHx mice. Notably, CD36 overexpression in mice promoted the recovery of liver/body weight ratio and elevated intrahepatic adenosine triphosphate after PHx. CD36 expression was transcriptionally suppressed by FOXO1 (forkhead box protein O1), which was stabilized and translocated to the nucleus following AMPK (adenosine monophosphate-activated protein kinase) activation. PHx remarkably induced AMPK activation, which became incompetent to respond in Pdk4 -/- livers. Moreover, we defined that PDK4-regulated AMPK activation directly depended on intracellular adenosine monophosphate in vitro and in regenerative livers. Conclusion: PDK4 inhibition reprograms glucose and lipid metabolism to promote liver regeneration by enhancing hepatic insulin/Akt signaling and activating an AMPK/FOXO1/CD36 regulatory axis of lipid. These findings may lead to potential therapeutic strategies to prevent hepatic insufficiency and liver failure.
Collapse
Affiliation(s)
- Yulan Zhao
- Department of Physiology & Neurobiology University of Connecticut Storrs CT
| | - Melanie Tran
- Department of Physiology & Neurobiology University of Connecticut Storrs CT
| | - Li Wang
- Department of Internal Medicine Section of Digestive Diseases Yale University New Haven CT
| | - Dong-Ju Shin
- Department of Physiology & Neurobiology University of Connecticut Storrs CT
| | - Jianguo Wu
- Department of Physiology & Neurobiology University of Connecticut Storrs CT
| |
Collapse
|
19
|
Jiang H, Jin J, Duan Y, Xie Z, Li Y, Gao A, Gu M, Zhang X, Peng C, Xia C, Dong T, Li H, Yu L, Tang J, Yang F, Li J, Li J. Mitochondrial Uncoupling Coordinated With PDH Activation Safely Ameliorates Hyperglycemia via Promoting Glucose Oxidation. Diabetes 2019; 68:2197-2209. [PMID: 31471292 DOI: 10.2337/db19-0589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/21/2019] [Indexed: 11/13/2022]
Abstract
Uncoupling of mitochondrial respiration by chemical uncouplers has proven effective in ameliorating obesity, insulin resistance, and hyperglycemia. However, development of uncoupler-based therapy remains challenging due to its potentially lethal adverse effects. Here, we identify pyruvate dehydrogenase (PDH) as a key modifier of the toxicity profile of 2, 4-dinitrophenol (DNP), a prototypical mitochondrial uncoupler. PDH activation by dichloroacetic acid (DCA) protects mice from DNP-induced hyperlactacidemia, hyperthermia, and death while preserving the ability of DNP to promote fuel oxidation and improve insulin sensitivity in mice. Mechanistically, PDH activation switches on mitochondrial glucose oxidation to accommodate increased glycolytic flux, leading to reduced lactate secretion during uncoupler treatments. We devised a chemical screening strategy and discovered compound 6j as a dual-action compound that simultaneously activates PDH and uncouples mitochondrial respiration. Compound 6j exhibits an excellent efficacy and safety profile in restoring glucose homeostasis in diabetic mice. This work establishes a new principle to safely harness the power of chemical uncouplers for the treatment of metabolic disease.
Collapse
Affiliation(s)
- Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, China
| | - Jia Jin
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, China
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanan Duan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, China
| | - Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yufeng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Anhui Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Min Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinwen Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chunmei Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tiancheng Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hui Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, China
| | - Lifang Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, China
| | - Jie Tang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
20
|
Real-time hyperpolarized 13C magnetic resonance detects increased pyruvate oxidation in pyruvate dehydrogenase kinase 2/4-double knockout mouse livers. Sci Rep 2019; 9:16480. [PMID: 31712597 PMCID: PMC6848094 DOI: 10.1038/s41598-019-52952-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023] Open
Abstract
The pyruvate dehydrogenase complex (PDH) critically regulates carbohydrate metabolism. Phosphorylation of PDH by one of the pyruvate dehydrogenase kinases 1-4 (PDK1-4) decreases the flux of carbohydrates into the TCA cycle. Inhibition of PDKs increases oxidative metabolism of carbohydrates, so targeting PDKs has emerged as an important therapeutic approach to manage various metabolic diseases. Therefore, it is highly desirable to begin to establish imaging tools for noninvasive measurements of PDH flux in rodent models. In this study, we used hyperpolarized (HP) 13C-magnetic resonance spectroscopy to study the impact of a PDK2/PDK4 double knockout (DKO) on pyruvate metabolism in perfused livers from lean and diet-induced obese (DIO) mice and validated the HP observations with high-resolution 13C-nuclear magnetic resonance (NMR) spectroscopy of tissue extracts and steady-state isotopomer analyses. We observed that PDK-deficient livers produce more HP-bicarbonate from HP-[1-13C]pyruvate than age-matched control livers. A steady-state 13C-NMR isotopomer analysis of tissue extracts confirmed that flux rates through PDH, as well as pyruvate carboxylase and pyruvate cycling activities, are significantly higher in PDK-deficient livers. Immunoblotting experiments confirmed that HP-bicarbonate production from HP-[1-13C]pyruvate parallels decreased phosphorylation of the PDH E1α subunit (pE1α) in liver tissue. Our findings indicate that combining real-time hyperpolarized 13C NMR spectroscopy and 13C isotopomer analysis provides quantitative insights into intermediary metabolism in PDK-knockout mice. We propose that this method will be useful in assessing metabolic disease states and developing therapies to improve PDH flux.
Collapse
|
21
|
Sharma A, Oonthonpan L, Sheldon RD, Rauckhorst AJ, Zhu Z, Tompkins SC, Cho K, Grzesik WJ, Gray LR, Scerbo DA, Pewa AD, Cushing EM, Dyle MC, Cox JE, Adams C, Davies BS, Shields RK, Norris AW, Patti G, Zingman LV, Taylor EB. Impaired skeletal muscle mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness. eLife 2019; 8:e45873. [PMID: 31305240 PMCID: PMC6684275 DOI: 10.7554/elife.45873] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
Metabolic cycles are a fundamental element of cellular and organismal function. Among the most critical in higher organisms is the Cori Cycle, the systemic cycling between lactate and glucose. Here, skeletal muscle-specific Mitochondrial Pyruvate Carrier (MPC) deletion in mice diverted pyruvate into circulating lactate. This switch disinhibited muscle fatty acid oxidation and drove Cori Cycling that contributed to increased energy expenditure. Loss of muscle MPC activity led to strikingly decreased adiposity with complete muscle mass and strength retention. Notably, despite decreasing muscle glucose oxidation, muscle MPC disruption increased muscle glucose uptake and whole-body insulin sensitivity. Furthermore, chronic and acute muscle MPC deletion accelerated fat mass loss on a normal diet after high fat diet-induced obesity. Our results illuminate the role of the skeletal muscle MPC as a whole-body carbon flux control point. They highlight the potential utility of modulating muscle pyruvate utilization to ameliorate obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Arpit Sharma
- Department of Biochemistry, Carver College of MedicineUniversity of IowaIowa CityUnited States
| | - Lalita Oonthonpan
- Department of Biochemistry, Carver College of MedicineUniversity of IowaIowa CityUnited States
| | - Ryan D Sheldon
- Department of Biochemistry, Carver College of MedicineUniversity of IowaIowa CityUnited States
| | - Adam J Rauckhorst
- Department of Biochemistry, Carver College of MedicineUniversity of IowaIowa CityUnited States
| | - Zhiyong Zhu
- Department of Internal Medicine, Carver College of MedicineUniversity of IowaIowa CityUnited States
| | - Sean C Tompkins
- Department of Biochemistry, Carver College of MedicineUniversity of IowaIowa CityUnited States
| | - Kevin Cho
- Department of Chemistry, School of MedicineWashington UniversitySt. LouisUnited States
| | - Wojciech J Grzesik
- Fraternal Order of the Eagles Diabetes Research Center (FOEDRC), Carver College of MedicineUniversity of IowaIowa CityUnited States
- FOEDRC Metabolic Phenotyping Core Facility, Carver College of MedicineUniversity of IowaIowa CityUnited States
| | - Lawrence R Gray
- Department of Biochemistry, Carver College of MedicineUniversity of IowaIowa CityUnited States
| | - Diego A Scerbo
- Department of Biochemistry, Carver College of MedicineUniversity of IowaIowa CityUnited States
| | - Alvin D Pewa
- Department of Biochemistry, Carver College of MedicineUniversity of IowaIowa CityUnited States
| | - Emily M Cushing
- Department of Biochemistry, Carver College of MedicineUniversity of IowaIowa CityUnited States
| | - Michael C Dyle
- Department of Internal Medicine, Carver College of MedicineUniversity of IowaIowa CityUnited States
| | - James E Cox
- Department of Biochemistry, School of MedicineUniversity of UtahSalt Lake CityUnited States
- Metabolomics Core Research Facility, School of MedicineUniversity of UtahSalt Lake CityUnited States
| | - Chris Adams
- Department of Internal Medicine, Carver College of MedicineUniversity of IowaIowa CityUnited States
- Fraternal Order of the Eagles Diabetes Research Center (FOEDRC), Carver College of MedicineUniversity of IowaIowa CityUnited States
- Department of Molecular Physiology and Biophysics, Carver College of MedicineUniversity of IowaIowa CityUnited States
- Pappajohn Biomedical Institute, Carver College of MedicineUniversity of IowaIowa CityUnited States
- Abboud Cardiovascular Research Center, Carver College of MedicineUniversity of IowaIowa CityUnited States
| | - Brandon S Davies
- Department of Biochemistry, Carver College of MedicineUniversity of IowaIowa CityUnited States
- Fraternal Order of the Eagles Diabetes Research Center (FOEDRC), Carver College of MedicineUniversity of IowaIowa CityUnited States
- Pappajohn Biomedical Institute, Carver College of MedicineUniversity of IowaIowa CityUnited States
- Abboud Cardiovascular Research Center, Carver College of MedicineUniversity of IowaIowa CityUnited States
| | - Richard K Shields
- Fraternal Order of the Eagles Diabetes Research Center (FOEDRC), Carver College of MedicineUniversity of IowaIowa CityUnited States
- Department of Physical Therapy and Rehabilitation Science, Carver College of MedicineUniversity of IowaIowa CityUnited States
| | - Andrew W Norris
- Department of Biochemistry, Carver College of MedicineUniversity of IowaIowa CityUnited States
- Fraternal Order of the Eagles Diabetes Research Center (FOEDRC), Carver College of MedicineUniversity of IowaIowa CityUnited States
- FOEDRC Metabolic Phenotyping Core Facility, Carver College of MedicineUniversity of IowaIowa CityUnited States
- Department of Pediatrics, Carver College of MedicineUniversity of IowaIowa CityUnited States
| | - Gary Patti
- Department of Chemistry, School of MedicineWashington UniversitySt. LouisUnited States
| | - Leonid V Zingman
- Department of Internal Medicine, Carver College of MedicineUniversity of IowaIowa CityUnited States
- Fraternal Order of the Eagles Diabetes Research Center (FOEDRC), Carver College of MedicineUniversity of IowaIowa CityUnited States
- Abboud Cardiovascular Research Center, Carver College of MedicineUniversity of IowaIowa CityUnited States
- Department of Veterans Affairs, Medical Center, Carver College of MedicineUniversity of IowaIowa CityUnited States
| | - Eric B Taylor
- Department of Biochemistry, Carver College of MedicineUniversity of IowaIowa CityUnited States
- Fraternal Order of the Eagles Diabetes Research Center (FOEDRC), Carver College of MedicineUniversity of IowaIowa CityUnited States
- Department of Molecular Physiology and Biophysics, Carver College of MedicineUniversity of IowaIowa CityUnited States
- Pappajohn Biomedical Institute, Carver College of MedicineUniversity of IowaIowa CityUnited States
- Abboud Cardiovascular Research Center, Carver College of MedicineUniversity of IowaIowa CityUnited States
- FOEDRC Metabolomics Core Facility, Carver College of MedicineUniversity of IowaIowa CityUnited States
| |
Collapse
|
22
|
Yucel N, Wang YX, Mai T, Porpiglia E, Lund PJ, Markov G, Garcia BA, Bendall SC, Angelo M, Blau HM. Glucose Metabolism Drives Histone Acetylation Landscape Transitions that Dictate Muscle Stem Cell Function. Cell Rep 2019; 27:3939-3955.e6. [PMID: 31242425 PMCID: PMC6788807 DOI: 10.1016/j.celrep.2019.05.092] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/25/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022] Open
Abstract
The impact of glucose metabolism on muscle regeneration remains unresolved. We identify glucose metabolism as a crucial driver of histone acetylation and myogenic cell fate. We use single-cell mass cytometry (CyTOF) and flow cytometry to characterize the histone acetylation and metabolic states of quiescent, activated, and differentiating muscle stem cells (MuSCs). We find glucose is dispensable for mitochondrial respiration in proliferating MuSCs, so that glucose becomes available for maintaining high histone acetylation via acetyl-CoA. Conversely, quiescent and differentiating MuSCs increase glucose utilization for respiration and have consequently reduced acetylation. Pyruvate dehydrogenase (PDH) activity serves as a rheostat for histone acetylation and must be controlled for muscle regeneration. Increased PDH activity in proliferation increases histone acetylation and chromatin accessibility at genes that must be silenced for differentiation to proceed, and thus promotes self-renewal. These results highlight metabolism as a determinant of MuSC histone acetylation, fate, and function during muscle regeneration.
Collapse
Affiliation(s)
- Nora Yucel
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yu Xin Wang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thach Mai
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ermelinda Porpiglia
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peder J Lund
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Glenn Markov
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Benjamin A Garcia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
23
|
Small L, Brandon AE, Parker BL, Deshpande V, Samsudeen AF, Kowalski GM, Reznick J, Wilks DL, Preston E, Bruce CR, James DE, Turner N, Cooney GJ. Reduced insulin action in muscle of high fat diet rats over the diurnal cycle is not associated with defective insulin signaling. Mol Metab 2019; 25:107-118. [PMID: 31029696 PMCID: PMC6600078 DOI: 10.1016/j.molmet.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/02/2022] Open
Abstract
Objective Energy metabolism and insulin action follow a diurnal rhythm. It is therefore important that investigations into dysregulation of these pathways are relevant to the physiology of this diurnal rhythm. Methods We examined glucose uptake, markers of insulin action, and the phosphorylation of insulin signaling intermediates in muscle of chow and high fat, high sucrose (HFHS) diet-fed rats over the normal diurnal cycle. Results HFHS animals displayed hyperinsulinemia but had reduced systemic glucose disposal and lower muscle glucose uptake during the feeding period. Analysis of gene expression, enzyme activity, protein abundance and phosphorylation revealed a clear diurnal regulation of substrate oxidation pathways with no difference in Akt signaling in muscle. Transfection of a constitutively active Akt2 into the muscle of HFHS rats did not rescue diet-induced reductions in insulin-stimulated glucose uptake. Conclusions These studies suggest that reduced glucose uptake in muscle during the diurnal cycle induced by short-term HFHS-feeding is not the result of reduced insulin signaling. Investigating metabolism in rodents over the diurnal cycle more accurately models normal animal physiology. Diurnal regulation of substrate oxidation is altered in muscle of HFHS-fed rats. There is a disconnect between glucose uptake and canonical insulin signaling in muscle. Activation of Akt2 does not rescue diet-induced reductions in insulin-stimulated glucose uptake in muscle.
Collapse
Affiliation(s)
- Lewin Small
- Diabetes and Metabolism Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Amanda E Brandon
- Diabetes and Metabolism Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia; The University of Sydney, School of Medical Science, Charles Perkins Centre D17, Sydney, NSW, Australia
| | - Benjamin L Parker
- The University of Sydney, School of Life and Environmental Science, Charles Perkins Centre D17, Sydney, NSW, Australia
| | - Vinita Deshpande
- The University of Sydney, School of Life and Environmental Science, Charles Perkins Centre D17, Sydney, NSW, Australia
| | - Azrah F Samsudeen
- Department of Pharmacology, School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Greg M Kowalski
- Deakin University, School of Exercise and Nutrition Sciences, Faculty of Health, Institute for Physical Activity and Nutrition, Geelong, Australia
| | - Jane Reznick
- Diabetes and Metabolism Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Donna L Wilks
- Diabetes and Metabolism Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Elaine Preston
- Diabetes and Metabolism Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Clinton R Bruce
- Deakin University, School of Exercise and Nutrition Sciences, Faculty of Health, Institute for Physical Activity and Nutrition, Geelong, Australia
| | - David E James
- The University of Sydney, School of Life and Environmental Science, Charles Perkins Centre D17, Sydney, NSW, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Gregory J Cooney
- Diabetes and Metabolism Division, The Garvan Institute of Medical Research, Sydney, NSW, Australia; The University of Sydney, School of Medical Science, Charles Perkins Centre D17, Sydney, NSW, Australia.
| |
Collapse
|
24
|
Zou K, Hinkley JM, Park S, Zheng D, Jones TE, Pories WJ, Hornby PJ, Lenhard J, Dohm GL, Houmard JA. Altered tricarboxylic acid cycle flux in primary myotubes from severely obese humans. Int J Obes (Lond) 2019; 43:895-905. [PMID: 29892037 DOI: 10.1038/s41366-018-0137-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVE The partitioning of glucose toward glycolytic end products rather than glucose oxidation and glycogen storage is evident in skeletal muscle with severe obesity and type 2 diabetes. The purpose of the present study was to determine the possible mechanism by which severe obesity alters insulin-mediated glucose partitioning in human skeletal muscle. SUBJECTS/METHODS Primary human skeletal muscle cells (HSkMC) were isolated from lean (BMI = 23.6 ± 2.6 kg/m2, n = 9) and severely obese (BMI = 48.8 ± 1.9 kg/m2, n = 8) female subjects. Glucose oxidation, glycogen synthesis, non-oxidized glycolysis, pyruvate oxidation, and targeted TCA cycle metabolomics were examined in differentiated myotubes under basal and insulin-stimulated conditions. RESULTS Myotubes derived from severely obese subjects exhibited attenuated response of glycogen synthesis (20.3%; 95% CI [4.7, 28.8]; P = 0.017) and glucose oxidation (5.6%; 95% CI [0.3, 8.6]; P = 0.046) with a concomitant greater increase (23.8%; 95% CI [5.7, 47.8]; P = 0.004) in non-oxidized glycolytic end products with insulin stimulation in comparison to the lean group (34.2% [24.9, 45.1]; 13.1% [8.6, 16.4], and 2.9% [-4.1, 12.2], respectively). These obesity-related alterations in glucose partitioning appeared to be linked with reduced TCA cycle flux, as 2-[14C]-pyruvate oxidation (358.4 pmol/mg protein/min [303.7, 432.9] vs. lean 439.2 pmol/mg protein/min [393.6, 463.1]; P = 0.013) along with several TCA cycle intermediates, were suppressed in the skeletal muscle of severely obese individuals. CONCLUSIONS These data suggest that with severe obesity the partitioning of glucose toward anaerobic glycolysis in response to insulin is a resilient characteristic of human skeletal muscle. This altered glucose partitioning appeared to be due, at least in part, to a reduction in TCA cycle flux.
Collapse
Affiliation(s)
- Kai Zou
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA, USA.
- Department of Kinesiology, East Carolina University, Greenville, NC, USA.
- Human Performance Laboratory, East Carolina University, Greenville, NC, USA.
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA.
| | - J Matthew Hinkley
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
| | - Sanghee Park
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Donghai Zheng
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Terry E Jones
- Department of Physical Therapy, East Carolina University, Greenville, NC, USA
| | - Walter J Pories
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Surgery, East Carolina University, Greenville, NC, USA
| | | | - James Lenhard
- Janssen Research & Development LLC, Spring House, PA, USA
| | - G Lynis Dohm
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Joseph A Houmard
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| |
Collapse
|
25
|
Cheng L, Li F, Li S, Lin C, Fu Q, Yin H, Tian F, Qu G, Wu J, Shen Z. A novel nicotinamide adenine dinucleotide control strategy for increasing the cell density of Haemophilus parasuis. Biotechnol Prog 2019; 35:e2794. [PMID: 30816004 DOI: 10.1002/btpr.2794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 11/12/2022]
Abstract
Haemophilus parasuis is the causative agent of Glässer's disease and is a major source of economic losses in the swine industry each year. To enhance the production of an inactivated vaccine against H. parasuis, the availability of nicotinamide adenine dinucleotide (NAD) must be carefully controlled to ensure a sufficiently high cell density of H. parasuis. In the present study, the real-time viable cell density of H. parasuis was calculated based on the capacitance of the culture. By assessing the relationship between capacitance and viable cell density/NAD concentration, the NAD supply rate could be adjusted in real time to maintain the NAD concentration at a set value based on the linear relationship between capacitance and NAD consumption. The linear relationship between cell density and addition of NAD indicated that 7.138 × 109 NAD molecules were required to satisfy per cell growth. Five types of NAD supply strategy were used to maintain different NAD concentration for H. parasuis cultivation, and the results revealed that the highest viable cell density (8.57, OD600 ) and cell count (1.57 × 1010 CFU/mL) were obtained with strategy III (NAD concentration maintained at 30 mg/L), which were 1.46- and 1.45- times more, respectively, than cultures with using NAD supply strategy I (NAD concentration maintained at 10 mg/L). An extremely high cell density of H. parasuis was achieved using this NAD supply strategy, and the results demonstrated a convenient and reliable method for determining the real-time viable cell density relative to NAD concentration. Moreover, this method provides a theoretical foundation and an efficient approach for high cell density cultivation of other auxotroph bacteria.
Collapse
Affiliation(s)
- Likun Cheng
- Post-doctoral Scientific Research Workstation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Key Laboratory of Binzhou High Cell Density Fermentation, Shandong Lvdu Bio-science and Technology Co. Ltd., Binzhou, China
| | - Feng Li
- Post-doctoral Scientific Research Workstation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Key Laboratory of Binzhou High Cell Density Fermentation, Shandong Lvdu Bio-science and Technology Co. Ltd., Binzhou, China
| | - Shuguang Li
- Post-doctoral Scientific Research Workstation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Key Laboratory of Binzhou High Cell Density Fermentation, Shandong Lvdu Bio-science and Technology Co. Ltd., Binzhou, China
| | - Chuwen Lin
- Post-doctoral Scientific Research Workstation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Qiang Fu
- Post-doctoral Scientific Research Workstation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Huanhuan Yin
- Post-doctoral Scientific Research Workstation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Fengrong Tian
- Post-doctoral Scientific Research Workstation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Guanggang Qu
- Post-doctoral Scientific Research Workstation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Jiaqiang Wu
- Institution of Poultry, Shandong Academy of Agricultural Science, Jinan, China
| | - Zhiqiang Shen
- Post-doctoral Scientific Research Workstation, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| |
Collapse
|
26
|
Huang W, Zeng J, Liu Z, Su M, Li Q, Zhu B. Acetylshikonin stimulates glucose uptake in L6 myotubes via a PLC-β3/PKCδ-dependent pathway. Biomed Pharmacother 2019; 112:108588. [PMID: 30780104 DOI: 10.1016/j.biopha.2019.01.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 10/27/2022] Open
Abstract
Acetylshikonin, a naphthoquinone derivative derived from Lithospermum erythrorhizon, has been shown to have various pharmacological activities; however, its effect on diabetes has rarely been reported. We investigated the hypoglycemic effect of acetylshikonin and found that it decreased blood glucose to a greater extent than insulin and improved glucose tolerance in mice. It also increased glucose uptake in L6 myotubes by inducing the expression and translocation of glucose transporter 4 via decomposition of phosphatidylinositol, increased generation of diacylglycerol, and activation of protein kinase C delta cascades; this is an insulin-, reactive oxygen species-, and AMP-activated protein kinase-independent pathway for glucose uptake. Our findings highlight the antidiabetic potential of acetylshikonin via a possible novel pathway for glucose uptake in L6 myotubes.
Collapse
Affiliation(s)
- Wendong Huang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Department of Pharmacy, Maoming People's Hospital, Maoming, China
| | - Jiacheng Zeng
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhaochun Liu
- Department of Pharmacy, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Meiling Su
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qisen Li
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Banghao Zhu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
27
|
Svensson K, Dent JR, Tahvilian S, Martins VF, Sathe A, Ochala J, Patel MS, Schenk S. Defining the contribution of skeletal muscle pyruvate dehydrogenase α1 to exercise performance and insulin action. Am J Physiol Endocrinol Metab 2018; 315:E1034-E1045. [PMID: 30153068 PMCID: PMC6293170 DOI: 10.1152/ajpendo.00241.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The pyruvate dehydrogenase complex (PDC) converts pyruvate to acetyl-CoA and is an important control point for carbohydrate (CHO) oxidation. However, the importance of the PDC and CHO oxidation to muscle metabolism and exercise performance, particularly during prolonged or high-intensity exercise, has not been fully defined especially in mature skeletal muscle. To this end, we determined whether skeletal muscle-specific loss of pyruvate dehydrogenase alpha 1 ( Pdha1), which is a critical subunit of the PDC, impacts resting energy metabolism, exercise performance, or metabolic adaptation to high-fat diet (HFD) feeding. For this, we generated a tamoxifen (TMX)-inducible Pdha1 knockout (PDHmKO) mouse, in which PDC activity is temporally and specifically ablated in adult skeletal muscle. We assessed energy expenditure, ex vivo muscle contractile performance, and endurance exercise capacity in PDHmKO mice and wild-type (WT) littermates. Additionally, we studied glucose homeostasis and insulin sensitivity in muscle after 12 wk of HFD feeding. TMX administration largely ablated PDHα in skeletal muscle of adult PDHmKO mice but did not impact energy expenditure, muscle contractile function, or low-intensity exercise performance. Additionally, there were no differences in muscle insulin sensitivity or body composition in PDHmKO mice fed a control or HFD, as compared with WT mice. However, exercise capacity during high-intensity exercise was severely impaired in PDHmKO mice, in parallel with a large increase in plasma lactate concentration. In conclusion, although skeletal muscle PDC is not a major contributor to resting energy expenditure or long-duration, low-intensity exercise performance, it is necessary for optimal performance during high-intensity exercise.
Collapse
Affiliation(s)
- Kristoffer Svensson
- Department of Orthopaedic Surgery, University of California San Diego , La Jolla, California
| | - Jessica R Dent
- Department of Orthopaedic Surgery, University of California San Diego , La Jolla, California
| | - Shahriar Tahvilian
- Department of Orthopaedic Surgery, University of California San Diego , La Jolla, California
| | - Vitor F Martins
- Department of Orthopaedic Surgery, University of California San Diego , La Jolla, California
| | - Abha Sathe
- Department of Orthopaedic Surgery, University of California San Diego , La Jolla, California
| | - Julien Ochala
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London , London , United Kingdom
| | - Mulchand S Patel
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego , La Jolla, California
- Biomedical Sciences Graduate Program, University of California San Diego , La Jolla, California
| |
Collapse
|
28
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1703] [Impact Index Per Article: 243.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
29
|
Small L, Brandon AE, Quek LE, Krycer JR, James DE, Turner N, Cooney GJ. Acute activation of pyruvate dehydrogenase increases glucose oxidation in muscle without changing glucose uptake. Am J Physiol Endocrinol Metab 2018; 315:E258-E266. [PMID: 29406780 DOI: 10.1152/ajpendo.00386.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pyruvate dehydrogenase (PDH) activity is a key component of the glucose/fatty acid cycle hypothesis for the regulation of glucose uptake and metabolism. We have investigated whether acute activation of PDH in muscle can alleviate the insulin resistance caused by feeding animals a high-fat diet (HFD). The importance of PDH activity in muscle glucose disposal under insulin-stimulated conditions was determined by infusing the PDH kinase inhibitor dichloroacetate (DCA) into HFD-fed Wistar rats during a hyperinsulinemic-euglycemic clamp. Acute DCA infusion did not alter glucose infusion rate, glucose disappearance, or hepatic glucose production but did decrease plasma lactate levels. DCA substantially increased muscle PDH activity; however, this did not improve insulin-stimulated glucose uptake in insulin-resistant muscle of HFD rats. DCA infusion increased the flux of pyruvate to acetyl-CoA and reduced glucose incorporation into glycogen and alanine in muscle. Similarly, in isolated muscle, DCA treatment increased glucose oxidation and decreased glycogen synthesis without changing glucose uptake. These results suggest that, although PDH activity controls the conversion of pyruvate to acetyl-CoA for oxidation, this has little effect on glucose uptake into muscle under insulin-stimulated conditions.
Collapse
Affiliation(s)
- Lewin Small
- Diabetes and Metabolism Division, Garvan Institute , Sydney, New South Wales , Australia
| | - Amanda E Brandon
- Diabetes and Metabolism Division, Garvan Institute , Sydney, New South Wales , Australia
- School of Medical Science, The University of Sydney, Charles Perkins Centre , New South Wales , Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, The University of Sydney, Charles Perkins Centre , New South Wales , Australia
| | - James R Krycer
- School of Life and Environmental Science, The University of Sydney, Charles Perkins Centre , New South Wales , Australia
| | - David E James
- School of Life and Environmental Science, The University of Sydney, Charles Perkins Centre , New South Wales , Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Science, University of New South Wales , Sydney, New South Wales , Australia
| | - Gregory J Cooney
- Diabetes and Metabolism Division, Garvan Institute , Sydney, New South Wales , Australia
- School of Medical Science, The University of Sydney, Charles Perkins Centre , New South Wales , Australia
| |
Collapse
|
30
|
Organic cation transporter 1 (OCT1) modulates multiple cardiometabolic traits through effects on hepatic thiamine content. PLoS Biol 2018; 16:e2002907. [PMID: 29659562 PMCID: PMC5919692 DOI: 10.1371/journal.pbio.2002907] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 04/26/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
A constellation of metabolic disorders, including obesity, dysregulated lipids, and elevations in blood glucose levels, has been associated with cardiovascular disease and diabetes. Analysis of data from recently published genome-wide association studies (GWAS) demonstrated that reduced-function polymorphisms in the organic cation transporter, OCT1 (SLC22A1), are significantly associated with higher total cholesterol, low-density lipoprotein (LDL) cholesterol, and triglyceride (TG) levels and an increased risk for type 2 diabetes mellitus, yet the mechanism linking OCT1 to these metabolic traits remains puzzling. Here, we show that OCT1, widely characterized as a drug transporter, plays a key role in modulating hepatic glucose and lipid metabolism, potentially by mediating thiamine (vitamin B1) uptake and hence its levels in the liver. Deletion of Oct1 in mice resulted in reduced activity of thiamine-dependent enzymes, including pyruvate dehydrogenase (PDH), which disrupted the hepatic glucose–fatty acid cycle and shifted the source of energy production from glucose to fatty acids, leading to a reduction in glucose utilization, increased gluconeogenesis, and altered lipid metabolism. In turn, these effects resulted in increased total body adiposity and systemic levels of glucose and lipids. Importantly, wild-type mice on thiamine deficient diets (TDs) exhibited impaired glucose metabolism that phenocopied Oct1 deficient mice. Collectively, our study reveals a critical role of hepatic thiamine deficiency through OCT1 deficiency in promoting the metabolic inflexibility that leads to the pathogenesis of cardiometabolic disease. The liver is the major organ for glucose and lipid metabolism; impairment in liver energy metabolism is often found in metabolic disorders. Traditionally, excesses in macronutrients (fat and glucose) are linked to the development of metabolic disorders. Our study provides evidence that imbalances in a micronutrient, vitamin B1 (thiamine), can serve as an etiological cause of lipid and glucose disorders and implicates the organic cation transporter, OCT1, in these disorders. OCT1 is a key determinant of thiamine levels in the liver. In humans, reduced-function polymorphisms of OCT1 significantly associate with high LDL cholesterol levels. Using Oct1 knockout mice, we show that reduced OCT1-mediated thiamine uptake in the liver leads to reduced levels of TPP—the active metabolite of thiamine—and decreased activity of key TPP-dependent enzymes. As a result, a shift from glucose to fatty acid oxidation occurs, leading to imbalances in key metabolic intermediates, alterations in metabolic flux pathways, and disruptions of various metabolic regulatory mechanisms. The extensive characterization of Oct1 knockout mice provides evidence for the molecular mechanisms responsible for various metabolic traits and indicates an important role for imbalances in micronutrients in cardiometabolic disorders.
Collapse
|
31
|
Morales-Alamo D, Guerra B, Santana A, Martin-Rincon M, Gelabert-Rebato M, Dorado C, Calbet JAL. Skeletal Muscle Pyruvate Dehydrogenase Phosphorylation and Lactate Accumulation During Sprint Exercise in Normoxia and Severe Acute Hypoxia: Effects of Antioxidants. Front Physiol 2018; 9:188. [PMID: 29615918 PMCID: PMC5867337 DOI: 10.3389/fphys.2018.00188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 02/23/2018] [Indexed: 12/30/2022] Open
Abstract
Compared to normoxia, during sprint exercise in severe acute hypoxia the glycolytic rate is increased leading to greater lactate accumulation, acidification, and oxidative stress. To determine the role played by pyruvate dehydrogenase (PDH) activation and reactive nitrogen and oxygen species (RNOS) in muscle lactate accumulation, nine volunteers performed a single 30-s sprint (Wingate test) on four occasions: two after the ingestion of placebo and another two following the intake of antioxidants, while breathing either hypoxic gas (PIO2 = 75 mmHg) or room air (PIO2 = 143 mmHg). Vastus lateralis muscle biopsies were obtained before, immediately after, 30 and 120 min post-sprint. Antioxidants reduced the glycolytic rate without altering performance or VO2. Immediately after the sprints, Ser293- and Ser300-PDH-E1α phosphorylations were reduced to similar levels in all conditions (~66 and 91%, respectively). However, 30 min into recovery Ser293-PDH-E1α phosphorylation reached pre-exercise values while Ser300-PDH-E1α was still reduced by 44%. Thirty minutes after the sprint Ser293-PDH-E1α phosphorylation was greater with antioxidants, resulting in 74% higher muscle lactate concentration. Changes in Ser293 and Ser300-PDH-E1α phosphorylation from pre to immediately after the sprints were linearly related after placebo (r = 0.74, P < 0.001; n = 18), but not after antioxidants ingestion (r = 0.35, P = 0.15). In summary, lactate accumulation during sprint exercise in severe acute hypoxia is not caused by a reduced activation of the PDH. The ingestion of antioxidants is associated with increased PDH re-phosphorylation and slower elimination of muscle lactate during the recovery period. Ser293 re-phosphorylates at a faster rate than Ser300-PDH-E1α during the recovery period, suggesting slightly different regulatory mechanisms.
Collapse
Affiliation(s)
- David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain
| | - Borja Guerra
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain
| | - Alfredo Santana
- Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain.,Clinical Genetics Unit, Complejo Hospitalario Universitario Insular-Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain
| | - Cecilia Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain
| | - José A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
32
|
de Castro GS, Calder PC. Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids. Clin Nutr 2018; 37:37-55. [DOI: 10.1016/j.clnu.2017.01.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 12/12/2016] [Accepted: 01/10/2017] [Indexed: 02/08/2023]
|
33
|
Zhang Y, Zhang Y, Ding GL, Liu XM, Ye J, Sheng JZ, Fan J, Huang HF. Regulation of hepatic pyruvate dehydrogenase phosphorylation in offspring glucose intolerance induced by intrauterine hyperglycemia. Oncotarget 2017; 8:15205-15212. [PMID: 28148899 PMCID: PMC5362479 DOI: 10.18632/oncotarget.14837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/11/2017] [Indexed: 01/07/2023] Open
Abstract
Aim Gestational diabetes mellitus (GDM) has been shown to be associated with a high risk of diabetes in offspring. In mitochondria, the inhibition of pyruvate dehydrogenase (PDH) activity by PDH phosphorylation is involved in the development of diabetes. We aimed to determine the role of PDH phosphorylation in the liver in GDM-induced offspring glucose intolerance. Results PDH phosphorylation was increased in lymphocytes from the umbilical cord blood of the GDM patients and in high glucose-treated hepatic cells. Both the male and female offspring from GDM mice had elevated liver weights and glucose intolerance. Further, PDH phosphorylation was increased in the livers of both the male and female offspring from GDM mice, and elevated acetylation may have contributed to this increased phosphorylation. Materials and methods We obtained lymphocytes from umbilical cord blood collected from both normal and GDM pregnant women. In addition, we obtained the offspring of streptozotocin-induced GDM female pregnant mice. The glucose tolerance test was performed to assess glucose tolerance in the offspring. Further, Western blotting was conducted to detect changes in protein levels. Conclusions Intrauterine hyperglycemia induced offspring glucose intolerance by inhibiting PDH activity, along with increased PDH phosphorylation in the liver, and this effect might be mediated by enhanced mitochondrial protein acetylation.
Collapse
Affiliation(s)
- Yong Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.,Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ying Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Lian Ding
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin-Mei Liu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jianping Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Jian-Zhong Sheng
- Department of Pathophysiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianxia Fan
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - He-Feng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.,Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
34
|
McCurdy CE, Schenk S, Hetrick B, Houck J, Drew BG, Kaye S, Lashbrook M, Bergman BC, Takahashi DL, Dean TA, Nemkov T, Gertsman I, Hansen KC, Philp A, Hevener AL, Chicco AJ, Aagaard KM, Grove KL, Friedman JE. Maternal obesity reduces oxidative capacity in fetal skeletal muscle of Japanese macaques. JCI Insight 2016; 1:e86612. [PMID: 27734025 DOI: 10.1172/jci.insight.86612] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maternal obesity is proposed to alter the programming of metabolic systems in the offspring, increasing the risk for developing metabolic diseases; however, the cellular mechanisms remain poorly understood. Here, we used a nonhuman primate model to examine the impact of a maternal Western-style diet (WSD) alone, or in combination with obesity (Ob/WSD), on fetal skeletal muscle metabolism studied in the early third trimester. We find that fetal muscle responds to Ob/WSD by upregulating fatty acid metabolism, mitochondrial complex activity, and metabolic switches (CPT-1, PDK4) that promote lipid utilization over glucose oxidation. Ob/WSD fetuses also had reduced mitochondrial content, diminished oxidative capacity, and lower mitochondrial efficiency in muscle. The decrease in oxidative capacity and glucose metabolism was persistent in primary myotubes from Ob/WSD fetuses despite no additional lipid-induced stress. Switching obese mothers to a healthy diet prior to pregnancy did not improve fetal muscle mitochondrial function. Lastly, while maternal WSD alone led only to intermediary changes in fetal muscle metabolism, it was sufficient to increase oxidative damage and cellular stress. Our findings suggest that maternal obesity or WSD, alone or in combination, leads to programmed decreases in oxidative metabolism in offspring muscle. These alterations may have important implications for future health.
Collapse
Affiliation(s)
- Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA.,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California, USA
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Julie Houck
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brian G Drew
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, University of California, Los Angeles, Los Angeles, California, USA.,Diabetes and Dyslipidaemia Laboratory, Baker IDI Heart and Diabetes Institute, Prahran, Victoria, Australia
| | - Spencer Kaye
- Departments of Health and Exercise Science and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Melanie Lashbrook
- Departments of Health and Exercise Science and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Diana L Takahashi
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Tyler A Dean
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ilya Gertsman
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew Philp
- School of Sport Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Andrea L Hevener
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, University of California, Los Angeles, Los Angeles, California, USA
| | - Adam J Chicco
- Departments of Health and Exercise Science and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Kjersti M Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Kevin L Grove
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon, USA.,Novo Nordisk Research Center, Seattle, Washington, USA
| | - Jacob E Friedman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
35
|
The impact of altered carnitine availability on acylcarnitine metabolism, energy expenditure and glucose tolerance in diet-induced obese mice. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1375-82. [DOI: 10.1016/j.bbadis.2016.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 11/23/2022]
|
36
|
Affourtit C. Mitochondrial involvement in skeletal muscle insulin resistance: A case of imbalanced bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1678-93. [PMID: 27473535 DOI: 10.1016/j.bbabio.2016.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/19/2016] [Accepted: 07/23/2016] [Indexed: 12/16/2022]
Abstract
Skeletal muscle insulin resistance in obesity associates with mitochondrial dysfunction, but the causality of this association is controversial. This review evaluates mitochondrial models of nutrient-induced muscle insulin resistance. It transpires that all models predict that insulin resistance arises as a result of imbalanced cellular bioenergetics. The nature and precise origin of the proposed insulin-numbing molecules differ between models but all species only accumulate when metabolic fuel supply outweighs energy demand. This observation suggests that mitochondrial deficiency in muscle insulin resistance is not merely owing to intrinsic functional defects, but could instead be an adaptation to nutrient-induced changes in energy expenditure. Such adaptive effects are likely because muscle ATP supply is fully driven by energy demand. This market-economic control of myocellular bioenergetics offers a mechanism by which insulin-signalling deficiency can cause apparent mitochondrial dysfunction, as insulin resistance lowers skeletal muscle anabolism and thus dampens ATP demand and, consequently, oxidative ATP synthesis.
Collapse
Affiliation(s)
- Charles Affourtit
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth University, Drake Circus, PL4 8AA Plymouth, UK.
| |
Collapse
|
37
|
Regulatory principles in metabolism–then and now. Biochem J 2016; 473:1845-57. [DOI: 10.1042/bcj20160103] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/21/2016] [Indexed: 12/22/2022]
Abstract
The importance of metabolic pathways for life and the nature of participating reactions have challenged physiologists and biochemists for over a hundred years. Eric Arthur Newsholme contributed many original hypotheses and concepts to the field of metabolic regulation, demonstrating that metabolic pathways have a fundamental thermodynamic structure and that near identical regulatory mechanisms exist in multiple species across the animal kingdom. His work at Oxford University from the 1970s to 1990s was groundbreaking and led to better understanding of development and demise across the lifespan as well as the basis of metabolic disruption responsible for the development of obesity, diabetes and many other conditions. In the present review we describe some of the original work of Eric Newsholme, its relevance to metabolic homoeostasis and disease and application to present state-of-the-art studies, which generate substantial amounts of data that are extremely difficult to interpret without a fundamental understanding of regulatory principles. Eric's work is a classical example of how one can unravel very complex problems by considering regulation from a cell, tissue and whole body perspective, thus bringing together metabolic biochemistry, physiology and pathophysiology, opening new avenues that now drive discovery decades thereafter.
Collapse
|
38
|
Larsson S, Jones HA, Göransson O, Degerman E, Holm C. Parathyroid hormone induces adipocyte lipolysis via PKA-mediated phosphorylation of hormone-sensitive lipase. Cell Signal 2016; 28:204-213. [DOI: 10.1016/j.cellsig.2015.12.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/18/2015] [Accepted: 12/20/2015] [Indexed: 12/19/2022]
|
39
|
Lack of phosphatidylethanolamine N -methyltransferase in mice does not promote fatty acid oxidation in skeletal muscle. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:119-129. [DOI: 10.1016/j.bbalip.2015.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/08/2015] [Accepted: 11/16/2015] [Indexed: 01/01/2023]
|
40
|
Shabrova E, Hoyos B, Vinogradov V, Kim YK, Wassef L, Leitges M, Quadro L, Hammerling U. Retinol as a cofactor for PKCδ-mediated impairment of insulin sensitivity in a mouse model of diet-induced obesity. FASEB J 2015; 30:1339-55. [PMID: 26671999 DOI: 10.1096/fj.15-281543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/23/2015] [Indexed: 12/15/2022]
Abstract
We previously defined that the mitochondria-localized PKCδ signaling complex stimulates the conversion of pyruvate to acetyl-coenzyme A by the pyruvate dehydrogenase complex. We demonstrated in vitro and ex vivo that retinol supplementation enhances ATP synthesis in the presence of the PKCδ signalosome. Here, we tested in vivo if a persistent oversupply of retinol would further impair glucose metabolism in a mouse model of diet-induced insulin resistance. We crossed mice overexpressing human retinol-binding protein (hRBP) under the muscle creatine kinase (MCK) promoter (MCKhRBP) with the PKCδ(-/-) strain to generate mice with a different status of the PKCδ signalosome and retinoid levels. Mice with a functional PKCδ signalosome and elevated retinoid levels (PKCδ(+/+)hRBP) developed the most advanced stage of insulin resistance. In contrast, elevation of retinoid levels in mice with inactive PKCδ did not affect remarkably their metabolism, resulting in phenotypic similarity between PKCδ(-/-)hRBP and PKCδ(-/-) mice. Therefore, in addition to the well-defined role of PKCδ in the etiology of metabolic syndrome, we present a novel PKCδ signaling pathway that requires retinol as a metabolic cofactor and is involved in the regulation of fuel utilization in mitochondria. The distinct role in whole-body energy homeostasis establishes the PKCδ signalosome as a promising target for therapeutic intervention in metabolic disorders.
Collapse
Affiliation(s)
- Elena Shabrova
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Beatrice Hoyos
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Valerie Vinogradov
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Youn-Kyung Kim
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Lesley Wassef
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Michael Leitges
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Loredana Quadro
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Ulrich Hammerling
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| |
Collapse
|
41
|
Moxley MA, Beard DA, Bazil JN. Global Kinetic Analysis of Mammalian E3 Reveals pH-dependent NAD+/NADH Regulation, Physiological Kinetic Reversibility, and Catalytic Optimum. J Biol Chem 2015; 291:2712-30. [PMID: 26644471 DOI: 10.1074/jbc.m115.676619] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 12/11/2022] Open
Abstract
Mammalian E3 is an essential mitochondrial enzyme responsible for catalyzing the terminal reaction in the oxidative catabolism of several metabolites. E3 is a key regulator of metabolic fuel selection as a component of the pyruvate dehydrogenase complex (PDHc). E3 regulates PDHc activity by altering the affinity of pyruvate dehydrogenase kinase, an inhibitor of the enzyme complex, through changes in reduction and acetylation state of lipoamide moieties set by the NAD(+)/NADH ratio. Thus, an accurate kinetic model of E3 is needed to predict overall mammalian PDHc activity. Here, we have combined numerous literature data sets and new equilibrium spectroscopic experiments with a multitude of independently collected forward and reverse steady-state kinetic assays using pig heart E3. The latter kinetic assays demonstrate a pH-dependent transition of NAD(+) activation to inhibition, shown here, to our knowledge, for the first time in a single consistent data set. Experimental data were analyzed to yield a thermodynamically constrained four-redox-state model of E3 that simulates pH-dependent activation/inhibition and active site redox states for various conditions. The developed model was used to determine substrate/product conditions that give maximal E3 rates and show that, due to non-Michaelis-Menten behavior, the maximal flux is different compared with the classically defined kcat.
Collapse
Affiliation(s)
- Michael A Moxley
- From the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel A Beard
- From the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Jason N Bazil
- From the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
42
|
Tian K, Niu D, Liu X, Prior BA, Zhou L, Lu F, Singh S, Wang Z. Limitation of thiamine pyrophosphate supply to growingEscherichia coliswitches metabolism to efficientd-lactate formation. Biotechnol Bioeng 2015; 113:182-8. [DOI: 10.1002/bit.25699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Kangming Tian
- Key Laboratory of Industrial Fermentation Microbiology; Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457; P. R. China
| | - Dandan Niu
- College of Biological Science and Engineering; Fuzhou University; Fuzhou 350108 P. R. China
| | - Xiaoguang Liu
- Key Laboratory of Industrial Fermentation Microbiology; Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457; P. R. China
| | - Bernard A. Prior
- Department of Microbiology; Stellenbosch University; Matieland, South Africa
| | - Li Zhou
- Center for Bioresource and Bioenergy; School of Biotechnology; Jiangnan University; Wuxi P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology; Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457; P. R. China
| | - Suren Singh
- Department of Biotechnology and Food Technology; Faculty of Applied Sciences; Durban University of Technology; Durban South Africa
| | - Zhengxiang Wang
- Key Laboratory of Industrial Fermentation Microbiology; Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457; P. R. China
| |
Collapse
|
43
|
Abstract
Impaired glucose homeostasis is one of the risk factors for causing metabolic diseases including obesity, type 2 diabetes, and cancers. In glucose metabolism, pyruvate dehydrogenase complex (PDC) mediates a major regulatory step, an irreversible reaction of oxidative decarboxylation of pyruvate to acetyl-CoA. Tight control of PDC is critical because it plays a key role in glucose disposal. PDC activity is tightly regulated using phosphorylation by pyruvate dehydrogenase kinases (PDK1 to 4) and pyruvate dehydrogenase phosphatases (PDP1 and 2). PDKs and PDPs exhibit unique tissue expression patterns, kinetic properties, and sensitivities to regulatory molecules. During the last decades, the up-regulation of PDKs has been observed in the tissues of patients and mammals with metabolic diseases, which suggests that the inhibition of these kinases may have beneficial effects for treating metabolic diseases. This review summarizes the recent advances in the role of specific PDK isoenzymes on the induction of metabolic diseases and describes the effects of PDK inhibition on the prevention of metabolic diseases using pharmacological inhibitors. Based on these reports, PDK isoenzymes are strong therapeutic targets for preventing and treating metabolic diseases.
Collapse
Affiliation(s)
- Nam Ho Jeoung
- Department of Pharmaceutical Science and Technology, Catholic University of Daegu College of Medical Sciences, Gyeongsan, Korea
| |
Collapse
|
44
|
Pyruvate dehydrogenase, Randle cycle, and skeletal muscle insulin resistance. Proc Natl Acad Sci U S A 2015; 112:E2854. [PMID: 25941416 DOI: 10.1073/pnas.1505398112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
45
|
Kowalski GM, De Souza DP, Burch ML, Hamley S, Kloehn J, Selathurai A, Tull D, O'Callaghan S, McConville MJ, Bruce CR. Application of dynamic metabolomics to examine in vivo skeletal muscle glucose metabolism in the chronically high-fat fed mouse. Biochem Biophys Res Commun 2015; 462:27-32. [PMID: 25930998 DOI: 10.1016/j.bbrc.2015.04.096] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/19/2015] [Indexed: 11/24/2022]
Abstract
RATIONALE Defects in muscle glucose metabolism are linked to type 2 diabetes. Mechanistic studies examining these defects rely on the use of high fat-fed rodent models and typically involve the determination of muscle glucose uptake under insulin-stimulated conditions. While insightful, they do not necessarily reflect the physiology of the postprandial state. In addition, most studies do not examine aspects of glucose metabolism beyond the uptake process. Here we present an approach to study rodent muscle glucose and intermediary metabolism under the dynamic and physiologically relevant setting of the oral glucose tolerance test (OGTT). METHODS AND RESULTS In vivo muscle glucose and intermediary metabolism was investigated following oral administration of [U-(13)C] glucose. Quadriceps muscles were collected 15 and 60 min after glucose administration and metabolite flux profiling was determined by measuring (13)C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates via gas chromatography-mass spectrometry. While no dietary effects were noted in the glycolytic pathway, muscle from mice fed a high fat diet (HFD) exhibited a reduction in labelling in TCA intermediates. Interestingly, this appeared to be independent of alterations in flux through pyruvate dehydrogenase. In addition, our findings suggest that TCA cycle anaplerosis is negligible in muscle during an OGTT. CONCLUSIONS Under the dynamic physiologically relevant conditions of the OGTT, skeletal muscle from HFD fed mice exhibits alterations in glucose metabolism at the level of the TCA cycle.
Collapse
Affiliation(s)
- Greg M Kowalski
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia.
| | - David P De Souza
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Micah L Burch
- Brigham and Women's Hospital, Department of Medicine, Boston, MA, USA
| | - Steven Hamley
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Joachim Kloehn
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ahrathy Selathurai
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Dedreia Tull
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sean O'Callaghan
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Malcolm J McConville
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Clinton R Bruce
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia
| |
Collapse
|
46
|
Reply to Constantin-Teodosiu et al.: mice with genetic PDH activation are not protected from high-fat diet-induced muscle insulin resistance. Proc Natl Acad Sci U S A 2015; 112:E825. [PMID: 25617370 DOI: 10.1073/pnas.1423574112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
47
|
Perpetual muscle PDH activation in PDH kinase knockout mice protects against high-fat feeding-induced muscle insulin resistance. Proc Natl Acad Sci U S A 2015; 112:E824. [PMID: 25617371 DOI: 10.1073/pnas.1422929112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Nogiec C, Burkart A, Dreyfuss JM, Lerin C, Kasif S, Patti ME. Metabolic modeling of muscle metabolism identifies key reactions linked to insulin resistance phenotypes. Mol Metab 2015; 4:151-63. [PMID: 25737951 PMCID: PMC4338313 DOI: 10.1016/j.molmet.2014.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/18/2014] [Accepted: 12/23/2014] [Indexed: 12/31/2022] Open
Abstract
Objective Dysregulated muscle metabolism is a cardinal feature of human insulin resistance (IR) and associated diseases, including type 2 diabetes (T2D). However, specific reactions contributing to abnormal energetics and metabolic inflexibility in IR are unknown. Methods We utilize flux balance computational modeling to develop the first systems-level analysis of IR metabolism in fasted and fed states, and varying nutrient conditions. We systematically perturb the metabolic network to identify reactions that reproduce key features of IR-linked metabolism. Results While reduced glucose uptake is a major hallmark of IR, model-based reductions in either extracellular glucose availability or uptake do not alter metabolic flexibility, and thus are not sufficient to fully recapitulate IR-linked metabolism. Moreover, experimentally-reduced flux through single reactions does not reproduce key features of IR-linked metabolism. However, dual knockdowns of pyruvate dehydrogenase (PDH), in combination with reduced lipid uptake or lipid/amino acid oxidation (ETFDH), does reduce ATP synthesis, TCA cycle flux, and metabolic flexibility. Experimental validation demonstrates robust impact of dual knockdowns in PDH/ETFDH on cellular energetics and TCA cycle flux in cultured myocytes. Parallel analysis of transcriptomic and metabolomics data in humans with IR and T2D demonstrates downregulation of PDH subunits and upregulation of its inhibitory kinase PDK4, both of which would be predicted to decrease PDH flux, concordant with the model. Conclusions Our results indicate that complex interactions between multiple biochemical reactions contribute to metabolic perturbations observed in human IR, and that the PDH complex plays a key role in these metabolic phenotypes.
Collapse
Affiliation(s)
| | - Alison Burkart
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA, USA
| | - Jonathan M Dreyfuss
- Research Division, Joslin Diabetes Center, and Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Carles Lerin
- Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Simon Kasif
- Biomedical Engineering, Boston University, Boston, MA, USA ; Research Division, Joslin Diabetes Center and Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Mary-Elizabeth Patti
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|