1
|
Lannoo L, Van Den Bogaert K, Belmans A, Brison N, Dehaspe L, De Langhe E, Vancoillie L, Parijs I, Vermeesch JR, Devriendt K, Van Calsteren K. Persistent Uninterpretable or Failed Prenatal Cell-Free DNA Screening Indicates a High-Risk Pregnancy and is Associated With Biological Factors Interfering With cfDNA-Analysis: A Prospective Cohort Study. Prenat Diagn 2025; 45:581-590. [PMID: 40114366 DOI: 10.1002/pd.6778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/22/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVE To investigate maternal characteristics, underlying factors and perinatal outcome in pregnancies with persistent uninterpretable prenatal cfDNA screening in a general obstetric population (GOP). METHODS This study included pregnant individuals with persistent uninterpretable prenatal cfDNA screening results from December 2020 to December 2022. Prenatal cfDNA screening results were classified as uninterpretable due to low quality score (LQS) or low fetal fraction (LFF). Maternal autoimmune screening and a third prenatal cfDNA screening were performed later in pregnancy. Data on maternal characteristics and perinatal outcome were analyzed. RESULTS Among 123 pregnant individuals with failed prenatal cfDNA screening, 68% were due to LFF and 32% to LQS. Obesity and autoimmune diseases were significantly overrepresented. A third prenatal cfDNA screening at 24 weeks was informative in 77.1% cases, with a higher success-rate in the LFF group (87.8%). Maternal autoimmune screening revealed unknown triple positivity for antiphospholipid antibodies in 2.4%. Abnormal perinatal outcome was registered in 69.9% of patients, with higher rates of adverse perinatal outcome in the LFF group. CONCLUSION Persistent uninterpretable prenatal cfDNA screening indicates a higher risk for adverse perinatal outcomes, especially in cases with LFF. Maternal autoimmune screening should be considered to identify high-risk pregnancies. A third prenatal cfDNA screening later in pregnancy can help stratify truly high-risk pregnancies and allows patients with initially uninterpretable results to make an informed decision about diagnostic testing.
Collapse
Affiliation(s)
- L Lannoo
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - K Van Den Bogaert
- Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - A Belmans
- Leuven Biostatistics and Statistical Bioinformatics Centre (L-BioStat), KU Leuven, Leuven, Belgium
| | - N Brison
- Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - L Dehaspe
- Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - E De Langhe
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - L Vancoillie
- Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - I Parijs
- Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - J R Vermeesch
- Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - K Devriendt
- Centre for Human Genetics, University Hospitals Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - K Van Calsteren
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Liu F, Su Y, Liu X, Zhao L, Wu Z, Liu Y, Zhang L. Cell-free DNA: a metabolic byproduct with diagnostic and prognostic potential in rheumatic disorders. Front Pharmacol 2025; 16:1537934. [PMID: 40008123 PMCID: PMC11850341 DOI: 10.3389/fphar.2025.1537934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
The release of intracellular DNA into the extracellular area occurs via two pathways: cell death and active secretion by cells. The DNA, which is free in the extracellular space, is commonly known as Cell-Free DNA (cfDNA). In healthy people, the levels of cfDNA in the circulation are notably minimal. Within a healthy organism, cfDNA undergoes swift elimination and filtration upon release, ensuring a persistently low concentration in the bloodstream. Conversely, individuals suffering from diverse illnesses like stroke, trauma, myocardial infarction, and various cancers show markedly higher levels of cfDNA in their blood plasma or serum. Further research has shown that cfDNA is associated with a wide range of human diseases and may have a feedback relationship with inflammation, potentially serving as a non-invasive, accurate, sensitive, and rapid biomarker for clinical applications in disease differential diagnosis, activity monitoring, and prognosis assessment. Studies dating back to the 1970s have indicated elevated cfDNA concentrations in SLE. Currently, increased levels of cfDNA are noted in a range of rheumatic disorders. Inflammatory damage in patients with rheumatic diseases promotes the release of cfDNA, while potential abnormalities in cfDNA metabolism further increase its levels. Elevated concentrations of cfDNA are recognized by DNA receptors, initiating immune-inflammatory reactions which subsequently accelerate the progression of disease. Reducing excess cfDNA may help improve inflammation. Additionally, several trials have demonstrated a correlation between cfDNA concentrations and the activity of rheumatic diseases, indicating the potential of cfDNA, a novel marker for inflammation, in conjunction with C-creative protein (CRP), Erythrocyte Sedimentation Rate (ESR) to monitor disease activity in rheumatic conditions. This paper provides an overview of cfDNA and summarizes current research advancements in cfDNA in rheumatic diseases, aiming to offer new perspectives for researchers.
Collapse
Affiliation(s)
- Fancheng Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Shanxi Bethune Hospital, Taiyuan, China
| | - Yazhen Su
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Shanxi Bethune Hospital, Taiyuan, China
| | - Xinling Liu
- Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Li Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Shanxi Bethune Hospital, Taiyuan, China
| | - Zewen Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Shanxi Bethune Hospital, Taiyuan, China
| | - Yang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Shanxi Bethune Hospital, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Shanxi Bethune Hospital, Taiyuan, China
| |
Collapse
|
3
|
Li S, Lin Y, Su F, Hu X, Li L, Yan W, Zhang Y, Zhuo M, Gao Y, Jin X, Zhang H. Comprehensive evaluation of the impact of whole-genome bisulfite sequencing (WGBS) on the fragmentomic characteristics of plasma cell-free DNA. Clin Chim Acta 2025; 566:120033. [PMID: 39528065 DOI: 10.1016/j.cca.2024.120033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Cell-free DNA (cfDNA) is non-randomly fragmented in human body fluids. Analyzing such fragmentation patterns of cfDNA holds great promise for liquid biopsy. Whole-genome bisulfite sequencing (WGBS) is widely used for cfDNA methylation profiling. However, its applicability for studying fragmentomic characteristics remains largely unexplored. METHODS We performed paired WGBS and whole-genome sequencing (WGS) on 66 peripheral plasma samples from 58 pregnant women. Then, we systematically compared the fragmentation patterns of cell-free nuclear DNA and mitochondrial DNA (mtDNA) sequenced from these two approaches. Additionally, we evaluated the extent of the size shortening in fetal-derived cfDNA and estimated the fetal DNA fraction in maternal plasma using both sequencing methods. RESULTS Compared to WGS samples, WGBS samples demonstrated a significantly lower genome coverage and higher GC content in cfDNA. They also showed a significant decrease in the size of cell-free nuclear DNA, along with alterations in the end motif pattern that were specifically associated with CpG and "CC" sites. While there was a slight shift in the inferred nucleosome footprint from cfDNA coverages in WGBS samples, the cfDNA coverage patterns in CTCF and TSS regions remained highly consistent between these two sequencing methods. Both methods accurately reflected gene expression levels through their TSS coverages. Additionally, WGBS samples exhibited an increased abundance and longer length of mtDNA in plasma. Furthermore, we observed the size shortening of fetal cfDNA in plasma consistently, with a highly correlated fetal DNA fraction inferred by cfDNA coverage between WGBS and WGS samples (r = 0.996). However, the estimated fetal cfDNA fraction in WGBS samples was approximately 7 % lower than in WGS samples. CONCLUSIONS We confirmed that WGBS can introduce artificial breakages to cfDNA, leading to altered fragmentomic patterns in both nuclear and mitochondrial DNA. However, WGBS cfDNA remains suitable for analyzing certain cfDNA fragmentomic characteristics, such as coverage in genome regulation regions and the essential characteristics of fetal DNA in maternal plasma.
Collapse
Affiliation(s)
- Shaogang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; BGI Research, Shenzhen 518083, China
| | - Yu Lin
- BGI Research, Shenzhen 518083, China; College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | | | - Xintao Hu
- BGI Research, Shenzhen 518083, China
| | | | - Wei Yan
- BGI Research, Shenzhen 518083, China; College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Yan Zhang
- BGI Research, Shenzhen 518083, China
| | - Min Zhuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ya Gao
- BGI Research, Shenzhen 518083, China.
| | - Xin Jin
- BGI Research, Shenzhen 518083, China; School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | | |
Collapse
|
4
|
Bai J, Jiang P, Ji L, Lam WKJ, Zhou Q, Ma MJL, Ding SC, Ramakrishnan S, Wan CW, Yang TC, Yukawa M, Chan RWY, Qiao R, Yu SCY, Choy LYL, Shi Y, Wang Z, Tam THC, Law MF, Wong RSM, Wong J, Chan SL, Wong GLH, Wong VWS, Chan KCA, Lo YMD. Histone modifications of circulating nucleosomes are associated with changes in cell-free DNA fragmentation patterns. Proc Natl Acad Sci U S A 2024; 121:e2404058121. [PMID: 39382996 PMCID: PMC11494292 DOI: 10.1073/pnas.2404058121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
The analysis of tissues of origin of cell-free DNA (cfDNA) is of research and diagnostic interest. Many studies focused on bisulfite treatment or immunoprecipitation protocols to assess the tissues of origin of cfDNA. DNA loss often occurs during such processes. Fragmentomics of cfDNA molecules has uncovered a wealth of information related to tissues of origin of cfDNA. There is still much room for the development of tools for assessing contributions from various tissues into plasma using fragmentomic features. Hence, we developed an approach to analyze the relative contributions of DNA from different tissues into plasma, by identifying characteristic fragmentation patterns associated with selected histone modifications. We named this technique as FRAGmentomics-based Histone modification Analysis (FRAGHA). Deduced placenta-specific histone H3 lysine 27 acetylation (H3K27ac)-associated signal correlated well with the fetal DNA fraction in maternal plasma (Pearson's r = 0.96). The deduced liver-specific H3K27ac-associated signal correlated with the donor-derived DNA fraction in liver transplantation recipients (Pearson's r = 0.92) and was significantly increased in patients with hepatocellular carcinoma (HCC) (P < 0.01, Wilcoxon rank-sum test). Significant elevations of erythroblasts-specific and colon-specific H3K27ac-associated signals were observed in patients with β-thalassemia major and colorectal cancer, respectively. Furthermore, using the fragmentation patterns from tissue-specific H3K27ac regions, a machine learning algorithm was developed to enhance HCC detection, with an area under the curve (AUC) of up to 0.97. Finally, genomic regions with H3K27ac or histone H3 lysine 4 trimethylation (H3K4me3) were found to exhibit different fragmentomic patterns of cfDNA. This study has shed light on the relationship between cfDNA fragmentomics and histone modifications, thus expanding the armamentarium of liquid biopsy.
Collapse
Affiliation(s)
- Jinyue Bai
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Peiyong Jiang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Lu Ji
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - W. K. Jacky Lam
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Qing Zhou
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Mary-Jane L. Ma
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Spencer C. Ding
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Saravanan Ramakrishnan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Chun Wai Wan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
| | - Tongxin Claire Yang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Masashi Yukawa
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Rebecca W. Y. Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Rong Qiao
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Stephanie C. Y. Yu
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - L. Y. Lois Choy
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Yuwei Shi
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Zilong Wang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Tommy H. C. Tam
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Man Fai Law
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Raymond S. M. Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - John Wong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Stephen Lam Chan
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Grace L. H. Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vincent W. S. Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - K. C. Allen Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Y. M. Dennis Lo
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| |
Collapse
|
5
|
Zhang J, Ji H, Liu M, Zheng M, Wen Z, Shen H. Mitochondrial DNA Programs Lactylation of cGAS to Induce IFN Responses in Patients with Systemic Lupus Erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:795-807. [PMID: 39093026 DOI: 10.4049/jimmunol.2300758] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
Mitochondrial DNA (mtDNA) is frequently released from mitochondria, activating cGAS-STING signaling and inducing type I IFNs (IFN-Is) in systemic lupus erythematosus (SLE). Meanwhile, whether and how the glycolytic pathway was involved in such IFN-I responses in human SLE remain unclear. In this study, we found that monocytes from SLE patients exerted robust IFN-I generation and elevated level of cytosolic mtDNA. Transfection of mtDNA into THP-1 macrophages was efficient in inducing IFN-I responses, together with the strong glycolytic pathway that promoted lactate production, mimicking the SLE phenotype. Blockade of lactate generation abrogated such IFN-I responses and, vice versa, exogenous lactate enhanced the IFN-I generation. Mechanistically, lactate promoted the lactylation of cGAS, which inhibited its binding to E3 ubiquitination ligase MARCHF5, blocking cGAS degradation and leading to strong IFN-I responses. In accordance, targeting lactate generation alleviated disease development in humanized SLE chimeras. Collectively, cytosolic mtDNA drives metabolic adaption toward the glycolytic pathway, promoting lactylation of cGAS for licensing IFN-I responses in human SLE and thereby assigning the glycolytic pathway as a promising therapeutic target for SLE.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| | - Huiyan Ji
- Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Mengdi Liu
- Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Ming Zheng
- Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Haili Shen
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
6
|
Pisetsky DS. Unique Interplay Between Antinuclear Antibodies and Nuclear Molecules in the Pathogenesis of Systemic Lupus Erythematosus. Arthritis Rheumatol 2024; 76:1334-1343. [PMID: 38622070 PMCID: PMC11349482 DOI: 10.1002/art.42863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/19/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease that primarily affects young women and causes a wide range of inflammatory manifestations. The hallmark of SLE is the production of antibodies to components of the cell nucleus (antinuclear antibodies [ANAs]). These antibodies can bind to DNA, RNA, and protein complexes with nucleic acids. Among ANAs, antibodies to DNA (anti-DNA) are markers for classification and disease activity, waxing and waning disease activity in many patients. In the blood, anti-DNA antibodies can bind to DNA to form immune complexes with two distinct roles in pathogenesis: (1) renal deposition to provoke nephritis and (2) stimulation of cytokine production following uptake into innate immune cells and interaction with internal nucleic acid sensors. These sensors are part of an internal host defense system in the cell cytoplasm that can respond to DNA from infecting organisms; during cell stress, DNA from nuclear and mitochondrial sources can also trigger these sensors. The formation of immune complexes requires a source of extracellular DNA in an immunologically accessible form. As shown in in vivo and in vitro systems, extracellular DNA can emerge from dead and dying cells in both a free and a particulate form. Neutrophils undergoing the process of NETosis can release DNA in mesh-like structures called neutrophil extracellular traps. In SLE, therefore, the combination of ANAs and immunologically active DNA can create new structures that can promote inflammation throughout the body as well as drive organ inflammation and damage.
Collapse
Affiliation(s)
- David S Pisetsky
- Duke University Medical Center and Durham Veterans Administration Medical Center, Durham, North Carolina
| |
Collapse
|
7
|
Hu X, Zhang H, Wang Y, Lin Y, Li Q, Li L, Zeng G, Ou R, Cheng X, Zhang Y, Jin X. Effects of blood-processing protocols on cell-free DNA fragmentomics in plasma: Comparisons of one- and two-step centrifugations. Clin Chim Acta 2024; 560:119729. [PMID: 38754575 DOI: 10.1016/j.cca.2024.119729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Cell-free DNA (cfDNA) fragmentomic characteristics are promising analytes with abundant physiological signals for non-invasive disease diagnosis and monitoring. Previous studies on plasma cfDNA fragmentomics commonly employed a two-step centrifugation process for removing cell debris, involving a low-speed centrifugation followed by a high-speed centrifugation. However, the effects of centrifugation conditions on the analysis of cfDNA fragmentome remain uncertain. METHODS We collected blood samples from 10 healthy individuals and divided each sample into two aliquots for plasma preparation with one- and two-step centrifugation processes. We performed whole genome sequencing (WGS) of the plasma cfDNA in the two groups and comprehensively compared the cfDNA fragmentomic features. Additionally, we reanalyzed the fragmentomic features of cfDNA from 16 healthy individuals and 16 COVID-19 patients, processed through one- and two-step centrifugation in our previous study, to investigate the impact of centrifugation on disease signals. RESULTS Our results showed that there were no significant differences observed in the characteristics of nuclear cfDNA, including size, motif diversity score (MDS) of end motifs, and genome distribution, between plasma samples treated with one- and two-step centrifugation. The cfDNA size shortening in COVID-19 patients was observed in plasma samples with one- and two-step centrifugation methods. However, we observed a significantly higher relative abundance and longer size of cell-free mitochondrial DNA (mtDNA) in the one-step samples compared to the two-step samples. This difference in mtDNA caused by the one- and two-step centrifugation methods surpasses the pathological difference between COVID-19 patients and healthy individuals. CONCLUSIONS Our findings indicate that one-step low-speed centrifugation is a simple and potentially suitable method for analyzing nuclear cfDNA fragmentation characteristics. These results offer valuable guidance for cfDNA research in various clinical scenarios.
Collapse
Affiliation(s)
- Xintao Hu
- Engineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education, Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China; BGI Research, Shenzhen 518083, China
| | | | | | - Yu Lin
- BGI Research, Shenzhen 518083, China
| | - Qiuyan Li
- BGI Research, Shenzhen 518083, China
| | | | | | - Rijing Ou
- BGI Research, Shenzhen 518083, China
| | - Xinyu Cheng
- Engineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education, Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Yan Zhang
- BGI Research, Shenzhen 518083, China.
| | - Xin Jin
- BGI Research, Shenzhen 518083, China; School of Medicine, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
8
|
Chen X, Chen C, Tu Z, Guo Z, Lu T, Li J, Wen Y, Chen D, Lei W, Wen W, Li H. Intranasal PAMAM-G3 scavenges cell-free DNA attenuating the allergic airway inflammation. Cell Death Discov 2024; 10:213. [PMID: 38698016 PMCID: PMC11065999 DOI: 10.1038/s41420-024-01980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Allergic airway inflammation (AAI), including allergic rhinitis (AR) and allergic asthma, is driven by epithelial barrier dysfunction and type 2 inflammation. However, the underlying mechanism remains uncertain and available treatments are constrained. Consequently, we aim to explore the role of cell-free DNA (cfDNA) in AAI and assess the potential alleviating effects of cationic polymers (CPs) through cfDNA elimination. Levels of cfDNA were evaluated in AR patients, allergen-stimulated human bronchial epithelium (BEAS-2B cells) and primary human nasal epithelium from both AR and healthy control (HC), and AAI murine model. Polyamidoamine dendrimers-generation 3 (PAMAM-G3), a classic type of cationic polymers, were applied to investigate whether the clearance of cfDNA could ameliorate airway epithelial dysfunction and inhibit AAI. The levels of cfDNA in the plasma and nasal secretion from AR were higher than those from HC (P < 0.05). Additionally, cfDNA levels in the exhaled breath condensate (EBC) were positively correlated with Interleukin (IL)-5 levels in EBC (R = 0.4191, P = 0.0001). Plasma cfDNA levels negatively correlated with the duration of allergen immunotherapy treatment (R = -0.4297, P = 0.006). Allergen stimulated cfDNA secretion in vitro (P < 0.001) and in vivo (P < 0.0001), which could be effectively scavenged with PAMAM-G3. The application of PAMAM-G3 inhibited epithelial barrier dysfunction in vitro and attenuated the development of AAI in vivo. This study elucidates that cfDNA, a promising biomarker for monitoring disease severity, aggravates AAI and the application of intranasal PAMAM-G3 could potentially be a novel therapeutic intervention for AAI. Allergen stimulates the secretion of cell-free DNA (cfDNA) in both human and mouse airway. Intranasal polyamidoamine dendrimers-generation 3 (PAMAM-G3) scavenges cfDNA and alleviates allergic airway inflammation.
Collapse
Affiliation(s)
- Xiumin Chen
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changhui Chen
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaoxu Tu
- Department of Otorhinolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zeling Guo
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tong Lu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Li
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Otorhinolaryngology, Guangxi Hospital Division of the First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Yihui Wen
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dehua Chen
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenbin Lei
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Weiping Wen
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, China.
- Department of Otorhinolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Hang Li
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Wang F, Liu YJ, Miao HB, Chen Z. Clinical algorithm model based on cfDNA to predict SLE disease activity. Lupus 2024; 33:145-154. [PMID: 38183242 DOI: 10.1177/09612033231226314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
BACKGROUND Circulating cell-free DNA (cfDNA) has been widely used as a new liquid-biopsy marker. Dysregulation of cfDNA has been found in patients with systemic lupus erythematosus (SLE). However, the detailed association between cfDNA and SLE has not been thoroughly studied. METHODS Plasma samples were collected from 88 patients with active SLE and 39 patients with inactive SLE. The cfDNA concentration was determined, and the length and distribution of cfDNA fragments were verified. RESULTS cfDNA concentrations were significantly higher in patients with active SLE than in patients with inactive SLE (0.4 [0.18-0.897] ng/µL vs 0.249 [0.144-0.431] ng/µL; p = .043). cfDNA fragments were enriched in the ranges of 153-198 bp and 300-599 bp. cfDNA concentrations were associated with the reduction of the anti-double-stranded DNA (dsDNA) antibodies titer (r = -0.301, p = .034). The presence of anti-U1 ribonucleoprotein (p = .012), anti-Sjogren syndrome A (p = .024), anti-dsDNA (p = .0208), and anti-nucleosome antibodies (p = .0382) might associate to the variation of cfDNA concentration. Reduced cfDNA concentration was associated with renal damage in active SLE patients (0.31 [0.11-0.73] ng/µL vs 0.65 [0.27-1.53] ng/µL; p = .009). The Active index, a combination model including cfDNA concentration and other clinical indices, had an area of 0.886 under the receiver operating characteristics curve for distinguishing active SLE. The Active index was positively correlated with the SLE disease activity index score (r = 0.6724, p < .0001). CONCLUSIONS Through systematic stratified analysis and clinical algorithm model, this study found that plasma cfDNA concentration is closely related to SLE disease severity, which has guiding significance for the future clinical application of cfDNA in SLE.
Collapse
Affiliation(s)
- Fang Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Rheumatology and Immunology, Foresea Life Insurance Guangxi Hospital, Nanning, China
| | - Yi-Jing Liu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hai-Bing Miao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Zhen Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
10
|
Luo Y, Zhang H, Li L, Lin Y, Wang X, Chen W, Tao Y, Ou R, Zhou W, Zheng F, Jin Y, Cheng F, Zhu H, Zhang Y, Jin X. Heat inactivation does not alter host plasma cell-free DNA characteristics in infectious disease research. Clin Chim Acta 2024; 553:117751. [PMID: 38163539 DOI: 10.1016/j.cca.2023.117751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Cell-free DNA (cfDNA) is a promising analyte for non-invasive liquid biopsy, carrying abundant signatures for disease diagnosis and monitoring. In infectious disease researches, blood plasma samples are routinely heat-inactivated before proceeding with downstream analyses. However, the effects of heat inactivation on cfDNA fragmentomic analysis remain largely unclear, potentially introducing biases or altering the characteristics of cfDNA. METHODS We performed a comprehensive investigation of cfDNA concentrations and fragmentomics in 21 plasma samples from 7 healthy individuals, by comparing the sample group without the heat inactivation to those exposed to once or twice heat-inactivation at 56 °C for 30 min and following freeze-thaw. RESULTS Plasma samples with once and twice heat inactivation displayed no significant deviations in primary characteristics, including cfDNA concentrations, size profiles, end motif features, and genome-wide distributions, compared to samples without heat treatment. CONCLUSIONS Heat-inactivated cfDNA can be utilized for liquid biopsy in infectious disease researches, without substantial impact on cfDNA concentrations and fragmentomic properties. This study provides essential insights into the effects of heat inactivation on cfDNA properties and will contribute to the development of reliable non-invasive biomarkers for infectious disease.
Collapse
Affiliation(s)
- Yuxue Luo
- School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | | | - Lingguo Li
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Lin
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Xinxin Wang
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei Chen
- School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China; BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Ye Tao
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Rijing Ou
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Wenwen Zhou
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Fang Zheng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yan Jin
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Fanjun Cheng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | | | - Yan Zhang
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Xin Jin
- School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China; BGI-Shenzhen, Shenzhen 518083, Guangdong, China; Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, Shenzhen 518083, China.
| |
Collapse
|
11
|
Zhou HY, Luo Q, Sui H, Du XN, Zhao YJ, Liu L, Guan Q, Zhou Y, Wen QS, Shi Y, Sun Y, Lin HL, Wang DP. Recent advances in the involvement of epigenetics in the pathogenesis of systemic lupus erythematosus. Clin Immunol 2024; 258:109857. [PMID: 38043757 DOI: 10.1016/j.clim.2023.109857] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Systemic lupus erythematosus (SLE) is a typical systemic autoimmune disease that manifests as skin rash, arthritis, lymphadenopathy, and multiple organ lesions. Epigenetics, including DNA methylation, histone modification, and non-coding RNA regulation, mainly affect the function and characteristics of cells through the regulation of gene transcription or translation. Increasing evidence indicates that there are a variety of complex epigenetic effects in patients with SLE, which interfere with the differentiation and function of T, and B lymphocytes, monocytes, and neutrophils, and enhance the expression of SLE-associated pathogenic genes. This paper summarizes our currently knowledge regarding pathogenesis of SLE, and introduces current advances in the epigenetic regulation of SLE from three aspects: immune function, inflammatory response, and lupus complications. We propose that epigenetic changes could be used as potential biomarkers and therapeutic targets of SLE.
Collapse
Affiliation(s)
- Hong-Yan Zhou
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Luo
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hua Sui
- Integrated TCM and Western Medicine Collage of Dalian Medical University, Dalian, China
| | - Xiang-Ning Du
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yang-Jianing Zhao
- Integrated TCM and Western Medicine Collage of Dalian Medical University, Dalian, China
| | - Lu Liu
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qing Guan
- Integrated TCM and Western Medicine Collage of Dalian Medical University, Dalian, China
| | - Yue Zhou
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qing-Si Wen
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yan Shi
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yu Sun
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hong-Li Lin
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Da-Peng Wang
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
12
|
Lenaerts L, Theunis M, Amant F, Vermeesch JR. Non-invasive prenatal testing: when results suggests maternal cancer. MED GENET-BERLIN 2023; 35:285-295. [PMID: 38835737 PMCID: PMC11006267 DOI: 10.1515/medgen-2023-2055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
It is now well-established that non-invasive prenatal testing (NIPT), originally designed to screen cell-free DNA (cfDNA) in maternal blood for the presence of common fetal trisomies, can lead to incidental detection of occult maternal malignancies. Retrospective evaluations have demonstrated that the detection of multiple copy number alterations in cfDNA is particularly suggestive of an incipient tumor and that cancer detection rates not only depend on tumor biology but also on applied NIPT technologies and downstream diagnostic investigations. Since the identification of a maternal cancer in pregnancy has implications for both woman and the unborn child, prospective studies are needed to provide evidence on best clinical practices and on clinical utility in terms of patient outcomes.
Collapse
Affiliation(s)
- Liesbeth Lenaerts
- Catholic University Leuven Department of Oncology, Laboratory of Gynecological Oncology Herestraat 49 - box 818 3000 Leuven Belgium
| | - Miel Theunis
- Catholic University Leuven Centre of Human Genetics Herestraat 49 - box 818 3000 Leuven Belgium
| | - Frédéric Amant
- Catholic University Leuven Department of Oncology, Laboratory of Gynecological Oncology Herestraat 49 - box 818 3000 Leuven Belgium
- Catholic University Leuven Department of Oncology, Laboratory for Gynecological Oncology Leuven Belgium
- University Hospitals Leuven Centre of Human Genetics Leuven Belgium
| | - Joris R Vermeesch
- Catholic University Leuven Centre of Human Genetics Herestraat 49 - box 818 3000 Leuven Belgium
| |
Collapse
|
13
|
Yu C, Lin Y, Luo Y, Guo Y, Ye Z, Ou R, Zhang Y, Wang X, Qu R, Zhou W, Li J, Bai Y, Yu X, Zhang H, Yan L, Jin X. The fragmentomic property of plasma cell-free DNA enables the non-invasive detection of diabetic nephropathy in patients with diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1164822. [PMID: 37867508 PMCID: PMC10586048 DOI: 10.3389/fendo.2023.1164822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Background Diabetic nephropathy (DN) is one of the most prevalent complications of diabetes mellitus (DM). However, there is still a lack of effective methods for non-invasive diagnosis of DN in clinical practice. We aimed to explore biomarkers from plasma cell-free DNA as a surrogate of renal biopsy for the differentiation of DN patients from patients with DM. Materials and methods The plasma cell-free DNA (cfDNA) was sequenced from 53 healthy individuals, 53 patients with DM but without DN, and 71 patients with both DM and DN. Multidimensional features of plasma DNA were analyzed to dissect the cfDNA profile in the DM and DN patients and identify DN-specific cfDNA features. Finally, a classification model was constructed by integrating all informative cfDNA features to demonstrate the clinical utility in DN detection. Results In comparison with the DM patients, the DN individuals exhibited significantly increased cfDNA concentration in plasma. The cfDNA from the DN patients showed a distinct fragmentation pattern with an altered size profile and preferred motifs that start with "CC" in the cfDNA ending sites, which were associated with deoxyribonuclease 1 like 3 (DNASE1L3) expression in the kidney. Moreover, patients with DM or DN were found to carry more alterations in whole-genome cfDNA coverage when compared with healthy individuals. We integrated DN-specific cfDNA features (cfDNA concentration, size, and motif) into a classification model, which achieved an area under the receiver operating characteristic curve (AUC) of 0.928 for the differentiation of DN patients from DM patients. Conclusion Our findings showed plasma cfDNA as a reliable non-invasive biomarker for differentiating DN patients from DM patients. The utility of cfDNA in clinical practice in large prospective cohorts is warranted.
Collapse
Affiliation(s)
- Chaolun Yu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guang Dong Clinical Research Center for Metabolic Diseases, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Lin
- BGI Research, Shenzhen, China
| | - Yuxue Luo
- BGI Research, Shenzhen, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yun Guo
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
| | - Zhiming Ye
- Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | | | - Xinxin Wang
- BGI Research, Shenzhen, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | | | | | - Jie Li
- Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | - Xueqing Yu
- Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | - Li Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guang Dong Clinical Research Center for Metabolic Diseases, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Jin
- BGI Research, Shenzhen, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Lannoo L, Van Camp J, Brison N, Parijs I, Vancoillie L, Van Den Bogaert K, Vermeesch JR, Devriendt K, Van Calsteren K. What helps define outcomes in persistent uninterpretable non-invasive prenatal testing: Maternal factors, fetal fraction or quality scores? Prenat Diagn 2023; 43:1333-1343. [PMID: 37592442 DOI: 10.1002/pd.6423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVES To assess maternal characteristics and comorbidities in patients with persistent uninterpretable non-invasive prenatal testing (NIPT) and to evaluate the association with adverse pregnancy outcome in a general risk population. METHODS A retrospective cohort study (July 2017-December 2020) was conducted of patients with persistent uninterpretable NIPT samples. Maternal characteristics and pregnancy outcomes were compared with the general Belgian obstetric population. RESULTS Of the 148 patients with persistent uninterpretable NIPT, 37 cases were due to a low fetal fraction (LFF) and 111 due to a low quality score (LQS). Both groups (LFF, LQS) showed more obesity (60.6%, 42.4%), multiple pregnancies (18.9%, 4.5%) and more obstetrical complications. In the LQS group, a high rate of maternal auto-immune disorders (30.6%) was seen and hypertensive complications (17.6%), preterm birth (17.6%) and neonatal intensive care unit (NICU) admission (22%) were significantly increased. In the LFF group hypertensive complications (21.6%), gestational diabetes (20.6%), preterm birth (27%), SGA (25.6%), major congenital malformations (11.4%), c-section rate (51.4%) and NICU admission (34.9%) were significantly increased. Chromosomal abnormalities were not increased in both groups. CONCLUSIONS Patients with persistent uninterpretable NIPT have significantly more maternal obesity, comorbidities and adverse pregnancy outcome than the general population and should receive high-risk pregnancy care. Distinguishing between LFF and LQS optimizes counseling because maternal characteristics and pregnancy outcome differ between these groups.
Collapse
Affiliation(s)
- Lore Lannoo
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Joke Van Camp
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Nathalie Brison
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Ilse Parijs
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Leen Vancoillie
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Koen Devriendt
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Kristel Van Calsteren
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Benn P, Cuckle H. Overview of Noninvasive Prenatal Testing (NIPT) for the Detection of Fetal Chromosome Abnormalities; Differences in Laboratory Methods and Scope of Testing. Clin Obstet Gynecol 2023; 66:536-556. [PMID: 37650667 DOI: 10.1097/grf.0000000000000803] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Although nearly all noninvasive prenatal testing is currently based on analyzing circulating maternal cell-free DNA, the technical methods usedvary considerably. We review the different methods. Based on validation trials and clinical experience, there are mostly relatively small differences in screening performance for trisomies 21, 18, and 13 in singleton pregnancies. Recent reports show low no-call rates for all methods, diminishing its importance when choosing a laboratory. However, method can be an important consideration for twin pregnancies, screening for sex chromosome abnormalities, microdeletion syndromes, triploidy, molar pregnancies, rare autosomal trisomies, and segmental imbalances, and detecting maternal chromosome abnormalities.
Collapse
Affiliation(s)
- Peter Benn
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut
| | - Howard Cuckle
- Department of Obstetrics and Gynecology, Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
16
|
Hong K, Park HJ, Jang HY, Shim SH, Jang Y, Kim SH, Cha DH. A Novel Paradigm for Non-Invasive Prenatal Genetic Screening: Trophoblast Retrieval and Isolation from the Cervix (TRIC). Diagnostics (Basel) 2023; 13:2532. [PMID: 37568895 PMCID: PMC10417081 DOI: 10.3390/diagnostics13152532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
As the prevalence of pregnancies with advanced maternal age increases, the risk of fetal chromosomal abnormalities is on the rise. Therefore, prenatal genetic screening and diagnosis have become essential elements in contemporary obstetrical care. Trophoblast retrieval and isolation from the cervix (TRIC) is a non-invasive procedure that can be utilized for prenatal genetic diagnosis. The method involves the isolation of fetal cells (extravillous trophoblasts) by transcervical sampling; along with its non-invasiveness, TRIC exhibits many other advantages such as its usefulness in early pregnancy at 5 weeks of gestation, and no interference by various fetal and maternal factors. Moreover, the trophoblast yields from TRIC can provide valuable information about obstetrical complications related to abnormal placentation even before clinical symptoms arise. The standardization of this clinical tool is still under investigation, and the upcoming advancements in TRIC are expected to meet the increasing need for a safe and accurate option for prenatal diagnosis.
Collapse
Affiliation(s)
- Kirim Hong
- CHA Gangnam Medical Center, Department of Obstetrics and Gynecology, CHA University, Seoul 06125, Republic of Korea; (K.H.); (H.J.P.); (Y.J.)
| | - Hee Jin Park
- CHA Gangnam Medical Center, Department of Obstetrics and Gynecology, CHA University, Seoul 06125, Republic of Korea; (K.H.); (H.J.P.); (Y.J.)
| | - Hee Yeon Jang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (H.Y.J.); (S.H.S.)
| | - Sung Han Shim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (H.Y.J.); (S.H.S.)
| | - Yoon Jang
- CHA Gangnam Medical Center, Department of Obstetrics and Gynecology, CHA University, Seoul 06125, Republic of Korea; (K.H.); (H.J.P.); (Y.J.)
| | - Soo Hyun Kim
- CHA Gangnam Medical Center, Department of Obstetrics and Gynecology, CHA University, Seoul 06125, Republic of Korea; (K.H.); (H.J.P.); (Y.J.)
| | - Dong Hyun Cha
- CHA Gangnam Medical Center, Department of Obstetrics and Gynecology, CHA University, Seoul 06125, Republic of Korea; (K.H.); (H.J.P.); (Y.J.)
| |
Collapse
|
17
|
Nguyen VC, Nguyen TH, Phan TH, Tran THT, Pham TTT, Ho TD, Nguyen HHT, Duong ML, Nguyen CM, Nguyen QTB, Bach HPT, Kim VV, Pham TA, Nguyen BT, Nguyen TNV, Huynh LAK, Tran VU, Tran TTT, Nguyen TD, Phu DTB, Phan BHH, Nguyen QTT, Truong DK, Do TTT, Nguyen HN, Phan MD, Giang H, Tran LS. Fragment length profiles of cancer mutations enhance detection of circulating tumor DNA in patients with early-stage hepatocellular carcinoma. BMC Cancer 2023; 23:233. [PMID: 36915069 PMCID: PMC10009971 DOI: 10.1186/s12885-023-10681-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Late detection of hepatocellular carcinoma (HCC) results in an overall 5-year survival rate of less than 16%. Liquid biopsy (LB) assays based on detecting circulating tumor DNA (ctDNA) might provide an opportunity to detect HCC early noninvasively. Increasing evidence indicates that ctDNA detection using mutation-based assays is significantly challenged by the abundance of white blood cell-derived mutations, non-tumor tissue-derived somatic mutations in plasma, and the mutational tumor heterogeneity. METHODS Here, we employed concurrent analysis of cancer-related mutations, and their fragment length profiles to differentiate mutations from different sources. To distinguish persons with HCC (PwHCC) from healthy participants, we built a classification model using three fragmentomic features of ctDNA through deep sequencing of thirteen genes associated with HCC. RESULTS Our model achieved an area under the curve (AUC) of 0.88, a sensitivity of 89%, and a specificity of 82% in the discovery cohort consisting of 55 PwHCC and 55 healthy participants. In an independent validation cohort of 54 PwHCC and 53 healthy participants, the established model achieved comparable classification performance with an AUC of 0.86 and yielded a sensitivity and specificity of 81%. CONCLUSIONS Our study provides a rationale for subsequent clinical evaluation of our assay performance in a large-scale prospective study.
Collapse
Affiliation(s)
- Van-Chu Nguyen
- National Cancer Hospital, Hanoi, Vietnam.,Hanoi Medical University, Hanoi, Vietnam
| | - Trong Hieu Nguyen
- Medical Genetics Institute, 186 Nguyen Duy Duong, Ward 3, District 10, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | | | - Thanh-Huong Thi Tran
- National Cancer Hospital, Hanoi, Vietnam.,Hanoi Medical University, Hanoi, Vietnam
| | | | - Tan Dat Ho
- MEDIC Medical Center, Ho Chi Minh City, Vietnam
| | - Hue Hanh Thi Nguyen
- Medical Genetics Institute, 186 Nguyen Duy Duong, Ward 3, District 10, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | | | - Cao Minh Nguyen
- Medical Genetics Institute, 186 Nguyen Duy Duong, Ward 3, District 10, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | - Que-Tran Bui Nguyen
- Medical Genetics Institute, 186 Nguyen Duy Duong, Ward 3, District 10, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | | | - Van-Vu Kim
- National Cancer Hospital, Hanoi, Vietnam.,Hanoi Medical University, Hanoi, Vietnam
| | | | | | | | - Le Anh Khoa Huynh
- Medical Genetics Institute, 186 Nguyen Duy Duong, Ward 3, District 10, Ho Chi Minh City, Vietnam.,Virginia Commonwealth University, Richmond, USA
| | - Vu Uyen Tran
- Medical Genetics Institute, 186 Nguyen Duy Duong, Ward 3, District 10, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | - Thuy Thi Thu Tran
- Medical Genetics Institute, 186 Nguyen Duy Duong, Ward 3, District 10, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | | | | | | | - Quynh-Tho Thi Nguyen
- Medical Genetics Institute, 186 Nguyen Duy Duong, Ward 3, District 10, Ho Chi Minh City, Vietnam
| | - Dinh-Kiet Truong
- Medical Genetics Institute, 186 Nguyen Duy Duong, Ward 3, District 10, Ho Chi Minh City, Vietnam
| | - Thanh-Thuy Thi Do
- Medical Genetics Institute, 186 Nguyen Duy Duong, Ward 3, District 10, Ho Chi Minh City, Vietnam
| | - Hoai-Nghia Nguyen
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Minh-Duy Phan
- Medical Genetics Institute, 186 Nguyen Duy Duong, Ward 3, District 10, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | - Hoa Giang
- Medical Genetics Institute, 186 Nguyen Duy Duong, Ward 3, District 10, Ho Chi Minh City, Vietnam. .,Gene Solutions, Ho Chi Minh City, Vietnam.
| | - Le Son Tran
- Medical Genetics Institute, 186 Nguyen Duy Duong, Ward 3, District 10, Ho Chi Minh City, Vietnam. .,Gene Solutions, Ho Chi Minh City, Vietnam.
| |
Collapse
|
18
|
Hu X, Ding SC, Jiang P. Emerging frontiers of cell-free DNA fragmentomics. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:380-392. [PMID: 39697357 PMCID: PMC11648524 DOI: 10.20517/evcna.2022.34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/20/2024]
Abstract
Analysis of cell-free DNA (cfDNA) in the blood has shown promise for monitoring a variety of biological processes. Plasma cfDNA is a mixture comprising DNA molecules released from various bodily tissues, mediated by characteristic DNA fragmentations occurring during cell death. Fragmentation of cfDNA is non-random and contains tissue-of-origin information, which has been demonstrated in circulating fetal, tumoral, and transplanted organ-derived cfDNA molecules. Many studies have elucidated a plurality of fragmentomic markers for noninvasive prenatal, cancer, and organ transplantation assessment, such as fragment sizes, fragment ends, end motifs, and nucleosome footprints. Recently, researchers have further revealed the large population of previously unidentified long cfDNA molecules (kilobases in size) in the plasma DNA pool. This review focuses on the emerging biological properties of cfDNA, together with a discussion on its potential clinical implications.
Collapse
Affiliation(s)
- Xi Hu
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China
- Li Ka Shing Institute of Health Sciences and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Spencer C. Ding
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China
- Li Ka Shing Institute of Health Sciences and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Peiyong Jiang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China
- Li Ka Shing Institute of Health Sciences and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
19
|
Wang F, Miao HB, Pei ZH, Chen Z. Serological, fragmentomic, and epigenetic characteristics of cell-free DNA in patients with lupus nephritis. Front Immunol 2022; 13:1001690. [PMID: 36578480 PMCID: PMC9791112 DOI: 10.3389/fimmu.2022.1001690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Objectives The biological characteristics of plasma circulating cell-free DNA (cfDNA) are related to the pathogenesis of lupus nephritis (LN). The aim of this study was to explore the biological characteristics of cfDNA in patients with LN in terms of serology, fragment omics, and epigenetics, and to discuss the possibility of liquid biopsy for cfDNA as an alternative to conventional tissue biopsy. Methods cfDNA was extracted from plasma samples of 127 patients with systemic lupus erythematosus (64 with LN, 63 without LN). The cfDNA concentration was determined using the Qubit method. Next-generation sequencing cfDNA methylation profiling was performed for three LN patients and six non-LN patients. The methylation panel was designed based on data from The Cancer Genome Atlas cohort. The fragmentation index, motif score, and DELFI score were calculated to explore the fragmentation profile of cfDNA in patients with LN. Statistical and machine learning methods were used to select features to calculate the methylation scores of the samples. Results Patients with LN had significantly lower cfDNA concentrations (P = 0.0347) than those without LN. This may be associated with the presence of anti-double-stranded DNA antibodies (r = -0.4189; P = 0.0296). The mean DELFI score (proportion of short fragments of cfDNA) in patients with LN was significantly higher than that in patients without LN (P = 0.0238). Based on the pan-cancer data, 73, 66, 8, and 10 features were selected and used to calculate the methylation scores. The mean methylation scores of these features in patients with LN differed significantly from those in patients without LN (P = 0.0238). Conclusions The specificity of cfDNA in patients with LN was identified using serological, fragmentomic, and epigenetic analyses. The findings may have implications for the development of new molecular markers of LN.
Collapse
Affiliation(s)
- Fang Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China,Department of Immunology, Foresea Life Insurance Guangxi Hospital, Nanning, Guangxi, China
| | - Hai-bing Miao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhi-hua Pei
- Hubei Provincial Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China,*Correspondence: Zhen Chen,
| |
Collapse
|
20
|
Bao H, Chen X, Xiao Q, Yang S, Wu S, Wang X, Wu X, Ding K, Shao Y. Associations of genome-wide cell-free DNA fragmentation profiles with blood biochemical and hematological parameters in healthy individuals. Genomics 2022; 114:110504. [PMID: 36257481 DOI: 10.1016/j.ygeno.2022.110504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 01/15/2023]
Abstract
Cell-free DNA (cfDNA), as a non-invasive approach, has been introduced in a wide range of applications, including cancer diagnosis/ monitoring, prenatal testing, and transplantation monitoring. Yet, studies of cfDNA fragmentomics in physiological conditions are lacking. In this study, we aim to explore the correlation of fragmentation patterns of cfDNA with blood biochemical and hematological parameters in healthy individuals. We addressed the impact of physiological variables and abnormal blood biochemical and hematological parameters on cfDNA fragment size distribution. We also figured and validated that hematological inflammation markers, including leukocyte, lymphocyte, neutrophil, and platelet distribution width as well as aspartate transaminase levels were significantly correlated with the genome-wide cfDNA fragmentation pattern. Our findings suggest that cfDNA fragmentation profiles were associated with physiological parameters related to cardiovascular risk factors, inflammatory response and hepatocyte injury, which may provide insights for further research on the potential role of cfDNA fragmentation in diagnosis and monitor of several disease.
Collapse
Affiliation(s)
- Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Xiaoxi Chen
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Qian Xiao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shanshan Yang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Shuyu Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Xiaonan Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Xue Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China; School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Chen P, Qiao L, Zhang S, Jin J, Cao J, Zhang Y, Tang H, Yu Z, Shi J, Yin J, Liang Y, Wu X. The Effect of Elevated Alanine Transaminase on Non-invasive Prenatal Screening Failures. Front Med (Lausanne) 2022; 9:875588. [PMID: 35783633 PMCID: PMC9240308 DOI: 10.3389/fmed.2022.875588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo determine the effects of alanine transaminase (ALT) levels on the screening failure rates or “no calls” due to low fetal fraction (FF) to obtain a result in non-invasive prenatal screening (NIPS).MethodsNIPS by sequencing and liver enzyme measurements were performed in 7,910 pregnancies at 12–26 weeks of gestation. Univariate and multivariable regression models were used to evaluate the significant predictors of screening failure rates among maternal characteristics and relevant laboratory parameters.ResultsOf the 7,910 pregnancies that met the inclusion criteria, 134 (1.69%) had “no calls.” Multiple logistic regression analysis demonstrated that increased body mass index, ALT, prealbumin, albumin levels, and in vitro fertilization (IVF) conception rates were independently associated with screening failures. The test failure rate was higher (4.34 vs. 1.41%; P < 0.001) in IVF pregnancies relative to those with spontaneous conceptions. Meanwhile, the screening failure rates increased with increasing ALT levels from 1.05% at ≤10 U/L to 3.73% at >40 U/L. In particular, IVF pregnancies with an ALT level of >40 U/L had a higher test failure rate (9.52%). Compared with that for an ALT level of ≤10 U/L, the adjusted odds ratio of “no calls” for ALT levels of 10–20, 21–40, and >40 U/L was 1.204 [95% confidence interval (CI), 0.709–2.045], 1.529 (95% CI, 0.865–2.702), and 2.764 (95% CI, 1.500–5.093) (Ptrend < 0.001), respectively.ConclusionsIncreased ALT and IVF conceptions were associated with a higher screening failure rates in NIPS. Therefore, a feasible strategy to adjust these factors to reduce the probability of “no calls” due to low FF would be of great clinical significance.
Collapse
Affiliation(s)
- Ping Chen
- Department of Obstetrics, School of Gusu, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Longwei Qiao
- Center for Reproduction and Genetics, School of Gusu, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Sheng Zhang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jieyu Jin
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Cao
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqiong Zhang
- Department of Medical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Haoyu Tang
- Center for Reproduction and Genetics, School of Gusu, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Zheng Yu
- Center for Reproduction and Genetics, School of Gusu, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Jingye Shi
- Center for Reproduction and Genetics, School of Gusu, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - JingPing Yin
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- JingPing Yin
| | - Yuting Liang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Yuting Liang
| | - Xiao Wu
- Department of Obstetrics, School of Gusu, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
- *Correspondence: Xiao Wu
| |
Collapse
|
22
|
Murata H, Kinoshita M, Yasumizu Y, Motooka D, Beppu S, Shiraishi N, Sugiyama Y, Kihara K, Tada S, Koda T, Konaka H, Takamatsu H, Kumanogoh A, Okuno T, Mochizuki H. Cell-Free DNA Derived From Neutrophils Triggers Type 1 Interferon Signature in Neuromyelitis Optica Spectrum Disorder. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/3/e1149. [PMID: 35210295 PMCID: PMC8874356 DOI: 10.1212/nxi.0000000000001149] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/12/2022] [Indexed: 12/30/2022]
Abstract
Background and Objectives Recently accumulating evidence suggests the pivotal role of type 1 interferon (IFN-1) signature in the pathogenesis of neuromyelitis optica spectrum disorder (NMOSD). However, the mechanism of the initial trigger that augments IFN-1 pathway in the peripheral immune system of NMOSD has yet to be elucidated. Methods Clinical samples were obtained from 32 patients with aquaporin-4 antibody–positive NMOSD and 23 healthy subjects. IFN-1 induction in peripheral blood mononuclear cells (PBMCs) by serum-derived cell-free DNA (cfDNA) was assessed in combination with blockades of DNA sensors in vitro. CfDNA fraction was analyzed for DNA methylation profiles by bisulfite sequencing, elucidating the cellular origin of cfDNA. The induction of neutrophil extracellular trap related cell death (NETosis) was further analyzed in NMOSD and control groups, and the efficacy of pharmacologic intervention of NETosis was assessed. Results Enhanced IFN-1 induction by cfDNA derived from NMOSD was observed in PBMCs with cofactor of LL37 antimicrobial peptide. DNase treatment, cGAS inhibitor, and Toll-like receptor 9 antagonist efficiently inhibited IFN-1 production. DNA methylation pattern of cfDNA in patients with NMOSD demonstrated that the predominant cellular source of cfDNA was neutrophils. Whole blood transcriptome analysis also revealed neutrophil activation in NMOSD. In addition, enhanced NETosis induction was observed with NMOSD-derived sera, and efficient pharmacologic inhibition of NETosis with dipyridamole was observed. Discussion Our study highlights the previously unrevealed role of cfDNA predominantly released by neutrophil in the induction of IFN-1 signature in NMOSD and further indicate a novel pharmacologic target in NMOSD.
Collapse
Affiliation(s)
- Hisashi Murata
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Makoto Kinoshita
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Yoshiaki Yasumizu
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Daisuke Motooka
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shohei Beppu
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Naoyuki Shiraishi
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasuko Sugiyama
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Keigo Kihara
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Satoru Tada
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toru Koda
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hachiro Konaka
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hyota Takamatsu
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Atsushi Kumanogoh
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tatsusada Okuno
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hideki Mochizuki
- From the Department of Neurology (Hisashi Murata, M.K., Y.Y., S.B., N.S., Y.S., K.K., S.T., T.K., T.O., Hideki Mochizuki), Graduate School of Medicine, Osaka University; Department of Experimental Immunology (Y.Y.), WPI Immunology Frontier Research Center, Osaka University; Integrated Frontier Research for Medical Science Division (Y.Y., D.M., A.K., Hideki Mochizuki), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University; Genome Information Research Center (D.M.), Research Institute for Microbial Diseases, Osaka University; and Department of Respiratory Medicine and Clinical Immunology (H.K., H.T., A.K.), Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
23
|
Cell-Free DNA Fragmentomics in Liquid Biopsy. Diagnostics (Basel) 2022; 12:diagnostics12040978. [PMID: 35454026 PMCID: PMC9027801 DOI: 10.3390/diagnostics12040978] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Cell-free DNA (cfDNA) in bodily fluids has rapidly transformed the development of noninvasive prenatal testing, cancer liquid biopsy, and transplantation monitoring. Plasma cfDNA consists of a mixture of molecules originating from various bodily tissues. The study of the fragmentation patterns of cfDNA, also referred to as ‘fragmentomics’, is now an actively pursued area of biomarker research. Clues that cfDNA fragmentation patterns might carry information concerning the tissue of origin of cfDNA molecules have come from works demonstrating that circulating fetal, tumor-derived, and transplanted liver-derived cfDNA molecules have a shorter size distribution than the background mainly of hematopoietic origin. More recently, an improved understanding of cfDNA fragmentation has provided many emerging fragmentomic markers, including fragment sizes, preferred ends, end motifs, single-stranded jagged ends, and nucleosomal footprints. The intrinsic biological link between activities of various DNA nucleases and characteristic fragmentations has been demonstrated. In this review, we focus on the biological properties of cell-free DNA unveiled recently and their potential clinical applications.
Collapse
|
24
|
Chen Y, Gong Y, Dou L, Zhou X, Zhang Y. Bioinformatics analysis methods for cell-free DNA. Comput Biol Med 2022; 143:105283. [PMID: 35149459 DOI: 10.1016/j.compbiomed.2022.105283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/13/2022]
Abstract
As a kind of novel non-invasive marker for molecular detection, cell-free DNA (cfDNA) has potential value for the early diagnosis of diseases, prognosis assessment, and efficacy monitoring. The constant developments in molecular biology detection technologies have led to an increase in clinical studies on the use of cfDNA detection methods for patients, and many gratifying outcomes have been achieved. In this review, the contributions of bioinformatics tools to the study of cfDNA are well discussed. The focus of the review is on cfDNA identification signals, cfDNA identification methods, and the relationship of cfDNA with human diseases such as hepatic cancer, lung cancer, end-stage kidney disease, and ischemic stroke. The research significance and existing problems of using cfDNA as a biomarker for diseases are also discussed.
Collapse
Affiliation(s)
- Yaojia Chen
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Yuxin Gong
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China; School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Lijun Dou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China; School of Automotive and Transportation Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Xun Zhou
- Beidahuang Industry Group General Hospital, Harbin, China.
| | - Ying Zhang
- Department of Anesthesiology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, China.
| |
Collapse
|
25
|
|
26
|
Deng C, Liu S. Factors Affecting the Fetal Fraction in Noninvasive Prenatal Screening: A Review. Front Pediatr 2022; 10:812781. [PMID: 35155308 PMCID: PMC8829468 DOI: 10.3389/fped.2022.812781] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/03/2022] [Indexed: 12/03/2022] Open
Abstract
A paradigm shift in noninvasive prenatal screening has been made with the discovery of cell-free fetal DNA in maternal plasma. Noninvasive prenatal screening is primarily used to screen for fetal aneuploidies, and has been used globally. Fetal fraction, an important parameter in the analysis of noninvasive prenatal screening results, is the proportion of fetal cell-free DNA present in the total maternal plasma cell-free DNA. It combines biological factors and bioinformatics algorithms to interpret noninvasive prenatal screening results and is an integral part of quality control. Maternal and fetal factors may influence fetal fraction. To date, there is no broad consensus on the factors that affect fetal fraction. There are many different approaches to evaluate this parameter, each with its advantages and disadvantages. Different fetal fraction calculation methods may be used in different testing platforms or laboratories. This review includes numerous publications that focused on the understanding of the significance, influencing factors, and interpretation of fetal fraction to provide a deeper understanding of this parameter.
Collapse
Affiliation(s)
- Cechuan Deng
- Prenatal Diagnostic Center, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Shanling Liu
- Prenatal Diagnostic Center, Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Ding SC, Chan RWY, Peng W, Huang L, Zhou Z, Hu X, Volpi S, Hiraki LT, Vaglio A, Fenaroli P, Bocca P, Tam LS, Wong PCH, Tam LHP, Jiang P, Chiu RWK, Allen Chan KC, Dennis Lo YM. OUP accepted manuscript. Clin Chem 2022; 68:917-926. [PMID: 35587043 DOI: 10.1093/clinchem/hvac050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/15/2022] [Indexed: 11/14/2022]
Affiliation(s)
- Spencer C Ding
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Rebecca W Y Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Wenlei Peng
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Liangbo Huang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Ze Zhou
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Xi Hu
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Stefano Volpi
- Clinica Pediatrica e Reumatologia, Centro per le malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), Università degli Studi di Genova, Genova, Italy
| | - Linda T Hiraki
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Augusto Vaglio
- Department of Biomedical, Experimental and Clinical Sciences Mario Serio, University of Florence, Florence, Italy
- Medical Genetics Unit, Meyer Children's Hospital, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
| | | | - Paola Bocca
- Clinica Pediatrica e Reumatologia, Centro per le malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Lai Shan Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Priscilla C H Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Lydia H P Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Peiyong Jiang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Rossa W K Chiu
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - K C Allen Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
28
|
Aleotti V, Catoni C, Poggiana C, Rosato A, Facchinetti A, Scaini MC. Methylation Markers in Cutaneous Melanoma: Unravelling the Potential Utility of Their Tracking by Liquid Biopsy. Cancers (Basel) 2021; 13:6217. [PMID: 34944843 PMCID: PMC8699653 DOI: 10.3390/cancers13246217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 01/19/2023] Open
Abstract
Malignant melanoma is the most serious, life-threatening form of all dermatologic diseases, with a poor prognosis in the presence of metastases and advanced disease. Despite recent advances in targeted therapy and immunotherapy, there is still a critical need for a better understanding of the fundamental mechanisms behind melanoma progression and resistance onset. Recent advances in genome-wide methylation methods have revealed that aberrant changes in the pattern of DNA methylation play an important role in many aspects of cancer progression, including cell proliferation and migration, evasion of cell death, invasion, and metastasization. The purpose of the current review was to gather evidence regarding the usefulness of DNA methylation tracking in liquid biopsy as a potential biomarker in melanoma. We investigated the key genes and signal transduction pathways that have been found to be altered epigenetically in melanoma. We then highlighted the circulating tumor components present in blood, including circulating melanoma cells (CMC), circulating tumor DNA (ctDNA), and tumor-derived extracellular vesicles (EVs), as a valuable source for identifying relevant aberrations in DNA methylation. Finally, we focused on DNA methylation signatures as a marker for tracking response to therapy and resistance, thus facilitating personalized medicine and decision-making in the treatment of melanoma patients.
Collapse
Affiliation(s)
- Valentina Aleotti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Cristina Catoni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Cristina Poggiana
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
| | - Antonella Facchinetti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
| | - Maria Chiara Scaini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| |
Collapse
|
29
|
Gong Y, Huang Q, Deng Y, Zhou L, Yi X, Zhu J, Wu W. Analysis of cf-mtDNA and cf-nDNA fragment size distribution using different isolation methods in BV-2 cell supernatant of starvation-induced autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119147. [PMID: 34600918 DOI: 10.1016/j.bbamcr.2021.119147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 12/14/2022]
Abstract
Fragment size distribution, the important biological properties of cell-free DNA (cfDNA), provides useful information required for diagnostic assay development. However, besides methodological discrepancies, it varies due to the complicated origins and occurrences of in vivo cfDNA. In addition, limited data are available concerning the cfDNA associated with autophagy and distributional difference between cf-mitochondrial DNA (cf-mtDNA) and cf-nuclear DNA (cf-nDNA) fragments. Here we developed an in vitro model of mouse microglial cell (BV-2) with starvation-induced autophagy, in which cfDNA was isolated from the cell supernatant by ultrafiltration (UF) and column-based commercial kit (CC), respectively. Using Agilent 2100 Bioanalyzer, a DNA ladder pattern as the presence of peaks corresponding to mono-, di- and tri-nucleosomes was clearly visualized both in isolation products of UF and CC. However, we also detected shorter fragments than mono-nucleosome by UF. In comparing the UF and CC, we found that the former produced the higher recovery efficiency for spiked-in DNA of shorter fragments than mono-nucleosome in both water and medium, but the latter was superior for spiked-in DNA fragments which were longer than or equal to mono-nucleosome in medium. Combined with these two isolation methods, we have observed that autophagy-associated cf-mtDNA and cf-nDNA were both highly enriched in <mono-nucleosomes fragments more than 71%, and showed no significant differences in the relative percentages for these four fragment sizes. These results have improved our understanding of the fragment size distribution of autophagy-derived cf-mtDNA and cf-nDNA in vitro, and might further develop application of cfDNA as a diagnostic tool.
Collapse
Affiliation(s)
- Yuxiang Gong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qin Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuping Deng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Liyan Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoqing Yi
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiajin Zhu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenhe Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
30
|
Duboc V, Pratella D, Milanesio M, Boudjarane J, Descombes S, Paquis-Flucklinger V, Bottini S. NiPTUNE: an automated pipeline for noninvasive prenatal testing in an accurate, integrative and flexible framework. Brief Bioinform 2021; 23:6370845. [PMID: 34529041 DOI: 10.1093/bib/bbab380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Noninvasive prenatal testing (NIPT) consists of determining fetal aneuploidies by quantifying copy number alteration from the sequencing of cell-free DNA (cfDNA) from maternal blood. Due to the presence of cfDNA of fetal origin in maternal blood, in silico approaches have been developed to accurately predict fetal aneuploidies. Although NIPT is becoming a new standard in prenatal screening of chromosomal abnormalities, there are no integrated pipelines available to allow rapid, accurate and standardized data analysis in any clinical setting. Several tools have been developed, however often optimized only for research purposes or requiring enormous amount of retrospective data, making hard their implementation in a clinical context. Furthermore, no guidelines have been provided on how to accomplish each step of the data analysis to achieve reliable results. Finally, there is no integrated pipeline to perform all steps of NIPT analysis. To address these needs, we tested several tools for performing NIPT data analysis. We provide extensive benchmark of tools performances but also guidelines for running them. We selected the best performing tools that we benchmarked and gathered them in a computational pipeline. NiPTUNE is an open source python package that includes methods for fetal fraction estimation, a novel method for accurate gender prediction, a principal component analysis based strategy for quality control and fetal aneuploidies prediction. NiPTUNE is constituted by seven modules allowing the user to run the entire pipeline or each module independently. Using two cohorts composed by 1439 samples with 31 confirmed aneuploidies, we demonstrated that NiPTUNE is a valuable resource for NIPT analysis.
Collapse
Affiliation(s)
- Véronique Duboc
- Department of Medical Genetics of Nice Universitary Hospital, in charge of NIPT, France
| | - David Pratella
- Center of Modeling, Simulation and Interaction at the Université Cote d'Azur in Nice, France
| | - Marco Milanesio
- Center of Modeling, Simulation and Interaction at the Université Cote d'Azur in Nice, France
| | - John Boudjarane
- Centre Hospitalier Universitaire la Timone in Marseille, France
| | - Stéphane Descombes
- Center of Modeling, Simulation and Interaction at the Université Cote d'Azur in Nice, France
| | | | - Silvia Bottini
- Medical Data Laboratory belonging to the Center of Modeling, Simulation and Interaction at the Université Cote d'Azur in Nice, France
| |
Collapse
|
31
|
Han DSC, Ni M, Chan RWY, Wong DKL, Hiraki LT, Volpi S, Jiang P, Lui KO, Chan KCA, Chiu RWK, Lo YMD. Nuclease deficiencies alter plasma cell-free DNA methylation profiles. Genome Res 2021; 31:2008-2021. [PMID: 34470801 PMCID: PMC8559716 DOI: 10.1101/gr.275426.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022]
Abstract
The effects of DNASE1L3 or DNASE1 deficiency on cell-free DNA (cfDNA) methylation were explored in plasma of mice deficient in these nucleases and in DNASE1L3-deficient humans. Compared to wild-type cfDNA, cfDNA in DNASE1L3-deficient mice was significantly hypomethylated, while cfDNA in DNASE1-deficient mice was hypermethylated. The cfDNA hypomethylation in DNASE1L3-deficient mice was due to increased fragmentation and representation from open chromatin regions (OCRs) and CpG islands (CGIs). These findings were absent in DNASE1-deficient mice, demonstrating the preference of DNASE1 to cleave in hypomethylated OCRs and CGIs. We also observed a substantial decrease of fragment ends at methylated CpGs in the absence of DNASE1L3, thereby demonstrating that DNASE1L3 prefers to cleave at methylated CpGs. Furthermore, we found that methylation levels of cfDNA varied by fragment size in a periodic pattern, with cfDNA of specific sizes being more hypomethylated and enriched for OCRs and CGIs. These findings were confirmed in DNASE1L3-deficient human cfDNA. Thus, we have found that nuclease-mediated cfDNA fragmentation markedly affects cfDNA methylation level on a genome-wide scale. This work provides a foundational understanding of the relationship between methylation, nuclease biology, and cfDNA fragmentation.
Collapse
Affiliation(s)
- Diana S C Han
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Meng Ni
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Rebecca W Y Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Danny K L Wong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Linda T Hiraki
- Division of Rheumatology, The Hospital for Sick Children, Toronto, Ontario M5G 1X5, Canada
| | - Stefano Volpi
- Clinica Pediatrica e Reumatologia, Centro per le malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, 16147 Genova, Italy.,Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), Università degli Studi di Genova, 16132 Genova, Italy
| | - Peiyong Jiang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Kathy O Lui
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - K C Allen Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Rossa W K Chiu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
32
|
Blouin AG, Ye F, Williams J, Askar M. A practical guide to chimerism analysis: Review of the literature and testing practices worldwide. Hum Immunol 2021; 82:838-849. [PMID: 34404545 DOI: 10.1016/j.humimm.2021.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Currently there are no widely accepted guidelines for chimerism analysis testing in hematopoietic cell transplantation (HCT) patients. The objective of this review is to provide a practical guide to address key aspects of performing and utilizing chimerism testing results. In developing this guide, we conducted a survey of testing practices among laboratories that are accredited for performing engraftment monitoring/chimerism analysis by either the American Society for Histocompatibility & Immunogenetics (ASHI) and/or the European Federation of Immunogenetics (EFI). We interpreted the survey results in the light of pertinent literature as well as the experience in the laboratories of the authors. RECENT DEVELOPMENTS In recent years there has been significant advances in high throughput molecular methods such as next generation sequencing (NGS) as well as growing access to these technologies in histocompatibility and immunogenetics laboratories. These methods have the potential to improve the performance of chimerism testing in terms of sensitivity, availability of informative genetic markers that distinguish donors from recipients as well as cost. SUMMARY The results of the survey revealed a great deal of heterogeneity in chimerism testing practices among participating laboratories. The most consistent response indicated monitoring of engraftment within the first 30 days. These responses are reflective of published literature. Additional clinical indications included early detection of impending relapse as well as identification of cases of HLA-loss relapse.
Collapse
Affiliation(s)
- Amanda G Blouin
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Fei Ye
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jenifer Williams
- Department of Pathology & Laboratory Medicine, Baylor University Medical Center, Dallas, TX, United States
| | - Medhat Askar
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Pathology & Laboratory Medicine, Baylor University Medical Center, Dallas, TX, United States; Department of Pathology and Laboratory Medicine, Texas A&M Health Science Center College of Medicine, United States.
| |
Collapse
|
33
|
Zhang B, Zhou L, Feng C, Liu J, Yu B. More attention should be paid to pregnant women who fail non-invasive prenatal screening. Clin Biochem 2021; 96:33-37. [PMID: 34245694 DOI: 10.1016/j.clinbiochem.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE We discuss how to handle failure of first-pass non-invasive prenatal screening (NIPS) and investigate the pregnancy outcomes after second-pass failure. METHODS A total of 35,187 pregnant women underwent NIPS in a single center. Those who failed first-pass NIPS were re-tested after a repeat blood draw. Those who failed again were offered genetic counseling. We recorded antenatal data and pregnancy outcomes. RESULTS A total of 273 (0.78%) women failed the first test. On re-testing, 220 (80.59%) yielded reliable results and 53 failed the test again. Women with higher total cell-free DNA (cfDNA) levels evidenced a lower NIPS success rate (40%) and a higher incidence of adverse pregnancy outcomes. CONCLUSIONS Most women who failed first-pass NIPS yielded reliable results on repeat testing, especially those with lower fetal fraction. Higher concentrations of cfDNA in maternal plasma were associated with poorer pregnancy outcomes. Such women require special attention, thus early medical intervention, to avoid an adverse prognosis.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Medical Genetics, Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, Jiangsu Province 213000, China.
| | - Lingna Zhou
- Department of Medical Genetics, Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, Jiangsu Province 213000, China
| | - Chuanshou Feng
- Department of Obstetrics, Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, Jiangsu Province 213000, China
| | - Jianbing Liu
- Department of Medical Genetics, Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, Jiangsu Province 213000, China
| | - Bin Yu
- Department of Medical Genetics, Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, Jiangsu Province 213000, China.
| |
Collapse
|
34
|
De Vlaminck I. The Proportion of Donor-Specific Cell-Free DNA in Blood as a Marker of Transplant Rejection: Not an Absolute. Clin Chem 2021; 66:1257-1258. [PMID: 32968783 DOI: 10.1093/clinchem/hvaa199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| |
Collapse
|
35
|
Schütz E, Asendorf T, Beck J, Schauerte V, Mettenmeyer N, Shipkova M, Wieland E, Kabakchiev M, Walson PD, Schwenger V, Oellerich M. Time-Dependent Apparent Increase in dd-cfDNA Percentage in Clinically Stable Patients Between One and Five Years Following Kidney Transplantation. Clin Chem 2021; 66:1290-1299. [PMID: 33001185 DOI: 10.1093/clinchem/hvaa175] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Donor-derived cell-free DNA (dd-cfDNA) is reportedly a valuable tool for graft surveillance following kidney transplantation (KTx). Possible changes in dd-cfDNA(%) reference values over time have not been evaluated. For long-term monitoring after KTx, changes in host cfDNA might represent a biasing factor in dd-cfDNA(%) determinations. METHODS Plasma samples were obtained (n = 929) 12-60 months after engraftment in a cross-sectional cohort of 303 clinically stable KTx recipients. Total cfDNA(copies/mL), dd-cfDNA(%), and dd-cfDNA(copies/mL) were determined using droplet-digital PCR. Stability of threshold values in these stable KTx recipients over time was assessed by 80th, 85th, and 90th quantile regression. RESULTS Upper percentiles of total cfDNA showed a significant decline of -1902, -3589, and -4753 cp/mL/log(month) (P = 0.014, <0.001, and 0.017, respectively), resulting in increasing dd-cfDNA(%) percentiles by 0.25, 0.46, and 0.72%/log(month) (P = 0.04, 0.001, and 0.002, respectively), with doubling of the 85th percentile value by 5 years. In contrast, dd-cfDNA(cp/mL) was stable during the observation period (P = 0.52, 0.29, and 0.39). In parallel increasing white blood cell counts and decreasing tacrolimus concentrations over time were observed. After 5 years, the median total cfDNA was still 1.6-fold (P < 0.001) higher in KTx recipients than in healthy controls (n = 135) and 1.4-fold (P < 0.001) higher than patients with other medical conditions (n = 364). CONCLUSIONS The time-dependent decrease of host cfDNA resulted in an apparent increase of dd-cfDNA fraction in stable KTx patients. For long-term surveillance, measurement of absolute dd-cfDNA concentrations appears to be superior to percentages to minimize false positive results.
Collapse
Affiliation(s)
| | - Thomas Asendorf
- Department of Medical Statistics, University Medical Center Goettingen, Goettingen, Germany
| | | | - Verena Schauerte
- Central Institute for Clinical Chemistry and Laboratory Medicine, Klinikum Stuttgart, Stuttgart, Germany
| | - Nina Mettenmeyer
- Chronix Biomedical, Goettingen, Germany.,Department of Clinical Pharmacology, University Medical Center Goettingen, Goettingen, Germany
| | - Maria Shipkova
- Central Institute for Clinical Chemistry and Laboratory Medicine, Klinikum Stuttgart, Stuttgart, Germany
| | - Eberhard Wieland
- Central Institute for Clinical Chemistry and Laboratory Medicine, Klinikum Stuttgart, Stuttgart, Germany
| | - Mariana Kabakchiev
- Central Institute for Clinical Chemistry and Laboratory Medicine, Klinikum Stuttgart, Stuttgart, Germany
| | - Philip D Walson
- Department of Clinical Pharmacology, University Medical Center Goettingen, Goettingen, Germany
| | - Vedat Schwenger
- Department of Nephrology, Transplant Center, Klinikum Stuttgart, Stuttgart, Germany
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
36
|
The Nexus of cfDNA and Nuclease Biology. Trends Genet 2021; 37:758-770. [PMID: 34006390 DOI: 10.1016/j.tig.2021.04.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022]
Abstract
Cell-free DNA (cfDNA) is a widely used noninvasive biomarker for diagnosis and prognosis of multiple disease states. Emerging evidence suggests that cfDNA might not just be passive waste products of cell death but could have a physiological and pathological function in inflammation and autoimmunity. The balance of cfDNA generation and clearance may thus be vital in health and disease. In particular, plasma nuclease activity has been linked to multiple pathologies including cancer and systemic lupus erythematosus (SLE) and associated with profound changes in the nonrandom fragmentation of cfDNA. Lastly, in this review, we explore the effects of DNA fragmentation factor B (DFFB), DNASE1L3, and DNASE1 on cfDNA levels and their fragmentomic profiles, and what these recent insights reveal about the biology of cfDNA.
Collapse
|
37
|
Hartl J, Serpas L, Wang Y, Rashidfarrokhi A, Perez OA, Sally B, Sisirak V, Soni C, Khodadadi-Jamayran A, Tsirigos A, Caiello I, Bracaglia C, Volpi S, Ghiggeri GM, Chida AS, Sanz I, Kim MY, Belmont HM, Silverman GJ, Clancy RM, Izmirly PM, Buyon JP, Reizis B. Autoantibody-mediated impairment of DNASE1L3 activity in sporadic systemic lupus erythematosus. J Exp Med 2021; 218:e20201138. [PMID: 33783474 PMCID: PMC8020718 DOI: 10.1084/jem.20201138] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Antibodies to double-stranded DNA (dsDNA) are prevalent in systemic lupus erythematosus (SLE), particularly in patients with lupus nephritis, yet the nature and regulation of antigenic cell-free DNA (cfDNA) are poorly understood. Null mutations in the secreted DNase DNASE1L3 cause human monogenic SLE with anti-dsDNA autoreactivity. We report that >50% of sporadic SLE patients with nephritis manifested reduced DNASE1L3 activity in circulation, which was associated with neutralizing autoantibodies to DNASE1L3. These patients had normal total plasma cfDNA levels but showed accumulation of cfDNA in circulating microparticles. Microparticle-associated cfDNA contained a higher fraction of longer polynucleosomal cfDNA fragments, which bound autoantibodies with higher affinity than mononucleosomal fragments. Autoantibodies to DNASE1L3-sensitive antigens on microparticles were prevalent in SLE nephritis patients and correlated with the accumulation of cfDNA in microparticles and with disease severity. DNASE1L3-sensitive antigens included DNA-associated proteins such as HMGB1. Our results reveal autoantibody-mediated impairment of DNASE1L3 activity as a common nongenetic mechanism facilitating anti-dsDNA autoreactivity in patients with severe sporadic SLE.
Collapse
Affiliation(s)
- Johannes Hartl
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Yueyang Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Ali Rashidfarrokhi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Oriana A. Perez
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Benjamin Sally
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Vanja Sisirak
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Le Centre national de la recherche scientifique - unité mixte de recherche 5164, ImmunoConcEpt, Universite ´de Bordeaux, Bordeaux, France
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Alireza Khodadadi-Jamayran
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY
| | - Ivan Caiello
- Division of Rheumatology, Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Claudia Bracaglia
- Division of Rheumatology, Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Stefano Volpi
- Centro per le Malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, Genoa, Italy
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili, Università degli Studi di Genova, Genoa, Italy
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, Genoa, Italy
| | - Asiya Seema Chida
- Division of Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA
| | - Ignacio Sanz
- Division of Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA
| | - Mimi Y. Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - H. Michael Belmont
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Gregg J. Silverman
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Robert M. Clancy
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Peter M. Izmirly
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Jill P. Buyon
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
38
|
Chang J, Qi Q, Zhou X, Jiang Y, Hao N, Liu J. Factors associated with test failure in pregnant women undergoing cell-free DNA-based testing for fetal trisomy. J Med Screen 2021; 28:411-418. [PMID: 33884933 DOI: 10.1177/09691413211009940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the factors associated with cell-free DNA test failure, and the optimal subsequent management of these pregnancies. METHODS This was a retrospective study of 27,363 singleton pregnancies undergoing cell-free DNA testing. Women with cell-free DNA test failure were divided into a high-risk group and a low-risk group according to their indications. The subsequent management and pregnancy outcomes of these women were followed up. RESULTS The rate of cell-free DNA test failure at the first sampling was 1.49%, and 78.4% of failures were due to a low fetal fraction. Of the 66 women who refused any subsequent management, an adverse pregnancy outcome was seen in 5 cases, all belonging to the high-risk group. Of the 13 low-risk women who chose second-trimester maternal serum screening, all obtained a low-risk maternal serum screening result and an unaffected pregnancy outcome. A redraw was chosen by 171 women, which yielded a result in 75.4% and their pregnancy outcomes were unaffected; 42 women had an uninformative result again and received an amniocentesis. As 158 women had an amniocentesis after the first sampling, this procedure was offered in 200 cases altogether. Abnormal genetic testing results were shown in six (3%, 6/200) cases, all in the high-risk group. CONCLUSIONS High-risk pregnant women with cell-free DNA test failure are at increased risk of adverse pregnancy outcomes. A second sampling for cell-free DNA test or maternal serum screening might be suggested to low-risk women. Invasive prenatal diagnosis should be offered to the high-risk patients, especially those with a second cell-free DNA test failure.
Collapse
Affiliation(s)
- Jiazhen Chang
- 34732Peking Union Medical College Hospital, Beijing, China
| | - Qingwei Qi
- 34732Peking Union Medical College Hospital, Beijing, China
| | - Xiya Zhou
- 34732Peking Union Medical College Hospital, Beijing, China
| | - Yulin Jiang
- 34732Peking Union Medical College Hospital, Beijing, China
| | - Na Hao
- 34732Peking Union Medical College Hospital, Beijing, China
| | - Juntao Liu
- 34732Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
39
|
Lai Y, Zhu X, He S, Dong Z, Tang Y, Xu F, Chen Y, Meng L, Tao Y, Yi S, Su J, Huang H, Luo J, Leung TY, Wei H. Performance of Cell-Free DNA Screening for Fetal Common Aneuploidies and Sex Chromosomal Abnormalities: A Prospective Study from a Less Developed Autonomous Region in Mainland China. Genes (Basel) 2021; 12:478. [PMID: 33806256 PMCID: PMC8067030 DOI: 10.3390/genes12040478] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/01/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
To evaluate the performance of noninvasive prenatal screening (NIPS) in the detection of common aneuploidies in a population-based study, a total of 86,262 single pregnancies referred for NIPS were prospectively recruited. Among 86,193 pregnancies with reportable results, follow-up was successfully conducted in 1160 fetuses reported with a high-risk result by NIPS and 82,511 cases (95.7%) with a low-risk result. The screen-positive rate (SPR) of common aneuploidies and sex chromosome abnormalities (SCAs) provided by NIPS were 0.7% (586/83,671) and 0.6% (505/83,671), respectively. The positive predictive values (PPVs) for Trisomy 21, Trisomy 18, Trisomy 13 and SCAs were calculated as 89.7%, 84.0%, 52.6% and 38.0%, respectively. In addition, less rare chromosomal abnormalities, including copy number variants (CNVs), were detected, compared with those reported by NIPS with higher read-depth. Among these rare abnormalities, only 23.2% (13/56) were confirmed by prenatal diagnosis. In total, four common trisomy cases were found to be false negative, resulting in a rate of 0.48/10,000 (4/83,671). In summary, this study conducted in an underdeveloped region with limited support for the new technology development and lack of cost-effective prenatal testing demonstrates the importance of implementing routine aneuploidy screening in the public sector for providing early detection and precise prognostic information.
Collapse
Affiliation(s)
- Yunli Lai
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning 530000, China; (Y.L.); (S.H.); (Y.T.); (F.X.); (Y.C.); (L.M.); (Y.T.); (S.Y.); (J.S.); (H.H.); (J.L.)
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China
- Guangxi Clinical Research Center for Fetal Diseases, Nanning 530000, China
| | - Xiaofan Zhu
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; (X.Z.); (Z.D.); (T.Y.L.)
- Genetics and Prenatal Diagnosis Center, The First Affiliation Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Sheng He
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning 530000, China; (Y.L.); (S.H.); (Y.T.); (F.X.); (Y.C.); (L.M.); (Y.T.); (S.Y.); (J.S.); (H.H.); (J.L.)
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Zirui Dong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; (X.Z.); (Z.D.); (T.Y.L.)
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
- The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
| | - Yanqing Tang
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning 530000, China; (Y.L.); (S.H.); (Y.T.); (F.X.); (Y.C.); (L.M.); (Y.T.); (S.Y.); (J.S.); (H.H.); (J.L.)
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Fuben Xu
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning 530000, China; (Y.L.); (S.H.); (Y.T.); (F.X.); (Y.C.); (L.M.); (Y.T.); (S.Y.); (J.S.); (H.H.); (J.L.)
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Yun Chen
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning 530000, China; (Y.L.); (S.H.); (Y.T.); (F.X.); (Y.C.); (L.M.); (Y.T.); (S.Y.); (J.S.); (H.H.); (J.L.)
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Lintao Meng
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning 530000, China; (Y.L.); (S.H.); (Y.T.); (F.X.); (Y.C.); (L.M.); (Y.T.); (S.Y.); (J.S.); (H.H.); (J.L.)
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Yuli Tao
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning 530000, China; (Y.L.); (S.H.); (Y.T.); (F.X.); (Y.C.); (L.M.); (Y.T.); (S.Y.); (J.S.); (H.H.); (J.L.)
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Shang Yi
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning 530000, China; (Y.L.); (S.H.); (Y.T.); (F.X.); (Y.C.); (L.M.); (Y.T.); (S.Y.); (J.S.); (H.H.); (J.L.)
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Jiasun Su
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning 530000, China; (Y.L.); (S.H.); (Y.T.); (F.X.); (Y.C.); (L.M.); (Y.T.); (S.Y.); (J.S.); (H.H.); (J.L.)
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Hongqian Huang
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning 530000, China; (Y.L.); (S.H.); (Y.T.); (F.X.); (Y.C.); (L.M.); (Y.T.); (S.Y.); (J.S.); (H.H.); (J.L.)
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Jingsi Luo
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning 530000, China; (Y.L.); (S.H.); (Y.T.); (F.X.); (Y.C.); (L.M.); (Y.T.); (S.Y.); (J.S.); (H.H.); (J.L.)
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Tak Yeung Leung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; (X.Z.); (Z.D.); (T.Y.L.)
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
- The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
| | - Hongwei Wei
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning 530000, China; (Y.L.); (S.H.); (Y.T.); (F.X.); (Y.C.); (L.M.); (Y.T.); (S.Y.); (J.S.); (H.H.); (J.L.)
- Guangxi Clinical Research Center for Fetal Diseases, Nanning 530000, China
- Department of Obstetrics and Gynaecology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| |
Collapse
|
40
|
Tsuji N, Agbor-Enoh S. Cell-free DNA beyond a biomarker for rejection: Biological trigger of tissue injury and potential therapeutics. J Heart Lung Transplant 2021; 40:405-413. [PMID: 33926787 DOI: 10.1016/j.healun.2021.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Cell-free DNA, measured as donor-derived cell-free DNA is developed as a non-specific biomarker for allograft injury and transplant rejection. However, cell-free DNA characteristics are more specific, its fragment length, nucleotide content, and composition, as well as the tissue source of origin, are intrinsically linked to the underlying disease pathogenesis, showing distinct features in acute cellular rejection and antibody-mediated rejection for example. Further, cell-free DNA and cell-free mitochondrial DNA can directly trigger tissue injury as damage-associated molecular patterns through three major intracellular receptors, toll-like receptor 9 , cyclic guanosine monophosphate-adenosine monophosphate synthase, and inflammasomes (i.e., absent in melanoma 2: AIM2). Therefore, in addition to its role as a non-specific marker for allograft injury, cell-free DNA analysis may be used to phenotype transplant rejection, and to non-invasively point the underlying molecular mechanisms with allograft injury. Novel treatment approaches targeting these cell-free DNA pathways may be useful to treat transplant rejection and prevent end-organ dysfunction. In this review, we discuss the link between cell-free DNA characteristics and disease, the role of cell-free DNA as a damage-associated molecular pattern, and novel therapeutics targeting these cell-free DNA molecular pathways and their potential utility to treat transplant rejection.
Collapse
Affiliation(s)
- Naoko Tsuji
- Renal Diagnostics and Therapeutics Unit, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Sean Agbor-Enoh
- Lasker Clinical Research Tenure Track Investigator and Laboratory Chief, Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute, Bethesda, Maryland; Lung Transplantation Program, Johns Hopkins School of Medicine, Baltimore, M.
| |
Collapse
|
41
|
Samura O, Okamoto A. Causes of aberrant non-invasive prenatal testing for aneuploidy: A systematic review. Taiwan J Obstet Gynecol 2020; 59:16-20. [PMID: 32039788 DOI: 10.1016/j.tjog.2019.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 12/27/2022] Open
Abstract
Non-invasive prenatal testing (NIPT) is performed worldwide to detect common chromosomal aneuploidies. The analysis of cell-free DNA (cfDNA) in maternal blood for NIPT is highly accurate for the detection of the main fetal trisomies: 21,18, and 13. However, false-positive, false-negative, and non-reportable results can occur, and these can have biological causes. Understanding the causes of unexpected NIPT results is essential to enable clinicians and genetic counselors to counsel patients comprehensively and appropriately, both prior to testing as well as after receiving the test results. The classification of non-reportable results from cfDNA analysis is important in order to provide women with precise information. In addition to technical issues, there are biological reasons for discordant results, which can be either fetal or maternal in origin. Contributing fetal factors include insufficient or absent fetal fraction, fetoplacental mosaicism, and the presence of a vanishing twin. In some pregnant women that test positive for NIPT, multiple chromosome aneuploidy has been reported as a result of suspected malignancy, and cancer has been found. False-positive and false-negative results may be the result of placental biology and not a failure in the actual test platform. Explaining the placental origin of cfDNA provides the patient with a clear view of the abilities and limitations of cfDNA-based prenatal screening.
Collapse
Affiliation(s)
- Osamu Samura
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Chan RWY, Serpas L, Ni M, Volpi S, Hiraki LT, Tam LS, Rashidfarrokhi A, Wong PCH, Tam LHP, Wang Y, Jiang P, Cheng ASH, Peng W, Han DSC, Tse PPP, Lau PK, Lee WS, Magnasco A, Buti E, Sisirak V, AlMutairi N, Chan KCA, Chiu RWK, Reizis B, Lo YMD. Plasma DNA Profile Associated with DNASE1L3 Gene Mutations: Clinical Observations, Relationships to Nuclease Substrate Preference, and In Vivo Correction. Am J Hum Genet 2020; 107:882-894. [PMID: 33022220 PMCID: PMC7674998 DOI: 10.1016/j.ajhg.2020.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/16/2020] [Indexed: 12/30/2022] Open
Abstract
Plasma DNA fragmentomics is an emerging area in cell-free DNA diagnostics and research. In murine models, it has been shown that the extracellular DNase, DNASE1L3, plays a role in the fragmentation of plasma DNA. In humans, DNASE1L3 deficiency causes familial monogenic systemic lupus erythematosus with childhood onset and anti-dsDNA reactivity. In this study, we found that human patients with DNASE1L3 disease-associated gene variations showed aberrations in size and a reduction of a "CC" end motif of plasma DNA. Furthermore, we demonstrated that DNA from DNASE1L3-digested cell nuclei showed a median length of 153 bp with CC motif frequencies resembling plasma DNA from healthy individuals. Adeno-associated virus-based transduction of Dnase1l3 into Dnase1l3-deficient mice restored the end motif profiles to those seen in the plasma DNA of wild-type mice. Our findings demonstrate that DNASE1L3 is an important player in the fragmentation of plasma DNA, which appears to act in a cell-extrinsic manner to regulate plasma DNA size and motif frequency.
Collapse
Affiliation(s)
- Rebecca W Y Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Meng Ni
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Stefano Volpi
- Clinica Pediatrica e Reumatologia, Centro per le malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy; Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), Università degli Studi di Genova, 16132 Genova, Italy
| | - Linda T Hiraki
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON M5G 1X5, Canada
| | - Lai-Shan Tam
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Ali Rashidfarrokhi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Priscilla C H Wong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Lydia H P Tam
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Yueyang Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Peiyong Jiang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Alice S H Cheng
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Wenlei Peng
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Diana S C Han
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Patty P P Tse
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Pik Ki Lau
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Wing-Shan Lee
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Alberto Magnasco
- Division of Nephrology, Dialysis and Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Elisa Buti
- Nefrologia e Dialisi, Azienda Ospedaliero Universitaria Meyer, 50139 Firenze, Italy
| | - Vanja Sisirak
- CNRS-UMR 5164, ImmunoConcEpt, Université de Bordeaux, 33076 Bordeaux, France
| | - Nora AlMutairi
- Sabah Hospital, Jaber Al Ahmad Al Jaber Al Sabah Hospital, Kuwait
| | - K C Allen Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Rossa W K Chiu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Y M Dennis Lo
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
43
|
Truszewska A, Wirkowska A, Gala K, Truszewski P, Krzemień-Ojak Ł, Perkowska-Ptasińska A, Mucha K, Pączek L, Foroncewicz B. Cell-free DNA profiling in patients with lupus nephritis. Lupus 2020; 29:1759-1772. [DOI: 10.1177/0961203320957717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Increased level of cell-free DNA (cf-DNA) is associated with systemic lupus erythematosus (SLE) and might be related to disease activity. The aim of this study was to evaluate whether cfDNA integrity, size distribution and concentration of different cfDNA fractions is associated with lupus activity and kidney involvement. Methods Blood samples were collected from 43 SLE patients and 50 healthy controls. Nuclear and mitochondrial fractions of cfDNA and intracellular DNA were quantified by real-time qPCR. Sizing and quantification of total cfDNA level was performed on Bioanalyzer. Results We determined four parameters that characterized cfDNA profile: fragmentation index, ratio of intra- to extracellular mtDNA copy number, cfDNA concentration, and presence of 54–149 bp and 209–297 bp fragments. Patients with healthy-like cfDNA profile had higher eGFR ( P = 0.009) and more often no indications for kidney biopsy or less advanced lupus nephritis (LN) ( P = 0.037). In contrary, SLE patients with distinct cfDNA profile (characterized by increased cfDNA concentration and fragmentation, higher discrepancy between intra- to extracellular mtDNA copy number, and the presence of 54–149 bp and 209–297 bp fragments) had lower eGFR ( P = 0.005) and more often advanced LN or history of renal transplantation ( P = 0.001). Conclusions We showed that cfDNA profiling may help to distinguish SLE patients with renal involvement and severe disease course from patients with more favorable outcomes. We suggest cfDNA profile a promising SLE biomarker.
Collapse
Affiliation(s)
- Anna Truszewska
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Wirkowska
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Kamila Gala
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Truszewski
- Department of Orthopedics and Traumatology of Musculoskeletal System, Baby Jesus Clinical Hospital, Warsaw, Poland
| | - Łucja Krzemień-Ojak
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, Warsaw, Poland
| | | | - Krzysztof Mucha
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Foroncewicz
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
44
|
Jiang P, Xie T, Ding SC, Zhou Z, Cheng SH, Chan RWY, Lee WS, Peng W, Wong J, Wong VWS, Chan HLY, Chan SL, Poon LCY, Leung TY, Chan KCA, Chiu RWK, Lo YMD. Detection and characterization of jagged ends of double-stranded DNA in plasma. Genome Res 2020; 30:1144-1153. [PMID: 32801148 PMCID: PMC7462074 DOI: 10.1101/gr.261396.120] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/22/2020] [Indexed: 01/06/2023]
Abstract
Cell-free DNA in plasma has been used for noninvasive prenatal testing and cancer liquid biopsy. The physical properties of cell-free DNA fragments in plasma, such as fragment sizes and ends, have attracted much recent interest, leading to the emerging field of cell-free DNA fragmentomics. However, one aspect of plasma DNA fragmentomics as to whether double-stranded plasma molecules might carry single-stranded ends, termed a jagged end in this study, remains underexplored. We have developed two approaches for investigating the presence of jagged ends in a plasma DNA pool. These approaches utilized DNA end repair to introduce differential methylation signals between the original sequence and the jagged ends, depending on whether unmethylated or methylated cytosines were used in the DNA end-repair procedure. The majority of plasma DNA molecules (87.8%) were found to bear jagged ends. The jaggedness varied according to plasma DNA fragment sizes and appeared to be in association with nucleosomal patterns. In the plasma of pregnant women, the jaggedness of fetal DNA molecules was higher than that of the maternal counterparts. The jaggedness of plasma DNA correlated with the fetal DNA fraction. Similarly, in the plasma of cancer patients, tumor-derived DNA molecules in patients with hepatocellular carcinoma showed an elevated jaggedness compared with nontumoral DNA. In mouse models, knocking out of the Dnase1 gene reduced jaggedness, whereas knocking out of the Dnase1l3 gene enhanced jaggedness. Hence, plasma DNA jagged ends represent an intrinsic property of plasma DNA and provide a link between nuclease activities and the fragmentation of plasma DNA.
Collapse
Affiliation(s)
- Peiyong Jiang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Tingting Xie
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Spencer C Ding
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Ze Zhou
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Suk Hang Cheng
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Rebecca W Y Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Wing-Shan Lee
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Wenlei Peng
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - John Wong
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Vincent W S Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China.,Institute of Digestive Diseases, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Henry L Y Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China.,Institute of Digestive Diseases, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Stephen L Chan
- Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China.,State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Liona C Y Poon
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Tak Y Leung
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - K C Allen Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China.,State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Rossa W K Chiu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China.,State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
45
|
Pisetsky DS. Evolving story of autoantibodies in systemic lupus erythematosus. J Autoimmun 2020; 110:102356. [PMID: 31810857 PMCID: PMC8284812 DOI: 10.1016/j.jaut.2019.102356] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 01/02/2023]
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by antinuclear antibody (ANA) production. ANAs bind to DNA, RNA and complexes of proteins and nucleic acids and are important markers for diagnosis and activity. According to current models, ANAs originate from antigen-driven processes; nevertheless, antibody responses to both DNA and RNA binding proteins display features unexpected in terms of current paradigms for antigenicity. These differences may reflect disturbances in both B and T cells critical for autoreactivity. Clinically, ANA testing has new uses for determining classification as well as assessing eligibility for clinical trials. Studies of patients with established disease show frequent seronegativity. In this setting, seronegativity may indicate a stage of disease called post-autoimmunity in which the natural history of disease or effects of immunosuppressive therapies modifies responses. The new uses of ANA testing highlight the importance of understanding autoantigenicity and developing sensitive and informative assays for clinical assessments.
Collapse
Affiliation(s)
- David S Pisetsky
- Division of Rheumatology and Immunology, Duke University Medical Center and Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC, USA.
| |
Collapse
|
46
|
Pan M, Chen P, Lu J, Liu Z, Jia E, Ge Q. The fragmentation patterns of maternal plasma cell-free DNA and its applications in non-invasive prenatal testing. Prenat Diagn 2020; 40:911-917. [PMID: 32147843 DOI: 10.1002/pd.5680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 02/10/2020] [Accepted: 02/29/2020] [Indexed: 12/11/2022]
Abstract
The discovery of cell-free DNA (cfDNA) in maternal plasma has opened up new promises for the development of non-invasive prenatal testing (NIPT). Application of cfDNA in NIPT of fetus diseases and abnormalities is restricted by the low amount of fetal DNA molecules in maternal plasma. Fetus-derived cfDNA in maternal plasma are shorter than maternal DNA, thus leveraging the maternal and fetus-derived cfDNA molecules size difference has become a novel and more accurate method for NIPT. However, multiple biological properties such as size distribution of plasma DNA, proportion of fetal-derived DNA and methylation levels in maternal plasma across different gestational ages still remain largely unknown. Further insights into the size distribution and fragmentation pattern of circulating plasma cfDNA will shed light on the origin and fragmentation mechanisms of cfDNA during physiological and pathological processes in prenatal diseases and enhance our ability to take the advantage of plasma cfDNA as a molecular diagnostic tool. In the review, we start by summarizing the research techniques for the determination of the fragmentation profiles of cfDNA in maternal plasma. We then summarize the main progress and findings in size profiles of maternal plasma cfDNA and cffDNA. Finally, we discuss the potential diagnostic applications of plasma cfDNA size profiling.
Collapse
Affiliation(s)
- Min Pan
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing, China
| | - Pingsheng Chen
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing, China
| | - Jiafeng Lu
- Center of Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Zhiyu Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Erteng Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
47
|
Zvereva M, Roberti G, Durand G, Voegele C, Nguyen MD, Delhomme TM, Chopard P, Fabianova E, Adamcakova Z, Holcatova I, Foretova L, Janout V, Brennan P, Foll M, Byrnes GB, McKay JD, Scelo G, Le Calvez-Kelm F. Circulating tumour-derived KRAS mutations in pancreatic cancer cases are predominantly carried by very short fragments of cell-free DNA. EBioMedicine 2020; 55:102462. [PMID: 32249202 PMCID: PMC7251242 DOI: 10.1016/j.ebiom.2019.09.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/13/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The DNA released into the bloodstream by malignant tumours· called circulating tumour DNA (ctDNA), is often a small fraction of total cell-free DNA shed predominantly by hematopoietic cells and is therefore challenging to detect. Understanding the biological properties of ctDNA is key to the investigation of its clinical relevance as a non-invasive marker for cancer detection and monitoring. METHODS We selected 40 plasma DNA samples of pancreatic cancer cases previously reported to carry a KRAS mutation at the 'hotspot' codon 12 and re-screened the cell-free DNA using a 4-size amplicons strategy (57 bp, 79 bp, 167 bp and 218 bp) combined with ultra-deep sequencing in order to investigate whether amplicon lengths could impact on the capacity of detection of ctDNA, which in turn could provide inference of ctDNA and non-malignant cell-free DNA size distribution. FINDINGS Higher KRAS amplicon size (167 bp and 218 bp) was associated with lower detectable cell-free DNA mutant allelic fractions (p < 0·0001), with up to 4·6-fold (95% CI: 2·6-8·1) difference on average when comparing the 218bp- and the 57bp-amplicons. The proportion of cases with detectable KRAS mutations was also hampered with increased amplicon lengths, with only half of the cases having detectable ctDNA using the 218 bp assay relative to those detected with amplicons less than 80 bp. INTERPRETATION Tumour-derived mutations are carried by shorter cell-free DNA fragments than fragments of wild-type allele. Targeting short amplicons increases the sensitivity of cell-free DNA assays for pancreatic cancer and should be taken into account for optimized assay design and for evaluating their clinical performance. FUNDING IARC; MH CZ - DRO; MH SK; exchange program between IARC and Sao Paulo medical Sciences; French Cancer League.
Collapse
Affiliation(s)
- Maria Zvereva
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France; Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Gabriel Roberti
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France; Santa Casa de Sao Paulo of medical Sciences, Sao Paulo, Brazil
| | - Geoffroy Durand
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France
| | - Catherine Voegele
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France
| | - Minh Dao Nguyen
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France
| | - Tiffany M Delhomme
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France
| | - Priscilia Chopard
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France
| | - Eleonora Fabianova
- Regional Authority of Public Health, Banska Bystrica, and Faculty of Health, Catholic University, Ružomberok, Slovakia
| | - Zora Adamcakova
- Regional Authority of Public Health, Banska Bystrica, and Faculty of Health, Catholic University, Ružomberok, Slovakia
| | - Ivana Holcatova
- First Faculty of Medicine, Charles University of Prague, Institute of Hygiene and Epidemiology, Prague, Czechia
| | - Lenka Foretova
- Masaryk Memorial Cancer Institute and Medical Faculty of Masaryk University, Brno, Czechia
| | - Vladimir Janout
- Faculty of Health Sciences, Palacky University, Olomouc, Czechia
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France
| | - Matthieu Foll
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France
| | - Graham B Byrnes
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France
| | - James D McKay
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France
| | - Florence Le Calvez-Kelm
- International Agency for Research on Cancer (IARC), Genetic Cancer Susceptibility group, 150 Cours Albert Thomas, 69372 Lyon, France.
| |
Collapse
|
48
|
Dong C, Liu Y, Sun C, Liang H, Dai L, Shen J, Wei S, Guo S, Leong KW, Chen Y, Wei L, Liu L. Identification of Specific Joint-Inflammatogenic Cell-Free DNA Molecules From Synovial Fluids of Patients With Rheumatoid Arthritis. Front Immunol 2020; 11:662. [PMID: 32411129 PMCID: PMC7198838 DOI: 10.3389/fimmu.2020.00662] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/23/2020] [Indexed: 01/22/2023] Open
Abstract
Elevated cell-free DNA (cfDNA) levels in the plasma and synovial fluid of rheumatoid arthritis (RA) patients are proposed to be pathologically relevant. However, direct evidence to support this perception is lacking, and molecular feature of the cfDNA molecules with assumed pathological function is not well characterized. Here, we confirm remarkably increased levels of total synovial fluid and plasma cfDNAs in a large cohort of patients with rheumatoid arthritis compared to the counterparts in osteoarthritis, and demonstrate the potent inflammatogenic effects of RA synovial fluid cfDNA on both human monocyte cell line and primary cells related to RA. Massively parallel sequencing identifies distinct molecular pattern of cfDNA in RA, as characterized by enriching CpG-motif containing sequences. Importantly, these identified CpG-motif-rich sequences are hypomethylated in RA patients and induce severe inflammatory responses both in vitro and in vivo. Our data demonstrate the pathological role of global and specific cfDNA molecules in RA, thereby identifying novel therapeutic target candidate and potential biomarker for RA.
Collapse
Affiliation(s)
- Cong Dong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Center for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yu Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chengxin Sun
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Center for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Huiyi Liang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Center for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Lie Dai
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Shen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Song Wei
- Department of Rheumatology, General Hospital of Guangzhou Military Command of PLA, Guangzhou, China
| | - Shixin Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Yongming Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Center for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lixin Liu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Center for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
49
|
Nakamura N, Sasaki A, Mikami M, Nishiyama M, Akaishi R, Wada S, Ozawa N, Sago H. Nonreportable rates and cell-free DNA profiles in noninvasive prenatal testing among women with heparin treatment. Prenat Diagn 2020; 40:838-845. [PMID: 32274797 DOI: 10.1002/pd.5695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To evaluate the "nonreportable" rate in patients treated with heparin and to determine the effect of heparin on the results of noninvasive prenatal testing (NIPT). METHOD This was a single-center retrospective study of NIPT. The "nonreportable" rate of NIPT was evaluated according to presence or absence of heparin treatment. After excluding true-positive cases, a matched cohort study evaluating Z-scores, GC bias, and cell-free DNA (cfDNA) profiles was performed to investigate the effect of heparin on NIPT results. RESULTS Overall, 2651 singleton pregnancies with available clinical information were evaluated; 23 mothers were treated with heparin. The nonreportable rate was much higher among patients treated with heparin than among those who were not (8.70% vs 0.15%). In the matched cohort study, the Z-scores for chromosomes 13, 18, and 21, and GC bias were significantly higher in the heparin group than in the matched control group. Based on cfDNA library electrophoresis data, the proportion of short-sized cfDNA was higher in the heparin group. CONCLUSION Heparin use increased the nonreportable rate of NIPT results by borderline Z-scores, possibly caused by the increased proportions of shorter and GC-rich cfDNA fragments. This information will be helpful for prenatal genetic counseling for patients requiring heparin treatment.
Collapse
Affiliation(s)
- Noriyuki Nakamura
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Aiko Sasaki
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Masashi Mikami
- Division of Biostatistics, Clinical Research Center, National Center for Child Health and Development, Tokyo, Japan
| | - Miyuki Nishiyama
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Rina Akaishi
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Seiji Wada
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Nobuaki Ozawa
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
50
|
Abstract
Despite an increase in the rates of survival in patients suffering myocardial infarction, as yet there is no therapy specifically targeting ischaemia and reperfusion injury of the myocardium. With a greater understanding of immune activation during infarction, more potential treatment targets are now being identified. The innate immune system is believed to play an important role in the myocardium after ischaemia-driven cardiomyocyte death. The release of intracellular contents including DNA into the extracellular space during necrosis and cell rupture is now believed to create a pro-inflammatory milieu which propagates the inflammatory process. DNA and DNA fragments have been shown to activate the innate immune system by acting as Danger-Associated Molecular Patterns (DAMPs), which act as ligands on toll-like receptors (TLRs). Stimulation of TLRs, in turn, can activate intracellular cell death pathways such as pyroptosis. Here, we review the role of DNA fragments during ischaemia and reperfusion, and assess their potential as a target in the quest to preserve cardiomyocyte viability following myocardial infarction.
Collapse
Affiliation(s)
- Mohammed Shah
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|