1
|
Jiang K, Møller BL, Luo S, Yang Y, Nelson DR, Jakobsen Neilson EH, Christensen JM, Hua K, Hu C, Zeng X, Motawie MS, Wan T, Hu GW, Onjalalaina GE, Wang Y, Gaitán-Espitia JD, Wang Z, Xu XY, He J, Wang L, Li Y, Peng DH, Lan S, Zhang H, Wang QF, Liu ZJ, Huang WC. Genomic, transcriptomic, and metabolomic analyses reveal convergent evolution of oxime biosynthesis in Darwin's orchid. MOLECULAR PLANT 2025; 18:392-415. [PMID: 39702965 DOI: 10.1016/j.molp.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/11/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Angraecum sesquipedale, also known as Darwin's orchid, possesses an exceptionally long nectar spur. Charles Darwin predicted the orchid to be pollinated by a hawkmoth with a correspondingly long proboscis, later identified as Xanthopan praedicta. In this plant-pollinator interaction, the A. sesquipedale flower emits a complex blend of scent compounds dominated by diurnally regulated oximes (R1R2C = N-OH) to attract crepuscular and nocturnal pollinators. The molecular mechanism of oxime biosynthesis remains unclear in orchids. Here, we present the chromosome-level genome of A. sesquipedale. The haploid genome size is 2.10 Gb and represents 19 pseudochromosomes. Cytochrome P450 encoding genes of the CYP79 family known to be involved in oxime biosynthesis in seed plants are not present in the A. sesquipedale genome nor the genomes of other members of the orchid family. Metabolomic analysis of the A. sesquipedale flower revealed a substantial release of oximes at dusk during the blooming stage. By integrating metabolomic and transcriptomic correlation approaches, flavin-containing monooxygenases (FMOs) encoded by six tandem-repeat genes in the A. sesquipedale genome are identified as catalyzing the formation of oximes present. Further in vitro and in vivo assays confirm the function of FMOs in the oxime biosynthesis. We designate these FMOs as orchid oxime synthases 1-6. The evolutionary aspects related to the CYP79 gene losses and neofunctionalization of FMO-catalyzed biosynthesis of oximes in Darwin's orchid provide new insights into the convergent evolution of biosynthetic pathways.
Collapse
Affiliation(s)
- Kai Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Shaofan Luo
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yu Yang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Elizabeth Heather Jakobsen Neilson
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Møller Christensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Kai Hua
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Chao Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Xinhua Zeng
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Mohammed Saddik Motawie
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Tao Wan
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Guang-Wan Hu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Guy Eric Onjalalaina
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China; University of Antananarivo, Antananarivo, Madagascar
| | - Yijiao Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | | | - Xiao-Yan Xu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiamin He
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linying Wang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Li
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dong-Hui Peng
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Key Laboratory of Plant Design, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Qing-Feng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| | - Zhong-Jian Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Wei-Chang Huang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, CAS Center for Excellence in Molecular Plant Sciences Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
2
|
Zhang C, Jiang L, Qian J, Yu G, Qing H, Li L, Fu J. Genome-wide analysis of basic helix-loop-helix (bHLH) transcription factors in petunia and identification of the putative candidate member involved in floral volatile benzenoids/phenylpropanoids metabolism. Gene 2025; 938:149150. [PMID: 39667713 DOI: 10.1016/j.gene.2024.149150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
The basic helix-loop-helix (bHLH) family, a prominent group of transcription factors, is involved in plant growth, development, and secondary metabolic processes. Petunia (Petunia hybrida), a beloved and widely cultivated garden flower, boasts a diverse array of varieties, some of which exude a captivating fragrance that has garnered immense popularity. The aromatic allure of petunias primarily stems from the presence of volatile benzenoids/phenylpropanoids, the principal floral scent compounds. But whether bHLH transcription factors regulate petunia floral scent compound synthesis is not clear. In this study, we sought to screen the putative candidate member of bHLH which can be involved in the biosynthesis of benzenoids/phenylpropanoids by examining 63 members of the petunia bHLH gene family. Phylogenetic analysis of the 63 petunia bHLH proteins them into 16 subgroups. Almost all bHLH members contained alkaline/helix-loop-helix domains. Based on the reported RNA sequencing data of P. hybrida 'Mitchell', 30 assembled sequences were mapped to the bHLH genes of P. axillaris. Further qRT-PCR assays suggested that PhbHLH19 might be the putative candidate member in the biosynthesis of benzenoids/phenylpropanoids. PhbHLH19 showed higher expression levels in the petal limb but was lowly expressed at the bud stage, with a rapid increase in the expression level when flowers opened. The expression of PhbHLH19 displayed a significant positive correlation with that of PhPAL2, and the yeast one-hybrid assay verified that PhbHLH19 can bind to the promoter of PhPAL2. Moreover, a dual-luciferase assay proved the transcriptional activation of PhbHLH19 on PhPAL2. These findings suggested that PhbHLH19 might be a putative candidate in the regulation of benzenoid/phenylpropanoid synthesis by activating PhPAL2 expression.
Collapse
Affiliation(s)
- Chao Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China.
| | - Lingli Jiang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China
| | - Jieyu Qian
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China
| | - Guo Yu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China
| | - Hongsheng Qing
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China
| | - Li Li
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China
| | - Jianxin Fu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
3
|
Bednarczyk D, Skaliter O, Kerzner S, Masci T, Shklarman E, Shor E, Vainstein A. The homeotic gene PhDEF regulates production of volatiles in petunia flowers by activating EOBI and EOBII. THE PLANT CELL 2025; 37:koaf027. [PMID: 39913239 PMCID: PMC11850304 DOI: 10.1093/plcell/koaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025]
Abstract
In petunia (Petunia × hybrida), MADS-box homeotic genes dictate floral organ identity. For instance, DEFICIENS (PhDEF), GLOBOSA1, and GLOBOSA2 (PhGLO1/2) are responsible for petal and stamen identity. However, whether homeotic genes, particularly PhDEF, have a function at the later stages of flower development remains elusive. In petunia flowers, scent production initiates at anthesis, when the flower is ready for pollination, and is triggered by activation of EMISSION OF BENZENOIDS I (EOBI) and EOBII, MYB transcriptional regulators of scent-related genes. Here, we revealed the role of PhDEF in mature flowers, showing that it activates scent production. PhDEF suppression using a transient viral system in petunia flowers led to a significant reduction in volatile emission and pool levels, and in the transcript levels of scent-related transcriptional regulators and enzymes. Promoter activity assays demonstrated that PhDEF activates EOBI, EOBII, and the phenylpropanoid biosynthesis genes L-PHENYLALANINE AMMONIA LYASE and PHENYLACETALDEHYDE SYNTHASE. Our findings underscore the importance of PhDEF in petunia flower development from initiation to maturation and in coordinating petal specification and the establishment of showy pollination-related traits.
Collapse
Affiliation(s)
- Dominika Bednarczyk
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Oded Skaliter
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Shane Kerzner
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tania Masci
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Elena Shklarman
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ekaterina Shor
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
4
|
Zhou Y, Tian J, Hong H, Gao Y, He Y, Zhu ZR. Dynamics of linalool and its derivatives enantiomers in Camellia sinensis var. A ssamica "Hainan dayezhong". Food Chem X 2025; 25:102109. [PMID: 39810952 PMCID: PMC11732153 DOI: 10.1016/j.fochx.2024.102109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/26/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
We here analyzed changes in the proportion and content of chiral isomers of linalool and its derivatives in "Hainan dayezhong" throughout its life cycle from tea tree growth and tea manufacturing to brewing. The chiral isomers of aromatic compounds present in fresh tea leaves were found to undergo substantial diurnal and seasonal changes during tea tree growth, and their proportions varied slightly across different leaf positions. The chiral isomer content of linalool and its derivatives was consistently higher in stems than in leaves. Pest and disease stress significantly increased the proportion and content of type-R aroma. The proportion of chiral isomers underwent no considerable change during black tea manufacturing. However, their content varied dramatically among different processes. Diversity in the proportion and content of chiral isomers was observed in the wild tea tree. Further research should focus on breeding "Hainan dayezhong" wild resources to generate clones with high aroma quality.
Collapse
Affiliation(s)
- Ying Zhou
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Junjie Tian
- Hainan Institute, Zhejiang University, Sanya 572025, China
- College of Forestry, Beijing Forestry University, Beijing 100193, China
| | - Hainuo Hong
- Hainan Institute, Zhejiang University, Sanya 572025, China
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Gao
- Hainan Institute, Zhejiang University, Sanya 572025, China
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunchuan He
- Hainan Institute, Zhejiang University, Sanya 572025, China
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zeng-Rong Zhu
- Hainan Institute, Zhejiang University, Sanya 572025, China
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Chen Y, Zhong S, Kong L, Fan R, Xu Y, Chen Y, Zhong H. Emission and Transcriptional Regulation of Aroma Variation in Oncidium Twinkle 'Red Fantasy' Under Diel Rhythm. PLANTS (BASEL, SWITZERLAND) 2024; 13:3232. [PMID: 39599441 PMCID: PMC11598538 DOI: 10.3390/plants13223232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Oncidium hybridum is one of the important cut-flowers in the world. However, the lack of aroma in its cut-flower varieties greatly limits the sustainable development of the Oncidium hybridum cut-flowers industry. This paper is an integral investigation of the diel pattern and influencing factors of the aroma release of Oncidium Twinkle 'Red Fantasy'. GC-MS analysis revealed that the release of 3-Carene peaked at 10:00, while Butyl tiglate and Prenyl senecioate did so at 14:00, with a diel rhythm. By analyzing the correlation network between aroma component synthesis and differentially expressed genes, 15 key structural genes were detected and regulated by multiple circadian rhythm-related transcription factors. Cluster-17371.18_TPS, Cluster-65495.1_TPS, Cluster-46699.0_TPS, Cluster-60935.10_DXS, Cluster-47205.4_IDI, and Cluster-65313.7_LOX were key genes in the terpenoid and fatty acid derivative biosynthetic pathway, which were co-expressed with aroma release. Constant light/dark treatments revealed that the diurnal release of 3-Carene may be influenced by light and the circadian clock, and Butyl tiglate and Prenyl senecioate may be mainly determined by endogenous circadian clock. Under constant light treatment, the TPS, DXS, IDI, and LOX genes seem to lose their regulatory role in the release of aroma compounds from Oncidium Twinkle 'Red Fantasy'. Under constant dark treatment, the TPS genes were consistent with the release pattern of 3-Carene, which may be a key factor in regulating the diel rhythm of 3-Carene biosynthesis. These results laid a theoretical foundation for the study of floral transcriptional regulation and genetic engineering technology breeding of Oncidium hybridum.
Collapse
Affiliation(s)
- Yan Chen
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences (Fujian Germplasm Resources Center), Fuzhou 350013, China; (Y.C.)
- Fujian Engineering Research Center for Characteristic Floriculture, Fuzhou 350013, China
| | - Shengyuan Zhong
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences (Fujian Germplasm Resources Center), Fuzhou 350013, China; (Y.C.)
- Fuzhou Sub-Center for New Plant Variety Tests, Ministry of Agriculture and Rural Affairs, Fuzhou 350013, China
| | - Lan Kong
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences (Fujian Germplasm Resources Center), Fuzhou 350013, China; (Y.C.)
- Fujian Engineering Research Center for Characteristic Floriculture, Fuzhou 350013, China
| | - Ronghui Fan
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences (Fujian Germplasm Resources Center), Fuzhou 350013, China; (Y.C.)
- Fujian Engineering Research Center for Characteristic Floriculture, Fuzhou 350013, China
| | - Yan Xu
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiquan Chen
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences (Fujian Germplasm Resources Center), Fuzhou 350013, China; (Y.C.)
- Fujian Engineering Research Center for Characteristic Floriculture, Fuzhou 350013, China
| | - Huaiqin Zhong
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences (Fujian Germplasm Resources Center), Fuzhou 350013, China; (Y.C.)
- Fujian Engineering Research Center for Characteristic Floriculture, Fuzhou 350013, China
| |
Collapse
|
6
|
Lou L, Tu ZJ, Lahondère C, Vinauger C. Rhythms in insect olfactory systems: underlying mechanisms and outstanding questions. J Exp Biol 2024; 227:jeb244182. [PMID: 39508241 PMCID: PMC11574354 DOI: 10.1242/jeb.244182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Olfaction is a critical sensory modality for invertebrates, and it mediates a wide range of behaviors and physiological processes. Like most living organisms, insects live in rhythmic environments: the succession of nights and days is accompanied by cyclic variations in light intensity and temperature, as well as in the availability of resources and the activity of predators. Responding to olfactory cues in the proper temporal context is thus highly adaptive and allows for the efficient allocation of energy resources. Given the agricultural or epidemiological importance of some insect species, understanding olfactory rhythms is critical for the development of effective control strategies. Although the vinegar fly Drosophila melanogaster has been a classical model for the study of olfaction and circadian rhythms, recent studies focusing on non-model species have expanded our understanding of insect olfactory rhythms. Additionally, recent evidence revealing receptor co-expression by sensory neurons has brought about an ongoing paradigm shift in our understanding of insect olfaction, making it timely to review the state of our knowledge on olfactory rhythms and identify critical future directions for the field. In this Review, we discuss the multiple biological scales at which insect olfactory rhythms are being analyzed, and identify outstanding questions.
Collapse
Affiliation(s)
- Lan Lou
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhijian Jake Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
- Global Change Center, Virginia Tech, Blacksburg, VA 24061, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
7
|
Wei G, Xu M, Shi X, Wang Y, Shi Y, Wang J, Feng L. Integrative analysis of miRNA profile and degradome reveals post-transcription regulation involved in fragrance formation of Rosa rugosa. Int J Biol Macromol 2024; 279:135266. [PMID: 39244114 DOI: 10.1016/j.ijbiomac.2024.135266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Rosa rugosa is renowned for its fragrant essential oils (EOs) including the primary volatile compounds such as terpenes (geraniol and citronellol) and 2-phenylethanol. While the role of miRNAs in plant secondary metabolism has been explored, their involvement in EOs metabolism remains largely unknown. Sequencing of the petals of R. rugosa identified 383 conserved miRNAs and 625 novel miRNAs including 53 miRNAs differentially expressed in a strong fragrance variety R. rugosa 'White Purple Branch'. Degradome sequencing predicted 1969 targets enriched in GO terms involved in the negative regulation of macromolecule metabolic process. Furthermore, 122 targets of differentially expressed miRNAs were enriched in phenylalanine metabolism and other KEGG pathways. A post-transcriptional regulation network of 52 miRNAs and 70 miRNA-transcription factor modules target terpene and 2-phenylethanol biosynthesis pathways. Six interactions including miR535f-RrHMGR, NOV146-RrNUDX1, miR166l-RrHY5 and miR156c-RrSPL2 were validated using RNA ligase-mediated RACE. Sequence alignment revealed that the NOV146-RrNUDX1 was conserved in the Rosa genus. Moreover, weaker silencing of RrNUDX1 by NOV146 contributed to the stronger fragrance of R. rugosa. These findings offer a comprehensive understanding of the post-transcriptional regulation involved in essential oil biosynthesis and identify candidate miRNAs for further genetic improvement of EO yields in R. rugosa.
Collapse
Affiliation(s)
- Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Mengmeng Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xinwei Shi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yue Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yuqing Shi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jianwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
8
|
Lv M, Zhang L, Wang Y, Ma L, Yang Y, Zhou X, Wang L, Yu X, Li S. Floral volatile benzenoids/phenylpropanoids: biosynthetic pathway, regulation and ecological value. HORTICULTURE RESEARCH 2024; 11:uhae220. [PMID: 39398951 PMCID: PMC11469922 DOI: 10.1093/hr/uhae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/28/2024] [Indexed: 10/15/2024]
Abstract
Benzenoids/phenylpropanoids, the second most diverse group of plant volatiles, exhibit significant structural diversity and play crucial roles in attracting pollinators and protecting against pathogens, insects, and herbivores. This review summarizes their complex biosynthetic pathways and regulatory mechanisms, highlighting their links to plant growth, development, hormone levels, circadian rhythms, and flower coloration. External factors like light, humidity, and temperature also influence their biosynthesis. Their ecological value is discussed, offering insights for enhancing floral scent, pollinator attraction, pest resistance, and metabolic engineering through genetic modification.
Collapse
Affiliation(s)
- Mengwen Lv
- School of Landscape Architecture, Beijing Forestry University, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing 100083, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Ling Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yizhou Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xian Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangsheng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaonan Yu
- School of Landscape Architecture, Beijing Forestry University, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing 100083, China
| | - Shanshan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Pérez-Llorca M, Müller M. Unlocking Nature's Rhythms: Insights into Secondary Metabolite Modulation by the Circadian Clock. Int J Mol Sci 2024; 25:7308. [PMID: 39000414 PMCID: PMC11241833 DOI: 10.3390/ijms25137308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Plants, like many other living organisms, have an internal timekeeper, the circadian clock, which allows them to anticipate photoperiod rhythms and environmental stimuli to optimally adjust plant growth, development, and fitness. These fine-tuned processes depend on the interaction between environmental signals and the internal interactive metabolic network regulated by the circadian clock. Although primary metabolites have received significant attention, the impact of the circadian clock on secondary metabolites remains less explored. Transcriptome analyses revealed that many genes involved in secondary metabolite biosynthesis exhibit diurnal expression patterns, potentially enhancing stress tolerance. Understanding the interaction mechanisms between the circadian clock and secondary metabolites, including plant defense mechanisms against stress, may facilitate the development of stress-resilient crops and enhance targeted management practices that integrate circadian agricultural strategies, particularly in the face of climate change. In this review, we will delve into the molecular mechanisms underlying circadian rhythms of phenolic compounds, terpenoids, and N-containing compounds.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Biology, Health and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Maren Müller
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Koeduka T. Research advances in regulation and genetic engineering of floral scents. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:103-110. [PMID: 39463767 PMCID: PMC11500596 DOI: 10.5511/plantbiotechnology.24.0312a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/12/2024] [Indexed: 10/29/2024]
Abstract
Floral scents play important ecological roles because they attract pollinators and seed-dispersers. Historically, humans have used plant volatiles, including floral scents, as food additives, cosmetic products, and medicines. Floral scent formation and emissions are sometimes considerably affected by environmental and climatic conditions. Both enzymes and genes involved in floral scent biosynthesis have been consistently identified, and have provided insights into the potential of metabolic engineering of floral scents. This review summarizes recent studies on various aspects of floral scent biosynthesis and emission, including biosynthetic enzymes and genetic engineering. The findings ultimately show that the metabolic pathways of floral volatiles may be regulated by a more complex system than previously thought.
Collapse
Affiliation(s)
- Takao Koeduka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University
| |
Collapse
|
11
|
Qian J, Zhu C, Li J, Yang Y, Gu D, Liao Y, Zeng L, Yang Z. The Circadian Clock Gene PHYTOCLOCK1 Mediates the Diurnal Emission of the Anti-Insect Volatile Benzyl Nitrile from Damaged Tea ( Camellia sinensis) Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13284-13296. [PMID: 38808775 DOI: 10.1021/acs.jafc.4c01919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Benzyl nitrile from tea plants attacked by various pests displays a diurnal pattern, which may be closely regulated by the endogenous circadian clock. However, the molecular mechanism by the circadian clock of tea plants that regulates the biosynthesis and release of volatiles remains unclear. In this study, the circadian clock gene CsPCL1 can activate both the expression of the benzyl nitrile biosynthesis-related gene CsCYP79 and the jasmonic acid signaling-related transcription factor CsMYC2 involved in upregulating CsCYP79 gene, thereby resulting in the accumulation and release of benzyl nitrile. Therefore, the anti-insect function of benzyl nitrile was explored in the laboratory. The application of slow-release beads of benzyl nitrile in tea plantations significantly reduced the number of tea geometrids and had positive effects on the yield of fresh tea leaves. These findings reveal the potential utility of herbivore-induced plant volatiles for the green control of pests in tea plantations.
Collapse
Affiliation(s)
- Jiajia Qian
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Chen Zhu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Jianlong Li
- Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, No. 6 Dafeng Road, Tianhe District, Guangzhou 510640, China
| | - Yuhua Yang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Dachuan Gu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yinyin Liao
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
12
|
Shor E, Vainstein A. Petunia PHYTOCHROME INTERACTING FACTOR 4/5 transcriptionally activates key regulators of floral scent. PLANT MOLECULAR BIOLOGY 2024; 114:66. [PMID: 38816626 PMCID: PMC11139750 DOI: 10.1007/s11103-024-01455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/09/2024] [Indexed: 06/01/2024]
Abstract
Floral scent emission of petunia flowers is regulated by light conditions, circadian rhythms, ambient temperature and the phytohormones GA and ethylene, but the mechanisms underlying sensitivity to these factors remain obscure. PHYTOCHROME INTERACTING FACTORs (PIFs) have been well studied as components of the regulatory machinery for numerous physiological processes. Acting redundantly, they serve as transmitters of light, circadian, metabolic, thermal and hormonal signals. Here we identified and characterized the phylogenetics of petunia PIF family members (PhPIFs). PhPIF4/5 was revealed as a positive regulator of floral scent: TRV-based transient suppression of PhPIF4/5 in petunia petals reduced emission of volatiles, whereas transient overexpression increased scent emission. The mechanism of PhPIF4/5-mediated regulation of volatile production includes activation of the expression of genes encoding biosynthetic enzymes and a key positive regulator of the pathway, EMISSION OF BENZENOIDS II (EOBII). The PIF-binding motif on the EOBII promoter (G-box) was shown to be needed for this activation. As PhPIF4/5 homologues are sensors of dawn and expression of EOBII also peaks at dawn, the prior is proposed to be part of the diurnal control of the volatile biosynthetic machinery. PhPIF4/5 was also found to transcriptionally activate PhDELLAs; a similar positive effect of PIFs on DELLA expression was further confirmed in Arabidopsis seedlings. The PhPIF4/5-PhDELLAs feedback is proposed to fine-tune GA signaling for regulation of floral scent production.
Collapse
Affiliation(s)
- Ekaterina Shor
- Institute of Plant Sciences, ARO, Volcani Institute, Rishon Lezion, Israel
| | - Alexander Vainstein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University, Rehovot, Israel.
| |
Collapse
|
13
|
Patrick RM, Huang XQ, Dudareva N, Li Y. Rhythmic histone acetylation acts in concert with day-night oscillation of the floral volatile metabolic network. THE NEW PHYTOLOGIST 2024; 241:1829-1839. [PMID: 38058220 DOI: 10.1111/nph.19447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
The biosynthesis of specialized metabolites is strictly regulated by environmental inputs such as the day-night cycle, but the underlying mechanisms remain elusive. In Petunia hybrida cv. Mitchell flowers, the biosynthesis and emission of volatile compounds display a diurnal pattern with a peak in the evening to attract nocturnal pollinators. Using petunia flowers as a model system, we found that chromatin level regulation, especially histone acetylation, plays an essential role in mediating the day-night oscillation of the biosynthetic gene network of specialized metabolites. By performing time-course chromatin immunoprecipitation assays for histone modifications, we uncovered that a specific group of genes involved in the regulation, biosynthesis, and emission of floral volatile compounds, which displays the greatest magnitude in day-night oscillating gene expression, is associated with highly dynamic histone acetylation marks H3K9ac and H3K27ac. Specifically, the strongest oscillating genes featured a drastic removal of histone acetylation marks at night, potentially to shut down the biosynthesis of floral volatile compounds during the morning when they are not needed. Inhibiting daytime histone acetylation led to a compromised evening induction of these genes. Overall, our study suggested an active role of chromatin modification in the diurnal oscillation of specialized metabolic network.
Collapse
Affiliation(s)
- Ryan M Patrick
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Xing-Qi Huang
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Natalia Dudareva
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ying Li
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
14
|
Jiang F, Liu D, Dai J, Yang T, Zhang J, Che D, Fan J. Cloning and Functional Characterization of 2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase (LiMCT) Gene in Oriental Lily (Lilium 'Sorbonne'). Mol Biotechnol 2024; 66:56-67. [PMID: 37014586 DOI: 10.1007/s12033-023-00729-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
2-C-methyl-D-erythritol-phosphate cytidylyltransferase (MCT) is a key enzyme in the MEP pathway of monoterpene synthesis, catalyzing the generation of 4- (5'-pyrophosphate cytidine)-2-C-methyl-D-erythritol from 2-C-methyl-D-erythritol-4-phosphate. We used homologous cloning strategy to clone gene, LiMCT, in the MEP pathway that may be involved in the regulation of floral fragrance synthesis in the Lilium oriental hybrid 'Sorbonne.' The full-length ORF sequence was 837 bp, encoding 278 amino acids. Bioinformatics analysis showed that the relative molecular weight of LiMCT protein is 68.56 kD and the isoelectric point (pI) is 5.12. The expression pattern of LiMCT gene was found to be consistent with the accumulation sites and emission patterns of floral fragrance monoterpenes in transcriptome data (unpublished). Subcellular localization indicated that the LiMCT protein is located in chloroplasts, which is consistent with the location of MEP pathway genes functioning in plastids to produce isoprene precursors. Overexpression of LiMCT in Arabidopsis thaliana affected the expression levels of MEP and MVA pathway genes, suggesting that overexpression of the LiMCT in A. thaliana affected the metabolic flow of C5 precursors of two different terpene synthesis pathways. The expression of the monoterpene synthase AtTPS14 was elevated nearly fourfold in transgenic A. thaliana compared with the control, and the levels of carotenoids and chlorophylls, the end products of the MEP pathway, were significantly increased in the leaves at full bloom, indicating that LiMCT plays an important role in regulating monoterpene synthesis and in the synthesis of other isoprene-like precursors in transgenic A. thaliana flowers. However, the specific mechanism of LiMCT in promoting the accumulation of isoprene products of the MEP pathway and the biosynthesis of floral monoterpene volatile components needs further investigation.
Collapse
Affiliation(s)
- Fan Jiang
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Dongying Liu
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Jingqi Dai
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Tao Yang
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Jinzhu Zhang
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Daidi Che
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Jinping Fan
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
15
|
Upshur IF, Fehlman M, Parikh V, Vinauger C, Lahondère C. Sugar feeding by invasive mosquito species on ornamental and wild plants. Sci Rep 2023; 13:22121. [PMID: 38092771 PMCID: PMC10719288 DOI: 10.1038/s41598-023-48089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Feeding on plant-derived sugars is an essential component of mosquito biology, affecting key aspects of their lives such as survival, metabolism, and reproduction. Among mosquitoes, Aedes aegypti and Aedes albopictus are two invasive mosquito species in the US, and are vectors of diseases such as dengue fever, chikungunya, and Zika. These species live in heavily populated, urban areas, where they have high accessibility to human hosts as well as to plants in backyards and public landscapes. However, the range of plants that are suitable sugar hosts for these species remains to be described, despite the importance of understanding what plants may attract or repel mosquitoes to inform citizens and municipal authorities accordingly. Here, we tested whether Ae. aegypti and Ae. albopictus would sugar-feed on eleven commonly planted ornamental plant species. We confirmed feeding activity using the anthrone method and identified the volatile composition of plant headspace using gas-chromatography mass-spectroscopy. These chemical analyses revealed that a broad range of olfactory cues are associated with plants that mosquitoes feed on. This prompted us to use plant DNA barcoding to identify plants that field-caught mosquitoes feed on. Altogether, results show that native and invasive mosquito species can exploit a broader range of plants than originally suspected, including wild and ornamental plants from different phyla throughout the Spring, Summer and Fall seasons.
Collapse
Affiliation(s)
- Irving Forde Upshur
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Mikhyle Fehlman
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Vansh Parikh
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- The Fralin Life Science Institute Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Center of Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- The Fralin Life Science Institute Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Center of Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
16
|
Davies C, Burbidge CA, Böttcher C, Dodd AN. Loss of Diel Circadian Clock Gene Cycling Is a Part of Grape Berry Ripening. PLANT & CELL PHYSIOLOGY 2023; 64:1386-1396. [PMID: 37769233 DOI: 10.1093/pcp/pcad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Diel cycles of gene expression are thought to adapt plants to 24-h changes in environmental conditions. The circadian clock contributes to this process, but less is known about circadian programs in developing reproductive organs. While model plants and controlled conditions have contributed greatly to our knowledge of circadian clock function, there is a need to better understand its role in crop plants under field conditions with fluctuating light and temperature. In this study, we investigated changes in the circadian clock during the development of grape berries of Vitis vinifera L. We found that the transcripts of circadian clock homologs had high-amplitude oscillations prior to, but not during, ripening. As ripening progressed, the amplitude and rhythmicity of the diel oscillations decreased until most transcripts tested had no significant fluctuation over the 24-h cycle. Despite this loss of rhythmicity, the majority of circadian clock genes investigated were expressed at or near their abundance at the nadir of their pre-ripening oscillation although the berries remained transcriptionally active. From this, it can be concluded that cycling of the canonical circadian clock appears unnecessary for berry ripening. Our data suggest that changes in circadian clock dynamics during reproductive organ development may have important functional consequences.
Collapse
Affiliation(s)
| | | | | | - Antony N Dodd
- John Innes Centre, Norwich Research Park, Norwich NR4 7RU, UK
| |
Collapse
|
17
|
Liu G, Fu J, Wang L, Fang M, Zhang W, Yang M, Yang X, Xu Y, Shi L, Ma X, Wang Q, Chen H, Yu C, Yu D, Chen F, Jiang Y. Diverse O-methyltransferases catalyze the biosynthesis of floral benzenoids that repel aphids from the flowers of waterlily Nymphaea prolifera. HORTICULTURE RESEARCH 2023; 10:uhad237. [PMID: 38156285 PMCID: PMC10753166 DOI: 10.1093/hr/uhad237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Nymphaea is a key genus of the ANA grade (Amborellales, Nymphaeales, and Austrobaileyales) of basal flowering plants, which serve as a key model to study the early evolution of floral traits. In this study, we comprehensively investigated the emission, biosynthesis, and biological function of the floral scent in a night-blossoming waterlily Nymphaea prolifera. The headspace volatile collection combined with GC-MS analysis showed that the floral scent of N. prolifera is predominately comprised by methylated benzenoids including anisole, veratrole, guaiacol, and methoxyanisole. Moreover, the emission of these floral benzenoids in N. prolifera exhibited temporal and spatial pattern with circadian rhythm and tissue specificity. By creating and mining transcriptomes of N. prolifera flowers, 12 oxygen methyltransferases (NpOMTs) were functionally identified. By in vitro enzymatic assay, NpOMT3, 6, and 7 could produce anisole and NpOMT5, 7, 9, produce guaiacol, whereas NpOMT3, 6, 9, 11 catalyzed the formation of veratrole. Methoxyanisole was identified as the universal product of all NpOMTs. Expression patterns of NpOMTs provided implication for their roles in the production of the respective benzenoids. Phylogenetic analysis of OMTs suggested a Nymphaea-specific expansion of the OMT family, indicating the evolution of lineage-specific functions. In bioassays, anisole, veratrole, and guaiacol in the floral benzenoids were revealed to play the critical role in repelling waterlily aphids. Overall, this study indicates that the basal flowering plant N. prolifera has evolved a diversity and complexity of OMT genes for the biosynthesis of methylated benzenoids that can repel insects from feeding the flowers. These findings provide new insights into the evolutional mechanism and ecological significance of the floral scent from early-diverged flowering plants.
Collapse
Affiliation(s)
- Guanhua Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianyu Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Lingyun Wang
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Zhejiang Province 321000, China
| | - Mingya Fang
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Zhejiang Province 321000, China
| | - Wanbo Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xuemin Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Lin Shi
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Zhejiang Province 321000, China
| | - Xiaoying Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Hui Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Cuiwei Yu
- Hangzhou Tianjing Aquatic Botanical Garden, Zhejiang Humanities Landscape Co., Ltd., Hangzhou 310000, China
| | - Dongbei Yu
- Hangzhou Tianjing Aquatic Botanical Garden, Zhejiang Humanities Landscape Co., Ltd., Hangzhou 310000, China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Yifan Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Zhou C, Tian C, Wen S, Yang N, Zhang C, Zheng A, Tan J, Jiang L, Zhu C, Lai Z, Lin Y, Guo Y. Multiomics Analysis Reveals the Involvement of JsLHY in Controlling Aroma Production in Jasmine Flowers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37930796 DOI: 10.1021/acs.jafc.3c05768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The Jasminum sambac flower is famous for its rich fragrance. However, our knowledge of the regulatory network for its aroma formation remains largely unknown and therefore needs further study. To this end, an integrated analysis of the volatilomics and transcriptomics of jasmine flowers at different flowering stages was performed. The results revealed many candidate transcription factors (TFs) may be involved in regulating the aroma formation of jasmine, among which the MYB-related TF LATE ELONGATED HYPOCOTYL (JsLHY) was identified as a hub gene. Using the DNA affinity purification sequencing method, dual-luciferase reporter, and yeast one-hybrid assays, we demonstrate that JsLHY can bind the gene promoter regions of six aroma-related structural genes (JsBEAT1, JsTPS34, JsCNL6, JsBPBT, JsAAAT5, and Js4CL7) and directly promote their expression. In addition, suppressing JsLHY expression decreased both the expression of JsLHY-bound genes and the content of related VOCs. The present study reveals how JsLHY participates in jasmine aroma formation.
Collapse
Affiliation(s)
- Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengjing Wen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Niannian Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cheng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anru Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayao Tan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lele Jiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Zhu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Anxi College of Tea Science (College of Digital Economy), Fujian Agriculture and Forestry University, Quanzhou 362400, China
| |
Collapse
|
19
|
Qian J, Liao Y, Jian G, Jia Y, Zeng L, Gu D, Li H, Yang Y. Light induces an increasing release of benzyl nitrile against diurnal herbivore Ectropis grisescens Warren attack in tea (Camellia sinensis) plants. PLANT, CELL & ENVIRONMENT 2023; 46:3464-3480. [PMID: 37553868 DOI: 10.1111/pce.14687] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
Herbivore-induced plant volatiles (HIPVs) are critical compounds that directly or indirectly regulate the tritrophic interactions among herbivores, natural enemies and plants. The synthesis and release of HIPVs are regulated by many biotic and abiotic factors. However, the mechanism by which multiple factors synergistically affect HIPVs release remains unclear. Tea plant (Camellia sinensis) is the object of this study because of its rich and varied volatile metabolites. In this study, benzyl nitrile was released from herbivore-attacked tea plants more in the daytime than at night, which was consistent with the feeding behaviour of tea geometrid (Ectropis grisescens Warren) larvae. The Y-tube olfactometer assay and insect resistance analysis revealed that benzyl nitrile can repel tea geometrid larvae and inhibit their growth. On the basis of enzyme activities in transiently transformed Nicotiana benthamiana plants, CsCYP79 was identified as a crucial regulator in the benzyl nitrile biosynthetic pathway. Light signalling-related transcription factor CsPIF1-like and the jasmonic acid (JA) signalling-related transcription factor CsMYC2 serve as the activator of CsCYP79 under light and damage conditions. Our study revealed that light (abiotic factor) and herbivore-induced damage (biotic stress) synergistically regulate the synthesis and release of benzyl nitrile to protect plants from diurnal herbivorous tea geometrid larvae.
Collapse
Affiliation(s)
- Jiajia Qian
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinyin Liao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Guotai Jian
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongxia Jia
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Dachuan Gu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hanxiang Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yuhua Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
20
|
Zhang Y, Chen C, Cui Y, Du Q, Tang W, Yang W, Kou G, Tang W, Chen H, Gong R. Potential regulatory genes of light induced anthocyanin accumulation in sweet cherry identified by combining transcriptome and metabolome analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1238624. [PMID: 37662172 PMCID: PMC10469515 DOI: 10.3389/fpls.2023.1238624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023]
Abstract
Anthocyanins exist widely in various plant tissues and organs, and they play an important role in plant reproduction, disease resistance, stress resistance, and protection of human vision. Most fruit anthocyanins can be induced to accumulate by light. Here, we shaded the "Hong Deng" sweet cherry and performed an integrated analysis of its transcriptome and metabolome to explore the role of light in anthocyanin accumulation. The total anthocyanin content of the fruit and two of its anthocyanin components were significantly reduced after the shading. Transcriptome and metabolomics analysis revealed that PAL, 4CL, HCT, ANS and other structural genes of the anthocyanin pathway and cyanidin 3-O-glucoside, cyanidin 3-O-rutinoside, and other metabolites were significantly affected by shading. Weighted total gene network analysis and correlation analysis showed that the upstream and middle structural genes 4CL2, 4CL3, and HCT2 of anthocyanin biosynthesis may be the key genes affecting the anthocyanin content variations in fruits after light shading. Their expression levels may be regulated by transcription factors such as LBD, ERF4, NAC2, NAC3, FKF1, LHY, RVE1, and RVE2. This study revealed for the first time the possible role of LBD, FKF1, and other transcription factors in the light-induced anthocyanin accumulation of sweet cherry, thereby laying a preliminary foundation for further research on the role of light in anthocyanin accumulation of deep red fruit varieties and the genetic breeding of sweet cherry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ronggao Gong
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
21
|
Shor E, Skaliter O, Sharon E, Kitsberg Y, Bednarczyk D, Kerzner S, Vainstein D, Tabach Y, Vainstein A. Developmental and temporal changes in petunia petal transcriptome reveal scent-repressing plant-specific RING-kinase-WD40 protein. FRONTIERS IN PLANT SCIENCE 2023; 14:1180899. [PMID: 37360732 PMCID: PMC10286513 DOI: 10.3389/fpls.2023.1180899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/05/2023] [Indexed: 06/28/2023]
Abstract
In moth-pollinated petunias, production of floral volatiles initiates when the flower opens and occurs rhythmically during the day, for optimal flower-pollinator interaction. To characterize the developmental transcriptomic response to time of day, we generated RNA-Seq databases for corollas of floral buds and mature flowers in the morning and in the evening. Around 70% of transcripts accumulating in petals demonstrated significant changes in expression levels in response to the flowers' transition from a 4.5-cm bud to a flower 1 day postanthesis (1DPA). Overall, 44% of the petal transcripts were differentially expressed in the morning vs. evening. Morning/evening changes were affected by flower developmental stage, with a 2.5-fold larger transcriptomic response to daytime in 1DPA flowers compared to buds. Analyzed genes known to encode enzymes in volatile organic compound biosynthesis were upregulated in 1DPA flowers vs. buds-in parallel with the activation of scent production. Based on analysis of global changes in the petal transcriptome, PhWD2 was identified as a putative scent-related factor. PhWD2 is a protein that is uniquely present in plants and has a three-domain structure: RING-kinase-WD40. Suppression of PhWD2 (termed UPPER - Unique Plant PhEnylpropanoid Regulator) resulted in a significant increase in the levels of volatiles emitted from and accumulated in internal pools, suggesting that it is a negative regulator of petunia floral scent production.
Collapse
Affiliation(s)
- Ekaterina Shor
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Oded Skaliter
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elad Sharon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- The Institute for Medical Research, Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaarit Kitsberg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dominika Bednarczyk
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shane Kerzner
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Danny Vainstein
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Tabach
- The Institute for Medical Research, Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander Vainstein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
22
|
Shor E, Ravid J, Sharon E, Skaliter O, Masci T, Vainstein A. SCARECROW-like GRAS protein PES positively regulates petunia floral scent production. PLANT PHYSIOLOGY 2023; 192:409-425. [PMID: 36760164 PMCID: PMC10152688 DOI: 10.1093/plphys/kiad081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 05/03/2023]
Abstract
Emission of scent volatiles by flowers is important for successful pollination and consequently, reproduction. Petunia (Petunia hybrida) floral scent is formed mainly by volatile products of the phenylpropanoid pathway. We identified and characterized a regulator of petunia scent production: the GRAS protein PHENYLPROPANOID EMISSION-REGULATING SCARECROW-LIKE (PES). Its expression increased in petals during bud development and was highest in open flowers. Overexpression of PES increased the production of floral volatiles, while its suppression resulted in scent reduction. We showed that PES upregulates the expression of genes encoding enzymes of the phenylpropanoid and shikimate pathways in petals, and of the core regulator of volatile biosynthesis ODORANT1 by activating its promoter. PES is an ortholog of Arabidopsis (Arabidopsis thaliana) PHYTOCHROME A SIGNAL TRANSDUCTION 1, involved in physiological responses to far-red (FR) light. Analyses of the effect of nonphotosynthetic irradiation (low-intensity FR light) on petunia floral volatiles revealed FR light as a scent-activating factor. While PHYTOCHROME A regulated scent-related gene expression and floral scent production under FR light, the influence of PES on volatile production was not limited by FR light conditions.
Collapse
Affiliation(s)
- Ekaterina Shor
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Jasmin Ravid
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Elad Sharon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Oded Skaliter
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tania Masci
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Alexander Vainstein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
23
|
Shah S, Ilyas M, Li R, Yang J, Yang FL. Microplastics and Nanoplastics Effects on Plant-Pollinator Interaction and Pollination Biology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6415-6424. [PMID: 37068375 DOI: 10.1021/acs.est.2c07733] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Microplastics and nanoplastics (MNPs) contamination is an emerging environmental and public health concern, and these particles have been reported both in aquatic and terrestrial ecosystems. Recent studies have expanded our understanding of the adverse effects of MNPs pollution on human, terrestrial, and aquatic animals, insects, and plants. In this perspective, we describe the adverse effects of MNPs particles on pollinator and plant health and discuss the mechanisms by which MNPs disrupt the pollination process. We discuss the evidence and integrate transcriptome studies to investigate the negative effects of MNPs on the molecular biology of pollination, which may cause delay or inhibit the pollination services. We conclude by addressing challenges to plant-pollinator health from MNPs pollution and argue that such harmful effects disrupt the communication between plant and pollinator for a successful pollination process.
Collapse
Affiliation(s)
- Sakhawat Shah
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Muhammad Ilyas
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666316 Menglun, China
- Chinese Academy of Sciences, 100045 Beijing, China
| | - Rui Li
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666316 Menglun, China
| | - Feng-Lian Yang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| |
Collapse
|
24
|
Pichersky E. Biochemistry and genetics of floral scent: a historical perspective. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36995899 DOI: 10.1111/tpj.16220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Floral scent plays a crucial role in the reproductive process of many plants. Humans have been fascinated by floral scents throughout history, and have transported and traded floral scent products for which they have found multiple uses, such as in food additives, hygiene and perfume products, and medicines. Yet the scientific study of how plants synthesize floral scent compounds began later than studies on most other major plant metabolites, and the first report of the characterization of an enzyme responsible for the synthesis of a floral scent compound, namely linalool in Clarkia breweri, a California annual, appeared in 1994. In the almost 30 years since, enzymes and genes involved in the synthesis of hundreds of scent compounds from multiple plant species have been described. This review recapitulates this history and describes the major findings relating to the various aspects of floral scent biosynthesis and emission, including genes and enzymes and their evolution, storage and emission of scent volatiles, and the regulation of the biochemical processes.
Collapse
Affiliation(s)
- Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Alcantud R, Weiss J, Terry MI, Bernabé N, Verdú-Navarro F, Fernández-Breis JT, Egea-Cortines M. Flower transcriptional response to long term hot and cold environments in Antirrhinum majus. FRONTIERS IN PLANT SCIENCE 2023; 14:1120183. [PMID: 36778675 PMCID: PMC9911551 DOI: 10.3389/fpls.2023.1120183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Short term experiments have identified heat shock and cold response elements in many biological systems. However, the effect of long-term low or high temperatures is not well documented. To address this gap, we grew Antirrhinum majus plants from two-weeks old until maturity under control (normal) (22/16°C), cold (15/5°C), and hot (30/23°C) conditions for a period of two years. Flower size, petal anthocyanin content and pollen viability obtained higher values in cold conditions, decreasing in middle and high temperatures. Leaf chlorophyll content was higher in cold conditions and stable in control and hot temperatures, while pedicel length increased under hot conditions. The control conditions were optimal for scent emission and seed production. Scent complexity was low in cold temperatures. The transcriptomic analysis of mature flowers, followed by gene enrichment analysis and CNET plot visualization, showed two groups of genes. One group comprised genes controlling the affected traits, and a second group appeared as long-term adaptation to non-optimal temperatures. These included hypoxia, unsaturated fatty acid metabolism, ribosomal proteins, carboxylic acid, sugar and organic ion transport, or protein folding. We found a differential expression of floral organ identity functions, supporting the flower size data. Pollinator-related traits such as scent and color followed opposite trends, indicating an equilibrium for rendering the organs for pollination attractive under changing climate conditions. Prolonged heat or cold cause structural adaptations in protein synthesis and folding, membrane composition, and transport. Thus, adaptations to cope with non-optimal temperatures occur in basic cellular processes.
Collapse
Affiliation(s)
- Raquel Alcantud
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Julia Weiss
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Marta I. Terry
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Nuria Bernabé
- Department of Informatics and Systems, Campus de Espinardo, Universidad de Murcia, Instituto Murciano de Investigaciones Biomédicas (IMIB)-Arrixaca, Murcia, Spain
| | - Fuensanta Verdú-Navarro
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, Cartagena, Spain
- R&D Department, Bionet Engineering, Av/Azul, Parque Tecnológico Fuente Álamo, Murcia, Spain
| | - Jesualdo Tomás Fernández-Breis
- Department of Informatics and Systems, Campus de Espinardo, Universidad de Murcia, Instituto Murciano de Investigaciones Biomédicas (IMIB)-Arrixaca, Murcia, Spain
| | - Marcos Egea-Cortines
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
26
|
Marshall CM, Thompson VL, Creux NM, Harmer SL. The circadian clock controls temporal and spatial patterns of floral development in sunflower. eLife 2023; 12:80984. [PMID: 36637156 PMCID: PMC9977281 DOI: 10.7554/elife.80984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 01/12/2023] [Indexed: 01/14/2023] Open
Abstract
Biological rhythms are ubiquitous. They can be generated by circadian oscillators, which produce daily rhythms in physiology and behavior, as well as by developmental oscillators such as the segmentation clock, which periodically produces modular developmental units. Here, we show that the circadian clock controls the timing of late-stage floret development, or anthesis, in domesticated sunflowers. In these plants, up to thousands of individual florets are tightly packed onto a capitulum disk. While early floret development occurs continuously across capitula to generate iconic spiral phyllotaxy, during anthesis floret development occurs in discrete ring-like pseudowhorls with up to hundreds of florets undergoing simultaneous maturation. We demonstrate circadian regulation of floral organ growth and show that the effects of light on this process are time-of-day dependent. Delays in the phase of floral anthesis delay morning visits by pollinators, while disruption of circadian rhythms in floral organ development causes loss of pseudowhorl formation and large reductions in pollinator visits. We therefore show that the sunflower circadian clock acts in concert with environmental response pathways to tightly synchronize the anthesis of hundreds of florets each day, generating spatial patterns on the developing capitulum disk. This coordinated mass release of floral rewards at predictable times of day likely promotes pollinator visits and plant reproductive success.
Collapse
Affiliation(s)
- Carine M Marshall
- Department of Plant Biology, University of California, DavisDavisUnited States
| | - Veronica L Thompson
- Department of Plant Biology, University of California, DavisDavisUnited States
| | - Nicky M Creux
- Department of Plant Biology, University of California, DavisDavisUnited States
- Department of Plant and Soil Sciences, FABI, Innovation Africa, University of PretoriaPretoriaSouth Africa
| | - Stacey L Harmer
- Department of Plant Biology, University of California, DavisDavisUnited States
| |
Collapse
|
27
|
Beltrame LC, Thompson CE, Freitas LB. Molecular evolution and structural analyses of proteins involved in metabolic pathways of volatile organic compounds in Petunia hybrida (Solanaceae). Genet Mol Biol 2022; 46:e20220114. [PMID: 36534952 PMCID: PMC9762610 DOI: 10.1590/1678-4685-gmb-2022-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
The association between plants and their pollinators is essential for increasing the diversity in angiosperms. Morphological and physiological traits, mainly floral scent, can influence the pollination dynamics and select pollinators for each plant species. In this work, we studied two proteins involved in producing volatile organic compounds in plants, conyferyl alcohol acyltransferase (CFAT) and benzoyl-CoA:benzyl alcohol/phenyl ethanol benzoyl transferase (BPBT) genes. We aimed to understand these proteins with respect to evolutionary and structural aspects and functions in Solanaceae using phylogenetic methods and comparative molecular modeling. We used Bayesian inference to describe the proteins' evolutionary history using Petunia x hybrida as a query to search for homologs in the Solanaceae family. Theoretical 3D models were obtained for both proteins using Panicum virgatum as a template. The phylogenetic tree included several different enzymes with diverse biological roles in Solanaceae, displaying the transferase domain. We identified only one sequence of CFAT in the databases, which belongs to Petunia x hybrida, and found several BPBT sequences from the genera Nicotiana, Solanum, and Capsicum. The 3D structures of CFAT and BPBT have two different domains, and we have identified the amino acid residues essential for the enzymatic activity and interaction with substrates.
Collapse
Affiliation(s)
- Lucas C. Beltrame
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Molecular, Porto Alegre, RS, Brazil
| | - Claudia E. Thompson
- Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Farmacociências, Porto Alegre, RS, Brazil
| | - Loreta B. Freitas
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
28
|
Yeh CW, Zhong HQ, Ho YF, Tian ZH, Yeh KW. The diurnal emission of floral scent in Oncidium hybrid orchid is controlled by CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) through the direct regulation on terpene synthase. BMC PLANT BIOLOGY 2022; 22:472. [PMID: 36195835 PMCID: PMC9531428 DOI: 10.1186/s12870-022-03850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND To adapt the periodic fluctuation of environmental factors, plants are subtle to monitor the natural variation for the growth and development. The daily activities and physiological functions in coordination with the natural variation are regulated by circadian clock genes. The circadian emission of floral scents is one of the rhythmic physiological activities controlled by circadian clock genes. Here, we study the molecular mechanism of circadian emission pattern of ocimene and linalool compounds in Oncidium Sharry Baby (Onc. SB) orchid. RESULTS GC-Mass analysis revealed that Onc. SB periodically emitted ocimene and linalool during 6 to 14 o'clock daily. Terpene synthase, one of the key gene in the terpenoid biosynthetic pathway is expressed in coordination with scent emission. The promoter structure of terpene synthase revealed a circadian binding sequence (CBS), 5'-AGATTTTT-3' for CIRCADIAN CLOCK ASSOCIATED1 (CCA1) transcription factor. EMSA data confirms the binding affinity of CCA1. Transactivation assay further verified that TPS expression is regulated by CCA1. It suggests that the emission of floral scents is controlled by CCA1. CONCLUSIONS The work validates that the mechanism of circadian emission of floral scents in Onc. Sharry Baby is controlled by the oscillator gene, CCA1(CIRCADIAN CLOCK ASSOCIATED 1) under light condition. CCA1 transcription factor up-regulates terpene synthase (TPS) by binding on CBS motif, 5'-AGATTTTT-3' of promoter region to affect the circadian emission of floral scents in Onc. SB.
Collapse
Affiliation(s)
- Chao-Wei Yeh
- Institute of Plant Biology, College of Life Science, National Taiwan University, No 1, Sect. 4, Roosevelt Road, 106, Taipei, Taiwan
| | - Hui-Qin Zhong
- Fujian Engineering Research Center for Characteristic Floriculture, Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Yung-Feng Ho
- Institute of Plant Biology, College of Life Science, National Taiwan University, No 1, Sect. 4, Roosevelt Road, 106, Taipei, Taiwan
| | - Zhi-Hong Tian
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Kai-Wun Yeh
- Institute of Plant Biology, College of Life Science, National Taiwan University, No 1, Sect. 4, Roosevelt Road, 106, Taipei, Taiwan.
- Center for Weather Climate and Disaster Research, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
29
|
Skaliter O, Livneh Y, Agron S, Shafir S, Vainstein A. A whiff of the future: functions of phenylalanine-derived aroma compounds and advances in their industrial production. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1651-1669. [PMID: 35638340 PMCID: PMC9398379 DOI: 10.1111/pbi.13863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 05/19/2023]
Abstract
Plants produce myriad aroma compounds-odorous molecules that are key factors in countless aspects of the plant's life cycle, including pollinator attraction and communication within and between plants. For humans, aroma compounds convey accurate information on food type, and are vital for assessing the environment. The phenylpropanoid pathway is the origin of notable aroma compounds, such as raspberry ketone and vanillin. In the last decade, great strides have been made in elucidating this pathway with the identification of numerous aroma-related biosynthetic enzymes and factors regulating metabolic shunts. These scientific achievements, together with public acknowledgment of aroma compounds' medicinal benefits and growing consumer demand for natural products, are driving the development of novel biological sources for wide-scale, eco-friendly, and inexpensive production. Microbes and plants that are readily amenable to metabolic engineering are garnering attention as suitable platforms for achieving this goal. In this review, we discuss the importance of aroma compounds from the perspectives of humans, pollinators and plant-plant interactions. Focusing on vanillin and raspberry ketone, which are of high interest to the industry, we present key knowledge on the biosynthesis and regulation of phenylalanine-derived aroma compounds, describe advances in the adoption of microbes and plants as platforms for their production, and propose routes for improvement.
Collapse
Affiliation(s)
- Oded Skaliter
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Yarin Livneh
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Shani Agron
- Department of NeurobiologyThe Weizmann Institute of ScienceRehovotIsrael
| | - Sharoni Shafir
- B. Triwaks Bee Research Center, Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| |
Collapse
|
30
|
Borghi M, Perez de Souza L, Tohge T, Mi J, Melandri G, Proost S, Martins MCM, Al-Babili S, Bouwmeester HJ, Fernie AR. High-energy-level metabolism and transport occur at the transition from closed to open flowers. PLANT PHYSIOLOGY 2022; 190:319-339. [PMID: 35640120 PMCID: PMC9434183 DOI: 10.1093/plphys/kiac253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
During the maturation phase of flower development, the onset of anthesis visibly marks the transition from buds to open flowers, during which petals stretch out, nectar secretion commences, and pollination occurs. Analysis of the metabolic changes occurring during this developmental transition has primarily focused on specific classes of metabolites, such as pigments and scent emission, and far less on the whole network of primary and secondary metabolites. To investigate the metabolic changes occurring at anthesis, we performed multi-platform metabolomics alongside RNA sequencing in individual florets harvested from the main inflorescence of Arabidopsis (Arabidopsis thaliana) ecotype Col-0. To trace metabolic fluxes at the level of the whole inflorescence and individual florets, we further integrated these studies with radiolabeled experiments. These extensive analyses revealed high-energy-level metabolism and transport of carbohydrates and amino acids, supporting intense metabolic rearrangements occurring at the time of this floral transition. These comprehensive data are discussed in the context of our current understanding of the metabolic shifts underlying flower opening. We envision that this analysis will facilitate the introgression of floral metabolic traits promoting pollination in crop species for which a comprehensive knowledge of flower metabolism is still limited.
Collapse
Affiliation(s)
- Monica Borghi
- Department of Biology, Utah State University, Logan, Utah 84321-5305, USA
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | | | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
- Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Jianing Mi
- The Bioactives Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Giovanni Melandri
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
- INRAE, University of Bordeaux, UMR BFP, Villenave d’Ornon 33140, France
| | - Sebastian Proost
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven 3000, Belgium
| | - Marina C M Martins
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
- In Press—Consultoria e Comunicação Científica, São Paulo 05089-030, Brazil
| | - Salim Al-Babili
- The Bioactives Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | | | | |
Collapse
|
31
|
Singh VJ, Potdar S, Sheeba V. Effects of Food Availability Cycles on Phase and Period of Activity-rest Rhythm in Drosophila melanogaster. J Biol Rhythms 2022; 37:528-544. [PMID: 35983646 DOI: 10.1177/07487304221111287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Foraging and feeding are indispensable for survival and their timing depends not only on the metabolic state of the animal but also on the availability of food resources in their environment. Since both these aspects are subject to change over time, these behaviors exhibit rhythmicity in occurrence. As the locomotor activity of an organism is related to its disposition to acquire food, and peak feeding in fruit flies has been shown to occur at a particular time of the day, we asked if cyclic food availability can entrain their rhythmic activity. By subjecting flies to cyclic food availability, that is, feeding-starvation (FS) cycles, we provided food cues contrasting to the preferred activity times and observed if this imposed cycling in food availability could entrain the activity-rest rhythm. We found that phase control, which is a property integral to entrainment, was not achieved despite increasing starvation duration of FS cycles (FS 12:12, FS 10:14, and FS 8:16). We also found that flies subjected to T21 and T26 FS cycles were unable to match period of the activity rhythm to short or long T-cycles. Taken together, these results show that external food availability cycles do not entrain the activity-rest rhythm of fruit flies. However, we find that starvation-induced hyperactivity causes masking which results in phase changes. In addition, T-cycle experiments resulted in minor period changes during FS treatment. These findings highlight that food cyclicity by itself may not be a potent zeitgeber but may act in unison with other abiotic factors like light and temperature to help flies time their activity appropriately.
Collapse
Affiliation(s)
- Viveka Jagdish Singh
- Chronobiology and Behavioural Neurogenetics Laboratory, Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Sheetal Potdar
- Chronobiology and Behavioural Neurogenetics Laboratory, Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Vasu Sheeba
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
32
|
Kim H, Lee G, Song J, Kim SG. Real-Time Visualization of Scent Accumulation Reveals the Frequency of Floral Scent Emissions. FRONTIERS IN PLANT SCIENCE 2022; 13:835305. [PMID: 35548271 PMCID: PMC9083826 DOI: 10.3389/fpls.2022.835305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/24/2022] [Indexed: 06/15/2023]
Abstract
Flowers emit a bouquet of volatiles to attract pollinators or to protect flowers from pathogen and herbivore attacks. Most floral volatiles are synthesized in the cytoplasm of petals and released into the headspace at a specific time of day. Various floral scent sampling methods coupled with gas chromatography-mass spectrometry have been used to measure the quality and quantity of floral volatiles. However, little is known about the emission patterns of floral scents. In most cases, it is still unclear whether floral scents emit continuously or discontinuously. Here we measured the frequency with which lily flowers emit scents using optical interferometry. By analyzing the refractive index difference between volatile organic compounds and ambient air, we were able to visualize the accumulation of the volatile vapors. The frequency of volatile emission was calculated from the unique footprint of temporal power spectrum maps. Based on these real-time measurements, we found that lily flowers emit the volatile compounds discontinuously, with pulses observed around every 10-50 min.
Collapse
Affiliation(s)
- Hyoungsoo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Gilgu Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Junyong Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
33
|
Kang M, Choi Y, Kim H, Kim S. Single-cell RNA-sequencing of Nicotiana attenuata corolla cells reveals the biosynthetic pathway of a floral scent. THE NEW PHYTOLOGIST 2022; 234:527-544. [PMID: 35075650 PMCID: PMC9305527 DOI: 10.1111/nph.17992] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/05/2022] [Indexed: 05/28/2023]
Abstract
High-throughput single-cell RNA sequencing (scRNA-Seq) identifies distinct cell populations based on cell-to-cell heterogeneity in gene expression. By examining the distribution of the density of gene expression profiles, we can observe the metabolic features of each cell population. Here, we employ the scRNA-Seq technique to reveal the entire biosynthetic pathway of a flower volatile. The corolla of the wild tobacco Nicotiana attenuata emits a bouquet of scents that are composed mainly of benzylacetone (BA). Protoplasts from the N. attenuata corolla limbs and throat cups were isolated at three different time points, and the transcript levels of > 16 000 genes were analyzed in 3756 single cells. We performed unsupervised clustering analysis to determine which cell clusters were involved in BA biosynthesis. The biosynthetic pathway of BA was uncovered by analyzing gene co-expression in scRNA-Seq datasets and by silencing candidate genes in the corolla. In conclusion, the high-resolution spatiotemporal atlas of gene expression provided by scRNA-Seq reveals the molecular features underlying cell-type-specific metabolism in a plant.
Collapse
Affiliation(s)
- Moonyoung Kang
- Department of Biological SciencesKorea Advanced Institute for Science and TechnologyDaejeon34141Korea
| | - Yuri Choi
- Department of Biological SciencesKorea Advanced Institute for Science and TechnologyDaejeon34141Korea
| | - Hyeonjin Kim
- Department of Biological SciencesKorea Advanced Institute for Science and TechnologyDaejeon34141Korea
| | - Sang‐Gyu Kim
- Department of Biological SciencesKorea Advanced Institute for Science and TechnologyDaejeon34141Korea
| |
Collapse
|
34
|
Boersma MR, Patrick RM, Jillings SL, Shaipulah NFM, Sun P, Haring MA, Dudareva N, Li Y, Schuurink RC. ODORANT1 targets multiple metabolic networks in petunia flowers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1134-1151. [PMID: 34863006 PMCID: PMC9306810 DOI: 10.1111/tpj.15618] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 05/19/2023]
Abstract
Scent bouquets produced by the flowers of Petunia spp. (petunia) are composed of a complex mixture of floral volatile benzenoid and phenylpropanoid compounds (FVBPs), which are specialized metabolites derived from phenylalanine (Phe) through an interconnected network of enzymes. The biosynthesis and emission of high levels of these volatiles requires coordinated transcriptional activation of both primary and specialized metabolic networks. The petunia R2R3-MYB transcription factor ODORANT 1 (ODO1) was identified as a master regulator of FVBP production and emission; however, our knowledge of the direct regulatory targets of ODO1 has remained limited. Using chromatin immunoprecipitation followed by sequencing (ChIP-seq) in petunia flowers, we identify genome-wide ODO1-bound genes that are enriched not only in genes involved in the biosynthesis of the Phe precursor, as previously reported, but also genes associated with the specialized metabolic pathways involved in generating phenylpropanoid intermediates for FVBPs. ODO1-bound genes are also involved in methionine and S-adenosylmethionine metabolism, which could modulate methyl group supplies for certain FVBPs. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and RNA-seq analysis in an ODO1 RNAi knockdown line revealed that ODO1-bound targets are expressed at lower levels when ODO1 is suppressed. A cis-regulatory motif, CACCAACCCC, was identified as a potential binding site for ODO1 in the promoters of genes that are both bound and activated by ODO1, which was validated by in planta promoter reporter assays with wild-type and mutated promoters. Overall, our work presents a mechanistic model for ODO1 controlling an extensive gene regulatory network that contributes to FVBP production to give rise to floral scent.
Collapse
Affiliation(s)
- Maaike R. Boersma
- Green Life Sciences Research ClusterSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1098 XHthe Netherlands
- Green BiotechnologyInholland University of Applied SciencesAmsterdam1098 XHthe Netherlands
| | - Ryan M. Patrick
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIN47907USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
| | - Sonia L. Jillings
- Green Life Sciences Research ClusterSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1098 XHthe Netherlands
| | - Nur Fariza M. Shaipulah
- Green Life Sciences Research ClusterSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1098 XHthe Netherlands
- Present address:
Faculty of Science and Marine EnvironmentUniversiti Malaysia Terrengganu21030 Kuala NerusTerrenganuMalaysia
| | - Pulu Sun
- Green Life Sciences Research ClusterSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1098 XHthe Netherlands
| | - Michel A. Haring
- Green Life Sciences Research ClusterSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1098 XHthe Netherlands
| | - Natalia Dudareva
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIN47907USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
- Department of BiochemistryPurdue UniversityWest LafayetteIN47907USA
| | - Ying Li
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIN47907USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
| | - Robert C. Schuurink
- Green Life Sciences Research ClusterSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1098 XHthe Netherlands
| |
Collapse
|
35
|
Yuan X, Ma K, Zhang M, Wang J, Zhang Q. Integration of Transcriptome and Methylome Analyses Provides Insight Into the Pathway of Floral Scent Biosynthesis in Prunus mume. Front Genet 2022; 12:779557. [PMID: 34976015 PMCID: PMC8714837 DOI: 10.3389/fgene.2021.779557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/19/2021] [Indexed: 01/01/2023] Open
Abstract
DNA methylation is a common epigenetic modification involved in regulating many biological processes. However, the epigenetic mechanisms involved in the formation of floral scent have rarely been reported within a famous traditional ornamental plant Prunus mume emitting pleasant fragrance in China. By combining whole-genome bisulfite sequencing and RNA-seq, we determined the global change in DNA methylation and expression levels of genes involved in the biosynthesis of floral scent in four different flowering stages of P. mume. During flowering, the methylation status in the “CHH” sequence context (with H representing A, T, or C) in the promoter regions of genes showed the most significant change. Enrichment analysis showed that the differentially methylated genes (DMGs) were widely involved in eight pathways known to be related to floral scent biosynthesis. As the key biosynthesis pathway of the dominant volatile fragrance of P. mume, the phenylpropane biosynthesis pathway contained the most differentially expressed genes (DEGs) and DMGs. We detected 97 DMGs participated in the most biosynthetic steps of the phenylpropane biosynthesis pathway. Furthermore, among the previously identified genes encoding key enzymes in the biosynthesis of the floral scent of P. mume, 47 candidate genes showed an expression pattern matching the release of floral fragrances and 22 of them were differentially methylated during flowering. Some of these DMGs may or have already been proven to play an important role in biosynthesis of the key floral scent components of P. mume, such as PmCFAT1a/1c, PmBEAT36/37, PmPAL2, PmPAAS3, PmBAR8/9/10, and PmCNL1/3/5/6/14/17/20. In conclusion, our results for the first time revealed that DNA methylation is widely involved in the biosynthesis of floral scent and may play critical roles in regulating the floral scent biosynthesis of P. mume. This study provided insights into floral scent metabolism for molecular breeding.
Collapse
Affiliation(s)
- Xi Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Kaifeng Ma
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
36
|
Gao W, Zhang L, Wang J, Liu Z, Zhang Y, Xue C, Liu M, Zhao J. ZjSEP3 modulates flowering time by regulating the LHY promoter. BMC PLANT BIOLOGY 2021; 21:527. [PMID: 34763664 PMCID: PMC8582215 DOI: 10.1186/s12870-021-03305-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND SEPALLATA3 (SEP3), which is conserved across various plant species, plays essential and various roles in flower and fruit development. However, the regulatory network of the role of SEP3 in flowering time at the molecular level remained unclear. RESULTS Here, we investigated that SEP3 in Ziziphus jujuba Mill. (ZjSEP3) was expressed in four floral organs and exhibited strong transcriptional activation activity. ZjSEP3 transgenic Arabidopsis showed an early-flowering phenotype and altered the expression of some genes related to flowering. Among them, the expression of LATE ELONGATED HYPOCOTYL (AtLHY), the key gene of circadian rhythms, was significantly suppressed. Yeast one-hybrid (Y1H) and electrophoretic mobility shift assays (EMSAs) further verified that ZjSEP3 inhibited the transcription of AtLHY by binding to the CArG-boxes in its promoter. Moreover, ZjSEP3 also could bind to the ZjLHY promoter and the conserved binding regions of ZjSEP3 were found in the LHY promoter of various plant species. The ectopic regulatory pathway of ZjSEP3-AtLHY was further supported by the ability of 35S::AtLHY to rescue the early-flowering phenotype in ZjSEP3 transgenic plants. In ZjSEP3 transgenic plants, total chlorophyll content and the expression of genes involved in chlorophyll synthesis increased during vegetative stages, which should contribute to its early flowering and relate to the regulatory of AtLHY. CONCLUSION Overall, ZjSEP3-AtLHY pathway represents a novel regulatory mechanism that is involved in the regulation of flowering time.
Collapse
Affiliation(s)
- Weilin Gao
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
| | - Liman Zhang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
| | - Jiurui Wang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
| | - Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
37
|
Vazirifar S, Samari E, Sharifi M. Daily dynamics of intermediate metabolite profiles lead to time-dependent phenylethanoid glycosides production in Scrophularia striata during the day/night cycle. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 225:112326. [PMID: 34736067 DOI: 10.1016/j.jphotobiol.2021.112326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/21/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
Phenylethanoid glycosides (PhGs) are important medicinal compounds found in Scrophularia striata, one of the plant species native to Iran. Since almost all aspects of plant life are controlled by night/light cycle, studying its relationship to valuable plant metabolites production will help us to determine the right time for their extraction. Therefore, the aim of this investigation is to figure out whether the diel light oscillations control PhGs production and how it relates to daily changes in upstream metabolic reactions and circadian clock in S. striata. For this, daily rhythms of metabolic pathways were examined every 4 h during a day/night cycle in 3 groups of control (16 h light/8 h dark), continuous light and darkness. The results showed that acteoside and echinacoside levels in each group peaked during the night and day, respectively. Thus, the PhGs production follows a rhythmic behavior in S. striata, which is probably controlled by circadian clock. Also, the levels of photosynthetic pigments, carbohydrates, amino acids, phenolic acids, phytohormones and phenylalanine ammonia-lyase (PAL) and tyrosine ammonia-lyase (TAL) enzyme activities varied diel in a similar or different way among study groups. The observations revealed that light/dark cycle controls the carbon and energy flow from light reception to the production and consumption of starch, biosynthesis of phenylalanine, tyrosine, cinnamic acid and coumaric acid, activation of hormonal signaling pathways and enzymes involved in phenylpropanoid pathway. Overall, it can be concluded that PhGs accumulation time-dependent patterns is likely due to daily fluctuations in upstream metabolic reactions induced by light/dark cycle.
Collapse
Affiliation(s)
- Saiede Vazirifar
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Samari
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Sharifi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Center of Excellence in Medicinal Plant Metabolites, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
38
|
Muroya M, Oshima H, Kobayashi S, Miura A, Miyamura Y, Shiota H, Onai K, Ishiura M, Manabe K, Kutsuna S. Circadian Clock in Arabidopsis thaliana Determines Flower Opening Time Early in the Morning and Dominantly Closes Early in the Afternoon. PLANT & CELL PHYSIOLOGY 2021; 62:883-893. [PMID: 33822207 DOI: 10.1093/pcp/pcab048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Many plant species exhibit diurnal flower opening and closing, which is an adaptation influenced by the lifestyle of pollinators and herbivores. However, it remains unclear how these temporal floral movements are modulated. To clarify the role of the circadian clock in flower movement, we examined temporal floral movements in Arabidopsis thaliana. Wild-type (accessions; Col-0, Ler-0 and Ws-4) flowers opened between 0.7 and 1.4 h in a 16-h light period and closed between 7.5 and 8.3 h in a diurnal light period. In the arrhythmic mutants pcl1-1 and prr975, the former flowers closed slowly and imperfectly and the latter ones never closed. Under continuous light conditions, new flowers emerged and opened within a 23-26 h window in the wild-type, but the flowers in pcl1-1 and prr975 developed straight petals, whose curvatures were extremely small. Anti-phasic circadian gene expression of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYLE (LHY) and TIMING OF CAB EXPRESSION 1 (TOC1) occurred in wild-type flowers, but non-rhythmic expression was observed in pcl1-1 and prr975 mutants. Focusing on excised petals, bioluminescence monitoring revealed rhythmic promoter activities of genes expressed (CCA1, LHY and PHYTOCLOCK 1/LUX ARRHYTHMO, PCL1/LUX) in the morning and evening. These results suggest that the clock induces flower opening redundantly with unknown light-sensing pathways. By contrast, flower closing is completely dependent on clock control. These findings will lead to further exploration of the molecular mechanisms and evolutionary diversity of timing in flower opening and closing.
Collapse
Affiliation(s)
- Mitsuhiko Muroya
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Haruka Oshima
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Shoko Kobayashi
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Aya Miura
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Yohei Miyamura
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Hajime Shiota
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Kiyoshi Onai
- Centre for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-kuKyoto 606-8502Japan
| | - Masahiro Ishiura
- Centre for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Katsushi Manabe
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Shinsuke Kutsuna
- Department of Life and Environmental System Science, Yokohama City University, Seto 22, Kanazawa-ku, Yokohama, 236-0027 Japan
| |
Collapse
|
39
|
Moré M, Soteras F, Ibañez AC, Dötterl S, Cocucci AA, Raguso RA. Floral Scent Evolution in the Genus Jaborosa (Solanaceae): Influence of Ecological and Environmental Factors. PLANTS (BASEL, SWITZERLAND) 2021; 10:1512. [PMID: 34451557 PMCID: PMC8398055 DOI: 10.3390/plants10081512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Floral scent is a key communication channel between plants and pollinators. However, the contributions of environment and phylogeny to floral scent composition remain poorly understood. In this study, we characterized interspecific variation of floral scent composition in the genus Jaborosa Juss. (Solanaceae) and, using an ecological niche modelling approach (ENM), we assessed the environmental variables that exerted the strongest influence on floral scent variation, taking into account pollination mode and phylogenetic relationships. Our results indicate that two major evolutionary themes have emerged: (i) a 'warm Lowland Subtropical nectar-rewarding clade' with large white hawkmoth pollinated flowers that emit fragrances dominated by oxygenated aromatic or sesquiterpenoid volatiles, and (ii) a 'cool-temperate brood-deceptive clade' of largely fly-pollinated species found at high altitudes (Andes) or latitudes (Patagonian Steppe) that emit foul odors including cresol, indole and sulfuric volatiles. The joint consideration of floral scent profiles, pollination mode, and geoclimatic context helped us to disentangle the factors that shaped floral scent evolution across "pollinator climates" (geographic differences in pollinator abundance or preference). Our findings suggest that the ability of plants in the genus Jaborosa to colonize newly formed habitats during Andean orogeny was associated with striking transitions in flower scent composition that trigger specific odor-driven behaviors in nocturnal hawkmoths and saprophilous fly pollinators.
Collapse
Affiliation(s)
- Marcela Moré
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Florencia Soteras
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Ana C. Ibañez
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Stefan Dötterl
- Department of Biosciences, Paris-Lodron-University of Salzburg, 5020 Salzburg, Austria;
| | - Andrea A. Cocucci
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Robert A. Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
40
|
Pu X, Dong X, Li Q, Chen Z, Liu L. An update on the function and regulation of methylerythritol phosphate and mevalonate pathways and their evolutionary dynamics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1211-1226. [PMID: 33538411 DOI: 10.1111/jipb.13076] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/02/2021] [Indexed: 05/29/2023]
Abstract
Isoprenoids are among the largest and most chemically diverse classes of organic compounds in nature and are involved in the processes of photosynthesis, respiration, growth, development, and plant responses to stress. The basic building block units for isoprenoid synthesis-isopentenyl diphosphate and its isomer dimethylallyl diphosphate-are generated by the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways. Here, we summarize recent advances on the roles of the MEP and MVA pathways in plant growth, development and stress responses, and attempt to define the underlying gene networks that orchestrate the MEP and MVA pathways in response to developmental or environmental cues. Through phylogenomic analysis, we also provide a new perspective on the evolution of the plant isoprenoid pathway. We conclude that the presence of the MVA pathway in plants may be associated with the transition from aquatic to subaerial and terrestrial environments, as lineages for its core components are absent in green algae. The emergence of the MVA pathway has acted as a key evolutionary event in plants that facilitated land colonization and subsequent embryo development, as well as adaptation to new and varied environments.
Collapse
Affiliation(s)
- Xiaojun Pu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 434200, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| | - Xiumei Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 434200, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| | - Qing Li
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Zexi Chen
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 434200, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| |
Collapse
|
41
|
Patrick RM, Huang XQ, Dudareva N, Li Y. Dynamic histone acetylation in floral volatile synthesis and emission in petunia flowers. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3704-3722. [PMID: 33606881 PMCID: PMC8096599 DOI: 10.1093/jxb/erab072] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/15/2021] [Indexed: 05/29/2023]
Abstract
Biosynthesis of secondary metabolites relies on primary metabolic pathways to provide precursors, energy, and cofactors, thus requiring coordinated regulation of primary and secondary metabolic networks. However, to date, it remains largely unknown how this coordination is achieved. Using Petunia hybrida flowers, which emit high levels of phenylpropanoid/benzenoid volatile organic compounds (VOCs), we uncovered genome-wide dynamic deposition of histone H3 lysine 9 acetylation (H3K9ac) during anthesis as an underlying mechanism to coordinate primary and secondary metabolic networks. The observed epigenome reprogramming is accompanied by transcriptional activation at gene loci involved in primary metabolic pathways that provide precursor phenylalanine, as well as secondary metabolic pathways to produce volatile compounds. We also observed transcriptional repression among genes involved in alternative phenylpropanoid branches that compete for metabolic precursors. We show that GNAT family histone acetyltransferase(s) (HATs) are required for the expression of genes involved in VOC biosynthesis and emission, by using chemical inhibitors of HATs, and by knocking down a specific HAT gene, ELP3, through transient RNAi. Together, our study supports that regulatory mechanisms at chromatin level may play an essential role in activating primary and secondary metabolic pathways to regulate VOC synthesis in petunia flowers.
Collapse
Affiliation(s)
- Ryan M Patrick
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907,USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907,USA
| | - Xing-Qi Huang
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907,USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907,USA
| | - Natalia Dudareva
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907,USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907,USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907,USA
| | - Ying Li
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907,USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907,USA
| |
Collapse
|
42
|
Vlachonasios KE. Histone acetylation: a requirement for petunia floral scent. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3493-3495. [PMID: 33948651 PMCID: PMC8096597 DOI: 10.1093/jxb/erab092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article comments on: Patrick RM, Huang X-Q, Dudareva N, Li Y. 2021. Dynamic histone acetylation in floral volatile synthesis and emission in petunia flowers. Journal of Experimental Botany 72, 3704–3722.
Collapse
Affiliation(s)
- Konstantinos E Vlachonasios
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Greece
- Natural Products Research Centre of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), Thessaloniki, Greece
| |
Collapse
|
43
|
Terry MI, Ruiz-Hernández V, Águila DJ, Weiss J, Egea-Cortines M. The Effect of Post-harvest Conditions in Narcissus sp. Cut Flowers Scent Profile. FRONTIERS IN PLANT SCIENCE 2021; 11:540821. [PMID: 33488635 PMCID: PMC7817618 DOI: 10.3389/fpls.2020.540821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 12/08/2020] [Indexed: 05/08/2023]
Abstract
Narcissus flowers are used as cut flowers and to obtain high quality essential oils for the perfume industry. As a winter crop in the Mediterranean area, it flowers at temperatures ranging between 10 and 15°C during the day and 3-10°C during the night. Here we tested the impact of different light and temperature conditions on scent quality during post-harvest. These two types of thermoperiod and photoperiod. We also used constant darkness and constant temperatures. We found that under conditions of 12:12 Light Dark and 15-5°C, Narcissus emitted monoterpenes and phenylpropanoids. Increasing the temperature to 20°-10°C in a 12:12 LD cycle caused the loss of cinnamyl acetate and emission of indole. Under constant dark, there was a loss of scent complexity. Constant temperatures of 20°C caused a decrease of scent complexity that was more dramatic at 5°C, when the total number of compounds emitted decreased from thirteen to six. Distance analysis confirmed that 20°C constant temperature causes the most divergent scent profile. We found a set of four volatiles, benzyl acetate, eucalyptol, linalool, and ocimene that display a robust production under differing environmental conditions, while others were consistently dependent on light or thermoperiod. Scent emission changed significantly during the day and between different light and temperature treatments. Under a light:dark cycle and 15-5°C the maximum was detected during the light phase but this peak shifted toward night under 20-10°C. Moreover, under constant darkness the peak occurred at midnight and under constant temperature, at the end of night. Using Machine Learning we found that indole was the volatile with a highest ranking of discrimination followed by D-limonene. Our results indicate that light and temperature regimes play a critical role in scent quality. The richest scent profile is obtained by keeping flowers at 15°-5°C thermoperiod and a 12:12 Light Dark photoperiod.
Collapse
Affiliation(s)
- Marta I. Terry
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | | | - Diego J. Águila
- Las Cabezuelas Sociedad Cooperativa, Alhama de Murcia, Spain
| | - Julia Weiss
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Marcos Egea-Cortines
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
44
|
Abbas F, Ke Y, Zhou Y, Yu Y, Waseem M, Ashraf U, Wang C, Wang X, Li X, Yue Y, Yu R, Fan Y. Genome-Wide Analysis Reveals the Potential Role of MYB Transcription Factors in Floral Scent Formation in Hedychium coronarium. FRONTIERS IN PLANT SCIENCE 2021; 12:623742. [PMID: 33719296 PMCID: PMC7952619 DOI: 10.3389/fpls.2021.623742] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/11/2021] [Indexed: 05/19/2023]
Abstract
The MYB gene family is one of the largest groups of transcription factors (TFs) playing diverse roles in several biological processes. Hedychium coronarium (white ginger lily) is a renowned ornamental plant both in tropical and subtropical regions due to its flower shape and strong floral scent mainly composed of terpenes and benzenoids. However, there is no information available regarding the role of the MYB gene family in H. coronarium. In the current study, the MYB gene family was identified and extensively analyzed. The identified 253 HcMYB genes were unevenly mapped on 17 chromosomes at a different density. Promoter sequence analysis showed numerous phytohormones related to cis-regulatory elements. The majority of HcMYB genes contain two to three introns and motif composition analysis showed their functional conservation. Phylogenetic analysis revealed that HcMYBs could be classified into 15 distinct clades, and the segmental duplication events played an essential role in the expansion of the HcMYB gene family. Tissue-specific expression patterns of HcMYB genes displayed spatial and temporal expression. Furthermore, seven HcMYB (HcMYB7/8/75/79/145/238/248) were selected for further investigation. Through RT-qPCR, the response of candidates HcMYB genes toward jasmonic acid methyl ester (MeJA), abscisic acid (ABA), ethylene, and auxin was examined. Yeast one-hybrid (Y1H) assays revealed that candidate genes directly bind to the promoter of bottom structural volatile synthesis genes (HcTPS1, HcTPS3, HcTPS10, and HcBSMT2). Moreover, yeast two-hybrid (Y2H) assay showed that HcMYB7/8/75/145/248 interact with HcJAZ1 protein. In HcMYB7/8/79/145/248-silenced flowers, the floral volatile contents were decreased and downregulated the expression of key structural genes, suggesting that these genes might play crucial roles in floral scent formation in H. coronarium by regulating the expression of floral scent biosynthesis genes. Collectively, these findings indicate that HcMYB genes might be involved in the regulatory mechanism of terpenoids and benzenoid biosynthesis in H. coronarium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Economics and Management, Kunming University, Kunming, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Muhammad Waseem
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan
| | - Chutian Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaoyu Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
- *Correspondence: Yanping Fan,
| |
Collapse
|
45
|
Plant Volatile Organic Compounds Evolution: Transcriptional Regulation, Epigenetics and Polyploidy. Int J Mol Sci 2020; 21:ijms21238956. [PMID: 33255749 PMCID: PMC7728353 DOI: 10.3390/ijms21238956] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Volatile organic compounds (VOCs) are emitted by plants as a consequence of their interaction with biotic and abiotic factors, and have a very important role in plant evolution. Floral VOCs are often involved in defense and pollinator attraction. These interactions often change rapidly over time, so a quick response to those changes is required. Epigenetic factors, such as DNA methylation and histone modification, which regulate both genes and transcription factors, might trigger adaptive responses to these evolutionary pressures as well as regulating the rhythmic emission of VOCs through circadian clock regulation. In addition, transgenerational epigenetic effects and whole genome polyploidy could modify the generation of VOCs’ profiles of offspring, contributing to long-term evolutionary shifts. In this article, we review the available knowledge about the mechanisms that may act as epigenetic regulators of the main VOC biosynthetic pathways, and their importance in plant evolution.
Collapse
|
46
|
Nocturnal pollination: an overlooked ecosystem service vulnerable to environmental change. Emerg Top Life Sci 2020; 4:19-32. [PMID: 32478390 PMCID: PMC7326339 DOI: 10.1042/etls20190134] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
Existing assessments of the ecosystem service of pollination have been largely restricted to diurnal insects, with a particular focus on generalist foragers such as wild and honey bees. As knowledge of how these plant-pollinator systems function, their relevance to food security and biodiversity, and the fragility of these mutually beneficial interactions increases, attention is diverting to other, less well-studied pollinator groups. One such group are those that forage at night. In this review, we document evidence that nocturnal species are providers of pollination services (including pollination of economically valuable and culturally important crops, as well as wild plants of conservation concern), but highlight how little is known about the scale of such services. We discuss the primary mechanisms involved in night-time communication between plants and insect pollen-vectors, including floral scent, visual cues (and associated specialized visual systems), and thermogenic sensitivity (associated with thermogenic flowers). We highlight that these mechanisms are vulnerable to direct and indirect disruption by a range of anthropogenic drivers of environmental change, including air and soil pollution, artificial light at night, and climate change. Lastly, we highlight a number of directions for future research that will be important if nocturnal pollination services are to be fully understood and ultimately conserved.
Collapse
|
47
|
Brandoli C, Petri C, Egea-Cortines M, Weiss J. Gigantea: Uncovering New Functions in Flower Development. Genes (Basel) 2020; 11:genes11101142. [PMID: 32998354 PMCID: PMC7600796 DOI: 10.3390/genes11101142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022] Open
Abstract
GIGANTEA (GI) is a gene involved in multiple biological functions, which have been analysed and are partially conserved in a series of mono- and dicotyledonous plant species. The identified biological functions include control over the circadian rhythm, light signalling, cold tolerance, hormone signalling and photoperiodic flowering. The latter function is a central role of GI, as it involves a multitude of pathways, both dependent and independent of the gene CONSTANS(CO), as well as on the basis of interaction with miRNA. The complexity of the gene function of GI increases due to the existence of paralogs showing changes in genome structure as well as incidences of sub- and neofunctionalization. We present an updated report of the biological function of GI, integrating late insights into its role in floral initiation, flower development and volatile flower production.
Collapse
Affiliation(s)
- Claudio Brandoli
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain; (C.B.); (M.E.-C.)
| | - Cesar Petri
- Instituto de Hortofruticultura Subtropical y Mediterránea-UMA-CSIC, Departamento de Fruticultura Subtropical y Mediterránea, 29750 Algarrobo-costa, Málaga, Spain;
| | - Marcos Egea-Cortines
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain; (C.B.); (M.E.-C.)
| | - Julia Weiss
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain; (C.B.); (M.E.-C.)
- Correspondence: ; Tel.: +34-868-071-078
| |
Collapse
|
48
|
Borghi M, Fernie AR. Outstanding questions in flower metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1275-1288. [PMID: 32410253 DOI: 10.1111/tpj.14814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
The great diversity of flowers, their color, odor, taste, and shape, is mostly a result of the metabolic processes that occur in this reproductive organ when the flower and its tissues develop, grow, and finally die. Some of these metabolites serve to advertise flowers to animal pollinators, other confer protection towards abiotic stresses, and a large proportion of the molecules of the central metabolic pathways have bioenergetic and signaling functions that support growth and the transition to fruits and seeds. Although recent studies have advanced our general understanding of flower metabolism, several questions still await an answer. Here, we have compiled a list of open questions on flower metabolism encompassing molecular aspects, as well as topics of relevance for agriculture and the ecosystem. These questions include the study of flower metabolism through development, the biochemistry of nectar and its relevance to promoting plant-pollinator interaction, recycling of metabolic resources after flowers whiter and die, as well as the manipulation of flower metabolism by pathogens. We hope with this review to stimulate discussion on the topic of flower metabolism and set a reference point to return to in the future when assessing progress in the field.
Collapse
Affiliation(s)
- Monica Borghi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| |
Collapse
|
49
|
Powers JM, Seco R, Faiola CL, Sakai AK, Weller SG, Campbell DR, Guenther A. Floral Scent Composition and Fine-Scale Timing in Two Moth-Pollinated Hawaiian Schiedea (Caryophyllaceae). FRONTIERS IN PLANT SCIENCE 2020; 11:1116. [PMID: 32793267 PMCID: PMC7385411 DOI: 10.3389/fpls.2020.01116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Floral scent often intensifies during periods of pollinator activity, but the degree of this synchrony may vary among scent compounds depending on their function. Related plant species with the same pollinator may exhibit similar timing and composition of floral scent. We compared timing and composition of floral volatiles for two endemic Hawaiian plant species, Schiedea kaalae and S. hookeri (Caryophyllaceae). For S. kaalae, we also compared the daily timing of emission of floral volatiles to evening visits of their shared pollinator, an endemic Hawaiian moth (Pseudoschrankia brevipalpis; Erebidae). The identity and amount of floral volatiles were measured in the greenhouse during day and evening periods with dynamic headspace sampling and GC-MS (gas chromatography - mass spectrometry). The timing of emissions (daily rise, peak, and fall) was measured by sampling continuously for multiple days in a growth chamber with PTR-MS (proton transfer reaction mass spectrometry). Nearly all volatiles detected underwent strong daily cycles in emission. Timings of floral volatile emissions were similar for S. kaalae and S. hookeri, as expected for two species sharing the same pollinator. For S. kaalae, many volatiles known to attract moths, including several linalool oxides and 2-phenylacetaldehyde, peaked within 2 h of the peak visitation time of the moth which pollinates both species. Floral volatiles of both species that peaked in the evening were also emitted several hours before and after the brief window of pollinator activity. Few volatiles followed a daytime emission pattern, consistent with increased apparency to visitors only at night. The scent blends of the two species differed in their major components and were most distinct from each other in the evening. The qualitative difference in evening scent composition between the two Schiedea species may reflect their distinct evolutionary history and may indicate that the moth species uses several different floral cues to locate rewards.
Collapse
Affiliation(s)
- John M. Powers
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Roger Seco
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Celia L. Faiola
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Ann K. Sakai
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Stephen G. Weller
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Diane R. Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Alex Guenther
- Department of Earth System Science, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
50
|
Xue X, Sun K, Zhu Z. CIRCADIAN CLOCK ASSOCIATED 1 gates morning phased auxin response in Arabidopsis thaliana. Biochem Biophys Res Commun 2020; 527:935-940. [PMID: 32430181 DOI: 10.1016/j.bbrc.2020.05.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 11/24/2022]
Abstract
Circadian clock controls plant behaviors to anticipate day-night switch and keeps plant fitness. Here, we reported that plant response to auxin is also strictly governed by clock. The amplitude of auxin-responsive gene expressions gradually declined from morning to the dusk, and then enhanced from dusk to dawn. Plants with defects in both CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and its closest homologue LATE ELONGATED HYPOCOTYL (LHY) (cca1 lhy) showed comparable responses to auxin at different time points in consecutive days, suggesting that CCA1 and LHY were required for gating auxin responses. Moreover, CCA1/LHY physically interacted with the core transcriptional repressors (Aux/IAA proteins), which might further modulate plant sensitivity to auxin. Taken together, we demonstrate that the central morning phased circadian oscillator CCA1 plays a pivotal role in gating auxin response.
Collapse
Affiliation(s)
- Xiangwen Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Kaiwen Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|