1
|
Rojas M, Acosta-Ampudia Y, Heuer LS, Zang W, M Monsalve D, Ramírez-Santana C, Anaya JM, M Ridgway W, A Ansari A, Gershwin ME. Antigen-specific T cells and autoimmunity. J Autoimmun 2024; 148:103303. [PMID: 39141985 DOI: 10.1016/j.jaut.2024.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Autoimmune diseases (ADs) showcase the intricate balance between the immune system's protective functions and its potential for self-inflicted damage. These disorders arise from the immune system's erroneous targeting of the body's tissues, resulting in damage and disease. The ability of T cells to distinguish between self and non-self-antigens is pivotal to averting autoimmune reactions. Perturbations in this process contribute to AD development. Autoreactive T cells that elude thymic elimination are activated by mimics of self-antigens or are erroneously activated by self-antigens can trigger autoimmune responses. Various mechanisms, including molecular mimicry and bystander activation, contribute to AD initiation, with specific triggers and processes varying across the different ADs. In addition, the formation of neo-epitopes could also be implicated in the emergence of autoreactivity. The specificity of T cell responses centers on the antigen recognition sequences expressed by T cell receptors (TCRs), which recognize peptide fragments displayed by major histocompatibility complex (MHC) molecules. The assortment of TCR gene combinations yields a diverse array of T cell populations, each with distinct affinities for self and non-self antigens. However, new evidence challenges the traditional notion that clonal expansion solely steers the selection of higher-affinity T cells. Lower-affinity T cells also play a substantial role, prompting the "two-hit" hypothesis. High-affinity T cells incite initial responses, while their lower-affinity counterparts perpetuate autoimmunity. Precision treatments that target antigen-specific T cells hold promise for avoiding widespread immunosuppression. Nevertheless, detection of such antigen-specific T cells remains a challenge, and multiple technologies have been developed with different sensitivities while still harboring several drawbacks. In addition, elements such as human leukocyte antigen (HLA) haplotypes and validation through animal models are pivotal for advancing these strategies. In brief, this review delves into the intricate mechanisms contributing to ADs, accentuating the pivotal role(s) of antigen-specific T cells in steering immune responses and disease progression, as well as the novel strategies for the identification of antigen-specific cells and their possible future use in humans. Grasping the mechanisms behind ADs paves the way for targeted therapeutic interventions, potentially enhancing treatment choices while minimizing the risk of systemic immunosuppression.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA; Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Weici Zang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | | | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Aftab A Ansari
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Peroumal D, Biswas PS. Kidney-Specific Interleukin-17 Responses During Infection and Injury. Annu Rev Immunol 2024; 42:35-55. [PMID: 37906942 DOI: 10.1146/annurev-immunol-052523-015141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The kidneys are life-sustaining organs that are vital to removing waste from our bodies. Because of their anatomic position and high blood flow, the kidneys are vulnerable to damage due to infections and autoinflammatory conditions. Even now, our knowledge of immune responses in the kidney is surprisingly rudimentary. Studying kidney-specific immune events is challenging because of the poor regenerative capacity of the nephrons, accumulation of uremic toxins, and hypoxia- and arterial blood pressure-mediated changes, all of which have unexpected positive or negative impacts on the immune response in the kidney. Kidney-specific defense confers protection against pathogens. On the other hand, unresolved inflammation leads to kidney damage and fibrosis. Interleukin-17 is a proinflammatory cytokine that has been linked to immunity against pathogens and pathogenesis of autoinflammatory diseases. In this review, we discuss current knowledge of IL-17 activities in the kidney in the context of infections, autoinflammatory diseases, and renal fibrosis.
Collapse
Affiliation(s)
- Doureradjou Peroumal
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Rosetti F, Madera-Salcedo IK, Crispín JC. Relevance of acquired T cell molecular defects in the immunopathogenesis of SLE. Clin Immunol 2024; 263:110225. [PMID: 38642784 DOI: 10.1016/j.clim.2024.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Systemic lupus erythematosus (SLE) and other autoimmune diseases are thought to develop in genetically predisposed individuals when triggered by environmental factors. This paradigm does not fully explain disease development, as it fails to consider the delay between birth and disease expression. In this review, we discuss observations described in T cells from patients with SLE that are not related to hereditary factors and have therefore been considered secondary to the disease process itself. Here, we contextualize some of those observations and argue that they may represent a pathogenic layer between genetic factors and disease development. Acquired changes in T cell phenotype and function in the setting of SLE may affect the immune system, creating a predisposition towards a more inflammatory and pathogenic system that amplifies autoimmunity and facilitates disease development.
Collapse
Affiliation(s)
- Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Mexico City 14080, Mexico
| | - Iris K Madera-Salcedo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Mexico City 14080, Mexico
| | - José C Crispín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Mexico City 14080, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| |
Collapse
|
4
|
Chopp L, Redmond C, O'Shea JJ, Schwartz DM. From thymus to tissues and tumors: A review of T-cell biology. J Allergy Clin Immunol 2023; 151:81-97. [PMID: 36272581 PMCID: PMC9825672 DOI: 10.1016/j.jaci.2022.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
T cells are critical orchestrators of the adaptive immune response that optimally eliminate a specific pathogen. Aberrant T-cell development and function are implicated in a broad range of human disease including immunodeficiencies, autoimmune diseases, and allergic diseases. Accordingly, therapies targeting T cells and their effector cytokines have markedly improved the care of patients with immune dysregulatory diseases. Newer discoveries concerning T-cell-mediated antitumor immunity and T-cell exhaustion have further prompted development of highly effective and novel treatment modalities for malignancies, including checkpoint inhibitors and antigen-reactive T cells. Recent discoveries are also uncovering the depth and variability of T-cell phenotypes: while T cells have long been described using a subset-based classification system, next-generation sequencing technologies suggest an astounding degree of complexity and heterogeneity at the single-cell level.
Collapse
Affiliation(s)
- Laura Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda
| | - Christopher Redmond
- Clinical Fellowship Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda; Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh.
| |
Collapse
|
5
|
Akama-Garren EH, Carroll MC. T Cell Help in the Autoreactive Germinal Center. Scand J Immunol 2022; 95:e13192. [PMID: 35587582 DOI: 10.1111/sji.13192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
The germinal center serves as a site of B cell selection and affinity maturation, critical processes for productive adaptive immunity. In autoimmune disease tolerance is broken in the germinal center reaction, leading to production of autoreactive B cells that may propagate disease. Follicular T cells are crucial regulators of this process, providing signals necessary for B cell survival in the germinal center. Here we review the emerging roles of follicular T cells in the autoreactive germinal center. Recent advances in immunological techniques have allowed study of the gene expression profiles and repertoire of follicular T cells at unprecedented resolution. These studies provide insight into the potential role follicular T cells play in preventing or facilitating germinal center loss of tolerance. Improved understanding of the mechanisms of T cell help in autoreactive germinal centers provides novel therapeutic targets for diseases of germinal center dysfunction.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
A Mechanistic Insight into the Pathogenic Role of Interleukin 17A in Systemic Autoimmune Diseases. Mediators Inflamm 2022; 2022:6600264. [PMID: 35620115 PMCID: PMC9129985 DOI: 10.1155/2022/6600264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Interleukin 17A (IL-17A) has been put forward as a strong ally in our fight against invading pathogens across exposed epithelial surfaces by serving an antimicrobial immunosurveillance role in these tissues to protect the barrier integrity. Amongst other mechanisms that prevent tissue injury mediated by potential microbial threats and promote restoration of epithelial homeostasis, IL-17A attracts effector cells to the site of inflammation and support the host response by driving the development of ectopic lymphoid structures. Accumulating evidence now underscores an integral role of IL-17A in driving the pathophysiology and clinical manifestations in three potentially life-threatening autoimmune diseases, namely, systemic lupus erythematosus, Sjögren’s syndrome, and systemic sclerosis. Available studies provide convincing evidence that the abundance of IL-17A in target tissues and its prime source, which is T helper 17 cells (Th17) and double negative T cells (DNT), is not an innocent bystander but in fact seems to be prerequisite for organ pathology. In this regard, IL-17A has been directly implicated in critical steps of autoimmunity. This review reports on the synergistic interactions of IL-17A with other critical determinants such as B cells, neutrophils, stromal cells, and the vasculature that promote the characteristic immunopathology of these autoimmune diseases. The summary of observations provided by this review may have empowering implications for IL-17A-based strategies to prevent clinical manifestations in a broad spectrum of autoimmune conditions.
Collapse
|
7
|
Zhao Z, Anderson AN, Kannapell CC, Kwok WW, Gaskin F, Fu SM. HLA-DR3 restricted environmental epitopes from the bacterium Clostridium tetani have T cell cross-reactivity to the SLE-related autoantigen SmD. Front Immunol 2022; 13:928374. [PMID: 36389825 PMCID: PMC9659850 DOI: 10.3389/fimmu.2022.928374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
HLA-DR3 (DR3) is one of the dominant HLA-DR alleles associated with systemic lupus erythematosus (SLE) susceptibility. Our previous studies showed multiple intramolecular DR3 restricted T cell epitopes in the Smith D (SmD) protein, from which we generated a non-homologous, bacterial epitope mimics library. From this library we identified ABC247-261 Mimic as one new DR3 restricted bacterial T cell epitope from the ABC transporter ATP-binding protein in Clostridium tetani. It activated and induced autoreactive SmD66-80-specific T cells and induced autoantibodies to lupus-related autoantigens in vivo. Compared to healthy donors, SLE patients have a greater percentage of cross-reactive T cells to ABC247-261 Mimic and SmD66-80. In addition, we analyzed the ability of single DR3 restricted Tetanus toxoid (TT) T cell epitopes to induce autoimmune T cells. We found that the immunodominant TT epitope TT826-845 stimulated SmD66-80 reactive T cells but failed to induce persistent anti-SmD autoantibodies compared to the ABC247-261 Mimic. Thus, exposure to the ABC247-261 Mimic epitope may contribute to autoimmunity in susceptible DR3 individuals.
Collapse
Affiliation(s)
- Zhenhuan Zhao
- Division of Rheumatology, Department of Medicine, University of Virginia, Charlottesville, VA, United States.,Center for Immunity, Inflammation and Regenerative Medicine, Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Ashley N Anderson
- Center for Immunity, Inflammation and Regenerative Medicine, Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Carol C Kannapell
- Division of Rheumatology, Department of Medicine, University of Virginia, Charlottesville, VA, United States.,Center for Immunity, Inflammation and Regenerative Medicine, Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - William W Kwok
- Benaroya Research Institute, Virginia Mason, Seattle, WA, United States
| | - Felicia Gaskin
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| | - Shu Man Fu
- Division of Rheumatology, Department of Medicine, University of Virginia, Charlottesville, VA, United States.,Center for Immunity, Inflammation and Regenerative Medicine, Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
8
|
Hashemi S, Habibagahi Z, Heidari M, Abdollahpour-Alitappeh M, Karimi MH. Effects of combined aerobic and anaerobic exercise training on cytokine profiles in patients with systemic lupus erythematosus (SLE); a randomized controlled trial. Transpl Immunol 2021; 70:101516. [PMID: 34922023 DOI: 10.1016/j.trim.2021.101516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an inflammatory rheumatic disease characterized by production of autoantibodies and organ damage. Elevated levels of cytokines have been reported in SLE patients. Physical activity could be considered one of the factors that affect the immune system status and function. The aim of the present study was to evaluate the effects of an 8-week supervised aerobic and anaerobic training program on the immune system of SLE patients through evaluation of serum cytokine levels. METHODS This cross-sectional study included 24 SLE patients selected between September 2015 and March 2016. The patients were randomly divided into two groups, including exercise (n = 14) and control (n = 10) groups. The exercise group participated in an 8-week combined supervised exercise training program consisting of three times per week in 60-min exercise sessions. After collection of whole peripheral blood, peripheral blood mononuclear cells (PBMCs) were isolated from the blood samples. Following RNA extraction and cDNA synthesis, the expression levels of IFN-γ, TNF-α, IL-6, IL-2, IL-4, IL-5, IL-9, IL-10, IL-13, IL-17A, IL-17F, IL-21, and IL-22 were determined using in-house SYBER Green-based real-time polymerase chain reaction (PCR). Lastly, the data obtained were analyzed using t-test. RESULTS The mean and standard deviation of age were 29.00 ± 3.19 and 21.50 ± 5.52 in the intervention and control groups, respectively. No significant differences were found among the mean serum levels of IFN-γ, IL6, IL-9, IL-17A, IL-17F and IL-21 among SLE patients in the intervention and control groups. The mean serum levels of TNF-α, IL2, IL-4, and IL-5 decreased significantly in the intervention as compared with the control group. The mean serum levels of IL-10, IL-13 and IL-22 significantly increased in the control group after eight weeks, as compared with the intervention group. CONCLUSIONS Our findings indicated that the 8-week supervised aerobic and anaerobic training program could result in decreased inflammatory cytokines.
Collapse
Affiliation(s)
- Somayeh Hashemi
- Department of Exercise Sciences, Shiraz University, Shiraz, Iran
| | - Zahra Habibagahi
- Department of Internal Medicine, Shiraz University of Medical Sciences, Iran
| | - Mojdeh Heidari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
9
|
Viatchenko-Karpinski V, Kong L, Weng HR. Activation of microglial GPR109A alleviates thermal hyperalgesia in female lupus mice by suppressing IL-18 and glutamatergic synaptic activity. Glia 2021; 70:634-649. [PMID: 34919284 DOI: 10.1002/glia.24130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022]
Abstract
Many patients with systemic lupus erythematosus (SLE) live with chronic pain despite advances in medical management in reducing mortality related to SLE. Few animal studies have addressed mechanisms and treatment for chronic pain caused by SLE. In this study, we provide the first evidence for the analgesic effects of a GPR109A specific agonist (MK1903) and its action mechanisms in thermal hyperalgesia in female MRL/lpr mice, an SLE mouse model. Specifically, we show that MRL/lpr mice had a higher sensitivity to thermal stimuli at age 11-16 weeks, which was accompanied with significantly microglial and astrocytic activation, increases in p38 MAPK and glutamatergic synaptic activities in the spinal dorsal horn. We demonstrate that thermal hyperalgesia in MRL/lpr mice was significantly attenuated by intrathecal injection of MK1903. GPR109A was expressed in spinal microglia but not astrocytes or neurons. Its expression was significantly increased in MRL/lpr mice with thermal hyperalgesia. Activation of GPR109A receptors in microglia attenuated glutamatergic synaptic activity via suppressing production of interleukin-18 (IL-18). We provide evidence that activation of GPR109A attenuated thermal hyperalgesia in the SLE animal model via suppressing p38 MAPK activity and production of IL-18. Our study suggests that targeting the microglial GPR109A is a potent approach for reversing spinal neuroinflammation, abnormal excitatory synaptic activity, and management of thermal hyperalgesia caused by SLE.
Collapse
Affiliation(s)
| | - Lingwei Kong
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, USA
| | - Han-Rong Weng
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, USA.,Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, Georgia, USA
| |
Collapse
|
10
|
Akama-Garren EH, van den Broek T, Simoni L, Castrillon C, van der Poel CE, Carroll MC. Follicular T cells are clonally and transcriptionally distinct in B cell-driven mouse autoimmune disease. Nat Commun 2021; 12:6687. [PMID: 34795279 PMCID: PMC8602266 DOI: 10.1038/s41467-021-27035-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/23/2021] [Indexed: 11/30/2022] Open
Abstract
Pathogenic autoantibodies contribute to tissue damage and clinical decline in autoimmune disease. Follicular T cells are central regulators of germinal centers, although their contribution to autoantibody-mediated disease remains unclear. Here we perform single cell RNA and T cell receptor (TCR) sequencing of follicular T cells in a mouse model of autoantibody-mediated disease, allowing for analyses of paired transcriptomes and unbiased TCRαβ repertoires at single cell resolution. A minority of clonotypes are preferentially shared amongst autoimmune follicular T cells and clonotypic expansion is associated with differential gene signatures in autoimmune disease. Antigen prediction using algorithmic and machine learning approaches indicates convergence towards shared specificities between non-autoimmune and autoimmune follicular T cells. However, differential autoimmune transcriptional signatures are preserved even amongst follicular T cells with shared predicted specificities. These results demonstrate that follicular T cells are phenotypically distinct in B cell-driven autoimmune disease, providing potential therapeutic targets to modulate autoantibody development.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Clone Cells/immunology
- Clone Cells/metabolism
- Gene Expression Profiling/methods
- Germinal Center/cytology
- Germinal Center/immunology
- Germinal Center/metabolism
- Mice, Inbred C57BL
- Microscopy, Confocal
- RNA-Seq/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Single-Cell Analysis/methods
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Mice
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA
| | - Theo van den Broek
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lea Simoni
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Carlos Castrillon
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cees E van der Poel
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Tezcan D, Sivrikaya A, Ergün D, Özer H, Eryavuz Onmaz D, Körez MK, Akdağ T, Gülcemal S, Limon M, Yılmaz S. Evaluation of serum interleukin-6 (IL-6), IL-13, and IL-17 levels and computed tomography finding in interstitial lung disease associated with connective tissue disease patients. Clin Rheumatol 2021; 40:4713-4724. [PMID: 34181129 DOI: 10.1007/s10067-021-05773-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/03/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Interstitial lung disease (ILD) is one of the most severe complications which is associated with connective tissue disease (CTD) and causes to morbidity and mortality. So, we aimed to determine serum levels of interleukin-6 (IL-6), IL-13, and IL-17, to investigate whether these cytokines are related to CTD-ILD, and to find their possible contribution to determining the prognosis of the disease. METHODS A total of 150 participants, 80 patients diagnosed with CTD-ILD (mean age, 58.21 ± 12.36) and 70 healthy controls (mean age, 57.07 ± 9.60) were recruited from the rheumatology department between January 2016 and June 2019 in the study. High-resolution computed tomography (HRCT) findings were scored as similarly to previous studies. Serum IL-6, IL 13, and IL-17 levels were measured by ELISA test kits. RESULTS The levels of IL-6, IL-13, and IL-17 in CTD patients were significantly higher than the healthy individuals (p < 001), but the HRCT score's relation were not determined. IL-6 was associated with disease duration and disease activity scores of DAS28, ESDAII, and dSSc. There was a significant relation between dSSc, HCRT fibrosis, and total score.CRP, hemoglobin, and platelets were associated with the HRCT inflammation pattern. CONCLUSION At the study, it has been observed that serum IL-13, IL-6 and IL-17 levels are increased in patients with CTD-ILD. Besides, IL-6 was associated with disease activity scores of DAS28, ESDAII, and dSSc. Also, HRCT fibrosis score is associated with dSSc. Further and comprehensive studies are needed to understand better the complex intersection of lung disease with systemic autoimmunity. Key Points • Serum IL-13, IL-6, and IL-17 levels are increased in patients with CTD-ILD. • IL-6 was associated with disease activity scores of DAS28, ESDAII, and diffuse skin involvement. • HRCT fibrosis score is associated with diffuse skin involvement in patients with SSc-ILD. • HRCT inflammation score is associated with PAH.
Collapse
Affiliation(s)
- Dilek Tezcan
- Division of Rheumatology, Selcuk University Faculty of Medicine, 42130, Selcuklu, Konya, Turkey.
| | - Abdullah Sivrikaya
- Division of Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Dilek Ergün
- Division of Pulmonary Medicine, Selcuk University Faculty of Medicine, 42130, Selcuklu, Konya, Turkey
| | - Halil Özer
- Division of Radiology, Selcuk University Faculty of Medicine, 42130, Selcuklu, Konya, Turkey
| | - Duygu Eryavuz Onmaz
- Division of Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Muslu Kazım Körez
- Division of Biostatistics, Selcuk University Faculty of Medicine, 42130, Selcuklu, Konya, Turkey
| | - Turan Akdağ
- Division of Biochemistry, Necmettin Erbakan University, Meram Vocational School, Konya, Turkey
| | - Semral Gülcemal
- Division of Rheumatology, Selcuk University Faculty of Medicine, 42130, Selcuklu, Konya, Turkey
| | - Muhammet Limon
- Division of Rheumatology, Selcuk University Faculty of Medicine, 42130, Selcuklu, Konya, Turkey
| | - Sema Yılmaz
- Division of Rheumatology, Selcuk University Faculty of Medicine, 42130, Selcuklu, Konya, Turkey
| |
Collapse
|
12
|
Abdirama D, Tesch S, Grießbach AS, von Spee-Mayer C, Humrich JY, Stervbo U, Babel N, Meisel C, Alexander T, Biesen R, Bacher P, Scheffold A, Eckardt KU, Hiepe F, Radbruch A, Burmester GR, Riemekasten G, Enghard P. Nuclear antigen-reactive CD4 + T cells expand in active systemic lupus erythematosus, produce effector cytokines, and invade the kidneys. Kidney Int 2020; 99:238-246. [PMID: 32592813 DOI: 10.1016/j.kint.2020.05.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/01/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Abstract
Systemic lupus erythematosus is a systemic and chronic autoimmune disease characterized by loss of tolerance towards nuclear antigens with autoreactive CD4+ T cells implicated in disease pathogenesis. However, very little is known about their receptor specificity since the detection of human autoantigen specific CD4+ T cells has been extremely challenging. Here we present an analysis of CD4+ T cells reactive to nuclear antigens using two complementary methods: T cell libraries and antigen-reactive T cell enrichment. The frequencies of nuclear antigen specific CD4+ T cells correlated with disease severity. These autoreactive T cells produce effector cytokines such as interferon-γ, interleukin-17, and interleukin-10. Compared to blood, these cells were enriched in the urine of patients with active lupus nephritis, suggesting an infiltration of the inflamed kidneys. Thus, these previously unrecognized characteristics support a role for nuclear antigen-specific CD4+ T cells in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Dimas Abdirama
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Sebastian Tesch
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Anna-Sophie Grießbach
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Caroline von Spee-Mayer
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Y Humrich
- Department of Rheumatology and Clinical Immunology, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Ulrik Stervbo
- Berlin-Brandenburg Centrum für Regenerative Therapie, Berlin, Germany; Centre for Translational Medicine, Universitätsklinikum der Ruhr-Universität Bochum, Bochum, Germany
| | - Nina Babel
- Berlin-Brandenburg Centrum für Regenerative Therapie, Berlin, Germany; Centre for Translational Medicine, Universitätsklinikum der Ruhr-Universität Bochum, Bochum, Germany
| | - Christian Meisel
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Biesen
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Petra Bacher
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Alexander Scheffold
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Falk Hiepe
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Gerd-Rüdiger Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany.
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Li H, Adamopoulos IE, Moulton VR, Stillman IE, Herbert Z, Moon JJ, Sharabi A, Krishfield S, Tsokos MG, Tsokos GC. Systemic lupus erythematosus favors the generation of IL-17 producing double negative T cells. Nat Commun 2020; 11:2859. [PMID: 32503973 PMCID: PMC7275084 DOI: 10.1038/s41467-020-16636-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/08/2020] [Indexed: 01/06/2023] Open
Abstract
Mature double negative (DN) T cells are a population of αβ T cells that lack CD4 and CD8 coreceptors and contribute to systemic lupus erythematosus (SLE). The splenic marginal zone macrophages (MZMs) are important for establishing immune tolerance, and loss of their number or function contributes to the progression of SLE. Here we show that loss of MZMs impairs the tolerogenic clearance of apoptotic cells and alters the serum cytokine profile, which in turn provokes the generation of DN T cells from self-reactive CD8+ T cells. Increased Ki67 expression, narrowed TCR V-beta repertoire usage and diluted T-cell receptor excision circles confirm that DN T cells from lupus-prone mice and patients with SLE undergo clonal proliferation and expansion in a self-antigen dependent manner, which supports the shared mechanisms for their generation. Collectively, our results provide a link between the loss of MZMs and the expansion of DN T cells, and indicate possible strategies to prevent the development of SLE.
Collapse
Affiliation(s)
- Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Iannis E Adamopoulos
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95817, USA
| | - Vaishali R Moulton
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Isaac E Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Zach Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, 21-27 Burlington Ave, Boston, MA, 02215, USA
| | - James J Moon
- Center for Immunology and inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Amir Sharabi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Suzanne Krishfield
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maria G Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Biswas PS. IL-17 in Renal Immunity and Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2019; 201:3153-3159. [PMID: 30455371 DOI: 10.4049/jimmunol.1801042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/07/2018] [Indexed: 12/19/2022]
Abstract
The kidney is an organ particularly susceptible to damage caused by infections and autoimmune conditions. Renal inflammation confers protection against microbial infections. However, if unchecked, unresolved inflammation may lead to kidney damage. Although proinflammatory cytokine IL-17 is required for immunity against extracellular pathogens, dysregulated IL-17 response is also linked to autoimmunity. In this review, we will discuss the current knowledge of IL-17 activity in the kidney in context to renal immunity and autoimmunity and raise the intriguing question to what extent neutralization of IL-17 is beneficial or harmful to renal inflammation.
Collapse
Affiliation(s)
- Partha S Biswas
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
15
|
Meng Y, Xu H, Zhang S, Zhang J, Wang L, Tang H, Wu Y. Genetic polymorphisms near IL-21 gene associated with Th17 cytokines confer risk for systemic lupus erythematosus in Chinese Han population. Lupus 2019; 28:406-413. [PMID: 30774014 DOI: 10.1177/0961203319829821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Interleukin-21 (IL-21) contributes to expansion, differentiation, and modulation of various immunocompetent cells. Deregulated production of IL-21 plays a role of cardinal significance in the pathogenesis of systemic lupus erythematosus (SLE). We aimed to determine whether single nucleotide polymorphisms (SNP) near the IL-21 gene have significant association with SLE susceptibility and the T helper-related inflammatory cytokine profile of SLE patients. METHODS We enrolled 460 SLE patients and 460 healthy controls. Whole genome analysis was used to investigate different genes including IL-21. Loci rs11725913, rs11937669, rs7676539, rs111438679, rs115935829, rs373549, rs4487356, and rs79923870 were further genotyped using an improved multiplex ligation detection reaction technique. Susceptibility, levels of Th-related inflammatory cytokines, and some clinical indexes of SLE patients were analyzed. RESULTS rs11725913 and rs11937669 were identified for association with SLE in Chinese Han Population. The allelic frequency of rs11725913 approached significance (odds ratio (OR) (95% Confidence Interval (CI)) = 1.431 (1.122-1.825), P = 0.004). GT genotype at rs11725913 and GA genotype at rs11937669 were associated with SLE susceptibility (OR (95% CI) = 1.448 (1.074-1.952), P = 0.015; OR (95%CI) = 1.356 (1.013-1.815), P = 0.040, respectively). Dominant model analysis provided us with further validation (rs11725913: OR (95%CI) = 1.502 (1.126-2.004), P = 0.006; rs11937669: OR (95%CI) = 1.356 (1.025-1.793), P = 0.033). Cases with rs11937669 risk GA-genotype had higher serum IL-6 concentration than others ( P = 0.022). Dominant model analysis showed that patients with the wild type (AA-genotype) at rs11937669 had significantly lower soluble CD40 ligand ( P = 0.029) but higher IL-17A ( P = 0.040) compared with others. Cases carrying rs11725913 T allele had higher gamma glutamyl transpeptidase level ( P = 0.045) than those without. CONCLUSIONS We identified two new loci, rs11725913 and rs11937669, associated with SLE risk in Chinese Han population. This research provided a new insight into the significant relationship between polymorphisms upstream IL-21 and Th17 inflammatory response, which suggest that the sequence upstream of the IL-21 gene is an important region involved in the Th17-related pathway.
Collapse
Affiliation(s)
- Yanming Meng
- 1 Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- 1 Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shouyue Zhang
- 1 Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Junlong Zhang
- 1 Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Wang
- 1 Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Honghu Tang
- 2 Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongkang Wu
- 1 Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Hahn BH, Kono DH. Animal Models in Lupus. DUBOIS' LUPUS ERYTHEMATOSUS AND RELATED SYNDROMES 2019:164-215. [DOI: 10.1016/b978-0-323-47927-1.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
T cells from induced and spontaneous models of SLE recognize a common T cell epitope on β2-glycoprotein I. Cell Mol Immunol 2018; 16:685-693. [PMID: 29572548 DOI: 10.1038/s41423-018-0013-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/05/2023] Open
Abstract
Systemic lupus erythematosus is a prototypic model for B-cell epitope spread in autoimmunity. Autoantibodies to numerous molecularly distinct self-antigens emerge in a sequential manner over several years, leading to disease manifestations. Among the earliest autoantibodies to appear are those targeting phospholipid-binding proteins, particularly β2-glycoprotein I. Notably, mice immunized with β2-glycoprotein I and lipopolysaccharide develop a strong T cell response to β2-glycoprotein I that is associated with autoantibody production and renal disease, similar to that seen in human SLE. Here we hypothesized that mice with murine systemic lupus erythematosus, whether induced or spontaneous, should have T cells that recognize β2-glycoprotein I. We evaluated the response of splenic T cells from mice with induced (C57BL/6 and C3H/HeN) and spontaneous (MRL/lpr) systemic lupus erythematosus to peptides spanning the entire sequence of human β2GPI. We found that mice with induced and spontaneous systemic lupus erythematosus recognize a common T cell epitope (peptide 31; LYRDTAVFECLPQHAMFG) in domain III of β2-glycoprotein I. β2GPI-reactive CD4+ T cells from the two models differed primarily in cytokine production: T cells from mice with induced SLE expressed IFN-γ, while T cells from MRL/lpr mice expressed both IL-17 and IFN-γ, indicating that IL-17-expressing T cells are not necessary for generating a β2GPI-reactive T cell response. These data suggest that the generation of a β2-glycoprotein I-reactive T cell response is shared by both induced and spontaneous models of systemic lupus erythematosus and that this T cell response may mediate epitope spread to autoantibodies in both models.
Collapse
|
18
|
Li W, Sivakumar R, Titov AA, Choi SC, Morel L. Metabolic Factors that Contribute to Lupus Pathogenesis. Crit Rev Immunol 2017; 36:75-98. [PMID: 27480903 DOI: 10.1615/critrevimmunol.2016017164] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease in which organ damage is mediated by pathogenic autoantibodies directed against nucleic acids and protein complexes. Studies in SLE patients and in mouse models of lupus have implicated virtually every cell type in the immune system in the induction or amplification of the autoimmune response as well as the promotion of an inflammatory environment that aggravates tissue injury. Here, we review the contribution of CD4+ T cells, B cells, and myeloid cells to lupus pathogenesis and then discuss alterations in the metabolism of these cells that may contribute to disease, given the recent advances in the field of immunometabolism.
Collapse
Affiliation(s)
- Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610; Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology, Beijing Key Laboratory, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ramya Sivakumar
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Anton A Titov
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| |
Collapse
|
19
|
Morawski PA, Bolland S. Expanding the B Cell-Centric View of Systemic Lupus Erythematosus. Trends Immunol 2017; 38:373-382. [PMID: 28274696 DOI: 10.1016/j.it.2017.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/26/2017] [Accepted: 02/08/2017] [Indexed: 12/29/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by a breakdown of self-tolerance in B cells and the production of antibodies against nuclear self-antigens. Increasing evidence supports the notion that additional cellular contributors beyond B cells are important for lupus pathogenesis. In this review we consider recent advances regarding both the pathogenic and the regulatory role of lymphocytes in SLE beyond the production of IgG autoantibodies. We also discuss various inflammatory effector cell types involved in cytokine production, removal of self-antigens, and responses to autoreactive IgE antibodies. We aim to integrate these ideas to expand the current understanding of the cellular components that contribute to disease progression and ultimately help in the design of novel, targeted therapeutics.
Collapse
Affiliation(s)
- Peter A Morawski
- Laboratory of Immunogenetics, National Institute of Allergic and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Silvia Bolland
- Laboratory of Immunogenetics, National Institute of Allergic and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
20
|
Giles JR, Neves AT, Marshak-Rothstein A, Shlomchik MJ. Autoreactive helper T cells alleviate the need for intrinsic TLR signaling in autoreactive B cell activation. JCI Insight 2017; 2:e90870. [PMID: 28239656 PMCID: PMC5313065 DOI: 10.1172/jci.insight.90870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/06/2017] [Indexed: 12/26/2022] Open
Abstract
T cells play a significant role in the pathogenesis of systemic autoimmune diseases, including systemic lupus erythematosus; however, there is relatively little information on the nature and specificity of autoreactive T cells. Identifying such cells has been technically difficult because they are likely to be rare and low affinity. Here, we report a method for identifying autoreactive T cell clones that recognize proteins contained in autoantibody immune complexes, providing direct evidence that functional autoreactive helper T cells exist in the periphery of normal mice. These T cells significantly enhanced autoreactive B cell proliferation and altered B cell differentiation in vivo. Most importantly, these autoreactive T cells were able to rescue many aspects of the TLR-deficient AM14 (anti-IgG2a rheumatoid factor) B cell response, suggesting that TLR requirements can be bypassed. This result has implications for the efficacy of TLR-targeted therapy in the treatment of ongoing disease.
Collapse
Affiliation(s)
- Josephine R. Giles
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adriana Turqueti Neves
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ann Marshak-Rothstein
- Division of Rheumatology, Department of Medicine, University of Massachusetts School of Medicine, Worcester, Massachusetts, USA
| | - Mark J. Shlomchik
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Yan X, Maixner DW, Li F, Weng HR. Chronic pain and impaired glial glutamate transporter function in lupus-prone mice are ameliorated by blocking macrophage colony-stimulating factor-1 receptors. J Neurochem 2017; 140:963-976. [PMID: 28072466 DOI: 10.1111/jnc.13952] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/22/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multi-organ disease of unknown etiology in which the normal immune responses are directed against the body's own healthy tissues. Patients with SLE often suffer from chronic pain. Currently, no animal studies have been reported about the mechanisms underlying pain in SLE. In this study, the development of chronic pain in MRL lupus-prone (MRL/lpr) mice, a well-established lupus mouse model, was characterized for the first time. We found that female MRL/lpr mice developed thermal hyperalgesia at the age of 13 weeks, and mechanical allodynia at the age of 16 weeks. MRL/lpr mice with chronic pain had activation of microglia and astrocytes, over-expression of macrophage colony-stimulating factor-1 (CSF-1) and interleukin-1 beta (IL-1β), as well as suppression of glial glutamate transport function in the spinal cord. Intrathecal injection of either the CSF-1 blocker or IL-1 inhibitor attenuated thermal hyperalgesia in MRL/lpr mice. We provide evidence that the suppressed activity of glial glutamate transporters in the spinal dorsal horn in MRL/lpr mice is caused by activation of the CSF-1 and IL-1β signaling pathways. Our findings suggest that targeting the CSF-1 and IL-1β signaling pathways or the glial glutamate transporter in the spinal cord is an effective approach for the management of chronic pain caused by SLE.
Collapse
Affiliation(s)
- Xisheng Yan
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, Georgia, USA.,Department of Cardiovascular Medicine, The Third Hospital of Wuhan, Wuhan, Hubei, China
| | - Dylan W Maixner
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, Georgia, USA
| | - Fen Li
- Department of Neurology, The Third Hospital of Wuhan, Wuhan, Hubei, China
| | - Han-Rong Weng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, Georgia, USA
| |
Collapse
|
22
|
Uchtenhagen H, Rims C, Blahnik G, Chow IT, Kwok WW, Buckner JH, James EA. Efficient ex vivo analysis of CD4+ T-cell responses using combinatorial HLA class II tetramer staining. Nat Commun 2016; 7:12614. [PMID: 27571776 PMCID: PMC5013714 DOI: 10.1038/ncomms12614] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/18/2016] [Indexed: 02/08/2023] Open
Abstract
MHC tetramers are an essential tool for characterizing antigen-specific CD4+ T cells. However, their ex vivo analysis is limited by the large sample requirements. Here we demonstrate a combinatorial staining approach that allows simultaneous characterization of multiple specificities to address this challenge. As proof of principle, we analyse CD4+ T-cell responses to the seasonal influenza vaccine, establishing a frequency hierarchy and examining differences in memory and activation status, lineage commitment and cytokine expression. We also observe cross-reactivity between an established epitope and recent variant and provide a means for probing T-cell receptor cross-reactivity. Using cord blood samples, we correlate the adult frequency hierarchy with the naive precursor frequencies. Last, we use our combinatorial staining approach to demonstrate that rheumatoid arthritis patients on therapy can mount effective responses to influenza vaccination. Together, these results demonstrate the utility of combinatorial tetramer staining and suggest that this approach may have broad applicability in human health and disease.
Collapse
Affiliation(s)
- Hannes Uchtenhagen
- Benaroya Research Institute at Virginia Mason, Translational Research Program, Seattle, Washington 98101, USA
- Neuroimmunology Unit, Department of Neuroscience, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Cliff Rims
- Benaroya Research Institute at Virginia Mason, Translational Research Program, Seattle, Washington 98101, USA
| | - Gabriele Blahnik
- Benaroya Research Institute at Virginia Mason, Diabetes Program, Seattle, Washington 98101, USA
| | - I-Ting Chow
- Benaroya Research Institute at Virginia Mason, Diabetes Program, Seattle, Washington 98101, USA
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason, Diabetes Program, Seattle, Washington 98101, USA
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Jane H. Buckner
- Benaroya Research Institute at Virginia Mason, Translational Research Program, Seattle, Washington 98101, USA
| | - Eddie A. James
- Benaroya Research Institute at Virginia Mason, Diabetes Program and Tetramer Core Laboratory, Seattle, Washington 98101, USA
| |
Collapse
|
23
|
Ramani K, Biswas PS. Emerging roles of the Th17/IL-17-axis in glomerulonephritis. Cytokine 2016; 77:238-44. [DOI: 10.1016/j.cyto.2015.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 12/25/2022]
|
24
|
Massilamany C, Krishnan B, Reddy J. Major Histocompatibility Complex Class II Dextramers: New Tools for the Detection of antigen-Specific, CD4 T Cells in Basic and Clinical Research. Scand J Immunol 2015; 82:399-408. [PMID: 26207337 PMCID: PMC4610346 DOI: 10.1111/sji.12344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/15/2015] [Indexed: 12/19/2022]
Abstract
The advent of major histocompatibility complex (MHC) tetramer technology has been a major contribution to T cell immunology, because tetramer reagents permit detection of antigen-specific T cells at the single-cell level in heterogeneous populations by flow cytometry. However, unlike MHC class I tetramers, the utility of MHC class II tetramers has been less frequently reported. MHC class II tetramers can be used successfully to enumerate the frequencies of antigen-specific CD4 T cells in cells activated in vitro, but their use for ex vivo analyses continues to be a problem, due in part to their activation dependency for binding with T cells. To circumvent this problem, we recently reported the creation of a new generation of reagents called MHC class II dextramers, which were found to be superior to their counterparts. In this review, we discuss the utility of class II dextramers vis-a-vis tetramers, with respect to their specificity and sensitivity, including potential applications and limitations.
Collapse
Affiliation(s)
- C Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - B Krishnan
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - J Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
25
|
Haddon DJ, Jarrell JA, Diep VK, Wand HE, Price JV, Tangsombatvisit S, Credo GM, Mackey S, Dekker CL, Baechler EC, Liu CL, Varma M, Utz PJ. Mapping epitopes of U1-70K autoantibodies at single-amino acid resolution. Autoimmunity 2015; 48:513-23. [PMID: 26333287 DOI: 10.3109/08916934.2015.1077233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanisms underlying development of ribonucleoprotein (RNP) autoantibodies are unclear. The U1-70K protein is the predominant target of RNP autoantibodies, and the RNA binding domain has been shown to be the immunodominant autoantigenic region of U1-70K, although the specific epitopes are not known. To precisely map U1-70K epitopes, we developed silicon-based peptide microarrays with >5700 features, corresponding to 843 unique peptides derived from the U1-70K protein. The microarrays feature overlapping peptides, with single-amino acid resolution in length and location, spanning amino acids 110-170 within the U1-70K RNA binding domain. We evaluated the serum IgG of a cohort of patients with systemic lupus erythematosus (SLE; n = 26) using the microarrays, and identified multiple reactive epitopes, including peptides 116-121 and 143-148. Indirect peptide ELISA analysis of the sera of patients with SLE (n = 88) revealed that ∼14% of patients had serum IgG reactivity to 116-121, while reactivity to 143-148 appeared to be limited to a single patient. SLE patients with serum reactivity to 116-121 had significantly lower SLE Disease Activity Index (SLEDAI) scores at the time of sampling, compared to non-reactive patients. Minimal reactivity to the peptides was observed in the sera of healthy controls (n = 92). Competitive ELISA showed antibodies to 116-121 bind a common epitope in U1-70K (68-72) and the matrix protein M1 of human influenza B viruses. Institutional Review Boards approved this study. Knowledge of the precise epitopes of U1-70K autoantibodies may provide insight into the mechanisms of development of anti-RNP, identify potential clinical biomarkers and inform ongoing clinical trails of peptide-based therapeutics.
Collapse
Affiliation(s)
- David James Haddon
- a Department of Medicine , Division of Immunology & Rheumatology, Stanford University School of Medicine , Stanford , CA , USA
| | - Justin Ansel Jarrell
- a Department of Medicine , Division of Immunology & Rheumatology, Stanford University School of Medicine , Stanford , CA , USA
| | - Vivian K Diep
- a Department of Medicine , Division of Immunology & Rheumatology, Stanford University School of Medicine , Stanford , CA , USA
| | - Hannah E Wand
- a Department of Medicine , Division of Immunology & Rheumatology, Stanford University School of Medicine , Stanford , CA , USA
| | - Jordan V Price
- b Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis , University of California at Berkeley , Berkeley , CA , USA
| | - Stephanie Tangsombatvisit
- a Department of Medicine , Division of Immunology & Rheumatology, Stanford University School of Medicine , Stanford , CA , USA
| | | | - Sally Mackey
- d Department of Pediatrics, Division of Infectious Diseases , Stanford University School of Medicine , Stanford , CA , USA , and
| | - Cornelia L Dekker
- d Department of Pediatrics, Division of Infectious Diseases , Stanford University School of Medicine , Stanford , CA , USA , and
| | - Emily C Baechler
- e Department of Medicine , Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School , Minneapolis , MN , USA
| | - Chih Long Liu
- a Department of Medicine , Division of Immunology & Rheumatology, Stanford University School of Medicine , Stanford , CA , USA
| | - Madoo Varma
- c Intel Corporation , Santa Clara , CA , USA
| | - Paul J Utz
- a Department of Medicine , Division of Immunology & Rheumatology, Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|