1
|
Alvarez MRS, Holmes XA, Oloumi A, Grijaldo-Alvarez SJ, Schindler R, Zhou Q, Yadlapati A, Silsirivanit A, Lebrilla CB. Integration of RNAseq transcriptomics and N-glycomics reveal biosynthetic pathways and predict structure-specific N-glycan expression. Chem Sci 2025; 16:7155-7172. [PMID: 40191131 PMCID: PMC11970275 DOI: 10.1039/d5sc00467e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
The processes involved in protein N-glycosylation represent new therapeutic targets for diseases but their stepwise and overlapping biosynthetic processes make it challenging to identify the specific glycogenes involved. In this work, we aimed to elucidate the interactions between glycogene expression and N-glycan abundance by constructing supervised machine-learning models for each N-glycan composition. Regression models were trained to predict N-glycan abundance (response variable) from glycogene expression (predictors) using paired LC-MS/MS N-glycomic and 3'-TagSeq transcriptomic datasets from cells derived from multiple tissue origins and treatment conditions. The datasets include cells from several tissue origins - B cell, brain, colon, lung, muscle, prostate - encompassing nearly 400 N-glycan compounds and over 160 glycogenes filtered from an 18 000-gene transcriptome. Accurate models (validation R 2 > 0.8) predicted N-glycan abundance across cell types, including GLC01 (lung cancer), CCD19-Lu (lung fibroblast), and Tib-190 (B cell). Model importance scores ranked glycogene contributions to N-glycan predictions, revealing significant glycogene associations with specific N-glycan types. The predictions were consistent across input cell quantities, unlike LC-MS/MS glycomics which showed inconsistent results. This suggests that the models can reliably predict N-glycosylation even in samples with low cell amounts and by extension, single-cell samples. These findings can provide insights into cellular N-glycosylation machinery, offering potential therapeutic strategies for diseases linked to aberrant glycosylation, such as cancer, and neurodegenerative and autoimmune disorders.
Collapse
Affiliation(s)
| | - Xavier A Holmes
- Department of Chemistry, University of California, Davis Davis California USA
| | - Armin Oloumi
- Department of Chemistry, University of California, Davis Davis California USA
| | | | - Ryan Schindler
- Department of Chemistry, University of California, Davis Davis California USA
| | - Qingwen Zhou
- Department of Chemistry, University of California, Davis Davis California USA
| | - Anirudh Yadlapati
- Department of Chemistry, University of California, Davis Davis California USA
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University Khon Kaen Thailand
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis Davis California USA
- Department of Chemistry, Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis Davis California USA
| |
Collapse
|
2
|
Xie Y, Xie J, Huang G, Zhang J, Song C, Luo Y, Tang H, Tang Y, Xiao X, Zhang C, Shuang Z, Li X. Isoliquiritigenin reduces brain metastasis by circNAV3-ST6GALNAC5-EGFR axis in triple-negative breast cancer. Cancer Lett 2025; 624:217734. [PMID: 40268132 DOI: 10.1016/j.canlet.2025.217734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Brain metastasis (BM) is a serious complication of increasing incidence in patients with advanced breast cancer, which is characterized by swift deterioration in quality of life with few efficient therapy strategies. There is an urgent clinical requirement to devise potent therapeutic strategies for the prevention and management of brain metastases. Here, we report isoliquiritigenin (ISL), a key bioactive substance extracted from licorice root, which effectively inhibited triple-negative breast cancer (TNBC) brain metastasis (BM) by downregulation of circNAV3. CircRNAs expression analyses and functional studies, coupled with clinical significance investigations identified circNAV3 as a key molecule promoting TNBC BM. Functionally, circNAV3 could promote proliferation, migration, invasion, angiogenesis and capacity to penetrate the blood-brain barrier of TNBC cells. Mechanistically, circNAV3 could competitively bind with miR-4262, hence intercepting the suppressive effect of miR-4262 on ST6GALNAC5. Subsequently, this interplay enhanced EGFR sialylation and activation, initiating the PI3K/Akt pathway and ultimately fostering the development of TNBC brain metastases. In conclusion, our research establishes that ISL impede the initiation and advancement of TNBC brain metastasis by modulation of circNAV3/miR-4262/ST6GALNAC5/EGFR axis, laying a theoretical groundwork for the therapeutic use of ISL in this scenario.
Collapse
Affiliation(s)
- Yi Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Guoxian Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jinhui Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yongzhou Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiangsheng Xiao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Zeyu Shuang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Xing Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Liu Y, Chen G, Yuan X, Chen Y, Cui Y, Cao K. Comprehensive Multi-Omics Analysis Identifies FUT1 as a Prognostic and Therapeutic Biomarker Across Pan-Cancer. Int J Med Sci 2025; 22:1313-1328. [PMID: 40084262 PMCID: PMC11898856 DOI: 10.7150/ijms.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/05/2025] [Indexed: 03/16/2025] Open
Abstract
Fucosyltransferase 1 encodes a Golgi membrane protein involved in H-antigen precursor production and plays a critical role in tumor-associated glycosylation and angiogenesis. While FUT1 is known to enhance tumor stemness, adhesion, migration, and drug resistance in specific cancers, its role across diverse cancer types and its association with clinical prognosis and molecular features remain unclear. In this study, FUT1 expression was systematically analyzed across 33 cancer types using data from multiple public databases, including CCLE, TCGA, and GTEx. FUT1 expression was found to vary across cancers, correlating with poor prognosis in ACC, BLCA, and COAD and demonstrating high diagnostic accuracy in READ and COAD. Genomic analyses revealed frequent FUT1 amplifications and associations with genomic instability, while functional analyses linked FUT1 to proliferation, metastasis, and EMT pathways. FUT1 expression was also associated with immune microenvironment features, such as immune cell infiltration and stromal scores, and correlated with TMB and MSI. Drug sensitivity analysis indicated that FUT1 expression was linked to lower sensitivity to most drugs but increased sensitivity to tyrosine kinase inhibitors. Experimental validation confirmed that FUT1 knockdown inhibited proliferation, invasion, and migration in bladder, breast, and colorectal cancer cell lines, suggesting a potential role in cancer progression, though further evidence is required to fully establish its oncogenic involvement. These findings highlight FUT1 as a potential prognostic biomarker and provide insights into its biological functions and relevance for developing targeted therapeutic strategies across cancers.
Collapse
Affiliation(s)
- Yunqing Liu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Guanjun Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Xiaotian Yuan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Yaxin Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - YuJie Cui
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| |
Collapse
|
4
|
Ma Y, Zhang F, Li J, Li J, Li Y. Diverse perspectives on proteomic posttranslational modifications to address EGFR-TKI resistance in non-small cell lung cancer. Front Cell Dev Biol 2024; 12:1436033. [PMID: 39777265 PMCID: PMC11703921 DOI: 10.3389/fcell.2024.1436033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is the main histological subtype of lung cancer. For locally advanced and advanced NSCLC, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-targeted therapy has been the first choice for NSCLC patients with EGFR mutations. TKIs, as targeted drugs, inhibit kinase activity and autophosphorylation by competitively binding to the ATP binding site of the EGFR tyrosine kinase domain, which blocks the signal transduction mediated by EGFR and thus inhibits the proliferation of tumor cells. However, drug resistance to TKIs is inevitable. EGFR is also a highly glycosylated receptor tyrosine kinase, and a wide range of crosstalk occurs between phosphorylation and glycosylation. Therefore, can the phosphorylation state be altered by glycosylation to improve drug resistance? In this review, we summarize phosphorylation, glycosylation and the crosstalk between these processes as well as the current research status and methods. We also summarize the autophosphorylation and glycosylation sites of the EGFR protein and their crosstalk. By exploring the relationship between EGFR glycosylation and autophosphorylation in targeted TKI therapy, we find that research on EGFR glycosylation is crucial for targeted NSCLC treatment and will become a research direction for identifying potential targets related to regulating TKI drug sensitivity.
Collapse
Affiliation(s)
- Yuhong Ma
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feng Zhang
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jin Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanhua Li
- Department of International Medical Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Martínez-Alarcón D, Castro-Guillén JL, Fitches E, Gatehouse JA, Przyborski S, Moreno-Celis U, Blanco-Labra A, García-Gasca T. Directed Mutagenesis for Arginine Substitution of a Phaseolus acutifolius Recombinant Lectin Disrupts Its Cytotoxic Activity. Int J Mol Sci 2024; 25:13258. [PMID: 39769023 PMCID: PMC11676905 DOI: 10.3390/ijms252413258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Recently, we reported that a recombinant Tepary bean (Phaseolus acutifolius) lectin (rTBL-1) induces apoptosis in colon cancer cell lines and that cytotoxicity was related to differential recognition of β1-6 branched N-glycans. Sequencing analysis and resolution of the rTBL-1 3D structure suggest that glycan specificity could be strongly influenced by two arginine residues, R103 and R130, located in the carbohydrate binding pocket. The aim of this work was to determine the contribution of these residues towards cytotoxic activity. Two rTBL-1 mutants were produced in Pichia pastoris, biochemically characterized, and cytotoxic effects were evaluated on human colorectal cancer cells (HT-29). Substitution of either of the arginine residues with glutamines resulted in significant reductions in cytotoxic activity, with losses of 1.5 and 3 times for R103 and R130, respectively. Docking analysis showed that the mutations decreased lectin affinity binding to some Epidermal Growth Factor Receptor (EGFR)-related N-glycans. Together, these findings confirm that both of the selected arginine residues (R103 and R130) play a key role in the recognition of tumor cell glycoconjugates by rTBL-1.
Collapse
Affiliation(s)
- Dania Martínez-Alarcón
- Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Departamento de Biotecnología y Bioquímica, Irapuato 36821, Guanajuato, Mexico; (D.M.-A.); (A.B.-L.)
| | - José Luis Castro-Guillén
- Tecnológico Nacional de México/Instituto Tecnológico Superior de Irapuato (ITESI), Km. 12.5, Carretera Irapuato-Silao, El Copal, Irapuato 36821, Guanajuato, Mexico;
| | - Elaine Fitches
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.F.); (S.P.)
| | - John A. Gatehouse
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.F.); (S.P.)
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.F.); (S.P.)
| | - Ulisses Moreno-Celis
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro 76230, Querétaro, Mexico;
| | - Alejandro Blanco-Labra
- Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Departamento de Biotecnología y Bioquímica, Irapuato 36821, Guanajuato, Mexico; (D.M.-A.); (A.B.-L.)
| | - Teresa García-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro 76230, Querétaro, Mexico;
| |
Collapse
|
6
|
Ma X, Li M, Wang X, Qi G, Wei L, Zhang D. Sialylation in the gut: From mucosal protection to disease pathogenesis. Carbohydr Polym 2024; 343:122471. [PMID: 39174097 DOI: 10.1016/j.carbpol.2024.122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 08/24/2024]
Abstract
Sialylation, a crucial post-translational modification of glycoconjugates, entails the attachment of sialic acid (SA) to the terminal glycans of glycoproteins and glycolipids through a tightly regulated enzymatic process involving various enzymes. This review offers a comprehensive exploration of sialylation within the gut, encompassing its involvement in mucosal protection and its impact on disease progression. The sialylation of mucins and epithelial glycoproteins contributes to the integrity of the intestinal mucosal barrier. Furthermore, sialylation regulates immune responses in the gut, shaping interactions among immune cells, as well as their activation and tolerance. Additionally, the gut microbiota and gut-brain axis communication are involved in the role of sialylation in intestinal health. Altered sialylation patterns have been implicated in various intestinal diseases, including inflammatory bowel disease (IBD), colorectal cancer (CRC), and other intestinal disorders. Emerging research underscores sialylation as a promising avenue for diagnostic, prognostic, and therapeutic interventions in intestinal diseases. Potential strategies such as sialic acid supplementation, inhibition of sialidases, immunotherapy targeting sialylated antigens, and modulation of sialyltransferases have been utilized in the treatment of intestinal diseases. Future research directions will focus on elucidating the molecular mechanisms underlying sialylation alterations, identifying sialylation-based biomarkers, and developing targeted interventions for precision medicine approaches.
Collapse
Affiliation(s)
- Xueni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Muyang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaochun Wang
- Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Guoqing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
7
|
Xiong J, Zhou Z, Jiang Y, Li Q, Geng Z, Guo J, Yan C, Zhang J. Hypoxic stabilization of RIPOR3 mRNA via METTL3-mediated m 6A methylation drives breast cancer progression and metastasis. Oncogene 2024; 43:3426-3441. [PMID: 39341989 DOI: 10.1038/s41388-024-03180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Dysregulated N6-methyladenosine (m6A) modification has been associated with breast cancer pathogenesis. Hypoxia which characterizes solid tumors is known to reprogram the m6A epitranscriptome, but the underlying mechanisms of how this process contributes to breast cancer progression remain poorly understood. Through integrative analyses of m6A-RIP sequencing and RNA sequencing databases, we reveal a cluster of mRNAs with upregulated m6A methylation and expression under hypoxia, that are enriched by many oncogenic pathways, including PI3K-Akt signaling. Furthermore, we identify the mRNA, RIPOR3, as a target of METTL3-mediated m6A methylation in response to hypoxia. We find that m6A methylation stabilizes RIPOR3, increasing its protein expression in a METTL3 catalytic activity-dependent manner, and consequently driving breast tumor growth and metastasis. RIPOR3 is found to be overexpressed in breast cancer cell lines and tumor tissues from breast cancer patients, in whom elevated RIPOR3 is associated with a worse prognosis. Mechanistically, we show that RIPOR3 interacts with EGFR and is essential for the PI3K-Akt pathway activation. In conclusion, we identify RIPOR3 as a hypoxia-stabilized oncogenic driver via METTL3-mediated m6A methylation, thus provide a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Jingjing Xiong
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zirui Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yulong Jiang
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Qifang Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zuhan Geng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahao Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Chaojun Yan
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China.
| | - Jing Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Stanley P. Genetics of glycosylation in mammalian development and disease. Nat Rev Genet 2024; 25:715-729. [PMID: 38724711 DOI: 10.1038/s41576-024-00725-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 09/19/2024]
Abstract
Glycosylation of proteins and lipids in mammals is essential for embryogenesis and the development of all tissues. Analyses of glycosylation mutants in cultured mammalian cells and model organisms have been key to defining glycosylation pathways and the biological functions of glycans. More recently, applications of genome sequencing have revealed the breadth of rare congenital disorders of glycosylation in humans and the influence of genetics on the synthesis of glycans relevant to infectious diseases, cancer progression and diseases of the immune system. This improved understanding of glycan synthesis and functions is paving the way for advances in the diagnosis and treatment of glycosylation-related diseases, including the development of glycoprotein therapeutics through glycosylation engineering.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Goode EA, Orozco-Moreno M, Hodgson K, Nabilah A, Murali M, Peng Z, Merx J, Rossing E, Pijnenborg JFA, Boltje TJ, Wang N, Elliott DJ, Munkley J. Sialylation Inhibition Can Partially Revert Acquired Resistance to Enzalutamide in Prostate Cancer Cells. Cancers (Basel) 2024; 16:2953. [PMID: 39272811 PMCID: PMC11393965 DOI: 10.3390/cancers16172953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer is a lethal solid malignancy and a leading cause of cancer-related deaths in males worldwide. Treatments, including radical prostatectomy, radiotherapy, and hormone therapy, are available and have improved patient survival; however, recurrence remains a huge clinical challenge. Enzalutamide is a second-generation androgen receptor antagonist that is used to treat castrate-resistant prostate cancer. Among patients who initially respond to enzalutamide, virtually all acquire secondary resistance, and an improved understanding of the mechanisms involved is urgently needed. Aberrant glycosylation, and, in particular, alterations to sialylated glycans, have been reported as mediators of therapy resistance in cancer, but a link between tumour-associated glycans and resistance to therapy in prostate cancer has not yet been investigated. Here, using cell line models, we show that prostate cancer cells with acquired resistance to enzalutamide therapy have an upregulation of the sialyltransferase ST6 beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) and increased levels of α2,6-sialylated N-glycans. Furthermore, using the sialyltransferase inhibitor P-SiaFNEtoc, we discover that acquired resistance to enzalutamide can be partially reversed by combining enzalutamide therapy with sialic acid blockade. Our findings identify a potential role for ST6GAL1-mediated aberrant sialylation in acquired resistance to enzalutamide therapy for prostate cancer and suggest that sialic acid blockade in combination with enzalutamide may represent a novel therapeutic approach in patients with advanced disease. Our study also highlights the potential to bridge the fields of cancer biology and glycobiology to develop novel combination therapies for prostate cancer.
Collapse
Affiliation(s)
- Emily Archer Goode
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Margarita Orozco-Moreno
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Kirsty Hodgson
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Amirah Nabilah
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Meera Murali
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Ziqian Peng
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Jona Merx
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Emiel Rossing
- GlycoTherapeutics B.V., 6511 AJ Nijmegen, The Netherlands
| | | | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, 6525 XZ Nijmegen, The Netherlands
- GlycoTherapeutics B.V., 6511 AJ Nijmegen, The Netherlands
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield S10 2TN, UK
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester LE2 7LX, UK
| | - David J Elliott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Jennifer Munkley
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| |
Collapse
|
10
|
Lam D, Arroyo B, Liberchuk AN, Wolfe AL. Effects of N361 Glycosylation on Epidermal Growth Factor Receptor Biological Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603279. [PMID: 39071333 PMCID: PMC11275927 DOI: 10.1101/2024.07.12.603279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase that is frequently modified by glycosylation post-translationally. In cancer, EGFR amplifications and hotspot mutations such as L858R that promote proliferation have been detected in a significant fraction of non-small cell lung carcinomas and breast adenocarcinomas. Molecular dynamic simulations suggested that glycosylation at asparagine residue 361 (N361) promotes dimerization and ligand binding. We stably expressed glycosylation-deficient mutant EGFR N361A, with or without the oncogenic mutation L858R. Immunofluorescence and flow cytometry demonstrated that the mutants were each well expressed at the cell membrane. N361A decreased proliferation relative to wild-type EGFR as well as decreased sensitivity to ligands. Proximity ligation assays measuring co-localization of EGFR with its binding partner HER2 in cells revealed that N361A mutations increased co-localization. N361A, located near the binding interface for the EGFR inhibitor necitumumab, desensitized cells expressing the oncogenic EGFR L858R to antibody-based inhibition. These findings underline the critical relevance of post-translational modifications on oncogene function.
Collapse
Affiliation(s)
- Dennis Lam
- Department of Biological Sciences, Hunter College of the City University of New York
- Department of Pharmacology, Weill Cornell Medicine
| | - Brandon Arroyo
- Department of Biological Sciences, Hunter College of the City University of New York
- Maximizing Access to Research Careers Program, Hunter College of the City University of New York
| | - Ariel N. Liberchuk
- Department of Biological Sciences, Hunter College of the City University of New York
- Macaulay Honors College, Hunter College of the City University of New York
| | - Andrew L. Wolfe
- Department of Biological Sciences, Hunter College of the City University of New York
- Department of Pharmacology, Weill Cornell Medicine
- Biochemistry Ph.D. Program, Graduate Center of the City University of New York
- Molecular, Cellular, and Developmental Biology Ph.D. Subprogram, Graduate Center of the City University of New York
| |
Collapse
|
11
|
Liu Y, Jang H, Nussinov R. SHP2-EGFR States in Dephosphorylation Can Inform Selective SHP2 Inhibitors, Dampening RasGAP Action. J Phys Chem B 2024; 128:5175-5187. [PMID: 38747619 DOI: 10.1021/acs.jpcb.4c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
SHP2 is a positive regulator of the EGFR-dependent Ras/MAPK pathway. It dephosphorylates a regulatory phosphorylation site in EGFR that serves as the binding site to RasGAP (RASA1 or p120RasGAP). RASA1 is activated by binding to the EGFR phosphate group. Active RASA1 deactivates Ras by hydrolyzing Ras-bound GTP to GDP. Thus, SHP2 dephosphorylation of EGFR effectively prevents RASA1-mediated deactivation of Ras, thereby stimulating proliferation. Despite knowledge of this vital regulation in cell life, mechanistic in-depth structural understanding of the involvement of SHP2, EGFR, and RASA1 in the Ras/MAPK pathway has largely remained elusive. Here we elucidate the interactions, the factors influencing EGFR's recruitment of RASA1, and SHP2's recognition of the substrate site in EGFR. We reveal that RASA1 specifically interacts with the DEpY992LIP motif in EGFR featuring a proline residue at the +3 position C-terminal to pY primarily through its nSH2 domain. This interaction is strengthened by the robust attraction of two acidic residues, E991 and D990, of EGFR to two basic residues in the BC-loop near the pY-binding pocket of RASA1's nSH2. In the stable precatalytic state of SHP2 with EGFR (DADEpY992LIPQ), the E-loop of SHP2's active site favors the interaction with the (-2)-position D990 and (-4)-position D988 N-terminal to pY992 in EGFR, while the pY-loop constrains the (+4)-position Q996 C-terminal to pY992. These specific interactions not only provide a structural basis for identifying negative regulatory sites in other RTKs but can inform selective, high-affinity active-site SHP2 inhibitors tailored for SHP2 mutants.
Collapse
Affiliation(s)
- Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
12
|
Izadi S, Gumpelmair S, Coelho P, Duarte HO, Gomes J, Leitner J, Kunnummel V, Mach L, Reis CA, Steinberger P, Castilho A. Plant-derived Durvalumab variants show efficient PD-1/PD-L1 blockade and therapeutically favourable FcR binding. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1224-1237. [PMID: 38050338 PMCID: PMC11022803 DOI: 10.1111/pbi.14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023]
Abstract
Immune checkpoint blocking therapy targeting the PD-1/PD-L1 inhibitory signalling pathway has produced encouraging results in the treatment of a variety of cancers. Durvalumab (Imfinzi®) targeting PD-L1 is currently used for immunotherapy of several tumour malignancies. The Fc region of this IgG1 antibody has been engineered to reduce FcγR interactions with the aim of enhancing blockade of PD-1/PD-L1 interactions without the depletion of PD-L1-expressing immune cells. Here, we used Nicotiana benthamiana to produce four variants of Durvalumab (DL): wild-type IgG1 and its 'Fc-effector-silent' variant (LALAPG) carrying further modifications to increase antibody half-life (YTE); IgG4S228P and its variant (PVA) with Fc mutations to decrease binding to FcγRI. In addition, DL variants were produced with two distinct glycosylation profiles: afucosylated and decorated with α1,6-core fucose. Plant-derived DL variants were compared to the therapeutic antibody regarding their ability to (i) bind to PD-L1, (ii) block PD-1/PD-L1 inhibitory signalling and (iii) engage with the neonatal Fc receptor (FcRn) and various Fcγ receptors. It was found that plant-derived DL variants bind to recombinant PD-L1 and to PD-L1 expressed in gastrointestinal cancer cells and are able to effectively block its interaction with PD-1 on T cells, thereby enhancing their activation. Furthermore, we show a positive impact of Fc amino acid mutations and core fucosylation on DL's therapeutic potential. Compared to Imfinzi®, DL-IgG1 (LALAPG) and DL-IgG4 (PVA)S228P show lower affinity to CD32B inhibitory receptor which can be therapeutically favourable. Importantly, DL-IgG1 (LALAPG) also shows enhanced binding to FcRn, a key determinant of serum half-life of IgGs.
Collapse
Affiliation(s)
- Shiva Izadi
- Department of Applied Genetics and Cell BiologyInstitute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life SciencesViennaAustria
| | - Simon Gumpelmair
- Division of Immune Receptors and T Cell ActivationInstitute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
| | - Pedro Coelho
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do PortoPortoPortugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
| | - Henrique O. Duarte
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do PortoPortoPortugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
| | - Joana Gomes
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do PortoPortoPortugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
| | - Judith Leitner
- Division of Immune Receptors and T Cell ActivationInstitute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
| | - Vinny Kunnummel
- Department of Applied Genetics and Cell BiologyInstitute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life SciencesViennaAustria
| | - Lukas Mach
- Department of Applied Genetics and Cell BiologyInstitute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life SciencesViennaAustria
| | - Celso A. Reis
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do PortoPortoPortugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do PortoPortoPortugal
- Faculty of Medicine (FMUP)University of PortoPortoPortugal
| | - Peter Steinberger
- Division of Immune Receptors and T Cell ActivationInstitute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
| | - Alexandra Castilho
- Department of Applied Genetics and Cell BiologyInstitute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
13
|
Alvarez MRS, Moreno PG, Grijaldo-Alvarez SJB, Yadlapati A, Zhou Q, Narciso MP, Completo GC, Nacario RC, Rabajante JF, Heralde FM, Lebrilla CB. The effects of immortalization on the N-glycome and proteome of CDK4-transformed lung cancer cells. Glycobiology 2024; 34:cwae030. [PMID: 38579012 PMCID: PMC11041852 DOI: 10.1093/glycob/cwae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
Biological experiments are often conducted in vitro using immortalized cells due to their accessibility and ease of propagation compared to primary cells and live animals. However, immortalized cells may present different proteomic and glycoproteomic characteristics from the primary cell source due to the introduction of genes that enhance proliferation (e.g. CDK4) or enable telomere lengthening. To demonstrate the changes in phenotype upon CDK4-transformation, we performed LC-MS/MS glycomic and proteomic characterizations of a human lung cancer primary cell line (DTW75) and a CDK4-transformed cell line (GL01) derived from DTW75. We observed that the primary and CDK4-transformed cells expressed significantly different levels of sialylated, fucosylated, and sialofucosylated N-glycans. Specifically, the primary cells expressed higher levels of hybrid- and complex-type sialylated N-glycans, while CDK4-transformed cells expressed higher levels of complex-type fucosylated and sialofucosylated N-glycans. Further, we compared the proteomic differences between the cell lines and found that CDK4-transformed cells expressed higher levels of RNA-binding and adhesion proteins. Further, we observed that the CDK4-transformed cells changed N-glycosylation after 31 days in cell culture, with a decrease in high-mannose and increase in fucosylated, sialylated, and sialofucosylated N-glycans. Identifying these changes between primary and CDK4-transformed cells will provide useful insight when adapting cell lines that more closely resemble in vivo physiological conditions.
Collapse
Affiliation(s)
- Michael Russelle S Alvarez
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
| | - Patrick Gabriel Moreno
- Molecular Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City, 1100, Philippines
| | - Sheryl Joyce B Grijaldo-Alvarez
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Philippines
| | - Anirudh Yadlapati
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
| | - Qingwen Zhou
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
| | - Michelle P Narciso
- Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Philippines
| | - Gladys Cherisse Completo
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Philippines
| | - Ruel C Nacario
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Philippines
| | - Jomar F Rabajante
- Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Philippines
| | - Francisco M Heralde
- Molecular Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City, 1100, Philippines
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, 1000, Philippines
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
- Department of Chemistry, Biochemistry, Molecular, Cellular and Developmental Biology Group, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
14
|
Jastrząb P, Narejko K, Car H, Wielgat P. Cell Membrane Sialome: Sialic Acids as Therapeutic Targets and Regulators of Drug Resistance in Human Cancer Management. Cancers (Basel) 2023; 15:5103. [PMID: 37894470 PMCID: PMC10604966 DOI: 10.3390/cancers15205103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
A cellular sialome is a physiologically active and dynamically changing component of the cell membrane. Sialylation plays a crucial role in tumor progression, and alterations in cellular sialylation patterns have been described as modulators of chemotherapy effectiveness. However, the precise mechanisms through which altered sialylation contributes to drug resistance in cancer are not yet fully understood. This review focuses on the intricate interplay between sialylation and cancer treatment. It presents the role of sialic acids in modulating cell-cell interactions, the extracellular matrix (ECM), and the immunosuppressive processes within the context of cancer. The issue of drug resistance is also discussed, and the mechanisms that involve transporters, the tumor microenvironment, and metabolism are analyzed. The review explores drugs and therapeutic approaches that may induce modifications in sialylation processes with a primary focus on their impact on sialyltransferases or sialidases. Despite advancements in cellular glycobiology and glycoengineering, an interdisciplinary effort is required to decipher and comprehend the biological characteristics and consequences of altered sialylation. Additionally, understanding the modulatory role of sialoglycans in drug sensitivity is crucial to applying this knowledge in clinical practice for the benefit of cancer patients.
Collapse
Affiliation(s)
- Patrycja Jastrząb
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| | - Karolina Narejko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| |
Collapse
|
15
|
Girych M, Kulig W, Enkavi G, Vattulainen I. How Neuromembrane Lipids Modulate Membrane Proteins: Insights from G-Protein-Coupled Receptors (GPCRs) and Receptor Tyrosine Kinases (RTKs). Cold Spring Harb Perspect Biol 2023; 15:a041419. [PMID: 37487628 PMCID: PMC10547395 DOI: 10.1101/cshperspect.a041419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Lipids play a diverse and critical role in cellular processes in all tissues. The unique lipid composition of nerve membranes is particularly interesting because it contains, among other things, polyunsaturated lipids, such as docosahexaenoic acid, which the body only gets through the diet. The crucial role of lipids in neurological processes, especially in receptor-mediated cell signaling, is emphasized by the fact that in many neuropathological diseases there are significant deviations in the lipid composition of nerve membranes compared to healthy individuals. The lipid composition of neuromembranes can significantly affect the function of receptors by regulating the physical properties of the membrane or by affecting specific interactions between receptors and lipids. In addition, it is worth noting that the ligand-binding pocket of many receptors is located inside the cell membrane, due to which lipids can even modulate the binding of ligands to their receptors. These mechanisms highlight the importance of lipids in the regulation of membrane receptor activation and function. In this article, we focus on two major protein families: G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) and discuss how lipids affect their function in neuronal membranes, elucidating the basic mechanisms underlying neuronal function and dysfunction.
Collapse
Affiliation(s)
- Mykhailo Girych
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Giray Enkavi
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
16
|
Ankenbauer KE, Rao TC, Mattheyses AL, Bellis SL. Sialylation of EGFR by ST6GAL1 induces receptor activation and modulates trafficking dynamics. J Biol Chem 2023; 299:105217. [PMID: 37660914 PMCID: PMC10520885 DOI: 10.1016/j.jbc.2023.105217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/06/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Aberrant glycosylation is a hallmark of a cancer cell. One prevalent alteration is an enrichment in α2,6-linked sialylation of N-glycosylated proteins, a modification directed by the ST6GAL1 sialyltransferase. ST6GAL1 is upregulated in many malignancies including ovarian cancer. Prior studies have shown that the addition of α2,6 sialic acid to the epidermal growth factor receptor (EGFR) activates this receptor, although the mechanism was largely unknown. To investigate the role of ST6GAL1 in EGFR activation, ST6GAL1 was overexpressed in the OV4 ovarian cancer line, which lacks endogenous ST6GAL1, or knocked-down in the OVCAR-3 and OVCAR-5 ovarian cancer lines, which have robust ST6GAL1 expression. Cells with high expression of ST6GAL1 displayed increased activation of EGFR and its downstream signaling targets, AKT and NFκB. Using biochemical and microscopy approaches, including total internal reflection fluorescence microscopy, we determined that the α2,6 sialylation of EGFR promoted its dimerization and higher order oligomerization. Additionally, ST6GAL1 activity was found to modulate EGFR trafficking dynamics following EGF-induced receptor activation. Specifically, EGFR sialylation enhanced receptor recycling to the cell surface following activation while simultaneously inhibiting lysosomal degradation. 3D widefield deconvolution microscopy confirmed that in cells with high ST6GAL1 expression, EGFR exhibited greater colocalization with Rab11 recycling endosomes and reduced colocalization with LAMP1-positive lysosomes. Collectively, our findings highlight a novel mechanism by which α2,6 sialylation promotes EGFR signaling by facilitating receptor oligomerization and recycling.
Collapse
Affiliation(s)
- Katherine E Ankenbauer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tejeshwar C Rao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
17
|
Wu PS, Lin MH, Hsiao JC, Lin PY, Pan SH, Chen YJ. EGFR-T790M Mutation-Derived Interactome Rerouted EGFR Translocation Contributing to Gefitinib Resistance in Non-Small Cell Lung Cancer. Mol Cell Proteomics 2023; 22:100624. [PMID: 37495186 PMCID: PMC10545940 DOI: 10.1016/j.mcpro.2023.100624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/20/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Secondary mutation, T790M, conferring tyrosine kinase inhibitors (TKIs) resistance beyond oncogenic epidermal growth factor receptor (EGFR) mutations presents a challenging unmet need. Although TKI-resistant mechanisms are intensively investigated, the underlying responses of cancer cells adapting drug perturbation are largely unknown. To illuminate the molecular basis linking acquired mutation to TKI resistance, affinity purification coupled mass spectrometry was adopted to dissect EGFR interactome in TKI-sensitive and TKI-resistant non-small cell lung cancer cells. The analysis revealed TKI-resistant EGFR-mutant interactome allocated in diverse subcellular distribution and enriched in endocytic trafficking, in which gefitinib intervention activated autophagy-mediated EGFR degradation and thus autophagy inhibition elevated gefitinib susceptibility. Alternatively, gefitinib prompted TKI-sensitive EGFR translocating toward cell periphery through Rab7 ubiquitination which may favor efficacy to TKIs suppression. This study revealed that T790M mutation rewired EGFR interactome that guided EGFR to autophagy-mediated degradation to escape treatment, suggesting that combination therapy with TKI and autophagy inhibitor may overcome acquired resistance in non-small cell lung cancer.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan; Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Miao-Hsia Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Pei-Yi Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Szu-Hua Pan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan; Doctoral Degree Program of Translational Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yu-Ju Chen
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan; Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
18
|
Anim MT, Tuffour I, Willis R, Schell M, Ostlund T, Mahnashi MH, Halaweish F, Willand-Charnley R. Deacetylated Sialic Acid Sensitizes Lung and Colon Cancers to Novel Cucurbitacin-Inspired Estrone Epidermal Growth Factor Receptor (EGFR) Inhibitor Analogs. Molecules 2023; 28:6257. [PMID: 37687086 PMCID: PMC10488366 DOI: 10.3390/molecules28176257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Cancers utilize sugar residues such as sialic acids (Sia) to improve their ability to survive. Sia presents a variety of functional group alterations, including O-acetylation on the C6 hydroxylated tail. Previously, sialylation has been reported to suppress EGFR activation and increase cancer cell sensitivity to Tyrosine Kinase Inhibitors (TKIs). In this study, we report on the effect of deacetylated Sia on the activity of three novel EGFR-targeting Cucurbitacin-inspired estrone analogs (CIEAs), MMA 294, MMA 321, and MMA 320, in lung and colon cancer cells. Acetylation was modulated by the removal of Sialate O-Acetyltransferase, also known as CAS1 Domain-containing protein (CASD1) gene via CRISPR-Cas9 gene editing. Using a variety of cell-based approaches including MTT cell viability assay, flow cytometry, immunofluorescence assay and in-cell ELISA we observed that deacetylated Sia-expressing knockout cells (1.24-6.49 μM) were highly sensitive to all CIEAs compared with the control cells (8.82-20.97 μM). Apoptosis and varied stage cell cycle arrest (G0/G1 and G2/M) were elucidated as mechanistic modes of action of the CIEAs. Further studies implicated overexpression of CIEAs' cognate protein target, phosphorylated EGFR, in the chemosensitivity of the deacetylated Sia-expressing knockout cells. This observation correlated with significantly decreased levels of key downstream proteins (phosphorylated ERK and mTOR) of the EGFR pathway in knockout cells compared with controls when treated with CIEAs. Collectively, our findings indicate that Sia deacetylation renders lung and colon cancer cells susceptible to EGFR therapeutics and provide insights for future therapeutic interventions.
Collapse
Affiliation(s)
- Mathias T. Anim
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; (M.T.A.); (I.T.); (R.W.); (M.S.); (T.O.); (F.H.)
| | - Isaac Tuffour
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; (M.T.A.); (I.T.); (R.W.); (M.S.); (T.O.); (F.H.)
| | - Rylan Willis
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; (M.T.A.); (I.T.); (R.W.); (M.S.); (T.O.); (F.H.)
| | - Matthew Schell
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; (M.T.A.); (I.T.); (R.W.); (M.S.); (T.O.); (F.H.)
| | - Trevor Ostlund
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; (M.T.A.); (I.T.); (R.W.); (M.S.); (T.O.); (F.H.)
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, Najran University, Najran P.O. Box 1988, Saudi Arabia;
| | - Fathi Halaweish
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; (M.T.A.); (I.T.); (R.W.); (M.S.); (T.O.); (F.H.)
| | - Rachel Willand-Charnley
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; (M.T.A.); (I.T.); (R.W.); (M.S.); (T.O.); (F.H.)
| |
Collapse
|
19
|
Ankenbauer KE, Rao TC, Mattheyses AL, Bellis SL. Sialylation of EGFR by ST6GAL1 induces receptor activation and modulates trafficking dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.03.543566. [PMID: 37398202 PMCID: PMC10312608 DOI: 10.1101/2023.06.03.543566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Aberrant glycosylation is a hallmark of a cancer cell. One prevalent alteration is an enrichment in α2,6-linked sialylation of N-glycosylated proteins, a modification directed by the ST6GAL1 sialyltransferase. ST6GAL1 is upregulated in many malignancies including ovarian cancer. Prior studies have shown that the addition of α2,6 sialic acid to the Epidermal Growth Factor Receptor (EGFR) activates this receptor, although the mechanism was largely unknown. To investigate the role of ST6GAL1 in EGFR activation, ST6GAL1 was overexpressed in the OV4 ovarian cancer line, which lacks endogenous ST6GAL1, or knocked down in the OVCAR-3 and OVCAR-5 ovarian cancer lines, which have robust ST6GAL1 expression. Cells with high expression of ST6GAL1 displayed increased activation of EGFR and its downstream signaling targets, AKT and NFκB. Using biochemical and microscopy approaches, including Total Internal Reflection Fluorescence (TIRF) microscopy, we determined that the α2,6 sialylation of EGFR promoted its dimerization and higher order oligomerization. Additionally, ST6GAL1 activity was found to modulate EGFR trafficking dynamics following EGF-induced receptor activation. Specifically, EGFR sialylation enhanced receptor recycling to the cell surface following activation while simultaneously inhibiting lysosomal degradation. 3D widefield deconvolution microscopy confirmed that in cells with high ST6GAL1 expression, EGFR exhibited greater co-localization with Rab11 recycling endosomes and reduced co-localization with LAMP1-positive lysosomes. Collectively, our findings highlight a novel mechanism by which α2,6 sialylation promotes EGFR signaling by facilitating receptor oligomerization and recycling.
Collapse
Affiliation(s)
- Katherine E. Ankenbauer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Tejeshwar C. Rao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Alexa L. Mattheyses
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Susan L. Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
20
|
Stanczak MA, Läubli H. Siglec receptors as new immune checkpoints in cancer. Mol Aspects Med 2023; 90:101112. [PMID: 35948467 DOI: 10.1016/j.mam.2022.101112] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023]
Abstract
Cancer immunotherapy in the form of immune checkpoint inhibitors and cellular therapies has improved the treatment and prognosis of many patients. Nevertheless, most cancers are still resistant to currently approved cancer immunotherapies. New approaches and rational combinations are needed to overcome these resistances. There is emerging evidence that Siglec receptors could be regarded as new immune checkpoints and targets for cancer immunotherapy. In this review, we summarize the experimental evidence supporting Siglec receptors as new immune checkpoints in cancer and discuss their mechanisms of action, as well as current efforts to target Siglec receptors and their interactions with sialoglycan Siglec-ligands.
Collapse
Affiliation(s)
- Michal A Stanczak
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, 21287, USA
| | - Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University of Basel, Division of Oncology, University Hospital Basel, Switzerland.
| |
Collapse
|
21
|
The Role of Proteomics and Phosphoproteomics in the Discovery of Therapeutic Targets and Biomarkers in Acquired EGFR-TKI-Resistant Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:ijms24054827. [PMID: 36902280 PMCID: PMC10003401 DOI: 10.3390/ijms24054827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
The discovery of potent EGFR-tyrosine kinase inhibitors (EGFR-TKIs) has revolutionized the treatment of EGFR-mutated lung cancer. Despite the fact that EGFR-TKIs have yielded several significant benefits for lung cancer patients, the emergence of resistance to EGFR-TKIs has been a substantial impediment to improving treatment outcomes. Understanding the molecular mechanisms underlying resistance is crucial for the development of new treatments and biomarkers for disease progression. Together with the advancement in proteome and phosphoproteome analysis, a diverse set of key signaling pathways have been successfully identified that provide insight for the discovery of possible therapeutically targeted proteins. In this review, we highlight the proteome and phosphoproteomic analyses of non-small cell lung cancer (NSCLC) as well as the proteome analysis of biofluid specimens that associate with acquired resistance in response to different generations of EGFR-TKI. Furthermore, we present an overview of the targeted proteins and potential drugs that have been tested in clinical studies and discuss the challenges of implementing this discovery in future NSCLC treatment.
Collapse
|
22
|
Chang X, Obianwuna UE, Wang J, Zhang H, Qi G, Qiu K, Wu S. Glycosylated proteins with abnormal glycosylation changes are potential biomarkers for early diagnosis of breast cancer. Int J Biol Macromol 2023; 236:123855. [PMID: 36868337 DOI: 10.1016/j.ijbiomac.2023.123855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Conventional cancer management relies on tumor type and stage for diagnosis and treatment, which leads to recurrence and metastasis and death in young women. Early detection of proteins in the serum aids diagnosis, progression, and clinical outcomes, possibly improving survival rate of breast cancer patients. In this review, we provided an insight into the influence of aberrant glycosylation on breast cancer development and progression. Examined literatures revealed that mechanisms underlying glycosylation moieties alteration could enhance early detection, monitoring, and therapeutic efficacy in breast cancer patients. This would serve as a guide for the development of new serum biomarkers with higher sensitivity and specificity, providing possible serological biomarkers for breast cancer diagnosis, progression, and treatment.
Collapse
Affiliation(s)
- Xinyu Chang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
23
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
24
|
Shang D, Chen C, Dong X, Cui Y, Qiao Z, Li X, Liang X. Simultaneous enrichment and sequential separation of glycopeptides and phosphopeptides with poly-histidine functionalized microspheres. Front Bioeng Biotechnol 2022; 10:1011851. [PMID: 36277408 PMCID: PMC9582455 DOI: 10.3389/fbioe.2022.1011851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Protein phosphorylation and glycosylation coordinately regulate numerous complex biological processes. However, the main methods to simultaneously enrich them are based on the coordination interactions or Lewis acid-base interactions, which suffer from low coverage of target molecules due to strong intermolecular interactions. Here, we constructed a poly-histidine modified silica (SiO2@Poly-His) microspheres-based method for the simultaneous enrichment, sequential elution and analysis of phosphopeptides and glycopeptides. The SiO2@Poly-His microspheres driven by hydrophilic interactions and multiple hydrogen bonding interactions exhibited high selectivity and coverage for simultaneous enrichment of phosphopeptides and glycopeptides from 1,000 molar folds of bovine serum albumin interference. Furthermore, “on-line deglycosylation” strategy allows sequential elution of phosphopeptides and glycopeptides, protecting phosphopeptides from hydrolysis during deglycosylation and improving the coverage of phosphopeptides. The application of our established method to HT29 cell lysates resulted in a total of 1,601 identified glycopeptides and 694 identified phosphopeptides, which were 1.2-fold and 1.5-fold higher than those obtained from the co-elution strategy, respectively. The SiO2@Poly-His based simultaneous enrichment and sequential separation strategy might have great potential in co-analysis of PTMs-proteomics of biological and clinic samples.
Collapse
Affiliation(s)
- Danyi Shang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuefang Dong
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
| | - Yun Cui
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Zichun Qiao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiuling Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
- *Correspondence: Xiuling Li, ; Xinmiao Liang,
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
- *Correspondence: Xiuling Li, ; Xinmiao Liang,
| |
Collapse
|
25
|
Aberrant Sialylation in Cancer: Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14174248. [PMID: 36077781 PMCID: PMC9454432 DOI: 10.3390/cancers14174248] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The surface of every eukaryotic cell is coated in a thick layer of glycans that acts as a key interface with the extracellular environment. Cancer cells have a different ‘glycan coat’ to healthy cells and aberrant glycosylation is a universal feature of cancer cells linked to all of the cancer hallmarks. This means glycans hold huge potential for the development of new diagnostic and therapeutic strategies. One key change in tumour glycosylation is increased sialylation, both on N-glycans and O-glycans, which leads to a dense forest of sialylated structures covering the cell surface. This hypersialylation has far-reaching consequences for cancer cells, and sialylated glycans are fundamental in tumour growth, metastasis, immune evasion and drug resistance. The development of strategies to inhibit aberrant sialylation in cancer represents an important opportunity to develop new therapeutics. Here, I summarise recent advances to target aberrant sialylation in cancer, including the development of sialyltransferase inhibitors and strategies to inhibit Siglecs and Selectins, and discuss opportunities for the future.
Collapse
|
26
|
Li J, Long Y, Sun J, Wu J, He X, Wang S, Wang X, Miao X, Huang R, Yan J. Comprehensive landscape of the ST3GAL family reveals the significance of ST3GAL6-AS1/ST3GAL6 axis on EGFR signaling in lung adenocarcinoma cell invasion. Front Cell Dev Biol 2022; 10:931132. [PMID: 36092699 PMCID: PMC9462654 DOI: 10.3389/fcell.2022.931132] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022] Open
Abstract
Sialylation aberration has been implicated in lung cancer development by altering signaling pathways. Hence, it is urgent to identify key sialyltransferases in the development of lung adenocarcinoma (LUAD), which is a common malignant subtype of non-small cell lung cancer. Herein, by systematically investigating the expression levels of ST3GAL family members in several public databases, we consistently found the frequent downregulation of ST3GAL6 in LUAD samples. Its downregulation is significantly negatively associated with stage, and significantly reduced in proximal-proliferative molecular subtype and predicts poor clinical outcomes. By protein–protein interaction network analysis and validation, we found that ST3GAL6 deficiency promotes LUAD cell invasiveness with the activated EGFR/MAPK signaling, accompanied by the elevated expression levels of matrix metalloproteinases 2 and 9, which can be partially reversed by EGFR inhibitor, gefitinib. Additionally, the ST3GAL6 level was positively regulated by ST3GAL6-AS1, an antisense long non-coding RNA to its host gene. The downregulation of ST3GAL6-AS1 also heralds a worse prognosis in LUAD patients and promotes LUAD cell invasiveness, recapitulating the function of its host gene, ST3GAL6. Altogether, ST3GAL6-AS1-regulated ST3GAL6 is a frequently downregulated sialyltransferase in LUAD patients and negatively regulates EGFR signaling, which can serve as a promising independent prognostic marker in LUAD patients.
Collapse
Affiliation(s)
- Jiaxuan Li
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Long
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingya Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiajun Wu
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Xiao He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Simei Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiongbiao Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiayi Miao
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiayi Miao, ; Ruimin Huang, ; Jun Yan,
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Xiayi Miao, ; Ruimin Huang, ; Jun Yan,
| | - Jun Yan
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
- *Correspondence: Xiayi Miao, ; Ruimin Huang, ; Jun Yan,
| |
Collapse
|
27
|
Leong SK, Hsiao JC, Shie JJ. A Multiscale Molecular Dynamic Analysis Reveals the Effect of Sialylation on EGFR Clustering in a CRISPR/Cas9-Derived Model. Int J Mol Sci 2022; 23:ijms23158754. [PMID: 35955894 PMCID: PMC9368999 DOI: 10.3390/ijms23158754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial and viral pathogens can modulate the glycosylation of key host proteins to facilitate pathogenesis by using various glycosidases, particularly sialidases. Epidermal growth factor receptor (EGFR) signaling is activated by ligand-induced receptor dimerization and oligomerization. Ligand binding induces conformational changes in EGFR, leading to clusters and aggregation. However, information on the relevance of EGFR clustering in the pattern of glycosylation during bacterial and viral invasion remains unclear. In this study, (1) we established CRISPR/Cas9-mediated GFP knock-in (EGFP-KI) HeLa cells expressing fluorescently tagged EGFR at close to endogenous levels to study EGF-induced EGFR clustering and molecular dynamics; (2) We studied the effect of sialylation on EGF-induced EGFR clustering and localization in live cells using a high content analysis platform and raster image correlation spectroscopy (RICS) coupled with a number and brightness (N&B) analysis; (3) Our data reveal that the removal of cell surface sialic acids by sialidase treatment significantly decreases EGF receptor clustering with reduced fluorescence intensity, number, and area of EGFR-GFP clusters per cell upon EGF stimulation. Sialylation appears to mediate EGF-induced EGFR clustering as demonstrated by the change of EGFR-GFP clusters in the diffusion coefficient and molecular brightness, providing new insights into the role of sialylation in EGF-induced EGFR activation; and (4) We envision that the combination of CRISPR/Cas9-mediated fluorescent tagging of endogenous proteins and fluorescence imaging techniques can be the method of choice for studying the molecular dynamics and interactions of proteins in live cells.
Collapse
Affiliation(s)
- Shwee Khuan Leong
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Taiwan International Graduate Program (TIGP), Sustainable Chemical Science & Technology (SCST), Academia Sinica, Taipei 11529, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu 30050, Taiwan
| | - Jye-Chian Hsiao
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Correspondence:
| |
Collapse
|
28
|
Moshe Halamish H, Zlotver I, Sosnik A. Polymeric nanoparticles surface-complexed with boric acid actively target solid tumors overexpressing sialic acid. J Colloid Interface Sci 2022; 626:916-929. [PMID: 35835042 DOI: 10.1016/j.jcis.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
Sialic acid is a fundamental component of the tumor microenvironment, modulates cell-cell and cell-extracellular matrix interactions and is associated with bad prognosis and clinical outcomes in different cancers. Capitalizing on the ability of boric acid to form cyclic esters with diols, in this work, we design self-assembled multi-micellar colloidal systems of an amphiphilic poly(vinyl alcohol)-g-poly(methyl methacrylate) copolymer surface-modified with boric acid for the active targeting of solid tumors that overexpress sialic acid. Nanoparticles display sizes in the 100-200 nm range and a spherical morphology, as determined by dynamic light scattering and high resolution-scanning electron microscopy, respectively. The uptake and anti-proliferative activity are assessed in 2D and 3D models of rhabdomyosarcoma in vitro. Surface boration increases the nanoparticle permeability and uptake, especially in rhabdomyosarcoma spheroids that overexpress sialic acid to a greater extent than 2D cultures. The biodistribution of non-borated and borated nanoparticles upon intravenous injection to a subcutaneous rhabdomyosarcoma murine xenograft model confirm a statistically significant increase in the intertumoral accumulation of the modified nanocarriers with respect to the unmodified counterparts and a sharp decrease in major clearance organs such as the liver. Overall, our results highlight the promise of these borated nanomaterials to actively target hypersialylated solid tumors.
Collapse
Affiliation(s)
- Hen Moshe Halamish
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City 3200003 Haifa, Israel
| | - Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City 3200003 Haifa, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City 3200003 Haifa, Israel.
| |
Collapse
|
29
|
Specific Cerebrospinal Fluid SerpinA1 Isoform Pattern in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23136922. [PMID: 35805926 PMCID: PMC9266332 DOI: 10.3390/ijms23136922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
SerpinA1 (α1-antitrypsin) is a soluble glycoprotein, the cerebrospinal fluid (CSF) isoforms of which showed disease-specific changes in neurodegenerative disorders that are still unexplored in Alz-heimer’s disease (AD). By means of capillary isoelectric focusing immunoassay, we investigated six serpinA1 isoforms in CSF samples of controls (n = 29), AD-MCI (n = 29), AD-dem (n = 26) and Lewy body disease (LBD, n = 59) patients and correlated the findings with CSF AD core biomarkers (Aβ42/40 ratio, p-tau, t-tau). Four CSF serpinA1 isoforms were differently expressed in AD patients compared to controls and LBD patients, especially isoforms 2 and 4. AD-specific changes were found since the MCI stage and significantly correlated with decreased Aβ42/40 (p < 0.05) and in-creased p-tau and t-tau levels in CSF (p < 0.001). Analysis of serpinA1 isoform provided good di-agnostic accuracy in discriminating AD patients versus controls (AUC = 0.80) and versus LBD patients (AUC = 0.92), with best results in patients in the dementia stage (AUC = 0.97). SerpinA1 isoform expression is altered in AD patients, suggesting a common, albeit disease-specific, in-volvement of serpinA1 in most neurodegenerative disorders.
Collapse
|
30
|
Liu Y, Lan L, Li Y, Lu J, He L, Deng Y, Fei M, Lu JW, Shangguan F, Lu JP, Wang J, Wu L, Huang K, Lu B. N-glycosylation stabilizes MerTK and promotes hepatocellular carcinoma tumor growth. Redox Biol 2022; 54:102366. [PMID: 35728303 PMCID: PMC9214875 DOI: 10.1016/j.redox.2022.102366] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Despite the evidences of elevated expression of Mer tyrosine kinase (MerTK) in multiple human cancers, mechanisms underlying the oncogenic roles of MerTK in hepatocellular carcinoma (HCC) remains undefined. We explored the functional effects of MerTK and N-Glycosylated MerTK on HCC cell survival and tumor growth. Here, we show that MerTK ablation increases reactive oxygen species (ROS) production and promotes the switching from glycolytic metabolism to oxidative phosphorylation in HCC cells, thus suppressing HCC cell proliferation and tumor growth. MerTK is N-glycosylated in HCC cells at asparagine 294 and 454 that stabilizes MerTK to promote oncogenic transformation. Moreover, we observed that nuclear located non-glycosylated MerTK is indispensable for survival of HCC cells under stress. Pathologically, tissue microarray (TMA) data indicate that MerTK is a pivotal prognostic factor for HCC. Our data strongly support the roles of MerTK N-glycosylation in HCC tumorigenesis and suggesting N-glycosylation inhibition as a potential HCC therapeutic strategy. MerTK promotes the switching from oxidative phosphorylation to glycolytic metabolism in HCC cells. MerTK is N-glycosylated in HCC cells at asparagine 294 and 454 that stabilizes MerTK to promote HCC tumor growth. The nuclear located non-glycosylated MerTK is indispensable for survival of HCC cells under stress. MerTK is a pivotal prognostic factor for HCC and its N-glycosylation inhibition is a potential HCC therapeutic strategy.
Collapse
Affiliation(s)
- Yongzhang Liu
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Linhua Lan
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yujie Li
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jing Lu
- Department of Laboratory Medicine, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434000, China
| | - Lipeng He
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yao Deng
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Mingming Fei
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jun-Wan Lu
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fugen Shangguan
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ju-Ping Lu
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiaxin Wang
- Protein Quality Control and Diseases Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Liang Wu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Kate Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Bin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
31
|
Sialic acids: An Avenue to Target Cancer Progression, Metastasis, and Resistance to Therapy. FORUM OF CLINICAL ONCOLOGY 2022. [DOI: 10.2478/fco-2021-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract
Background
Sialic acids are alpha-keto acids with nine carbons that are commonly present in the terminal sugars of glycans on glycoproteins and glycolipids on the cell surface. Sialic acids have a role in a variety of physiological and pathological processes by interacting with carbohydrates and proteins, communicating between cells, and acting as cell surface receptors for viruses and bacteria. Several studies have shown the aberrant pattern of sialic acids on cancer cells due to change in their glycosylation status. This pattern may be attributed to various physiological and pathological changes occurring in tumour cells. Hypersialylation in tumours, its involvement in tumour growth, immune evasion and escape from the apoptotic pathway, metastasis formation, and therapeutic resistance have all been fairly well investigated.
Methods
A PubMed search was conducted and published articles in different studies from 2000 to 2020 were included and reviewed. Here, we discuss current outcomes that emphasize the unfavourable effects of hypersialylation on multiple aspects of tumour genesis, immune evasion, metastasis and resistance to therapy.
Conclusion
These recent investigations have found that aberrant sialylation is an essential process for tumour cells to evade immune surveillance and maintain their malignancy. Together, these noteworthy views provide a solid platform for designing and developing therapeutic approaches that target hypersialylation of cancer cells.
Collapse
|
32
|
Insights on ErbB glycosylation – contributions to precision oncology. Trends Cancer 2022; 8:448-455. [DOI: 10.1016/j.trecan.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
|
33
|
Role of glycosyltransferases in carcinogenesis; growth factor signaling and EMT/MET programs. Glycoconj J 2022; 39:167-176. [PMID: 35089466 PMCID: PMC8795723 DOI: 10.1007/s10719-022-10041-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023]
Abstract
The glycosylation of cell surface receptors has been shown to regulate each step of signal transduction, including receptor trafficking to the cell surface, ligand binding, dimerization, phosphorylation, and endocytosis. In this review we focus on the role of glycosyltransferases that are involved in the modification of N-glycans, such as the effect of branching and elongation in signaling by various cell surface receptors. In addition, the role of those enzymes in the EMT/MET programs, as related to differentiation and cancer development, progress and therapy resistance is discussed.
Collapse
|
34
|
Rosa-Fernandes L, Oba-Shinjo SM, Macedo-da-Silva J, Marie SKN, Palmisano G. Aberrant Protein Glycosylation in Brain Cancers, with Emphasis on Glioblastoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:39-70. [DOI: 10.1007/978-3-031-05460-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
35
|
Montesino B, Steenackers A, Lozano JM, Young GD, Hu N, Sackstein R, Chandler KB. Identification of α1,2-fucosylated signaling and adhesion molecules in head and neck squamous cell carcinoma. Glycobiology 2021; 32:441-455. [PMID: 34939118 PMCID: PMC9022907 DOI: 10.1093/glycob/cwab131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer is the seventh most common cancer in the world, and most cases manifest as head and neck squamous cell carcinoma. Despite the prominent role of fucosylated carbohydrate antigens in tumor cell adhesion and metastasis, little is known about the functional role of fucose-modified glycoproteins in head and neck cancer pathobiology. Inactivating polymorphisms of the fut2 gene, encoding for the α1,2-fucosyltransferase FUT2, are associated with an increased incidence of head and neck cancer among tobacco users. Moreover, the presence of the α1,2-fucosylated Lewis Y epitope, with both α1,2- and α1,3-linked fucose, has been observed in head and neck cancer tumors while invasive regions lose expression, suggesting a potential role for α1,2-fucosylation in the regulation of aggressive tumor cell characteristics. Here, we report an association between fut2 expression and head and neck cancer survival, document differential surface expression of α1,2-fucosylated epitopes in a panel of normal, dysplastic, and head and neck cancer cell lines, identify a set of potentially α1,2-fucosylated signaling and adhesion molecules including the epidermal growth factor receptor (EGFR), CD44 and integrins via tandem mass spectrometry, and finally, present evidence that EGFR is among the α1,2-fucosylated and LeY-displaying proteins in head and neck cancer. This knowledge will serve as the foundation for future studies to interrogate the role of LeY-modified and α1,2-fucosylated glycoproteins in head and neck cancer pathogenesis. Data are available via ProteomeXchange with identifier PXD029420.
Collapse
Affiliation(s)
- Brittany Montesino
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Translational Glycobiology Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Agata Steenackers
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Translational Glycobiology Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Juan M Lozano
- Division of Medical and Population Health Science Education and Research, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Geoffrey D Young
- Miami Cancer Institute, 8900 N Kendall Dr, Miami, FL 33176, USA,Department of Surgery, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Nan Hu
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Robert Sackstein
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Translational Glycobiology Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Kevin Brown Chandler
- To whom correspondence should be addressed: Tel: 305.348.9136; Fax: 305.348.0123; e-mail:
| |
Collapse
|
36
|
Amphiregulin can predict treatment resistance to palliative first-line cetuximab plus FOLFIRI chemotherapy in patients with RAS wild-type metastatic colorectal cancer. Sci Rep 2021; 11:23803. [PMID: 34893673 PMCID: PMC8664812 DOI: 10.1038/s41598-021-03197-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022] Open
Abstract
Amphiregulin (AREG) is an epidermal growth factor receptor (EGFR) ligand. The aim of this study was to investigate the effects of baseline plasma AREG levels in KRAS, NRAS, and BRAF wild-type metastatic colorectal cancer (CRC) on treatment outcome with palliative first-line cetuximab + FOLFIRI chemotherapy. Chemotherapy outcomes were analyzed based on baseline plasma AREG levels. The clinical findings were further validated using an in vitro model of CRC. Among 35 patients, the progression-free survival (PFS) was significantly inferior in patients with high AREG than in those with low AREG levels: 10.9 vs. 24.2 months, respectively (p = 0.008). However, after failure of first-line chemotherapy, AREG levels were associated with neither PFS (4.8 vs. 11.6 months; p = 0.215) nor overall survival (8.4 vs. 13.3 months; p = 0.975). In SNU-C4 and Caco-2 cells which were relatively sensitive to cetuximab among the seven CRC cell lines tested, AREG significantly decreased the anti-proliferative effect of cetuximab (p < 0.05) via AKT and ERK activation. However, after acquiring cetuximab resistance with gradual exposure for more than 6 months, AREG neither increased colony formation nor activated AKT and ERK after cetuximab treatment. Our results suggest that plasma AREG is a potential biomarker to predict clinical outcomes after cetuximab-based chemotherapy.
Collapse
|
37
|
Chen YJ, Yen TC, Lin YH, Chen YL, Khoo KH, Chen YJ. ZIC-cHILIC-Based StageTip for Simultaneous Glycopeptide Enrichment and Fractionation toward Large-Scale N-Sialoglycoproteomics. Anal Chem 2021; 93:15931-15940. [PMID: 34780171 DOI: 10.1021/acs.analchem.1c03224] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alterations of protein glycosylation are closely related with pathophysiological regulation. Due to the structural macro- and microheterogeneity, low stoichiometry, and low ionization efficiency of glycopeptides, high-performance tools to enrich glycopeptides, especially the negatively charged and labile sialoglycopeptides, are essential to enhance the identification of the underexplored glycoproteome. Here, we present the first implementation of zwitterionic hydrophilic interaction chromatography with the exposed choline group (ZIC-cHILIC) in StageTip for simultaneous enrichment and fractionation of intact glycopeptides. In a model study using lung cancer cells, early elution by a high percentage of acetonitrile prominently prefilters nonglycopeptides, facilitating high enrichment specificity for glycopeptides (92-96%) and sialoglycopeptides (77-89%) in the subsequent hydrophilic fractions. The stepwise elution shows a high glycopeptide fractionation efficiency by a <10% overlap of glycopeptides between adjacent fractions. Most importantly, the ZIC-cHILIC stepwise strategy demonstrated good reproducibility (>80% in triplicate analysis) as well as superior coverage of 4.6- to 12.0-fold and 2.1- to 35.6-fold more glycopeptides and sialoglycopeptides compared to conventional TiO2 and ZIC-HILIC, respectively. To the best of our knowledge, the result with 2742 sialoglycopeptides among 7367 unique glycopeptides and 166 glycans from 2434 N-glycosites of 1118 glycoproteins (Byonic score > 100) provides one of the deepest glycoproteomic profiles in single-cell type. Without the immunoprecipitation step, the large-scale glycoproteomic atlas also reveals site-specific glycosylation of many druggable receptor proteins, such as EGFR, MET, ERBB2, ERBB3, AXL, and IGF1R. The demonstrated high enrichment specificity and identification depth show that stepwise ZIC-cHILIC is an efficient method to explore the under-represented sialoglycoproteome.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ta-Chi Yen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Hsien Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yan-Lin Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
38
|
Ta HDK, Minh Xuan DT, Tang WC, Anuraga G, Ni YC, Pan SR, Wu YF, Fitriani F, Putri Hermanto EM, Athoillah M, Andriani V, Ajiningrum PS, Wang CY, Lee KH. Novel Insights into the Prognosis and Immunological Value of the SLC35A (Solute Carrier 35A) Family Genes in Human Breast Cancer. Biomedicines 2021; 9:1804. [PMID: 34944621 PMCID: PMC8698499 DOI: 10.3390/biomedicines9121804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
According to statistics 2020, female breast cancer (BRCA) became the most commonly diagnosed malignancy worldwide. Prognosis of BRCA patients is still poor, especially in population with advanced or metastatic. Particular functions of each members of the solute carrier 35A (SLC35A) gene family in human BRCA are still unknown regardless of awareness that they play critical roles in tumorigenesis and progression. Using integrated bioinformatics analyses to identify therapeutic targets for specific cancers based on transcriptomics, proteomics, and high-throughput sequencing, we obtained new information and a better understanding of potential underlying molecular mechanisms. Leveraging BRCA dataset that belongs to The Cancer Genome Atlas (TCGA), which were employed to clarify SLC35A gene expression levels. Then we used a bioinformatics approach to investigate biological processes connected to SLC35A family genes in BRCA development. Beside that, the Kaplan-Meier estimator was leveraged to explore predictive values of SLC35A family genes in BCRA patients. Among individuals of this family gene, expression levels of SLC35A2 were substantially related to poor prognostic values, result from a hazard ratio of 1.3 (with 95 percent confidence interval (95% CI: 1.18-1.44), the p for trend (ptrend) is 3.1 × 10-7). Furthermore, a functional enrichment analysis showed that SLC35A2 was correlated with hypoxia-inducible factor 1A (HIF1A), heat shock protein (HSP), E2 transcription factor (E2F), DNA damage, and cell cycle-related signaling. Infiltration levels observed in specific types of immune cell, especially the cluster of differentiation found on macrophages and neutrophils, were positively linked with SLC35A2 expression in multiple BRCA subclasses (luminal A, luminal B, basal, and human epidermal growth factor receptor 2). Collectively, SLC35A2 expression was associated with a lower recurrence-free survival rate, suggesting that it could be used as a biomarker in treating BRCA.
Collapse
Affiliation(s)
- Hoang Dang Khoa Ta
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (D.T.M.X.); (Y.-C.N.); (S.-R.P.)
| | - Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (D.T.M.X.); (Y.-C.N.); (S.-R.P.)
| | - Wan-Chun Tang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Gangga Anuraga
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (D.T.M.X.); (Y.-C.N.); (S.-R.P.)
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (F.F.); (E.M.P.H.); (M.A.)
| | - Yi-Chun Ni
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (D.T.M.X.); (Y.-C.N.); (S.-R.P.)
| | - Syu-Ruei Pan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (D.T.M.X.); (Y.-C.N.); (S.-R.P.)
| | - Yung-Fu Wu
- National Defense Medical Center, School of Medicine, Department of Medical Research, Tri-Service General Hospital, Taipei 11490, Taiwan;
| | - Fenny Fitriani
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (F.F.); (E.M.P.H.); (M.A.)
| | - Elvira Mustikawati Putri Hermanto
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (F.F.); (E.M.P.H.); (M.A.)
| | - Muhammad Athoillah
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (F.F.); (E.M.P.H.); (M.A.)
| | - Vivin Andriani
- Department of Biological Science, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (V.A.); (P.S.A.)
| | - Purity Sabila Ajiningrum
- Department of Biological Science, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (V.A.); (P.S.A.)
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (D.T.M.X.); (Y.-C.N.); (S.-R.P.)
| | - Kuen-Haur Lee
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (D.T.M.X.); (Y.-C.N.); (S.-R.P.)
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei 11031, Taiwan
| |
Collapse
|
39
|
Yoon S, Eom GH, Kang G. Nitrosative Stress and Human Disease: Therapeutic Potential of Denitrosylation. Int J Mol Sci 2021; 22:ijms22189794. [PMID: 34575960 PMCID: PMC8464666 DOI: 10.3390/ijms22189794] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/22/2023] Open
Abstract
Proteins dynamically contribute towards maintaining cellular homeostasis. Posttranslational modification regulates the function of target proteins through their immediate activation, sudden inhibition, or permanent degradation. Among numerous protein modifications, protein nitrosation and its functional relevance have emerged. Nitrosation generally initiates nitric oxide (NO) production in association with NO synthase. NO is conjugated to free thiol in the cysteine side chain (S-nitrosylation) and is propagated via the transnitrosylation mechanism. S-nitrosylation is a signaling pathway frequently involved in physiologic regulation. NO forms peroxynitrite in excessive oxidation conditions and induces tyrosine nitration, which is quite stable and is considered irreversible. Two main reducing systems are attributed to denitrosylation: glutathione and thioredoxin (TRX). Glutathione captures NO from S-nitrosylated protein and forms S-nitrosoglutathione (GSNO). The intracellular reducing system catalyzes GSNO into GSH again. TRX can remove NO-like glutathione and break down the disulfide bridge. Although NO is usually beneficial in the basal context, cumulative stress from chronic inflammation or oxidative insult produces a large amount of NO, which induces atypical protein nitrosation. Herein, we (1) provide a brief introduction to the nitrosation and denitrosylation processes, (2) discuss nitrosation-associated human diseases, and (3) discuss a possible denitrosylation strategy and its therapeutic applications.
Collapse
Affiliation(s)
- Somy Yoon
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Korea;
- Correspondence: (G.-H.E.); (G.K.); Tel.: +82-61-379-2837 (G.-H.E.); +82-62-220-5262 (G.K.)
| | - Gaeun Kang
- Division of Clinical Pharmacology, Chonnam National University Hospital, Gwangju 61469, Korea
- Correspondence: (G.-H.E.); (G.K.); Tel.: +82-61-379-2837 (G.-H.E.); +82-62-220-5262 (G.K.)
| |
Collapse
|
40
|
Lee HYJ, Meng M, Liu Y, Su T, Kwan HY. Medicinal herbs and bioactive compounds overcome the drug resistance to epidermal growth factor receptor inhibitors in non-small cell lung cancer. Oncol Lett 2021; 22:646. [PMID: 34386068 DOI: 10.3892/ol.2021.12907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) accounts for ~85% of all lung cancer cases. Patients harboring epidermal growth factor receptor (EGFR) mutations usually develop resistance to treatment with frontline EGFR-tyrosine kinase inhibitors (EGFR-TKIs). The present review summarizes the current findings and delineates the molecular mechanism of action for the therapeutic effects of herbal extracts and phytochemicals in overcoming EGFR-TKI resistance in NSCLC. Novel molecular targets underlying EGFR-TKI resistance in NSCLC are also discussed. This review provides valuable information for the development of herbal bioactive compounds as alternative treatments for EGFR-TKI-resistant NSCLC.
Collapse
Affiliation(s)
- Hiu Yan Jennifer Lee
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| | - Mingjing Meng
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yulong Liu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| | - Tao Su
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| |
Collapse
|
41
|
Role of Glycans on Key Cell Surface Receptors That Regulate Cell Proliferation and Cell Death. Cells 2021; 10:cells10051252. [PMID: 34069424 PMCID: PMC8159107 DOI: 10.3390/cells10051252] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cells undergo proliferation and apoptosis, migration and differentiation via a number of cell surface receptors, most of which are heavily glycosylated. This review discusses receptor glycosylation and the known roles of glycans on the functions of receptors expressed in diverse cell types. We included growth factor receptors that have an intracellular tyrosine kinase domain, growth factor receptors that have a serine/threonine kinase domain, and cell-death-inducing receptors. N- and O-glycans have a wide range of functions including roles in receptor conformation, ligand binding, oligomerization, and activation of signaling cascades. A better understanding of these functions will enable control of cell survival and cell death in diseases such as cancer and in immune responses.
Collapse
|
42
|
Xie Y, Chen S, Li Q, Sheng Y, Alvarez MR, Reyes J, Xu G, Solakyildirim K, Lebrilla CB. Glycan-protein cross-linking mass spectrometry reveals sialic acid-mediated protein networks on cell surfaces. Chem Sci 2021; 12:8767-8777. [PMID: 34257876 PMCID: PMC8246274 DOI: 10.1039/d1sc00814e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
A cross-linking method is developed to elucidate glycan-mediated interactions between membrane proteins through sialic acids. The method provides information on previously unknown extensive glycomic interactions on cell membranes. The vast majority of membrane proteins are glycosylated with complicated glycan structures attached to the polypeptide backbone. Glycan-protein interactions are fundamental elements in many cellular events. Although significant advances have been made to identify protein-protein interactions in living cells, only modest advances have been made on glycan-protein interactions. Mechanistic elucidation of glycan-protein interactions has thus far remained elusive. Therefore, we developed a cross-linking mass spectrometry (XL-MS) workflow to directly identify glycan-protein interactions on the cell membrane using liquid chromatography-mass spectrometry (LC-MS). This method involved incorporating azido groups on cell surface glycans through biosynthetic pathways, followed by treatment of cell cultures with a synthesized reagent, N-hydroxysuccinimide (NHS)-cyclooctyne, which allowed the cross-linking of the sialic acid azides on glycans with primary amines on polypeptide backbones. The coupled peptide-glycan-peptide pairs after cross-linking were identified using the latest techniques in glycoproteomic and glycomic analyses and bioinformatics software. With this approach, information on the site of glycosylation, the glycoform, the source protein, and the target protein of the cross-linked pair were obtained. Glycoprotein-protein interactions involving unique glycoforms on the PNT2 cell surface were identified using the optimized and validated method. We built the GPX network of the PNT2 cell line and further investigated the biological roles of different glycan structures within protein complexes. Furthermore, we were able to build glycoprotein-protein complex models for previously unexplored interactions. The method will advance our future understanding of the roles of glycans in protein complexes on the cell surface.
Collapse
Affiliation(s)
- Yixuan Xie
- Department of Chemistry, University of California Davis California USA
| | - Siyu Chen
- Department of Chemistry, University of California Davis California USA
| | - Qiongyu Li
- Department of Chemistry, University of California Davis California USA
| | - Ying Sheng
- Department of Chemistry, Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis California USA
| | | | - Joeriggo Reyes
- Marine Science Institute, University of the Philippines Diliman Quezon City Philippines
| | - Gege Xu
- Department of Chemistry, University of California Davis California USA
| | - Kemal Solakyildirim
- Department of Chemistry, University of California Davis California USA.,Department of Chemistry, Erzincan Binali Yildirim University Erzincan Turkey
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis California USA.,Department of Biochemistry, University of California Davis California USA
| |
Collapse
|
43
|
Kitata RB, Choong WK, Tsai CF, Lin PY, Chen BS, Chang YC, Nesvizhskii AI, Sung TY, Chen YJ. A data-independent acquisition-based global phosphoproteomics system enables deep profiling. Nat Commun 2021; 12:2539. [PMID: 33953186 PMCID: PMC8099862 DOI: 10.1038/s41467-021-22759-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/29/2021] [Indexed: 01/07/2023] Open
Abstract
Phosphoproteomics can provide insights into cellular signaling dynamics. To achieve deep and robust quantitative phosphoproteomics profiling for minute amounts of sample, we here develop a global phosphoproteomics strategy based on data-independent acquisition (DIA) mass spectrometry and hybrid spectral libraries derived from data-dependent acquisition (DDA) and DIA data. Benchmarking the method using 166 synthetic phosphopeptides shows high sensitivity (<0.1 ng), accurate site localization and reproducible quantification (~5% median coefficient of variation). As a proof-of-concept, we use lung cancer cell lines and patient-derived tissue to construct a hybrid phosphoproteome spectral library covering 159,524 phosphopeptides (88,107 phosphosites). Based on this library, our single-shot streamlined DIA workflow quantifies 36,350 phosphosites (19,755 class 1) in cell line samples within two hours. Application to drug-resistant cells and patient-derived lung cancer tissues delineates site-specific phosphorylation events associated with resistance and tumor progression, showing that our workflow enables the characterization of phosphorylation signaling with deep coverage, high sensitivity and low between-run missing values.
Collapse
Affiliation(s)
| | - Wai-Kok Choong
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99354, USA
| | - Pei-Yi Lin
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Bo-Shiun Chen
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yun-Chien Chang
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, and Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
44
|
Lee DH, Kang SH, Choi DS, Ko M, Choi E, Ahn H, Min H, Oh SJ, Lee MS, Park Y, Jin HS. Genome wide CRISPR screening reveals a role for sialylation in the tumorigenesis and chemoresistance of acute myeloid leukemia cells. Cancer Lett 2021; 510:37-47. [PMID: 33872695 DOI: 10.1016/j.canlet.2021.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Aberrant activation of cytokine and growth factor signal transduction pathways confers enhanced survival and proliferation properties to acute myeloid leukemia (AML) cells. However, the mechanisms underlying the deregulation of signaling pathways in leukemia cells are unclear. To identify genes capable of independently supporting cytokine-independent growth, we employed a genome-wide CRISPR/Cas9-mediated loss-of-function screen in GM-CSF-dependent human AML TF-1 cells. More than 182 genes (p < 0.01) were found to suppress the cytokine-independent growth of TF-1 cells. Among the top hits, genes encoding key factors involved in sialylation biosynthesis were identified; these included CMAS, SLC35A1, NANS, and GNE. Knockout of either CMAS or SLC35A1 enabled cytokine-independent proliferation and survival of AML cells. Furthermore, NSG (NOD/SCID/IL2Rγ-/-) mice injected with CMAS or SLC35A1-knockout TF-1 cells exhibited a shorter survival than mice injected with wild-type cells. Mechanistically, abrogation of sialylation biosynthesis in TF-1 cells induced a strong activation of ERK signaling, which sensitized cells to MEK inhibitors but conferred resistance to JAK inhibitors. Further, the surface level of α2,3-linked sialic acids was negatively correlated with the sensitivity of AML cell lines to MEK/ERK inhibitors. We also found that sialylation modulated the expression and stability of the CSF2 receptor. Together, these results demonstrate a novel role of sialylation in regulating oncogenic transformation and drug resistance development in leukemia. We propose that altered sialylation could serve as a biomarker for targeted anti-leukemic therapy.
Collapse
Affiliation(s)
- Dong-Hee Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seong-Ho Kang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Da-Som Choi
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Minkyung Ko
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Eunji Choi
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyejin Ahn
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hophil Min
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Soo Jin Oh
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Myeong Sup Lee
- Laboratory of Molecular Immunology and Medicine, Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Yoon Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
45
|
Han CL, Chen XR, Lan A, Hsu YL, Wu PS, Hung PF, Hung CL, Pan SH. N-glycosylated GPNMB ligand independently activates mutated EGFR signaling and promotes metastasis in NSCLC. Cancer Sci 2021; 112:1911-1923. [PMID: 33706413 PMCID: PMC8088973 DOI: 10.1111/cas.14872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related death worldwide. As well as the identified role of epidermal growth factor receptor (EGFR), its association with driver mutations has improved the therapeutics for patients with lung cancer harboring EGFR mutations. These patients usually display shorter overall survival and a higher tendency to develop distant metastasis compared with those carrying the wild‐type EGFR. Nevertheless, the way to control mutated EGFR signaling remains unclear. Here, we performed membrane proteomic analysis to determine potential components that may act with EGFR mutations to promote lung cancer malignancy. Expression of transmembrane glycoprotein non‐metastatic melanoma protein B (GPNMB) was positively correlated with the status of mutated EGFR in non‐small‐cell lung cancer (NSCLC). This protein was not only overexpressed but also highly glycosylated in EGFR‐mutated, especially EGFR‐L858R mutated, NSCLC cells. Further examination showed that GPNMB could activate mutated EGFR without ligand stimulation and could bind to the C‐terminus of EGFR, assist phosphorylation at Y845, turn on downstream STAT3 signaling, and promote cancer metastasis. Moreover, we also found that Asn134 (N134) glycosylation of GPNMB played a crucial role in this ligand‐independent regulation. Depleting N134‐glycosylation on GPNMB could dramatically inhibit binding of GPNMB to mutated EGFR, blocking its downstream signaling, and ultimately inhibiting cancer metastasis in NSCLC. Clarifying the role of N‐glycosylated GPNMB in regulating the ligand‐independent activation of mutated EGFR may soon give new insight into the development of novel therapeutics for NSCLC.
Collapse
Affiliation(s)
- Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Xuan-Ren Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Albert Lan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuan-Ling Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Shan Wu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Pei-Fang Hung
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Lieh Hung
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Doctoral Degree Program of Translational Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
46
|
Porębska N, Poźniak M, Matynia A, Żukowska D, Zakrzewska M, Otlewski J, Opaliński Ł. Galectins as modulators of receptor tyrosine kinases signaling in health and disease. Cytokine Growth Factor Rev 2021; 60:89-106. [PMID: 33863623 DOI: 10.1016/j.cytogfr.2021.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Receptor tyrosine kinases (RTKs) constitute a large group of cell surface proteins that mediate communication of cells with extracellular environment. RTKs recognize external signals and transfer information to the cell interior, modulating key cellular activities, like metabolism, proliferation, motility, or death. To ensure balanced stream of signals the activity of RTKs is tightly regulated by numerous mechanisms, including receptor expression and degradation, ligand specificity and availability, engagement of co-receptors, cellular trafficking of the receptors or their post-translational modifications. One of the most widespread post-translational modifications of RTKs is glycosylation of their extracellular domains. The sugar chains attached to RTKs form a new layer of information, so called glyco-code that is read by galectins, carbohydrate binding proteins. Galectins are family of fifteen lectins implicated in immune response, inflammation, cell division, motility and death. The versatility of cellular activities attributed to galectins is a result of their high abundance and diversity of their cellular targets. A various sugar specificity of galectins and the differential ability of galectin family members to form oligomers affect the spatial distribution and the function of their cellular targets. Importantly, galectins and RTKs are tightly linked to the development, progression and metastasis of various cancers. A growing number of studies points on the close cooperation between RTKs and galectins in eliciting specific cellular responses. This review focuses on the identified complexes between galectins and RTK members and discusses their relevance for the cell physiology both in healthy tissues and in cancer.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Marta Poźniak
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Matynia
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Dominika Żukowska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
47
|
Aberrant protein glycosylation in cancer: implications in targeted therapy. Biochem Soc Trans 2021; 49:843-854. [PMID: 33704376 DOI: 10.1042/bst20200763] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/28/2022]
Abstract
Aberrant cell surface glycosylation signatures are currently known to actively drive the neoplastic transformation of healthy cells. By disrupting the homeostatic functions of their protein carriers, cancer-associated glycans mechanistically underpin several molecular hallmarks of human malignancy. Furthermore, such aberrant glycan structures play key roles in the acquisition of molecular resistance to targeted therapeutic agents, which compromises their clinical efficacy, by modulating tumour cell aggressiveness and supporting the establishment of an immunosuppressive microenvironment. Recent advances in the study of the tumour cell glycoproteome have unravelled previously elusive molecular mechanisms of therapeutic resistance, guided the rational design of novel personalized therapeutic strategies, and may further improve the clinical performance of currently approved anti-cancer targeted agents. In this review, we highlight the impact of glycosylation in cancer targeted therapy, with particular focus on receptor tyrosine kinase-targeted therapy, immune checkpoints blockade therapy, and current developments on therapeutic strategies directed to glycan-binding proteins and other innovative glycan therapeutic strategies.
Collapse
|
48
|
Britain CM, Bhalerao N, Silva AD, Chakraborty A, Buchsbaum DJ, Crowley MR, Crossman DK, Edwards YJK, Bellis SL. Glycosyltransferase ST6Gal-I promotes the epithelial to mesenchymal transition in pancreatic cancer cells. J Biol Chem 2021; 296:100034. [PMID: 33148698 PMCID: PMC7949065 DOI: 10.1074/jbc.ra120.014126] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/05/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
ST6Gal-I, an enzyme upregulated in numerous malignancies, adds α2-6-linked sialic acids to select membrane receptors, thereby modulating receptor signaling and cell phenotype. In this study, we investigated ST6Gal-I's role in epithelial to mesenchymal transition (EMT) using the Suit2 pancreatic cancer cell line, which has low endogenous ST6Gal-I and limited metastatic potential, along with two metastatic Suit2-derived subclones, S2-013 and S2-LM7AA, which have upregulated ST6Gal-I. RNA-Seq results suggested that the metastatic subclones had greater activation of EMT-related gene networks than parental Suit2 cells, and forced overexpression of ST6Gal-I in the Suit2 line was sufficient to activate EMT pathways. Accordingly, we evaluated expression of EMT markers and cell invasiveness (a key phenotypic feature of EMT) in Suit2 cells with or without ST6Gal-I overexpression, as well as S2-013 and S2-LM7AA cells with or without ST6Gal-I knockdown. Cells with high ST6Gal-I expression displayed enrichment in mesenchymal markers (N-cadherin, slug, snail, fibronectin) and cell invasiveness, relative to ST6Gal-I-low cells. Contrarily, epithelial markers (E-cadherin, occludin) were suppressed in ST6Gal-I-high cells. To gain mechanistic insight into ST6Gal-I's role in EMT, we examined the activity of epidermal growth factor receptor (EGFR), a known EMT driver. ST6Gal-I-high cells had greater α2-6 sialylation and activation of EGFR than ST6Gal-I-low cells. The EGFR inhibitor, erlotinib, neutralized ST6Gal-I-dependent differences in EGFR activation, mesenchymal marker expression, and invasiveness in Suit2 and S2-LM7AA, but not S2-013, lines. Collectively, these results advance our understanding of ST6Gal-I's tumor-promoting function by highlighting a role for ST6Gal-I in EMT, which may be mediated, at least in part, by α2-6-sialylated EGFR.
Collapse
Affiliation(s)
- Colleen M Britain
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nikita Bhalerao
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Austin D Silva
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Asmi Chakraborty
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael R Crowley
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yvonne J K Edwards
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Susan L Bellis
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
49
|
Azimzadeh Irani M, Ejtehadi MR. Glycan-mediated functional assembly of IL-1RI: structural insights into completion of the current description for immune response. J Biomol Struct Dyn 2020; 40:2575-2585. [PMID: 33124956 DOI: 10.1080/07391102.2020.1841027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interleukin 1 Receptor type I (IL-1RI) is a multi-domain transmembrane receptor that triggers the inflammatory response. Understanding its detailed mechanism of action is crucial for treating immune disorders. IL-1RI is activated upon formation of its functional assembly that occurs by binding of the IL-1 cytokine and the accessory protein (Il-1RAcP) to it. X-ray crystallography, small-Angle X-ray Scattering and molecular dynamics simulation studies showed that IL-1RI adopts two types of 'compact' and 'extended' conformational states in its dynamical pattern. Furthermore, glycosylation has shown to play a critical role in its activation process. Here, classical and accelerated atomistic molecular dynamics were carried out to examine the role of full glycosylation of IL-1RI and IL-1RAcP in arrangement of the functional assembly. Simulations showed that the 'compact' and 'extended' IL-1RI form two types of 'cytokine-inaccessible-non-signaling' and 'cytokine-accessible-signaling' assemblies with the IL-1RacP, respectively that are both abiding in the presence of glycans. Suggesting that the cytokine binding to IL-1RI is not required for the formation of IL-1RI-IL-1RAcP complex and the 'compact' complex could act as a down-regulatory mechanism. The 'extended' complex is maintained by formation of several persistent hydrogen bonds between the IL-1RI-IL-1RAcP inter-connected glycans. Taken together, it was shown that full glycosylation regulates formation of the IL-1RI functional assembly and play critical role in cytokine biding and triggering the IL-1RI involved downstream pathways in the cell.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maryam Azimzadeh Irani
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
50
|
Gong A, Zhao X, Pan Y, Qi Y, Li S, Huang Y, Guo Y, Qi X, Zheng W, Jia L. The lncRNA MEG3 mediates renal cell cancer progression by regulating ST3Gal1 transcription and EGFR sialylation. J Cell Sci 2020; 133:jcs244020. [PMID: 32737220 DOI: 10.1242/jcs.244020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important regulators of cancer progression. Abnormal sialylation leads to renal cell carcinoma (RCC) malignancy. However, the mechanism by which the lncRNA maternally expressed gene 3 (MEG3) mediates RCC progression by regulating ST3Gal1 transcription and EGFR sialylation is still unrevealed. Here, we found that the expression of MEG3 was higher in adjacent tissues than in RCC tissues, as well as downregulated in RCC cell lines compared to expression in normal renal cells. The proliferation, migration and invasion of RCC cells transfected with MEG3 was decreased, whereas knockdown of MEG3 had the opposite effect. The proliferative and metastatic abilities of RCC cells in vivo were concordant with their behavior in vitroST3Gal1 expression was dysregulated in RCC and was positively correlated with MEG3 By applying bioinformatics, c-Jun (also known as JUN) was identified as a transcription factor predicted to bind the promoter of ST3Gal1, and altered MEG3 levels resulted in changes to c-Jun expression. Furthermore, ST3Gal1 modulated EGFR sialylation to inhibit EGFR phosphorylation, which affected activation of the phosphoinositide 3-kinase (PI3K)-AKT pathway. Taken together, our findings provide a novel mechanism to elucidate the role of the MEG3-ST3Gal1-EGFR axis in RCC progression.
Collapse
Affiliation(s)
- Aihong Gong
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
- Department of Clinical Laboratory, Dermatology Hospital of Dalian, Dalian 116000, Liaoning Province, China
| | - Xinyu Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yue Pan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yu Qi
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Shuangda Li
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yiran Huang
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yanru Guo
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Xia Qi
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Wei Zheng
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| |
Collapse
|