1
|
El-Sobky MH, Rijal R, Gomer RH. Two endogenous Dictyostelium discoideum chemorepellents use different mechanisms to induce repulsion. Proc Natl Acad Sci U S A 2025; 122:e2503168122. [PMID: 40424125 DOI: 10.1073/pnas.2503168122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/16/2025] [Indexed: 05/29/2025] Open
Abstract
The directed movement of eukaryotic cells is critical for processes such as development and immune responses. While much is known about chemoattraction, much less is known about chemorepulsion. The eukaryotic amoeba Dictyostelium discoideum secretes a 60 kDa chemorepellent protein called AprA to cause cells at the edge of a colony to move away from the colony. In addition to AprA, cells secrete a <10 kDa chemorepellent. Here, we show that the <10 kDa chemorepellent is a polymer of phosphates (polyphosphate; polyP). D. discoideum cells move by activating cortical Ras at one edge of the cell to initiate pseudopod formation. AprA induces repulsion by inhibiting Ras activation and pseudopod formation on the side of the cell closest to the source of AprA, without affecting the overall frequency of pseudopod formation. In contrast, polyP activates Ras at multiple regions of the cortex and increases pseudopod formation frequency, especially at the side of the cell furthest from the source of polyP. At least 20 signal transduction proteins are needed for both AprA and polyP repulsion, 9 are needed by polyP but not AprA, and 4 are needed by AprA but not polyP. Together, these results indicate that proliferating D. discoideum cells use two different chemorepellents, that one of the repellents is the unusual molecule polyphosphate, and that the two repellents activate partially overlapping and partially different pathways to induce repulsion by two basically different mechanisms.
Collapse
Affiliation(s)
- Mohanad H El-Sobky
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| |
Collapse
|
2
|
Hayashida Y, Oosawa C, Yasunaga T, Morimoto YV. Cell-to-cell signaling in cell populations with large cell size variability. Biophys J 2025; 124:954-962. [PMID: 39137773 PMCID: PMC11947465 DOI: 10.1016/j.bpj.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/02/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Sizes of multiple cells vary when they communicate with each other. Differences in cell size result in variations in the cell surface area and volume, as well as the number of enzymes and receptors involved in signal transduction. Although heterogeneity in cell size may inhibit uniformity in signaling, cell-to-cell signaling is still possible. The outcome when cell size changes to an extreme degree remains unclear. Hence, we inhibited cell division in Dictyostelium cells, a model organism for signal transduction, to gain insights into the consequences of extreme cell size variations. Measurements of cell signals in this population using fluorescence microscopy indicated that the giant cells can communicate with normal-sized cells by suppressing the signal level. Simulations of signal transduction based on the FitzHugh-Nagumo model also suggested similar results. Our findings suggest that signaling mechanism homogenizes cell-to-cell signaling in response to cell size.
Collapse
Affiliation(s)
- Yukihisa Hayashida
- Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan
| | - Chikoo Oosawa
- Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan
| | - Takuo Yasunaga
- Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan
| | - Yusuke V Morimoto
- Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan; Japan Science and Technology Agency, PRESTO, Saitama, Japan.
| |
Collapse
|
3
|
Iwamoto K, Matsuoka S, Ueda M. Excitable Ras dynamics-based screens reveal RasGEFX is required for macropinocytosis and random cell migration. Nat Commun 2025; 16:117. [PMID: 39746985 PMCID: PMC11696275 DOI: 10.1038/s41467-024-55389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/08/2024] [Indexed: 01/04/2025] Open
Abstract
Excitable systems of eukaryotic chemotaxis can generate asymmetric signals of Ras-GTP-enriched domains spontaneously to drive random cell migration without guidance cues. However, the molecules responsible for the spontaneous signal generation remain elusive. Here, we characterized RasGEFs encoded in Dictyostelium discoideum by live-cell imaging of the spatiotemporal dynamics of Ras-GTP and hierarchical clustering, finding that RasGEFX is primarily required for the spontaneous generation of Ras-GTP-enriched domains and is essential for random migration in combination with RasGEFB/M/U in starved cells, and they are dispensable for chemotaxis to chemoattractant cAMP. RasGEFX and RasGEFB that co-localize with Ras-GTP regulate the temporal periods and spatial sizes of the oscillatory Ras-GTP waves propagating along the membrane, respectively, and thus control the protrusions of motile cells differently, while RasGEFU and RasGEFM regulate adhesion and migration speed, respectively. Remarkably, RasGEFX is also important for Ras/PIP3-driven macropinocytosis in proliferating cells, but RasGEFB/M/U are not. These findings illustrate a specific and coordinated control of the cytoskeletal dynamics by multiple RasGEFs for spontaneous motility and macropinocytosis.
Collapse
Affiliation(s)
- Koji Iwamoto
- Laboratory of Single Molecule Biology, Graduate School of Science and Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satomi Matsuoka
- Laboratory of Single Molecule Biology, Graduate School of Science and Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- PRESTO, JST, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masahiro Ueda
- Laboratory of Single Molecule Biology, Graduate School of Science and Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
4
|
Takebayashi K, Kamimura Y, Ueda M. Field model for multistate lateral diffusion of various transmembrane proteins observed in living Dictyostelium cells. J Cell Sci 2023; 136:jcs260280. [PMID: 36655427 PMCID: PMC10022678 DOI: 10.1242/jcs.260280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
The lateral diffusion of transmembrane proteins on plasma membranes is a fundamental process for various cellular functions. Diffusion properties specific for individual protein species have been extensively studied, but the common features among protein species are poorly understood. Here, we systematically studied the lateral diffusion of various transmembrane proteins in the lower eukaryote Dictyostelium discoideum cells using a hidden Markov model for single-molecule trajectories obtained experimentally. As common features, all membrane proteins that had from one to ten transmembrane regions adopted three free diffusion states with similar diffusion coefficients regardless of their structural variability. All protein species reduced their mobility similarly upon the inhibition of microtubule or actin cytoskeleton dynamics, or myosin II. The relationship between protein size and the diffusion coefficient was consistent with the Saffman-Delbrück model, meaning that membrane viscosity is a major determinant of lateral diffusion, but protein size is not. These protein species-independent properties of multistate free diffusion were explained simply and quantitatively by free diffusion on the three membrane regions with different viscosities, which is in sharp contrast to the complex diffusion behavior of transmembrane proteins in higher eukaryotes.
Collapse
Affiliation(s)
- Kazutoshi Takebayashi
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
| | - Yoichiro Kamimura
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
| | - Masahiro Ueda
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Ras inhibitor CAPRI enables neutrophil-like cells to chemotax through a higher-concentration range of gradients. Proc Natl Acad Sci U S A 2021; 118:2002162118. [PMID: 34675073 DOI: 10.1073/pnas.2002162118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 01/21/2023] Open
Abstract
Neutrophils sense and migrate through an enormous range of chemoattractant gradients through adaptation. Here, we reveal that in human neutrophils, calcium-promoted Ras inactivator (CAPRI) locally controls the GPCR-stimulated Ras adaptation. Human neutrophils lacking CAPRI (caprikd ) exhibit chemoattractant-induced, nonadaptive Ras activation; significantly increased phosphorylation of AKT, GSK-3α/3β, and cofilin; and excessive actin polymerization. caprikd cells display defective chemotaxis in response to high-concentration gradients but exhibit improved chemotaxis in low- or subsensitive-concentration gradients of various chemoattractants, as a result of their enhanced sensitivity. Taken together, our data reveal that CAPRI controls GPCR activation-mediated Ras adaptation and lowers the sensitivity of human neutrophils so that they are able to chemotax through a higher-concentration range of chemoattractant gradients.
Collapse
|
6
|
Kamimura Y, Ueda M. Different Heterotrimeric G Protein Dynamics for Wide-Range Chemotaxis in Eukaryotic Cells. Front Cell Dev Biol 2021; 9:724797. [PMID: 34414196 PMCID: PMC8369479 DOI: 10.3389/fcell.2021.724797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
Chemotaxis describes directional motility along ambient chemical gradients and has important roles in human physiology and pathology. Typical chemotactic cells, such as neutrophils and Dictyostelium cells, can detect spatial differences in chemical gradients over a background concentration of a 105 scale. Studies of Dictyostelium cells have elucidated the molecular mechanisms of gradient sensing involving G protein coupled receptor (GPCR) signaling. GPCR transduces spatial information through its cognate heterotrimeric G protein as a guanine nucleotide change factor (GEF). More recently, studies have revealed unconventional regulation of heterotrimeric G protein in the gradient sensing. In this review, we explain how multiple mechanisms of GPCR signaling ensure the broad range sensing of chemical gradients in Dictyostelium cells as a model for eukaryotic chemotaxis.
Collapse
Affiliation(s)
- Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, RIKEN, Center for Biosystems Dynamics Research (BDR), Suita, Japan.,Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN, Center for Biosystems Dynamics Research (BDR), Suita, Japan.,Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
7
|
GPCR Signaling Regulation in Dictyostelium Chemotaxis. Methods Mol Biol 2021; 2274:317-336. [PMID: 34050483 DOI: 10.1007/978-1-0716-1258-3_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
GPCR signaling is the most prevailing molecular mechanism for detecting ambient signals in eukaryotes. Chemotactic cells use GPCR signaling to process chemical cues for directional migration over a broad concentration range and with high sensitivity. Dictyostelium discoideum is a classical model, in which the molecular mechanism underlying eukaryotic chemotaxis has been well studied. Here, we describe protocols to evaluate the spatiotemporal chemotactic responses of Dictyostelium discoideum by different microscopic observations combined with biochemical assays. First, two different chemotaxis assays are presented to measure the dynamic concentration ranges for different cell strains or chemotactic parameters. Next, live-cell imaging and biochemical assays are provided to detect the activities of GPCR and its partner heterotrimeric G proteins upon chemoattractant stimulation. Finally, a method for detecting how a cell deciphers chemical gradients is described.
Collapse
|
8
|
Ohtsuka D, Ota N, Amaya S, Matsuoka S, Tanaka Y, Ueda M. A sub-population of Dictyostelium discoideum cells shows extremely high sensitivity to cAMP for directional migration. Biochem Biophys Res Commun 2021; 554:131-137. [PMID: 33784508 DOI: 10.1016/j.bbrc.2021.03.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/26/2023]
Abstract
The chemotaxis of Dictysotelium discoideum cells in response to a chemical gradient of cyclic adenosine 3',5'-monophosphate (cAMP) was studied using a newly designed microfluidic device. The device consists of 800 cell-sized channels in parallel, each 4 μm wide, 5 μm high, and 100 μm long, allowing us to prepare the same chemical gradient in all channels and observe the motility of 500-1000 individual cells simultaneously. The percentage of cells that exhibited directed migration was determined for various cAMP concentrations ranging from 0.1 pM to 10 μM. The results show that chemotaxis was highest at 100 nM cAMP, consistent with previous observations. At concentrations as low as 10 pM, about 16% of cells still exhibited chemotaxis, suggesting that the receptor occupancy of only 6 cAMP molecules/cell can induce chemotaxis in very sensitive cells. At 100 pM cAMP, chemotaxis was suppressed due to the self-production and secretion of intracellular cAMP induced by extracellular cAMP. Overall, systematic observations of a large number of individual cells under the same chemical gradients revealed the heterogeneity of chemotaxis responses in a genetically homogeneous cell population, especially the existence of a sub-population with extremely high sensitivity for chemotaxis.
Collapse
Affiliation(s)
- Daisuke Ohtsuka
- Laboratory of Single Molecule Biology, Graduate School of Science and Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nobutoshi Ota
- Laboratory for Integrated Biodevice, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Amaya
- Laboratory for Integrated Biodevice, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satomi Matsuoka
- Laboratory of Single Molecule Biology, Graduate School of Science and Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory for Cell Signaling Dynamics, BDR, RIKEN, Suita, Osaka, 565-0871, Japan; PRESTO, JST, Suita, Osaka, 565-0871, Japan.
| | - Yo Tanaka
- Laboratory for Integrated Biodevice, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Ueda
- Laboratory of Single Molecule Biology, Graduate School of Science and Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan; Laboratory for Cell Signaling Dynamics, BDR, RIKEN, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
9
|
Wong M, Gilmour D. Getting back on track: exploiting canalization to uncover the mechanisms of developmental robustness. Curr Opin Genet Dev 2020; 63:53-60. [DOI: 10.1016/j.gde.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/09/2020] [Indexed: 02/08/2023]
|
10
|
Sun H, Lin M, Zamani A, Goldsmith JR, Boggs AE, Li M, Lee CN, Chen X, Li X, Li T, Dorrity BL, Li N, Lou Y, Shi S, Wang W, Chen YH. The TIPE Molecular Pilot That Directs Lymphocyte Migration in Health and Inflammation. Sci Rep 2020; 10:6617. [PMID: 32313148 PMCID: PMC7170861 DOI: 10.1038/s41598-020-63629-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Lymphocytes are some of the most motile cells of vertebrates, constantly navigating through various organ systems. Their specific positioning in the body is delicately controlled by site-specific directional cues such as chemokines. While it has long been suspected that an intrinsic molecular pilot, akin to a ship's pilot, guides lymphocyte navigation, the nature of this pilot is unknown. Here we show that the TIPE (TNF-α-induced protein 8-like) family of proteins pilot lymphocytes by steering them toward chemokines. TIPE proteins are carriers of lipid second messengers. They mediate chemokine-induced local generation of phosphoinositide second messengers, but inhibit global activation of the small GTPase Rac. TIPE-deficient T lymphocytes are completely pilot-less: they are unable to migrate toward chemokines despite their normal ability to move randomly. As a consequence, TIPE-deficient mice have a marked defect in positioning their T lymphocytes to various tissues, both at the steady-state and during inflammation. Thus, TIPE proteins pilot lymphocytes during migration and may be targeted for the treatment of lymphocyte-related disorders.
Collapse
Affiliation(s)
- Honghong Sun
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mei Lin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ali Zamani
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason R Goldsmith
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda E Boggs
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mingyue Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chin-Nien Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xu Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xinyuan Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ting Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brigid L Dorrity
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ning Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yunwei Lou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Songlin Shi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Yamazaki SI, Hashimura H, Morimoto YV, Miyanaga Y, Matsuoka S, Kamimura Y, Ueda M. Talin B regulates collective cell migration via PI3K signaling in Dictyostelium discoideum mounds. Biochem Biophys Res Commun 2020; 525:372-377. [PMID: 32098673 DOI: 10.1016/j.bbrc.2020.02.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/09/2020] [Indexed: 01/23/2023]
Abstract
Collective cell migration is a key process during the development of multicellular organisms, in which the migrations of individual cells are coordinated through chemical guidance and physical contact between cells. Talin has been implicated in mechanical linkage between actin-based motile machinery and adhesion molecules, but how talin contributes to collective cell migration is unclear. Here we show that talin B is involved in chemical coordination between cells for collective cell migration at the multicellular mound stage in the development of Dictyostelium discoideum. From early aggregation to the mound formation, talB-null cells exhibited collective migration normally with cAMP relay. Subsequently, talB-null cells showed developmental arrest at the mound stage, and at the same time, they had impaired collective migration and cAMP relay, while wild-type cells exhibited rotational cell migration continuously in concert with cAMP relay during the mound stage. Genetic suppression of PI3K activity partially restored talB-null phenotypes in collective cell migration and cAMP relay. Overall, our observations suggest that talin B regulates chemical coordination via PI3K-mediated signaling in a stage-specific manner for the multicellular development of Dictyostelium cells.
Collapse
Affiliation(s)
- Shin-Ichi Yamazaki
- Laboratory for Cell Signaling Dynamics, BDR (Biosystems and Dynamics Research Center), RIKEN, Suita, Osaka, 565-0874, Japan
| | - Hidenori Hashimura
- Laboratory for Cell Signaling Dynamics, BDR (Biosystems and Dynamics Research Center), RIKEN, Suita, Osaka, 565-0874, Japan; Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902, Tokyo, Japan
| | - Yusuke V Morimoto
- Laboratory for Cell Signaling Dynamics, BDR (Biosystems and Dynamics Research Center), RIKEN, Suita, Osaka, 565-0874, Japan; Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan
| | - Yukihiro Miyanaga
- Laboratory of Single Molecular Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satomi Matsuoka
- Laboratory of Single Molecular Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, BDR (Biosystems and Dynamics Research Center), RIKEN, Suita, Osaka, 565-0874, Japan.
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, BDR (Biosystems and Dynamics Research Center), RIKEN, Suita, Osaka, 565-0874, Japan; Laboratory of Single Molecular Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
12
|
Wong M, Newton LR, Hartmann J, Hennrich ML, Wachsmuth M, Ronchi P, Guzmán-Herrera A, Schwab Y, Gavin AC, Gilmour D. Dynamic Buffering of Extracellular Chemokine by a Dedicated Scavenger Pathway Enables Robust Adaptation during Directed Tissue Migration. Dev Cell 2020; 52:492-508.e10. [PMID: 32059773 DOI: 10.1016/j.devcel.2020.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/22/2019] [Accepted: 01/13/2020] [Indexed: 01/16/2023]
Abstract
How tissues migrate robustly through changing guidance landscapes is poorly understood. Here, quantitative imaging is combined with inducible perturbation experiments to investigate the mechanisms that ensure robust tissue migration in vivo. We show that tissues exposed to acute "chemokine floods" halt transiently before they perfectly adapt, i.e., return to the baseline migration behavior in the continued presence of elevated chemokine levels. A chemokine-triggered phosphorylation of the atypical chemokine receptor Cxcr7b reroutes it from constitutive ubiquitination-regulated degradation to plasma membrane recycling, thus coupling scavenging capacity to extracellular chemokine levels. Finally, tissues expressing phosphorylation-deficient Cxcr7b migrate normally in the presence of physiological chemokine levels but show delayed recovery when challenged with elevated chemokine concentrations. This work establishes that adaptation to chemokine fluctuations can be "outsourced" from canonical GPCR signaling to an autonomously acting scavenger receptor that both senses and dynamically buffers chemokine levels to increase the robustness of tissue migration.
Collapse
Affiliation(s)
- Mie Wong
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Lionel R Newton
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Jonas Hartmann
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Marco L Hennrich
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Malte Wachsmuth
- Luxendo GmbH, Kurfürsten-Anlage 58, 69115 Heidelberg, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Alejandra Guzmán-Herrera
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Anne-Claude Gavin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Department for Cell Physiology and Metabolism, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Darren Gilmour
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
13
|
González-Velasco Ó, De Las Rivas J, Lacal J. Proteomic and Transcriptomic Profiling Identifies Early Developmentally Regulated Proteins in Dictyostelium Discoideum. Cells 2019; 8:cells8101187. [PMID: 31581556 PMCID: PMC6830349 DOI: 10.3390/cells8101187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cyclic AMP acts as a secondary messenger involving different cellular functions in eukaryotes. Here, proteomic and transcriptomic profiling has been combined to identify novel early developmentally regulated proteins in eukaryote cells. These proteomic and transcriptomic experiments were performed in Dictyostelium discoideum given the unique advantages that this organism offers as a eukaryotic model for cell motility and as a nonmammalian model of human disease. By comparing whole-cell proteome analysis of developed (cAMP-pulsed) wild-type AX2 cells and an independent transcriptomic analysis of developed wild-type AX4 cells, our results show that up to 70% of the identified proteins overlap in the two independent studies. Among them, we have found 26 proteins previously related to cAMP signaling and identified 110 novel proteins involved in calcium signaling, adhesion, actin cytoskeleton, the ubiquitin-proteasome pathway, metabolism, and proteins that previously lacked any annotation. Our study validates previous findings, mostly for the canonical cAMP-pathway, and also generates further insight into the complexity of the transcriptomic changes during early development. This article also compares proteomic data between parental and cells lacking glkA, a GSK-3 kinase implicated in substrate adhesion and chemotaxis in Dictyostelium. This analysis reveals a set of proteins that show differences in expression in the two strains as well as overlapping protein level changes independent of GlkA.
Collapse
Affiliation(s)
- Óscar González-Velasco
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Jesus Lacal
- Department of Microbiology and Genetics, Faculty of Biology, University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
14
|
Miyanaga Y, Kamimura Y, Kuwayama H, Devreotes PN, Ueda M. Chemoattractant receptors activate, recruit and capture G proteins for wide range chemotaxis. Biochem Biophys Res Commun 2018; 507:304-310. [PMID: 30454895 DOI: 10.1016/j.bbrc.2018.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 11/19/2022]
Abstract
The wide range sensing of extracellular signals is a common feature of various sensory cells. Eukaryotic chemotactic cells driven by GPCRs and their cognate G proteins are one example. This system endows the cells directional motility towards their destination over long distances. There are several mechanisms to achieve the long dynamic range, including negative regulation of the receptors upon ligand interaction and spatial regulation of G proteins, as we found recently. However, these mechanisms are insufficient to explain the 105-fold range of chemotaxis seen in Dictyostelium. Here, we reveal that the receptor-mediated activation, recruitment, and capturing of G proteins mediate chemotactic signaling at the lower, middle and higher concentration ranges, respectively. These multiple mechanisms of G protein dynamics can successfully cover distinct ranges of ligand concentrations, resulting in seamless and broad chemotaxis. Furthermore, single-molecule imaging analysis showed that the activated Gα subunit forms an unconventional complex with the agonist-bound receptor. This complex formation of GPCR-Gα increased the membrane-binding time of individual Gα molecules and therefore resulted in the local accumulation of Gα. Our findings provide an additional chemotactic dynamic range mechanism in which multiple G protein dynamics positively contribute to the production of gradient information.
Collapse
Affiliation(s)
- Yukihiro Miyanaga
- Laboratory for Single Molecular Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, 565-0874, Japan
| | - Hidekazu Kuwayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Peter N Devreotes
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., 114 WBSB, Baltimore, MD, 21205, USA
| | - Masahiro Ueda
- Laboratory for Single Molecular Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan; Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, 565-0874, Japan.
| |
Collapse
|
15
|
Structural basis of Gip1 for cytosolic sequestration of G protein in wide-range chemotaxis. Nat Commun 2018; 9:4635. [PMID: 30401901 PMCID: PMC6219514 DOI: 10.1038/s41467-018-07035-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022] Open
Abstract
G protein interacting protein 1 (Gip1) binds and sequesters heterotrimeric G proteins in the cytosolic pool, thus regulating G protein-coupled receptor (GPCR) signalling for eukaryotic chemotaxis. Here, we report the underlying structural basis of Gip1 function. The crystal structure reveals that the region of Gip1 that binds to the G protein has a cylinder-like fold with a central hydrophobic cavity composed of six α-helices. Mutagenesis and biochemical analyses indicate that the hydrophobic cavity and the hydrogen bond network at the entrance of the cavity are essential for complex formation with the geranylgeranyl modification on the Gγ subunit. Mutations of the cavity impair G protein sequestration and translocation to the membrane from the cytosol upon receptor stimulation, leading to defects in chemotaxis at higher chemoattractant concentrations. These results demonstrate that the Gip1-dependent regulation of G protein shuttling ensures wide-range gradient sensing in eukaryotic chemotaxis. Gip1 sequesters heterotrimeric G proteins in the cytosolic pool which regulates G protein-coupled receptor signalling for eukaryotic chemotaxis. Here the authors provide the crystal structure of Gip1's G protein-binding region and show that mutations in this region lead to G protein sequestration and ultimately chemotaxis defects.
Collapse
|
16
|
Tariqul Islam AFM, Yue H, Scavello M, Haldeman P, Rappel WJ, Charest PG. The cAMP-induced G protein subunits dissociation monitored in live Dictyostelium cells by BRET reveals two activation rates, a positive effect of caffeine and potential role of microtubules. Cell Signal 2018; 48:25-37. [PMID: 29698704 DOI: 10.1016/j.cellsig.2018.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/17/2018] [Accepted: 04/22/2018] [Indexed: 02/01/2023]
Abstract
To study the dynamics and mechanisms controlling activation of the heterotrimeric G protein Gα2βγ in Dictyostelium in response to stimulation by the chemoattractant cyclic AMP (cAMP), we monitored the G protein subunit interaction in live cells using bioluminescence resonance energy transfer (BRET). We found that cAMP induces the cAR1-mediated dissociation of the G protein subunits to a similar extent in both undifferentiated and differentiated cells, suggesting that only a small number of cAR1 (as expressed in undifferentiated cells) is necessary to induce the full activation of Gα2βγ. In addition, we found that treating cells with caffeine increases the potency of cAMP-induced Gα2βγ activation; and that disrupting the microtubule network but not F-actin inhibits the cAMP-induced dissociation of Gα2βγ. Thus, microtubules are necessary for efficient cAR1-mediated activation of the heterotrimeric G protein. Finally, kinetics analyses of Gα2βγ subunit dissociation induced by different cAMP concentrations indicate that there are two distinct rates at which the heterotrimeric G protein subunits dissociate when cells are stimulated with cAMP concentrations above 500 nM versus only one rate at lower cAMP concentrations. Quantitative modeling suggests that the kinetics profile of Gα2βγ subunit dissociation results from the presence of both uncoupled and G protein pre-coupled cAR1 that have differential affinities for cAMP and, consequently, induce G protein subunit dissociation through different rates. We suggest that these different signaling kinetic profiles may play an important role in initial chemoattractant gradient sensing.
Collapse
Affiliation(s)
- A F M Tariqul Islam
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Haicen Yue
- Department of Physics, University of California-San Diego, La Jolla, CA 92093, USA
| | - Margarethakay Scavello
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Pearce Haldeman
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA; Division of Biology and Biological Engineering, Joint Center for Transitional Medicine, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California-San Diego, La Jolla, CA 92093, USA
| | - Pascale G Charest
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA.
| |
Collapse
|
17
|
Tanabe Y, Kamimura Y, Ueda M. Parallel signaling pathways regulate excitable dynamics differently for pseudopod formation in eukaryotic chemotaxis. J Cell Sci 2018; 131:jcs.214775. [DOI: 10.1242/jcs.214775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
In eukaryotic chemotaxis, parallel signaling pathways regulate the spatiotemporal pseudopod dynamics at the leading edge of a motile cell through characteristic dynamics of an excitable system; however, differences in the excitability and the physiological roles of individual pathways remain to be elucidated. Here we found that two different pathways, soluble guanylyl cyclase (sGC) and phosphatidylinositol 3-kinase (PI3K), exhibited similar all-or-none responses but different refractory periods by simultaneous observations of their excitable properties. Due to the shorter refractory period, sGC signaling responded more frequently to chemoattractants, leading to pseudopod formation with higher frequency. sGC excitability was regulated negatively by its product, cGMP, and cGMP-binding protein C (GbpC) through the suppression of F-actin polymerization, providing the underlying delayed negative feedback mechanism for the cyclical pseudopod formation. These results suggest that parallel pathways respond on different time-scales to environmental cues for chemotactic motility based on their intrinsic excitability. Key words: cGMP signaling, chemotaxis, excitability, pseudopod formation
Collapse
Affiliation(s)
- Yuki Tanabe
- Laboratory of Single Molecular Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
| | - Masahiro Ueda
- Laboratory of Single Molecular Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
GPCR-controlled membrane recruitment of negative regulator C2GAP1 locally inhibits Ras signaling for adaptation and long-range chemotaxis. Proc Natl Acad Sci U S A 2017; 114:E10092-E10101. [PMID: 29109256 DOI: 10.1073/pnas.1703208114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Eukaryotic cells chemotax in a wide range of chemoattractant concentration gradients, and thus need inhibitory processes that terminate cell responses to reach adaptation while maintaining sensitivity to higher-concentration stimuli. However, the molecular mechanisms underlying inhibitory processes are still poorly understood. Here, we reveal a locally controlled inhibitory process in a GPCR-mediated signaling network for chemotaxis in Dictyostelium discoideum We identified a negative regulator of Ras signaling, C2GAP1, which localizes at the leading edge of chemotaxing cells and is activated by and essential for GPCR-mediated Ras signaling. We show that both C2 and GAP domains are required for the membrane targeting of C2GAP1, and that GPCR-triggered Ras activation is necessary to recruit C2GAP1 from the cytosol and retains it on the membrane to locally inhibit Ras signaling. C2GAP1-deficient c2gapA- cells have altered Ras activation that results in impaired gradient sensing, excessive polymerization of F actin, and subsequent defective chemotaxis. Remarkably, these cellular defects of c2gapA- cells are chemoattractant concentration dependent. Thus, we have uncovered an inhibitory mechanism required for adaptation and long-range chemotaxis.
Collapse
|
19
|
Iida T, Iwata Y, Mohri T, Baba SA, Hirohashi N. A coordinated sequence of distinct flagellar waveforms enables a sharp flagellar turn mediated by squid sperm pH-taxis. Sci Rep 2017; 7:12938. [PMID: 29021593 PMCID: PMC5636881 DOI: 10.1038/s41598-017-13406-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/22/2017] [Indexed: 11/20/2022] Open
Abstract
Animal spermatozoa navigate by sensing ambient chemicals to reach the site of fertilization. Generally, such chemicals derive from the female reproductive organs or cells. Exceptionally, squid spermatozoa mutually release and perceive carbon dioxide to form clusters after ejaculation. We previously identified the pH-taxis by which each spermatozoon can execute a sharp turn, but how flagellar dynamics enable this movement remains unknown. Here, we show that initiation of the turn motion requires a swim down a steep proton gradient (a theoretical estimation of ≥0.025 pH/s), crossing a threshold pH value of ~5.5. Time-resolved kinematic analysis revealed that the turn sequence results from the rhythmic exercise of two flagellar motions: a stereotypical flagellar ‘bent-cane’ shape followed by asymmetric wave propagation, which enables a sharp turn in the realm of low Reynolds numbers. This turning episode is terminated by an ‘overshoot’ trajectory that differs from either straight-line motility or turning. As with bidirectional pH-taxes in some bacteria, squid spermatozoa also showed repulsion from strong acid conditions with similar flagellar kinematics as in positive pH-taxis. These findings indicate that squid spermatozoa might have a unique reorientation mechanism, which could be dissimilar to that of classical egg-guided sperm chemotaxis in other marine invertebrates.
Collapse
Affiliation(s)
- Tomohiro Iida
- Oki Marine Biological Station, Education and Research Center for Biological Resources, Shimane University, 194 Kamo, Okinoshima-cho, Oki, Shimane, 685-0024, Japan
| | - Yoko Iwata
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan
| | - Tatsuma Mohri
- Section of Individual Researches, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho Okazaki, 444-8787, Japan
| | - Shoji A Baba
- Ochanomizu University, 2-2-1 Otsuka, Tokyo, 112-8610, Japan
| | - Noritaka Hirohashi
- Oki Marine Biological Station, Education and Research Center for Biological Resources, Shimane University, 194 Kamo, Okinoshima-cho, Oki, Shimane, 685-0024, Japan.
| |
Collapse
|
20
|
|