1
|
Ito J, Miyake K, Chiba T, Takahashi K, Uchida Y, Blackshear PJ, Asahara H, Karasuyama H. Tristetraprolin-mediated mRNA destabilization regulates basophil inflammatory responses. Allergol Int 2025; 74:263-273. [PMID: 39550253 DOI: 10.1016/j.alit.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/01/2024] [Accepted: 10/19/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Basophils, despite being the least common granulocytes, play crucial roles in type 2 immune responses, such as chronic allergic inflammation and protective immunity against parasites. However, the molecular mechanisms regulating basophil activation and inflammatory molecule production remain poorly understood. Therefore, we investigated the role of RNA-binding proteins, specifically tristetraprolin (TTP), in regulating inflammatory molecule production in basophils. METHODS Using antigen/IgE-stimulated basophils from wild-type (WT) and TTP-knockout (TTP-KO) mice, we performed bulk RNA sequencing, transcriptome-wide mRNA stability assays, and protein analyses. We also examined mRNA expression and protein production of inflammatory molecules in TTP-KO basophils under stimulation with IL-33 or LPS. Furthermore, we evaluated the in vivo significance of TTP in basophils using basophil-specific TTP-deficient mice and a hapten oxazolone-induced atopic dermatitis model. RESULTS TTP expression was upregulated in basophils following stimulation with antigen/IgE, IL-33, or LPS. Under these stimuli, TTP-KO basophils exhibited elevated mRNA expression of inflammatory molecules, such as Il4, Areg, Ccl3, and Cxcl2, compared to WT basophils. Transcriptome-wide mRNA stability assays revealed that TTP deficiency prolonged the mRNA half-life of these inflammatory mediators. Notably, the production of these inflammatory proteins was significantly increased in TTP-KO basophils. Moreover, basophil-specific TTP-deficient mice showed exacerbated oxazolone-induced atopic dermatitis-like skin allergic inflammation. CONCLUSIONS TTP is a key regulator of basophil activation, controlling the production of inflammatory mediators through mRNA destabilization. Our in vivo findings demonstrate that the absence of TTP in basophils significantly aggravates allergic skin inflammation, highlighting its potential as a therapeutic target for allergic diseases.
Collapse
Affiliation(s)
- Junya Ito
- Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan; Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Kensuke Miyake
- Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan.
| | - Tomoki Chiba
- Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Kazufusa Takahashi
- Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Yutaro Uchida
- Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA; Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Hajime Karasuyama
- Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Pommier A, Bleuse S, Deletang K, Varilh J, Nadaud M, Boisguerin P, Bourdin A, Taulan-Cadars M. The RNA-Binding Protein Tristetraprolin Contributes to CFTR mRNA Stability in Cystic Fibrosis. Am J Respir Cell Mol Biol 2025; 72:320-331. [PMID: 39417720 DOI: 10.1165/rcmb.2023-0209oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/17/2024] [Indexed: 10/19/2024] Open
Abstract
Cystic fibrosis (CF) is the most common inherited disorder and is characterized by an inflammatory phenotype. We found that in bronchial epithelium reconstituted form lung tissue biopsies from patients with CF, the RNA-binding protein tristetraprolin (TTP), a key regulator of inflammation, is dysregulated in cells that strongly express cytokines and ILs. TTP activity is regulated by extensive posttranslational modifications, particularly phosphorylation. We found that, in addition to mRNA downregulation, phosphorylated TTP (which cannot bind to mRNA) accumulated in CF cultures, suggesting that the imbalance in TTP phosphorylation status could contribute to the inflammatory phenotype in CF. We confirmed TTP's destabilizing role on IL8 mRNA through its 3' UTR sequence in CF cells. We next demonstrated that TTP phosphorylation is mainly regulated by MK2 through the activation of ERK, which also was hyperphosphorylated. TTP is considered a mRNA decay factor with some exception, and we present a new positive role of TTP in CF cultures. We determined that TTP binds to specific adenylate-uridylate-rich element motifs on the 3' UTR of mRNA sequences and also, for the first time to our knowledge, to the 3' UTR of the cystic fibrosis transmembrane conductance regulator (CFTR), where TTP binding stabilizes the mRNA level. This study identified new partners that can be targeted in CF and proposes a new way to control CFTR gene expression.
Collapse
Affiliation(s)
| | - Solenne Bleuse
- Université de Montpellier, and
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
| | - Karine Deletang
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
| | - Jessica Varilh
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
| | - Marion Nadaud
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
| | - Prisca Boisguerin
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
| | - Arnaud Bourdin
- Université de Montpellier, and
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
- Department of Respiratory Diseases, CHU Arnaud de Villeneuve, Montpellier, France
| | - Magali Taulan-Cadars
- Université de Montpellier, and
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; and
| |
Collapse
|
3
|
Uehara Y, Suzukawa M, Horie M, Igarashi S, Minegishi M, Takada K, Saito A, Nagase H. ZFP36 family expression is suppressed by Th2 cells in asthma, leading to enhanced synthesis of inflammatory cytokines and cell surface molecules. Cell Immunol 2024; 403-404:104859. [PMID: 39067169 DOI: 10.1016/j.cellimm.2024.104859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Asthma is a chronic inflammatory airway disease, in which inflammatory cytokines play a pivotal role. The zinc finger binding protein 36 (ZFP36) family includes ZFP36, ZFP36L1, and ZFP36L2 and is among the RNA-binding proteins (RBPs) reported to cause inflammation. The present study aimed to clarify the roles of the ZFP36 family in asthma, particularly highlighting the relationship between the ZFP36 family and Th2 cells, which are key players in type 2 inflammation in asthma. Real-time PCR analysis revealed the preferential expression of ZFP36 family mRNAs in human white blood cells. Gene expression analysis using public datasets from the GEO database (https://www.ncbi.nlm.nih.gov/gds) showed significantly suppressed expression of ZFP36 family mRNAs in patients with asthma compared to that in healthy controls. Using multiple cytokine assays, Th2 cell transfection with ZFP36 family siRNAs enhanced the expression of inflammatory cytokines IL-8, IFN-γ, CCL3/MIP-1α, CCL4/MIP-1β, and TNF-α and cell surface molecules CCR4 (CD194) and PSGL-1 (CD162). Treatment with IL-2, 4, and 15 significantly suppressed, and corticosteroid significantly enhanced the expressions of ZFP36 family mRNAs by Th2 cells. In conclusion, the ZFP36 family expressed by Th2 cells was suppressed in patients with asthma, leading to the enhanced expression of cytokines and cell surface molecules. Suppressed ZFP36 expression in asthma may be involved in the enhancement of airway inflammation, and the ZFP36 family may be a therapeutic target for inflammatory diseases, including asthma.
Collapse
Affiliation(s)
- Yuki Uehara
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo, 204-8585, Japan; Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo, 204-8585, Japan.
| | - Masafumi Horie
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Sayaka Igarashi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo, 204-8585, Japan
| | - Masaaki Minegishi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo, 204-8585, Japan
| | - Kazufumi Takada
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo, 204-8585, Japan; Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Nagase
- Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan
| |
Collapse
|
4
|
Tanaka-Yano M, Zong L, Park B, Yanai H, Tekin-Turhan F, Blackshear PJ, Beerman I. Tristetraprolin overexpression drives hematopoietic changes in young and middle-aged mice generating dominant mitigating effects on induced inflammation in murine models. GeroScience 2024; 46:1271-1284. [PMID: 37535204 PMCID: PMC10828162 DOI: 10.1007/s11357-023-00879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
Tristetraprolin (TTP), encoded by Zfp36 in mice, is one of the best-characterized tandem zinc-finger mRNA binding proteins involved in mRNA deadenylation and decay. TTPΔARE mice lack an AU-rich motif in the 3'-untranslated regions of TTP mRNA, leading to increased TTP mRNA stability and more TTP protein, resulting in elevated mRNA decay rates of TTP targets. We examined the effect of TTP overexpression on the hematopoietic system in both young and middle-aged mice using TTPΔARE mice and found alterations in blood cell frequencies, with loss of platelets and B220 cells and gains of eosinophils and T cells. TTPΔARE mice also have skewed primitive populations in the bone marrow, with increases in myeloid-biased hematopoietic stem cells (HSCs) but decreases in granulocyte/macrophage-biased multipotent progenitors (MPP3) in both young and middle-aged mice. Changes in the primitive cells' frequencies were associated with transcriptional alterations in the TTP overexpression cells specific to age as well as cell type. Regardless of age, there was a consistent elevation of transcripts regulated by TNFα and TGFβ signaling pathways in both the stem and multipotent progenitor populations. HSCs with TTP overexpression had decreased reconstitution potential in murine transplants but generated hematopoietic environments that mitigated the inflammatory response to the collagen antibody-induced arthritis (CAIA) challenge, which models rheumatoid arthritis and other autoimmune disorders. This dampening of the inflammatory response was even present when there was only a small frequency of TTP overexpressing cells present in the middle-aged mice. We provide an analysis of the early hematopoietic compartments with elevated TTP expression in both young and middle-aged mice which inhibits the reconstitution potential of the HSCs but generates a hematopoietic system that provides dominant repression of induced inflammation.
Collapse
Affiliation(s)
- Mayuri Tanaka-Yano
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Le Zong
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Bongsoo Park
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Hagai Yanai
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Ferda Tekin-Turhan
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
5
|
Zhang L, Kwack KH, Thiyagarajan R, Mullaney KK, Lamb NA, Bard JE, Sohn J, Seldeen KL, Arao Y, Blackshear PJ, Abrams SI, Troen BR, Kirkwood KL. Tristetraprolin regulates the skeletal phenotype and osteoclastogenic potential through monocytic myeloid-derived suppressor cells. FASEB J 2024; 38:e23338. [PMID: 38038723 PMCID: PMC11128769 DOI: 10.1096/fj.202301703r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023]
Abstract
Tristetraprolin (TTP; also known as NUP475, GOS24, or TIS11), encoded by Zfp36, is an RNA-binding protein that regulates target gene expression by promoting mRNA decay and preventing translation. Although previous studies have indicated that TTP deficiency is associated with systemic inflammation and a catabolic-like skeletal phenotype, the mechanistic underpinnings remain unclear. Here, using both TTP-deficient (TTPKO) and myeloid-specific TTPKO (cTTPKO) mice, we reveal that global absence or loss of TTP in the myeloid compartment results in a reduced bone microarchitecture, whereas gain-of-function TTP knock-in (TTPKI) mice exhibit no significant loss of bone microarchitecture. Flow cytometry analysis revealed a significant immunosuppressive immune cell phenotype with increased monocytic myeloid-derived suppressor cells (M-MDSCs) in TTPKO and cTTPKO mice, whereas no significant changes were observed in TTPKI mice. Single-cell transcriptomic analyses of bone marrow myeloid progenitor cell populations indicated a dramatic increase in early MDSC marker genes for both cTTPKO and TTPKO bone marrow populations. Consistent with these phenotypic and transcriptomic data, in vitro osteoclastogenesis analysis of bone marrow M-MDSCs from cTTPKO and TTPKO displayed enhanced osteoclast differentiation and functional capacity. Focused transcriptomic analyses of differentiated M-MDSCs showed increased osteoclast-specific transcription factors and cell fusion gene expression. Finally, functional data showed that M-MDSCs from TTP loss-of-function mice were capable of osteoclastogenesis and bone resorption in a context-dependent manner. Collectively, these findings indicate that TTP plays a central role in regulating osteoclastogenesis through multiple mechanisms, including induction of M-MDSCs that appear to regulate skeletal phenotype.
Collapse
Affiliation(s)
| | - Kyu Hwan Kwack
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Ramkumar Thiyagarajan
- Departments of Medicine, University at Buffalo, Buffalo, NY, USA
- Division of Geriatrics and Palliative Medicine, University at Buffalo, Buffalo, NY, USA
- Research Service, Veterans Affairs Western New York Healthcare Service, Buffalo, NY, USA
| | - Kylie K. Mullaney
- Departments of Oral Biology, University at Buffalo, Buffalo, NY, USA
| | - Natalie A. Lamb
- Departments of Biochemistry, University at Buffalo, Buffalo, NY, USA
- Genomics and Bioinformatics Core, New York State Center of Excellence for Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Jonathan E. Bard
- Departments of Biochemistry, University at Buffalo, Buffalo, NY, USA
- Genomics and Bioinformatics Core, New York State Center of Excellence for Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Jiho Sohn
- Departments of Oral Biology, University at Buffalo, Buffalo, NY, USA
- Departments of Medicine, University at Buffalo, Buffalo, NY, USA
| | - Kenneth L. Seldeen
- Departments of Medicine, University at Buffalo, Buffalo, NY, USA
- Division of Geriatrics and Palliative Medicine, University at Buffalo, Buffalo, NY, USA
- Research Service, Veterans Affairs Western New York Healthcare Service, Buffalo, NY, USA
| | - Yukitomo Arao
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Perry J. Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
- Departments of Biochemistry & Medicine, Duke University Medical Center, Durham, NC, USA
| | - Scott I. Abrams
- Departments of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Bruce R. Troen
- Departments of Medicine, University at Buffalo, Buffalo, NY, USA
- Departments of Biochemistry, University at Buffalo, Buffalo, NY, USA
- Research Service, Veterans Affairs Western New York Healthcare Service, Buffalo, NY, USA
| | - Keith L. Kirkwood
- Departments of Oral Biology, University at Buffalo, Buffalo, NY, USA
- Head & Neck/Plastic & Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
6
|
Snyder BL, Huang R, Burkholder AB, Donahue DR, Mahler BW, Bortner CD, Lai WS, Blackshear PJ. Synergistic roles of tristetraprolin family members in myeloid cells in the control of inflammation. Life Sci Alliance 2024; 7:e202302222. [PMID: 37903626 PMCID: PMC10616675 DOI: 10.26508/lsa.202302222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023] Open
Abstract
Members of the tristetraprolin (TTP) family of RNA-binding proteins can bind to and promote the decay of specific transcripts containing AU-rich motifs. ZFP36 (TTP) is best known for regulating pro-inflammatory cytokine expression in myeloid cells; however, its mammalian paralogues ZFP36L1 and ZFP36L2 have not been viewed as important in controlling inflammation. We knocked out these genes in myeloid cells in mice, singly and together. Single-gene myeloid-specific knockouts resulted in almost no spontaneous phenotypes. In contrast, mice with myeloid cell deficiency of all three genes developed severe inflammation, with a median survival of 8 wk. Macrophages from these mice expressed many more stabilized transcripts than cells from myeloid-specific TTP knockout mice; many of these encoded pro-inflammatory cytokines and chemokines. The failure of weight gain, arthritis, and early death could be prevented completely by two normal alleles of any of the three paralogues, and even one normal allele of Zfp36 or Zfp36l2 was enough to prevent the inflammatory phenotype. Our findings emphasize the importance of all three family members, acting in concert, in myeloid cell function.
Collapse
Affiliation(s)
- Brittany L Snyder
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Rui Huang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Adam B Burkholder
- Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
| | - Danielle R Donahue
- NIH Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Beth W Mahler
- Experimental Pathology Laboratories, Inc., Research Triangle Park, Durham, NC, USA
| | - Carl D Bortner
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
| | - Wi S Lai
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
7
|
Sachse M, Tual-Chalot S, Ciliberti G, Amponsah-Offeh M, Stamatelopoulos K, Gatsiou A, Stellos K. RNA-binding proteins in vascular inflammation and atherosclerosis. Atherosclerosis 2023; 374:55-73. [PMID: 36759270 DOI: 10.1016/j.atherosclerosis.2023.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/01/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains the major cause of premature death and disability worldwide, even when patients with an established manifestation of atherosclerotic heart disease are optimally treated according to the clinical guidelines. Apart from the epigenetic control of transcription of the genetic information to messenger RNAs (mRNAs), gene expression is tightly controlled at the post-transcriptional level before the initiation of translation. Although mRNAs are traditionally perceived as the messenger molecules that bring genetic information from the nuclear DNA to the cytoplasmic ribosomes for protein synthesis, emerging evidence suggests that processes controlling RNA metabolism, driven by RNA-binding proteins (RBPs), affect cellular function in health and disease. Over the recent years, vascular endothelial cell, smooth muscle cell and immune cell RBPs have emerged as key co- or post-transcriptional regulators of several genes related to vascular inflammation and atherosclerosis. In this review, we provide an overview of cell-specific function of RNA-binding proteins involved in all stages of ASCVD and how this knowledge may be used for the development of novel precision medicine therapeutics.
Collapse
Affiliation(s)
- Marco Sachse
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Cardiovascular Surgery, University Heart Center, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| | - Giorgia Ciliberti
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Heidelberg/Mannheim Partner Site, Mannheim, Germany
| | - Michael Amponsah-Offeh
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Heidelberg/Mannheim Partner Site, Mannheim, Germany
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Aikaterini Gatsiou
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Konstantinos Stellos
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Heidelberg/Mannheim Partner Site, Mannheim, Germany; Department of Cardiology, University Hospital Mannheim, Heidelberg University, Manheim, Germany.
| |
Collapse
|
8
|
Cicchetto AC, Jacobson EC, Sunshine H, Wilde BR, Krall AS, Jarrett KE, Sedgeman L, Turner M, Plath K, Iruela-Arispe ML, de Aguiar Vallim TQ, Christofk HR. ZFP36-mediated mRNA decay regulates metabolism. Cell Rep 2023; 42:112411. [PMID: 37086408 PMCID: PMC10332406 DOI: 10.1016/j.celrep.2023.112411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023] Open
Abstract
Cellular metabolism is tightly regulated by growth factor signaling, which promotes metabolic rewiring to support growth and proliferation. While growth factor-induced transcriptional and post-translational modes of metabolic regulation have been well defined, whether post-transcriptional mechanisms impacting mRNA stability regulate this process is less clear. Here, we present the ZFP36/L1/L2 family of RNA-binding proteins and mRNA decay factors as key drivers of metabolic regulation downstream of acute growth factor signaling. We quantitatively catalog metabolic enzyme and nutrient transporter mRNAs directly bound by ZFP36 following growth factor stimulation-many of which encode rate-limiting steps in metabolic pathways. Further, we show that ZFP36 directly promotes the mRNA decay of Enolase 2 (Eno2), altering Eno2 protein expression and enzymatic activity, and provide evidence of a ZFP36/Eno2 axis during VEGF-stimulated developmental retinal angiogenesis. Thus, ZFP36-mediated mRNA decay serves as an important mode of metabolic regulation downstream of growth factor signaling within dynamic cell and tissue states.
Collapse
Affiliation(s)
- Andrew C Cicchetto
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Elsie C Jacobson
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Hannah Sunshine
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Blake R Wilde
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Abigail S Krall
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Kelsey E Jarrett
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | - Leslie Sedgeman
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Kathrin Plath
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - M Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Thomas Q de Aguiar Vallim
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Heather R Christofk
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
9
|
He S, Valkov E, Cheloufi S, Murn J. The nexus between RNA-binding proteins and their effectors. Nat Rev Genet 2023; 24:276-294. [PMID: 36418462 DOI: 10.1038/s41576-022-00550-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/25/2022]
Abstract
RNA-binding proteins (RBPs) regulate essentially every event in the lifetime of an RNA molecule, from its production to its destruction. Whereas much has been learned about RNA sequence specificity and general functions of individual RBPs, the ways in which numerous RBPs instruct a much smaller number of effector molecules, that is, the core engines of RNA processing, as to where, when and how to act remain largely speculative. Here, we survey the known modes of communication between RBPs and their effectors with a particular focus on converging RBP-effector interactions and their roles in reducing the complexity of RNA networks. We discern the emerging unifying principles and discuss their utility in our understanding of RBP function, regulation of biological processes and contribution to human disease.
Collapse
Affiliation(s)
- Shiyang He
- Department of Biochemistry, University of California, Riverside, CA, USA
- Center for RNA Biology and Medicine, Riverside, CA, USA
| | - Eugene Valkov
- RNA Biology Laboratory & Center for Structural Biology, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, USA
| | - Sihem Cheloufi
- Department of Biochemistry, University of California, Riverside, CA, USA.
- Center for RNA Biology and Medicine, Riverside, CA, USA.
- Stem Cell Center, University of California, Riverside, CA, USA.
| | - Jernej Murn
- Department of Biochemistry, University of California, Riverside, CA, USA.
- Center for RNA Biology and Medicine, Riverside, CA, USA.
| |
Collapse
|
10
|
Guha A, Husain MA, Si Y, Nabors LB, Filippova N, Promer G, Smith R, King PH. RNA regulation of inflammatory responses in glia and its potential as a therapeutic target in central nervous system disorders. Glia 2023; 71:485-508. [PMID: 36380708 DOI: 10.1002/glia.24288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
Abstract
A major hallmark of neuroinflammation is the activation of microglia and astrocytes with the induction of inflammatory mediators such as IL-1β, TNF-α, iNOS, and IL-6. Neuroinflammation contributes to disease progression in a plethora of neurological disorders ranging from acute CNS trauma to chronic neurodegenerative disease. Posttranscriptional pathways of mRNA stability and translational efficiency are major drivers for the expression of these inflammatory mediators. A common element in this level of regulation centers around the adenine- and uridine-rich element (ARE) which is present in the 3' untranslated region (UTR) of the mRNAs encoding these inflammatory mediators. (ARE)-binding proteins (AUBPs) such as Human antigen R (HuR), Tristetraprolin (TTP) and KH- type splicing regulatory protein (KSRP) are key nodes for directing these posttranscriptional pathways and either promote (HuR) or suppress (TTP and KSRP) glial production of inflammatory mediators. This review will discuss basic concepts of ARE-mediated RNA regulation and its impact on glial-driven neuroinflammatory diseases. We will discuss strategies to target this novel level of gene regulation for therapeutic effect and review exciting preliminary studies that underscore its potential for treating neurological disorders.
Collapse
Affiliation(s)
- Abhishek Guha
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mohammed Amir Husain
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ying Si
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - L Burt Nabors
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Natalia Filippova
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Grace Promer
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Reed Smith
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter H King
- Department Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Department of Veterans Health Care System, Birmingham, Alabama, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
11
|
RBP-RNA interactions in the control of autoimmunity and autoinflammation. Cell Res 2023; 33:97-115. [PMID: 36599968 PMCID: PMC9892603 DOI: 10.1038/s41422-022-00752-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/07/2022] [Indexed: 01/06/2023] Open
Abstract
Autoimmunity and autoinflammation arise from aberrant immunological and inflammatory responses toward self-components, contributing to various autoimmune diseases and autoinflammatory diseases. RNA-binding proteins (RBPs) are essential for immune cell development and function, mainly via exerting post-transcriptional regulation of RNA metabolism and function. Functional dysregulation of RBPs and abnormities in RNA metabolism are closely associated with multiple autoimmune or autoinflammatory disorders. Distinct RBPs play critical roles in aberrant autoreactive inflammatory responses via orchestrating a complex regulatory network consisting of DNAs, RNAs and proteins within immune cells. In-depth characterizations of RBP-RNA interactomes during autoimmunity and autoinflammation will lead to a better understanding of autoimmune pathogenesis and facilitate the development of effective therapeutic strategies. In this review, we summarize and discuss the functions of RBP-RNA interactions in controlling aberrant autoimmune inflammation and their potential as biomarkers and therapeutic targets.
Collapse
|
12
|
Chen J, Patial S, Saini Y. Silencing of RNA binding protein, ZFP36L1, promotes epithelial-mesenchymal transition in liver cancer cells by regulating transcription factor ZEB2. Cell Signal 2022; 100:110462. [PMID: 36100056 DOI: 10.1016/j.cellsig.2022.110462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/13/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022]
Abstract
RNA binding proteins (RBPs) of the zinc finger protein 36 family including zinc finger protein 36 like 1 (ZFP36L1) are implicated in cancer, however, the underlying molecular mechanisms have remained unclear. These proteins function by regulating post-transcriptional gene expression upon binding to the AU-rich elements (ARE's) within the 3'untranslated regions (3'UTRs) of specific mRNAs and increasing their mRNA turnover. Here, we tested the role of ZFP36L1 in hepatocellular carcinoma (HCC) cell lines. ZFP36L1 was under-expressed among the three RBPs in a majority of the HCC cell lines. Silencing of ZFP36L1 in two of the seven HCC cell lines resulted in epithelial-mesenchymal transition (EMT) like morphological changes, which were characterized by the transition of epithelial morphology to elongated mesenchymal morphology and increased migration and invasion potential. Conversely, overexpression of ZFP36L1 abolished these changes. RNA-seq analysis of ZFP36L1-depleted HCC cells revealed a significant upregulation of an EMT-inducing transcription factor, ZEB2 (zinc-finger E-box-binding homeobox 2), and enrichment of pathways associated with mesenchymal cell development and differentiation. ZEB2 mRNA contains AREs within its 3'UTR and its stability was increased following ZFP36L1 knockdown. Conversely, ZEB2 was significantly downregulated following ZFP36L1 overexpression and ZEB2 3'UTR was regulated by ZFP36L1 in luciferase reporter assays. These data identify ZEB2 mRNA as a ZFP36L1 target in HCC cells and demonstrate that ZFP36L1 regulates EMT possibly through direct regulation of ZEB2 mRNA. In summary, our results demonstrate that ZFP36L1 suppresses EMT inliver cancer cells by down-regulating the expression of EMT-inducing transcription factor, ZEB2. These data suggest an important role of ZFP36L1 in the development, progression, and metastasis of hepatocellular cancer.
Collapse
Affiliation(s)
- Jian Chen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Sonika Patial
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States of America.
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States of America.
| |
Collapse
|
13
|
Roles of RNA-binding proteins in immune diseases and cancer. Semin Cancer Biol 2022; 86:310-324. [PMID: 35351611 DOI: 10.1016/j.semcancer.2022.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023]
Abstract
Genetic information that is transcribed from DNA to mRNA, and then translated from mRNA to protein, is regulated by complex and sophisticated post-transcriptional mechanisms. Recently, it has become clear that mRNA degradation not only acts to remove unnecessary mRNA, but is also closely associated with the regulation of translation initiation, and is essential for maintaining cellular homeostasis. Various RNA-binding proteins (RBPs) have been reported to play central roles in the mechanisms of mRNA stability and translation initiation through various signal transduction pathways, and to modulate gene expression faster than the transcription process via post-transcriptional modifications in response to intracellular and extracellular stimuli, without de novo protein synthesis. On the other hand, inflammation is necessary for the elimination of pathogens associated with infection, and is tightly controlled to avoid the overexpression of inflammatory cytokines, such as interleukin 6 (IL-6) and tumor necrosis factor (TNF). It is increasingly becoming clear that RBPs play important roles in the post-transcriptional regulation of these immune responses. Furthermore, it has been shown that the aberrant regulation of RBPs leads to chronic inflammation and autoimmune diseases. Although it has been recognized since the time of Rudolf Virchow in the 19th century that cancer-associated inflammation contributes to tumor onset and progression, involvement of the disruption of the balance between anti-tumor immunity via the immune surveillance system and pro-tumor immunity by cancer-associated inflammation in the malignant transformation of cancer remains elusive. Recently, the dysregulated expression and activation of representative RBPs involved in regulation of the production of pro-inflammatory cytokines have been shown to be involved in tumor progression. In this review, we summarize the recent progress in our understanding of the functional roles of these RBPs in several types of immune responses, and the involvement of RBP dysregulation in the pathogenesis of immune diseases and cancer, and discuss possible therapeutic strategies against cancer by targeting RBPs, coupled with immunotherapy.
Collapse
|
14
|
Snyder BL, Blackshear PJ. Clinical implications of tristetraprolin (TTP) modulation in the treatment of inflammatory diseases. Pharmacol Ther 2022; 239:108198. [PMID: 35525391 PMCID: PMC9636069 DOI: 10.1016/j.pharmthera.2022.108198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022]
Abstract
Abnormal regulation of pro-inflammatory cytokine and chemokine mediators can contribute to the excess inflammation characteristic of many autoimmune diseases, such as rheumatoid arthritis, psoriasis, Crohn's disease, type 1 diabetes, and many others. The tristetraprolin (TTP) family consists of a small group of related RNA-binding proteins that bind to preferred AU-rich binding sites within the 3'-untranslated regions of specific mRNAs to promote mRNA deadenylation and decay. TTP deficient mice develop a severe systemic inflammatory syndrome consisting of arthritis, myeloid hyperplasia, dermatitis, autoimmunity and cachexia, due at least in part to the excess accumulation of proinflammatory chemokine and cytokine mRNAs and their encoded proteins. To investigate the possibility that increased TTP expression or activity might have a beneficial effect on inflammatory diseases, at least two mouse models have been developed that provide proof of principle that increasing TTP activity can promote the decay of pro-inflammatory and other relevant transcripts, and decrease the severity of mouse models of inflammatory disease. Animal studies of this type are summarized here, and we briefly review the prospects for harnessing these insights for the development of TTP-based anti-inflammatory treatments in humans.
Collapse
Affiliation(s)
- Brittany L Snyder
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States of America; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States of America; Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States of America; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, United States of America.
| |
Collapse
|
15
|
Kwack KH, Zhang L, Kramer ED, Thiyagarajan R, Lamb NA, Arao Y, Bard JE, Seldeen KL, Troen BR, Blackshear PJ, Abrams SI, Kirkwood KL. Tristetraprolin limits age-related expansion of myeloid-derived suppressor cells. Front Immunol 2022; 13:1002163. [PMID: 36263047 PMCID: PMC9573970 DOI: 10.3389/fimmu.2022.1002163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Aging results in enhanced myelopoiesis, which is associated with an increased prevalence of myeloid leukemias and the production of myeloid-derived suppressor cells (MDSCs). Tristetraprolin (TTP) is an RNA binding protein that regulates immune-related cytokines and chemokines by destabilizing target mRNAs. As TTP expression is known to decrease with age in myeloid cells, we used TTP-deficient (TTPKO) mice to model aged mice to study TTP regulation in age-related myelopoiesis. Both TTPKO and myeloid-specific TTPKO (cTTPKO) mice had significant increases in both MDSC subpopulations M-MDSCs (CD11b+Ly6ChiLy6G-) and PMN-MDSCs (CD11b+Ly6CloLy6G+), as well as macrophages (CD11b+F4/80+) in the spleen and mesenteric lymph nodes; however, no quantitative changes in MDSCs were observed in the bone marrow. In contrast, gain-of-function TTP knock-in (TTPKI) mice had no change in MDSCs compared with control mice. Within the bone marrow, total granulocyte-monocyte progenitors (GMPs) and monocyte progenitors (MPs), direct antecedents of M-MDSCs, were significantly increased in both cTTPKO and TTPKO mice, but granulocyte progenitors (GPs) were significantly increased only in TTPKO mice. Transcriptomic analysis of the bone marrow myeloid cell populations revealed that the expression of CC chemokine receptor 2 (CCR2), which plays a key role in monocyte mobilization to inflammatory sites, was dramatically increased in both cTTPKO and TTPKO mice. Concurrently, the concentration of CC chemokine ligand 2 (CCL2), a major ligand of CCR2, was high in the serum of cTTPKO and TTPKO mice, suggesting that TTP impacts the mobilization of M-MDSCs from the bone marrow to inflammatory sites during aging via regulation of the CCR2-CCL2 axis. Collectively, these studies demonstrate a previously unrecognized role for TTP in regulating age-associated myelopoiesis through the expansion of specific myeloid progenitors and M-MDSCs and their recruitment to sites of injury, inflammation, or other pathologic perturbations.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Lixia Zhang
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Elliot D. Kramer
- Department of Medicine, University at Buffalo, Buffalo, NY, United States
- Departments of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Ramkumar Thiyagarajan
- Department of Medicine, University at Buffalo, Buffalo, NY, United States
- Division of Geriatrics and Palliative Medicine, University at Buffalo, Buffalo, NY, United States
- Research Service, Veterans Affairs Western New York Healthcare Service, Buffalo, NY, United States
| | - Natalie A. Lamb
- Department of Biochemistry, University at Buffalo, Buffalo, NY, United States
- Genomics and Bioinformatics Core, New York State Center of Excellence for Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Yukitomo Arao
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Jonathan E. Bard
- Department of Biochemistry, University at Buffalo, Buffalo, NY, United States
- Genomics and Bioinformatics Core, New York State Center of Excellence for Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Kenneth L. Seldeen
- Department of Medicine, University at Buffalo, Buffalo, NY, United States
- Division of Geriatrics and Palliative Medicine, University at Buffalo, Buffalo, NY, United States
- Research Service, Veterans Affairs Western New York Healthcare Service, Buffalo, NY, United States
| | - Bruce R. Troen
- Department of Medicine, University at Buffalo, Buffalo, NY, United States
- Division of Geriatrics and Palliative Medicine, University at Buffalo, Buffalo, NY, United States
- Research Service, Veterans Affairs Western New York Healthcare Service, Buffalo, NY, United States
| | - Perry J. Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
- Departments of Biochemistry & Medicine, Duke University Medical Center, Durham, NC, United States
| | - Scott I. Abrams
- Departments of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Keith L. Kirkwood
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
- Head & Neck/Plastic & Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
16
|
Basiri R, Spicer M, Levenson C, Ledermann T, Akhavan N, Arjmandi B. Improving Dietary Intake of Essential Nutrients Can Ameliorate Inflammation in Patients with Diabetic Foot Ulcers. Nutrients 2022; 14:nu14122393. [PMID: 35745123 PMCID: PMC9228459 DOI: 10.3390/nu14122393] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are classified as chronic wounds and are one of the most common complications of diabetes. In chronic wounds, management of inflammation is a key step in treatment. Nutrition plays an important role in managing and controlling inflammation. This study evaluated the effects of nutrition supplementation and education on inflammatory biomarkers in patients with DFUs. Eligible patients with foot ulcers were randomly assigned to either a treatment (n = 15) or control group (n = 14). Both groups received standard care for wound treatment from the clinic; however, the treatment group was also provided with nutritional supplementation and education. Plasma concentrations of inflammatory biomarkers, namely C-reactive protein (CRP), interleukin 6 (IL6), interleukin 10 (IL10), and tristetraprolin (TTP), were evaluated at baseline and every four weeks, until complete wound closure had occurred or up to 12 weeks. The mean plasma concentration of IL6 significantly decreased in the treatment group (p = 0.001). The interaction between time and group was not statistically significant for the mean plasma concentrations of CRP, IL10, and TTP during the 12 weeks of the study. The results of this study showed the positive effects of nutritional intervention on controlling inflammation in DFU patients. More clinical trials with a larger population and longer duration of time are needed to confirm our results.
Collapse
Affiliation(s)
- Raedeh Basiri
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; (M.S.); (N.A.); (B.A.)
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32306, USA
- Correspondence:
| | - Maria Spicer
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; (M.S.); (N.A.); (B.A.)
| | - Cathy Levenson
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA;
| | - Thomas Ledermann
- Department of Family and Child Sciences, Florida State University, Tallahassee, FL 32306, USA;
| | - Neda Akhavan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; (M.S.); (N.A.); (B.A.)
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32306, USA
| | - Bahram Arjmandi
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; (M.S.); (N.A.); (B.A.)
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
17
|
Lecoutre S, Merabtene F, El Hachem EJ, Gamblin C, Rouault C, Sokolovska N, Soula H, Lai WS, Blackshear PJ, Clément K, Dugail I. Beta-hydroxybutyrate dampens adipose progenitors' profibrotic activation through canonical Tgfβ signaling and non-canonical ZFP36-dependent mechanisms. Mol Metab 2022; 61:101512. [PMID: 35550189 PMCID: PMC9123279 DOI: 10.1016/j.molmet.2022.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND/PURPOSE Adipose tissue contains progenitor cells that contribute to beneficial tissue expansion when needed by de novo adipocyte formation (classical white or beige fat cells with thermogenic potential). However, in chronic obesity, they can exhibit an activated pro-fibrotic, extracellular matrix (ECM)-depositing phenotype that highly aggravates obesity-related adipose tissue dysfunction. METHODS Given that progenitors' fibrotic activation and fat cell browning appear to be antagonistic cell fates, we have examined the anti-fibrotic potential of pro-browning agents in an obesogenic condition. RESULTS In obese mice fed a high fat diet, thermoneutral housing, which induces brown fat cell dormancy, increases the expression of ECM gene programs compared to conventionally raised animals, indicating aggravation of obesity-related tissue fibrosis at thermoneutrality. In a model of primary cultured murine adipose progenitors, we found that exposure to β-hydroxybutyrate selectively reduced Tgfβ-dependent profibrotic responses of ECM genes like Ctgf, Loxl2 and Fn1. This effect is observed in both subcutaneous and visceral-derived adipose progenitors, as well as in 3T3-L1 fibroblasts. In 30 patients with obesity eligible for bariatric surgery, those with higher circulating β-hydroxybutyrate levels have lower subcutaneous adipose tissue fibrotic scores. Mechanistically, β-hydroxybutyrate limits Tgfβ-dependent collagen accumulation and reduces Smad2-3 protein expression and phosphorylation in visceral progenitors. Moreover, β-hydroxybutyrate induces the expression of the ZFP36 gene, encoding a post-transcriptional regulator that promotes the degradation of mRNA by binding to AU-rich sites within 3'UTRs. Importantly, complete ZFP36 deficiency in a mouse embryonic fibroblast line from null mice, or siRNA knock-down in primary progenitors, indicate that ZFP36 is required for β-hydroxybutyrate anti-fibrotic effects. CONCLUSION These data unravel the potential of β-hydroxybutyrate to limit adipose tissue matrix deposition, a finding that might exploited in an obesogenic context.
Collapse
Affiliation(s)
- Simon Lecoutre
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approach research group, Nutriomics, Paris F-75013. France
| | - Fatiha Merabtene
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approach research group, Nutriomics, Paris F-75013. France
| | - Elie-Julien El Hachem
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approach research group, Nutriomics, Paris F-75013. France
| | - Camille Gamblin
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approach research group, Nutriomics, Paris F-75013. France
| | - Christine Rouault
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approach research group, Nutriomics, Paris F-75013. France
| | - Nataliya Sokolovska
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approach research group, Nutriomics, Paris F-75013. France
| | - Hedi Soula
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approach research group, Nutriomics, Paris F-75013. France
| | | | | | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approach research group, Nutriomics, Paris F-75013. France,Assistance Publique-Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, Paris 75013. France
| | - Isabelle Dugail
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approach research group, Nutriomics, Paris F-75013. France,Corresponding author.
| |
Collapse
|
18
|
Bathula CS, Chen J, Kumar R, Blackshear PJ, Saini Y, Patial S. ZFP36L1 Regulates Fgf21 mRNA Turnover and Modulates Alcoholic Hepatic Steatosis and Inflammation in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:208-225. [PMID: 34774847 PMCID: PMC8908057 DOI: 10.1016/j.ajpath.2021.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 02/03/2023]
Abstract
Zinc finger protein 36 like 1 (ZFP36L1) enhances the turnover of mRNAs containing AU-rich elements (AREs) in their 3'-untranslated regions (3'UTR). The physiological and pathological functions of ZFP36L1 in liver, however, remain largely unknown. Liver-specific ZFP36L1-deficient (Zfp36l1flox/flox/Cre+; L1LKO) mice were generated to investigate the role of ZFP36L1 in liver physiology and pathology. Under normal conditions, the L1LKO mice and their littermate controls (Zfp36l1flox/flox/Cre-; L1FLX) appeared normal. When fed a Lieber-DeCarli liquid diet containing alcohol, L1LKO mice were significantly protected from developing alcohol-induced hepatic steatosis, injury, and inflammation compared with L1FLX mice. Most importantly, fibroblast growth factor 21 (Fgf21) mRNA was significantly increased in the livers of alcohol diet-fed L1LKO mice compared with the alcohol diet-fed L1FLX group. The Fgf21 mRNA contains three AREs in its 3'UTR, and Fgf21 3'UTR was directly regulated by ZFP36L1 in luciferase reporter assays. Steady-state levels of Fgf21 mRNA were significantly decreased by wild-type ZFP36L1, but not by a non-binding zinc finger ZFP36L1 mutant. Finally, wild-type ZFP36L1, but not the ZFP36L1 mutant, bound to the Fgf21 3'UTR ARE RNA probe. These results demonstrate that ZFP36L1 inactivation protects against alcohol-induced hepatic steatosis and liver injury and inflammation, possibly by stabilizing Fgf21 mRNA. These findings suggest that the modulation of ZFP36L1 may be beneficial in the prevention or treatment of human alcoholic liver disease.
Collapse
Affiliation(s)
- Chandra S. Bathula
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Jian Chen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Rahul Kumar
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Perry J. Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Sonika Patial
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana,Address correspondence to Sonika Patial, D.V.M., Ph.D., D.A.C.V.P., Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803.
| |
Collapse
|
19
|
Ok K, Filipovic MR, Michel SLJ. Targeting Zinc Finger Proteins with Exogenous Metals and Molecules: Lessons learned from Tristetraprolin, a CCCH type Zinc Finger. Eur J Inorg Chem 2021; 2021:3795-3805. [PMID: 34867080 PMCID: PMC8635303 DOI: 10.1002/ejic.202100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 11/09/2022]
Abstract
ZF proteins are ubiquitous eukaryotic proteins that play important roles in gene regulation. ZFs contain small domains made up of a combination of four cysteine and histidine residues, and are classified based up on the identity of these residues and their spacing. One emerging class of ZFs are the Cys3His (or CCCH) class of ZFs. These ZFs play key roles in regulating RNA. In this minireview, an overview of the CCCH class of ZFs, with a focus on tristetraprolin (TTP) is provided. TTP regulates inflammation by controlling cytokine mRNAs, and there is an interest in modulating TTP activity to control inflammation. Two methods to control TTP activity are to target with exogenous metals (a 'metals in medicine' approach) or to target with endogenous signaling molecules. Work that has been done to target TTP with Fe, Cu, Cd and Au as well as with H2S is reviewed. This includes attention to new methods that have been developed to monitor metal exchange with the spectroscopically silent ZnII including native electro-spray ionization mass spectrometry (ESI-MS), spin-filter inductively coupled plasma mass spectrometry (ICP-MS) and cryo-electro-spray mass spectrometry (CSI-MS); along with fluorescence anisotropy (FA) to follow RNA binding.
Collapse
Affiliation(s)
- Kiwon Ok
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Milos R Filipovic
- Leibniz-Institut für Analytische, Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
20
|
Yang X, Chen B, Zhang M, Xu S, Shuai Z. Tristetraprolin Gene Single-Nucleotide Polymorphisms and mRNA Level in Patients With Rheumatoid Arthritis. Front Pharmacol 2021; 12:728015. [PMID: 34539409 PMCID: PMC8440805 DOI: 10.3389/fphar.2021.728015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
To observe and evaluate the correlation between single-nucleotide polymorphisms (SNPs) and messenger RNA (mRNA) level related to tristetraprolin (TTP) in Chinese rheumatoid arthritis (RA). TapMan SNP was used for genotyping analysis in 580 RA patients and 554 healthy people. Association between TTP gene polymorphisms (rs251864 and rs3746083) and RA was obtained. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) technology was applied for the detection of TTP mRNA level in peripheral blood mononuclear cells (PBMCs) in 36 RA patients and 37 healthy people. We observed that the allele T of TTP rs3746083 increased RA susceptibility (p = 0.019). A significant difference was found under the dominant model of rs3746083 (p = 0.037). Further analysis showed the allele distribution of rs3746083 was nominally correlated with RF phenotype of RA patients (p = 0.045). Nevertheless, the association between TTP rs251864 and the incidence of RA was no statistically significant (p > 0.05). The TTP expression level in PBMCs of RA patients was significantly reduced (p < 0.001). In conclusion, the results of this experiment support that TTP may be involved in the pathogenesis of RA.
Collapse
Affiliation(s)
- Xiaoke Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Chen
- Department of Nuclear Medicine, Chaohu Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Mingyue Zhang
- Department of Medical Record Room, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Shengqian Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Busada JT, Khadka S, Peterson KN, Druffner SR, Stumpo DJ, Zhou L, Oakley RH, Cidlowski JA, Blackshear PJ. Tristetraprolin Prevents Gastric Metaplasia in Mice by Suppressing Pathogenic Inflammation. Cell Mol Gastroenterol Hepatol 2021; 12:1831-1845. [PMID: 34358715 PMCID: PMC8554534 DOI: 10.1016/j.jcmgh.2021.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Aberrant immune activation is associated with numerous inflammatory and autoimmune diseases and contributes to cancer development and progression. Within the stomach, inflammation drives a well-established sequence from gastritis to metaplasia, eventually resulting in adenocarcinoma. Unfortunately, the processes that regulate gastric inflammation and prevent carcinogenesis remain unknown. Tristetraprolin (TTP) is an RNA-binding protein that promotes the turnover of numerous proinflammatory and oncogenic messenger RNAs. Here, we assess the role of TTP in regulating gastric inflammation and spasmolytic polypeptide-expressing metaplasia (SPEM) development. METHODS We used a TTP-overexpressing model, the TTPΔadenylate-uridylate rich element mouse, to examine whether TTP can protect the stomach from adrenalectomy (ADX)-induced gastric inflammation and SPEM. RESULTS We found that TTPΔadenylate-uridylate rich element mice were completely protected from ADX-induced gastric inflammation and SPEM. RNA sequencing 5 days after ADX showed that TTP overexpression suppressed the expression of genes associated with the innate immune response. Importantly, TTP overexpression did not protect from high-dose-tamoxifen-induced SPEM development, suggesting that protection in the ADX model is achieved primarily by suppressing inflammation. Finally, we show that protection from gastric inflammation was only partially due to the suppression of Tnf, a well-known TTP target. CONCLUSIONS Our results show that TTP exerts broad anti-inflammatory effects in the stomach and suggest that therapies that increase TTP expression may be effective treatments of proneoplastic gastric inflammation. Transcript profiling: GSE164349.
Collapse
Affiliation(s)
- Jonathan T. Busada
- Molecular Endocrinology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina,Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia,Correspondence Address correspondence to: Jonathan T. Busada, PhD, Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, 64 Medical Center Drive, PO Box 9177, Morgantown, West Virginia 26506.
| | - Stuti Khadka
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Kylie N. Peterson
- Molecular Endocrinology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Sara R. Druffner
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Deborah J. Stumpo
- Post-Transcriptional Gene Expression Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Lecong Zhou
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Robert H. Oakley
- Molecular Endocrinology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - John A. Cidlowski
- Molecular Endocrinology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Perry J. Blackshear
- Post-Transcriptional Gene Expression Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
22
|
ZFP36 family members regulate the pro-inflammatory features of psoriatic dermal fibroblasts. J Invest Dermatol 2021; 142:402-413. [PMID: 34333017 DOI: 10.1016/j.jid.2021.06.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
Dermal fibroblasts are strategically positioned underneath the basal epidermis layer to support keratinocyte proliferation and extracellular matrix production. In inflammatory conditions, these fibroblasts produce cytokines and chemokines that promote the chemoattraction of immune cells into the dermis and the hyperplasia of the epidermis, two characteristic hallmarks of Psoriasis (Pso). However, how dermal fibroblasts specifically contribute to Pso development remains largely uncharacterized. Here we investigated through which cytokines and signaling pathways dermal fibroblasts contribute to the inflammatory features of psoriatic skin. We show that dermal fibroblasts from lesional Pso skin are important producers of inflammatory mediators, including IL6, CXCL8 and CXCL2. This increased cytokine production was found to be regulated by ZFP36 family members ZFP36, ZFP36L1 and ZPF36L2, RNA-binding proteins with mRNA-degrading properties. Additionally, the expression of ZFP36 family proteins was found reduced in chronic inflammatory conditions that mimic psoriatic lesional skin. Collectively, these results indicate that dermal fibroblasts are important producers of cytokines in psoriatic skin, and that reduced expression of ZFP36 members in Pso dermal fibroblasts contributes to their inflammatory phenotype.
Collapse
|
23
|
Makita S, Takatori H, Nakajima H. Post-Transcriptional Regulation of Immune Responses and Inflammatory Diseases by RNA-Binding ZFP36 Family Proteins. Front Immunol 2021; 12:711633. [PMID: 34276705 PMCID: PMC8282349 DOI: 10.3389/fimmu.2021.711633] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Post-transcriptional regulation is involved in the regulation of many inflammatory genes. Zinc finger protein 36 (ZFP36) family proteins are RNA-binding proteins involved in messenger RNA (mRNA) metabolism pathways. The ZFP36 family is composed of ZFP36 (also known as tristetraprolin, TTP), ZFP36L1, ZFP36L2, and ZFP36L3 (only in rodents). The ZFP36 family proteins contain two tandemly repeated CCCH-type zinc-finger motifs, bind to adenine uridine-rich elements in the 3’-untranslated regions (3’ UTR) of specific mRNA, and lead to target mRNA decay. Although the ZFP36 family members are structurally similar, they are known to play distinct functions and regulate different target mRNAs, probably due to their cell-type-specific expression patterns. For instance, ZFP36 has been well-known to function as an anti-inflammatory modulator in murine models of systemic inflammatory diseases by down-regulating the production of various pro-inflammatory cytokines, including TNF-α. Meanwhile, ZFP36L1 is required for the maintenance of the marginal-zone B cell compartment. Recently, we found that ZFP36L2 reduces the expression of Ikzf2 (encoding HELIOS) and suppresses regulatory T cell function. This review summarizes the current understanding of the post-transcriptional regulation of immunological responses and inflammatory diseases by RNA-binding ZFP36 family proteins.
Collapse
Affiliation(s)
- Sohei Makita
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Takatori
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Rheumatology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
24
|
Tristetraprolin, Inflammation, and Metabolic Syndrome in Arab Adults: A Case Control Study. BIOLOGY 2021; 10:biology10060550. [PMID: 34207463 PMCID: PMC8235193 DOI: 10.3390/biology10060550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 01/06/2023]
Abstract
Simple Summary Metabolic syndrome (MetS) is a common disorder characterized as a low-grade chronic inflammatory state. The association of tristetraprolin (TTP), a novel anti-inflammatory protein, and MetS remains to be explored. We evaluated circulating TTP in a group of adult males and females with and without MetS. Serum levels of TTP were higher in the MetS group than in controls. In all subjects, serum TTP was also correlated with MetS components (e.g., glucose, lipids, and obesity indices). These findings suggest that TTP may be a promising biomarker for MetS. Abstract Tristetraprolin (TTP) is an mRNA binding protein suggested to have a substantial role in regulating the mRNA expression of numerous inflammatory factors, but data on TTP and its association with metabolic syndrome (MetS), a chronic low-grade inflammatory disorder, are scarce. We hypothesize that TTP may modulate MetS and its components. A total of 200 Saudi adults (aged 38.6 ± 8.3 years) were included in this cross-sectional study. Anthropometrics data were collected and fasting blood glucose taken for the assessment of glycemic, lipids and inflammatory markers using commercially available assays. The National Cholesterol Education Program Adult Treatment Panel (NCEP ATP III) criteria were used to define MetS. Results showed significantly higher levels of TTP in the MetS group than in controls [288.1 pg/mL vs. 150.9 pg/mL, p < 0.001]. Circulating TTP was significantly associated with tumor necrosis factor alpha [TNF-α, R = 0.30, p < 0.05], interleukin 1β [IL-1β, R = 0.41, p < 0.01] and C-reactive protein [CRP, R = 0.36, p < 0.01], adiponectin [R = 0.36, p < 0.05], insulin [R = 0.37, p < 0.05], and insulin resistance [HOMA-IR, R = 0.40, p < 0.05]. Receiver operating characteristics (ROC) suggest a potential use of TTP as diagnostic biomarker for MetS [AUC = 0.819, p < 0.001]. The findings suggest that TTP is associated with inflammation and glycemia, which may influence MetS. TTP is a promising diagnostic biomarker for MetS which can be confirmed in larger cohorts.
Collapse
|
25
|
Hu CF, Wu SP, Lin GJ, Shieh CC, Hsu CS, Chen JW, Chen SH, Hong JS, Chen SJ. Microglial Nox2 Plays a Key Role in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Front Immunol 2021; 12:638381. [PMID: 33868265 PMCID: PMC8050344 DOI: 10.3389/fimmu.2021.638381] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
While oxidative stress has been linked to multiple sclerosis (MS), the role of superoxide-producing phagocyte NADPH oxidase (Nox2) in central nervous system (CNS) pathogenesis remains unclear. This study investigates the impact of Nox2 gene ablation on pro- and anti-inflammatory cytokine and chemokine production in a mouse experimental autoimmune encephalomyelitis (EAE) model. Nox2 deficiency attenuates EAE-induced neural damage and reduces disease severity, pathogenic immune cells infiltration, demyelination, and oxidative stress in the CNS. The number of autoreactive T cells, myeloid cells, and activated microglia, as well as the production of cytokines and chemokines, including GM-CSF, IFNγ, TNFα, IL-6, IL-10, IL-17A, CCL2, CCL5, and CXCL10, were much lower in the Nox2-/- CNS tissues but remained unaltered in the peripheral lymphoid organs. RNA-seq profiling of microglial transcriptome identified a panel of Nox2 dependent proinflammatory genes: Pf4, Tnfrsf9, Tnfsf12, Tnfsf13, Ccl7, Cxcl3, and Cxcl9. Furthermore, gene ontology and pathway enrichment analyses revealed that microglial Nox2 plays a regulatory role in multiple pathways known to be important for MS/EAE pathogenesis, including STAT3, glutathione, leukotriene biosynthesis, IL-8, HMGB1, NRF2, systemic lupus erythematosus in B cells, and T cell exhaustion signaling. Taken together, our results provide new insights into the critical functions performed by microglial Nox2 during the EAE pathogenesis, suggesting that Nox2 inhibition may represent an important therapeutic target for MS.
Collapse
Affiliation(s)
- Chih-Fen Hu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Chang Shieh
- Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chih-Sin Hsu
- Genomics Center for Clinical and Biotechnological Applications of Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jing-Wun Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Heng Chen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Shyi-Jou Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
26
|
Assabban A, Dubois-Vedrenne I, Van Maele L, Salcedo R, Snyder BL, Zhou L, Azouz A, de Toeuf B, Lapouge G, La C, Melchior M, Nguyen M, Thomas S, Wu SF, Hu W, Kruys V, Blanpain C, Trinchieri G, Gueydan C, Blackshear PJ, Goriely S. Tristetraprolin expression by keratinocytes protects against skin carcinogenesis. JCI Insight 2021; 6:140669. [PMID: 33497366 PMCID: PMC8021119 DOI: 10.1172/jci.insight.140669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/20/2021] [Indexed: 01/27/2023] Open
Abstract
Cancer is caused primarily by genomic alterations resulting in deregulation of gene regulatory circuits in key growth, apoptosis, or DNA repair pathways. Multiple genes associated with the initiation and development of tumors are also regulated at the level of mRNA decay, through the recruitment of RNA-binding proteins to AU-rich elements (AREs) located in their 3'-untranslated regions. One of these ARE-binding proteins, tristetraprolin (TTP; encoded by Zfp36), is consistently dysregulated in many human malignancies. Herein, using regulated overexpression or conditional ablation in the context of cutaneous chemical carcinogenesis, we show that TTP represents a critical regulator of skin tumorigenesis. We provide evidence that TTP controlled both tumor-associated inflammation and key oncogenic pathways in neoplastic epidermal cells. We identify Areg as a direct target of TTP in keratinocytes and show that EGFR signaling potentially contributed to exacerbated tumor formation. Finally, single-cell RNA-Seq analysis indicated that ZFP36 was downregulated in human malignant keratinocytes. We conclude that TTP expression by epidermal cells played a major role in the control of skin tumorigenesis.
Collapse
Affiliation(s)
- Assiya Assabban
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Ingrid Dubois-Vedrenne
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Laurye Van Maele
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Rosalba Salcedo
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | - Lecong Zhou
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Abdulkader Azouz
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Bérengère de Toeuf
- Laboratoire de Biologie Moléculaire du Gène, ULB Center for Research in Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Gaëlle Lapouge
- Laboratory of Stem Cells and Cancer, WELBIO, and ULB Cancer Research Center, Université Libre de Bruxelles, Brussels, Belgium
| | - Caroline La
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Maxime Melchior
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Muriel Nguyen
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Séverine Thomas
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| | - Si Fan Wu
- Laboratoire de Biologie Moléculaire du Gène, ULB Center for Research in Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Wenqian Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, New York, USA
| | - Véronique Kruys
- Laboratoire de Biologie Moléculaire du Gène, ULB Center for Research in Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, WELBIO, and ULB Cancer Research Center, Université Libre de Bruxelles, Brussels, Belgium
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Cyril Gueydan
- Laboratoire de Biologie Moléculaire du Gène, ULB Center for Research in Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Perry J. Blackshear
- Signal Transduction Laboratory and
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Stanislas Goriely
- Institute for Medical Immunology, ULB Center for Research in Immunology, and ULB Center for Cancer Research, Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
27
|
Džafo E, Bianchi N, Monticelli S. Cell-intrinsic mechanisms to restrain inflammatory responses in T lymphocytes. Immunol Rev 2021; 300:181-193. [PMID: 33507562 DOI: 10.1111/imr.12932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022]
Abstract
A mechanistic understanding of the regulatory circuits that control the effector responses of memory T helper lymphocytes, and in particular their ability to produce pro-inflammatory cytokines, may lead to effective therapeutic interventions in all immune-related diseases. Activation of T lymphocytes induces robust immune responses that in most cases lead to the complete eradication of invading pathogens or tumor cells. At the same time, however, such responses must be both highly controlled in magnitude and limited in time to avoid unnecessary damage. To achieve such sophisticated level of control, T lymphocytes have at their disposal an array of transcriptional and post-transcriptional regulatory mechanisms that ensure the acquisition of a phenotype that is tailored to the incoming stimulus while restraining unwarranted activation, eventually leading to the resolution of the inflammatory response. Here, we will discuss some of these cell-intrinsic mechanisms that control T cell responses and involve transcription factors, microRNAs, and RNA-binding proteins. We will also explore how the same mechanisms can be involved both in anti-tumor responses and in autoimmunity.
Collapse
Affiliation(s)
- Emina Džafo
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Niccolò Bianchi
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Silvia Monticelli
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| |
Collapse
|
28
|
Xu B, Tang J, Lyu C, Wandu WS, Stumpo DJ, Mattapallil MJ, Horai R, Gery I, Blackshear PJ, Caspi RR. Regulated Tristetraprolin Overexpression Dampens the Development and Pathogenesis of Experimental Autoimmune Uveitis. Front Immunol 2021; 11:583510. [PMID: 33569048 PMCID: PMC7868398 DOI: 10.3389/fimmu.2020.583510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Non-infectious uveitis, a common cause of blindness in man, is often mediated by autoimmunity, a process in which cytokines play major roles. The biosynthesis and secretion of pro-inflammatory cytokines are regulated in part by tristetraprolin (TTP), an endogenous anti-inflammatory protein that acts by binding directly to specific sequence motifs in the 3'-untranslated regions of target mRNAs, promoting their turnover, and inhibiting synthesis of their encoded proteins. We recently developed a TTP-overexpressing mouse (TTPΔARE) by deleting an AU-rich element (ARE) instability motif from the TTP mRNA, resulting in increased accumulation of TTP mRNA and protein throughout the animal. Here, we show that homozygous TTPΔARE mice are resistant to the induction of experimental autoimmune uveitis (EAU) induced by interphotoreceptor retinoid-binding protein (IRBP), an established model for human autoimmune (noninfectious) uveitis. Lymphocytes from TTPΔARE mice produced lower levels of the pro-inflammatory cytokines IFN-γ, IL-17, IL-6, and TNFα than wild type (WT) mice. TTPΔARE mice also produced lower titers of antibodies against the uveitogenic protein. In contrast, TTPΔARE mice produced higher levels of the anti-inflammatory cytokine IL-10, and had higher frequencies of regulatory T-cells, which, moreover, displayed a moderately higher per-cell regulatory ability. Heterozygous mice developed EAU and associated immunological responses at levels intermediate between homozygous TTPΔARE mice and WT controls. TTPΔARE mice were able, however, to develop EAU following adoptive transfer of activated WT T-cells specific to IRBP peptide 651-670, and naïve T-cells from TTPΔARE mice could be activated by antibodies to CD3/CD28. Importantly, TTPΔARE antigen presenting cells were significantly less efficient compared to WT in priming naïve T cells, suggesting that this feature plays a major role in the dampened immune responses of the TTPΔARE mice. Our observations demonstrate that elevated systemic levels of TTP can inhibit the pathogenic processes involved in EAU, and suggest the possible use of TTP-based treatments in humans with uveitis and other autoimmune conditions.
Collapse
Affiliation(s)
- Biying Xu
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Jihong Tang
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Cancan Lyu
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Wambui S Wandu
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Deborah J Stumpo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Mary J Mattapallil
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Reiko Horai
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Igal Gery
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States.,Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, United States
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
29
|
Rappl P, Brüne B, Schmid T. Role of Tristetraprolin in the Resolution of Inflammation. BIOLOGY 2021; 10:biology10010066. [PMID: 33477783 PMCID: PMC7832405 DOI: 10.3390/biology10010066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/18/2022]
Abstract
Simple Summary Chronic inflammatory diseases account for up to 60% of deaths worldwide and, thus, are considered a great threat for human health by the World Health Organization. Nevertheless, acute inflammatory reactions are an integral part of the host defense against invading pathogens or injuries. To avoid excessive damage due to the persistence of a highly reactive environment, inflammations need to resolve in a coordinate and timely manner, ensuring for the immunological normalization of the affected tissues. Since post-transcriptional regulatory mechanisms are essential for effective resolution, the present review discusses the key role of the RNA-binding and post-transcriptional regulatory protein tristetraprolin in establishing resolution of inflammation. Abstract Inflammation is a crucial part of immune responses towards invading pathogens or tissue damage. While inflammatory reactions are aimed at removing the triggering stimulus, it is important that these processes are terminated in a coordinate manner to prevent excessive tissue damage due to the highly reactive inflammatory environment. Initiation of inflammatory responses was proposed to be regulated predominantly at a transcriptional level, whereas post-transcriptional modes of regulation appear to be crucial for resolution of inflammation. The RNA-binding protein tristetraprolin (TTP) interacts with AU-rich elements in the 3′ untranslated region of mRNAs, recruits deadenylase complexes and thereby facilitates degradation of its targets. As TTP regulates the mRNA stability of numerous inflammatory mediators, it was put forward as a crucial post-transcriptional regulator of inflammation. Here, we summarize the current understanding of the function of TTP with a specific focus on its role in adding to resolution of inflammation.
Collapse
Affiliation(s)
- Peter Rappl
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (P.R.); (B.B.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (P.R.); (B.B.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular and Applied Ecology, 60596 Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (P.R.); (B.B.)
- Correspondence:
| |
Collapse
|
30
|
Differential modulation of Ahr and Arid5a: A promising therapeutic strategy for autoimmune encephalomyelitis. Saudi Pharm J 2021; 28:1605-1615. [PMID: 33424253 PMCID: PMC7783111 DOI: 10.1016/j.jsps.2020.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/18/2020] [Indexed: 01/23/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease that involves demyelination of axons in the central nervous system (CNS) and affects patients worldwide. It has been demonstrated that ligand-activated aryl hydrocarbon receptor (Ahr) ameliorates experimental autoimmune encephalomyelitis (EAE), a murine model of MS, by increasing CD4+FoxP3+ T cells. Recent evidence indicates that AT-rich interactive domain-containing protein 5a (Arid5a) is required for EAE pathogenesis by stabilizing Il6 and OX40 mRNAs. However, the differential modulation of Ahr and Arid5a in autoimmunity as a therapeutic strategy is unexplored. Herein, an in silico, in vitro and in vivo approach identified Flavipin (3,4,5-trihydroxy-6-methylphthalaldehyde) as an Ahr agonist that induces the expression of Ahr downstream genes in mouse CD4+ T cells and CD11b+ macrophages. Interestingly, Flavipin inhibited the stabilizing function of Arid5a and its counteracting effects on Regnase-1 on the 3′ untranslated region (3′UTR) of target mRNAs. Furthermore, it inhibited the stabilizing function of Arid5a on Il23a 3′UTR, a newly identified target mRNA. In EAE, Flavipin ameliorated disease severity, with reduced CD4+IL-17+ T cells, IL-6 and TNF-α and increased CD4+FoxP3+ T cells. Moreover, EAE amelioration was concomitant with reduced CD4+OX40+ and CD4+CD45+ T cells in the CNS. RNA interference showed that the modulatory effects of Flavipin on pro- and anti-inflammatory mediators in CD4+ T cells and macrophages were Ahr- and/or Arid5a-dependent. In conclusion, our findings reveal differential modulation of Ahr and Arid5a as a new therapeutic strategy for MS.
Collapse
Key Words
- 3′UTR, 3′ untranslated region
- ActinD, actinomycin D
- Ahr
- Ahr, aryl hydrocarbon receptor
- Arid5a
- Arid5a, AT-rich interactive domain-containing protein 5a
- Arnt, Ahr nuclear translocator
- Autoimmunity
- CFA, complete Freund's adjuvant
- CNS, central nervous system
- EAE, experimental autoimmune encephalomyelitis
- Inflammation
- LPS, lipopolysaccharide
- MOG35-55, myelin oligodendrocyte glycoprotein
- MS, multiple sclerosis
- Multiple sclerosis
- PAS-A and PAS-B, Per-Arnt-Sim domain
- RBP, RNA-binding protein
- RIP, RNA immunoprecipitation
- SPF, specific pathogen-free
- Therapeutic
- miR, microRNA
Collapse
|
31
|
Li J, Durose WW, Ito J, Kakita A, Iguchi Y, Katsuno M, Kunisawa K, Shimizu T, Ikenaka K. Exploring the factors underlying remyelination arrest by studying the post-transcriptional regulatory mechanisms of cystatin F gene. J Neurochem 2020; 157:2070-2090. [PMID: 32947653 DOI: 10.1111/jnc.15190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/11/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
Abstract
Remyelination plays an important role in determining the fate of demyelinating disorders. However, it is arrested during chronic disease states. Cystatin F, a papain-like lysosomal cysteine proteinase inhibitor, is a crucial regulator of demyelination and remyelination. Using hemizygous proteolipid protein transgenic 4e (PLP4e/- ) mice, an animal model of chronic demyelination, we found that cystatin F mRNA expression was induced at 2.5 months of age and up-regulated in the early phase of demyelination, but significantly decreased in the chronic phase. We next investigated cystatin F regulatory factors as potential mechanisms of remyelination arrest in chronic demyelinating disorders. We used the CysF-STOP-tetO::Iba-mtTA mouse model, in which cystatin F gene expression is driven by the tetracycline operator. Interestingly, we found that forced cystatin F mRNA over-expression was eventually decreased. Our findings show that cystatin F expression is modulated post-transcriptionally. We next identified embryonic lethal, abnormal vision, drosophila like RNA-binding protein 1 (ELAVL-1), and miR29a as cystatin F mRNA stabilizing and destabilizing factors, respectively. These roles were confirmed in vitro in NIH3T3 cells. Using postmortem plaque samples from human multiple sclerosis patients, we also confirmed that ELAVL-1 expression was highly correlated with the previously reported expression pattern of cystatin F. These data indicate the important roles of ELAVL-1 and miR29a in regulating cystatin F expression. Furthermore, they provide new insights into potential therapeutic targets for demyelinating disorders.
Collapse
Affiliation(s)
- Jiayi Li
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Wilaiwan Wisessmith Durose
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand.,Department of Pediatrics, Hematology University of Minnesota, Minneapolis, MN, USA
| | - Junko Ito
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuo Kunisawa
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Research Division of Advanced Diagnostic System, Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Takeshi Shimizu
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| |
Collapse
|
32
|
Choudhary I, Vo T, Bathula CS, Lamichhane R, Lewis BW, Looper J, Jeyaseelan S, Blackshear PJ, Saini Y, Patial S. Tristetraprolin Overexpression in Non-hematopoietic Cells Protects Against Acute Lung Injury in Mice. Front Immunol 2020; 11:2164. [PMID: 32983182 PMCID: PMC7493631 DOI: 10.3389/fimmu.2020.02164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022] Open
Abstract
Tristetraprolin (TTP) is a mRNA binding protein that binds to adenylate-uridylate-rich elements within the 3′ untranslated regions of certain transcripts, such as tumor necrosis factor (Tnf) mRNA, and increases their rate of decay. Modulation of TTP expression is implicated in inflammation; however, its role in acute lung inflammation remains unknown. Accordingly, we tested the role of TTP in lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. LPS-challenged TTP-knockout (TTPKO) mice, as well as myeloid cell-specific TTP-deficient (TTPmyeKO) mice, exhibited significant increases in lung injury, although these responses were more robust in the TTPKO. Mice with systemic overexpression of TTP (TTPΔARE) were protected from ALI, as indicated by significantly reduced neutrophilic infiltration, reduced levels of neutrophil chemoattractants, and histological parameters of ALI. Interestingly, while irradiated wild-type (WT) mice reconstituted with TTPKO hematopoietic progenitor cells (HPCs) showed exaggerated ALI, their reconstitution with the TTPΔARE HPCs mitigated ALI. The reconstitution of irradiated TTPΔARE mice with HPCs from either WT or TTPΔARE donors conferred significant protection against ALI. In contrast, irradiated TTPΔARE mice reconstituted with TTPKO HPCs had exaggerated ALI, but the response was milder as compared to WT recipients that received TTPKO HPCs. Finally, the reconstitution of irradiated TTPKO recipient mice with TTPΔARE HPCs did not confer any protection to the TTPKO mice. These data together suggest that non-HPCs-specific overexpression of TTP within the lungs protects against ALI via downregulation of neutrophil chemoattractants and reduction in neutrophilic infiltration.
Collapse
Affiliation(s)
- Ishita Choudhary
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Thao Vo
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Chandra S Bathula
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Richa Lamichhane
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Brandon W Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Jayme Looper
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Samithamby Jeyaseelan
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Sonika Patial
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
33
|
Makita S, Takatori H, Iwata A, Tanaka S, Furuta S, Ikeda K, Suto A, Suzuki K, Ramos SBV, Nakajima H. RNA-Binding Protein ZFP36L2 Downregulates Helios Expression and Suppresses the Function of Regulatory T Cells. Front Immunol 2020; 11:1291. [PMID: 32655569 PMCID: PMC7324482 DOI: 10.3389/fimmu.2020.01291] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
The zinc finger protein 36-like 2, ZFP36L2, is a member of a small family of RNA-binding proteins composed by ZFP36 (also known as tristetraprolin, TTP), ZFP36L1 and ZFP36L2 in humans, with corresponding murine orthologs. These proteins bind to adenine uridine-rich element (ARE) in the 3′untranslated region of target messenger RNA and stimulate target degradation. ZFP36 functions as an anti-inflammatory modulator in murine models of inflammatory diseases by down-regulating the production of inflammatory cytokines such as tumor necrosis factor-α. However, how ZFP36L1 and ZFP36L2 alter the function of CD4+ T cells is not completely understood. We addressed this issue by searching for the target genes of ZFP36L2 by comprehensive transcriptome analysis. We observed that ZFP36L2 is highly expressed in naïve CD4+ T cells; however, when CD4+ T cells are stimulated through their T cell receptors, ZFP36L2 expression is rapidly reduced in both humans and mice. Among CD4+ T cell populations, the expression levels of ZFP36L2 in regulatory T cells (Tregs) were significantly lower than those in naïve or effector CD4+ T cells. RNA-sequence analysis revealed that the forced expression of ZFP36L2 decreased Ikzf2 (encoding Helios) expression in Foxp3+ Tregs and inhibited the ability of induced Tregs (iTregs). ZFP36L2 directly bound to and destabilized the 3′untranslated region of Ikzf2 mRNA, which contains AU-rich elements. These results indicate that ZFP36L2 reduces the expression of Ikzf2 and suppresses iTreg function, raising the interesting possibility that the inhibition of ZFP36L2 in iTregs could be a therapeutic strategy for autoimmune diseases.
Collapse
Affiliation(s)
- Sohei Makita
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Takatori
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Rheumatology, Hamamatsu Medical Center, Shizuoka, Japan
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shunsuke Furuta
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kei Ikeda
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akira Suto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Silvia B V Ramos
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
34
|
The Tristetraprolin Family of RNA-Binding Proteins in Cancer: Progress and Future Prospects. Cancers (Basel) 2020; 12:cancers12061539. [PMID: 32545247 PMCID: PMC7352335 DOI: 10.3390/cancers12061539] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Post-transcriptional regulation of gene expression plays a key role in cellular proliferation, differentiation, migration, and apoptosis. Increasing evidence suggests dysregulated post-transcriptional gene expression as an important mechanism in the pathogenesis of cancer. The tristetraprolin family of RNA-binding proteins (RBPs), which include Zinc Finger Protein 36 (ZFP36; commonly referred to as tristetraprolin (TTP)), Zinc Finger Protein 36 like 1 (ZFP36L1), and Zinc Finger Protein 36 like 2 (ZFP36L2), play key roles in the post-transcriptional regulation of gene expression. Mechanistically, these proteins function by binding to the AU-rich elements within the 3′-untranslated regions of their target mRNAs and, in turn, increasing mRNA turnover. The TTP family RBPs are emerging as key regulators of multiple biological processes relevant to cancer and are aberrantly expressed in numerous human cancers. The TTP family RBPs have tumor-suppressive properties and are also associated with cancer prognosis, metastasis, and resistance to chemotherapy. Herein, we summarize the various hallmark molecular traits of cancers that are reported to be regulated by the TTP family RBPs. We emphasize the role of the TTP family RBPs in the regulation of trait-associated mRNA targets in relevant cancer types/cell lines. Finally, we highlight the potential of the TTP family RBPs as prognostic indicators and discuss the possibility of targeting these TTP family RBPs for therapeutic benefits.
Collapse
|
35
|
Pisapia L, Hamilton RS, Farina F, D’Agostino V, Barba P, Strazzullo M, Provenzani A, Gianfrani C, Del Pozzo G. Tristetraprolin/ZFP36 Regulates the Turnover of Autoimmune-Associated HLA-DQ mRNAs. Cells 2019; 8:cells8121570. [PMID: 31817224 PMCID: PMC6953012 DOI: 10.3390/cells8121570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
HLA class II genes encode highly polymorphic heterodimeric proteins functioning to present antigens to T cells and stimulate a specific immune response. Many HLA genes are strongly associated with autoimmune diseases as they stimulate self-antigen specific CD4+ T cells driving pathogenic responses against host tissues or organs. High expression of HLA class II risk genes is associated with autoimmune diseases, influencing the strength of the CD4+ T-mediated autoimmune response. The expression of HLA class II genes is regulated at both transcriptional and post-transcriptional levels. Protein components of the RNP complex binding the 3'UTR and affecting mRNA processing have previously been identified. Following on from this, the regulation of HLA-DQ2.5 risk genes, the main susceptibility genetic factor for celiac disease (CD), was investigated. The DQ2.5 molecule, encoded by HLA-DQA1*05 and HLA-DQB1*02 alleles, presents the antigenic gluten peptides to CD4+ T lymphocytes, activating the autoimmune response. The zinc-finger protein Tristetraprolin (TTP) or ZFP36 was identified to be a component of the RNP complex and has been described as a factor modulating mRNA stability. The 3'UTR of CD-associated HLA-DQA1*05 and HLA-DQB1*02 mRNAs do not contain canonical TTP binding consensus sequences, therefore an in silico approach focusing on mRNA secondary structure accessibility and stability was undertaken. Key structural differences specific to the CD-associated mRNAs were uncovered, allowing them to strongly interact with TTP through their 3'UTR, conferring a rapid turnover, in contrast to lower affinity binding to HLA non-CD associated mRNA.
Collapse
Affiliation(s)
- Laura Pisapia
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso” CNR, Via Pietro Castellino, 111, 80131 Naples, Italy; (L.P.); (F.F.); (P.B.); (M.S.)
| | - Russell S. Hamilton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3DY, UK;
| | - Federica Farina
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso” CNR, Via Pietro Castellino, 111, 80131 Naples, Italy; (L.P.); (F.F.); (P.B.); (M.S.)
| | - Vito D’Agostino
- Centre for Cellular, Computational and Integrative Biology-CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy; (V.D.); (A.P.)
| | - Pasquale Barba
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso” CNR, Via Pietro Castellino, 111, 80131 Naples, Italy; (L.P.); (F.F.); (P.B.); (M.S.)
| | - Maria Strazzullo
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso” CNR, Via Pietro Castellino, 111, 80131 Naples, Italy; (L.P.); (F.F.); (P.B.); (M.S.)
| | - Alessandro Provenzani
- Centre for Cellular, Computational and Integrative Biology-CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy; (V.D.); (A.P.)
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology-CNR, Via Pietro Castellino, 111, 80131 Naples, Italy;
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso” CNR, Via Pietro Castellino, 111, 80131 Naples, Italy; (L.P.); (F.F.); (P.B.); (M.S.)
- Correspondence:
| |
Collapse
|
36
|
Tristetraprolin targets Nos2 expression in the colonic epithelium. Sci Rep 2019; 9:14413. [PMID: 31595002 PMCID: PMC6783411 DOI: 10.1038/s41598-019-50957-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Tristetraprolin (TTP), encoded by the Zfp36 gene, is a zinc-finger protein that regulates RNA stability primarily through association with 3′ untranslated regions (3′ UTRs) of target mRNAs. While TTP is expressed abundantly in the intestines, its function in intestinal epithelial cells (IECs) is unknown. Here we used a cre-lox system to remove Zfp36 in the mouse epithelium to uncover a role for TTP in IECs and to identify target genes in these cells. While TTP was largely dispensable for establishment and maintenance of the colonic epithelium, we found an expansion of the proliferative zone and an increase in goblet cell numbers in the colon crypts of Zfp36ΔIEC mice. Furthermore, through RNA-sequencing of transcripts isolated from the colons of Zfp36fl/fl and Zfp36ΔIEC mice, we found that expression of inducible nitric oxide synthase (iNos or Nos2) was elevated in TTP-knockout IECs. We demonstrate that TTP interacts with AU-rich elements in the Nos2 3′ UTR and suppresses Nos2 expression. In comparison to control Zfp36fl/fl mice, Zfp36ΔIEC mice were less susceptible to dextran sodium sulfate (DSS)-induced acute colitis. Together, these results demonstrate that TTP in IECs targets Nos2 expression and aggravates acute colitis.
Collapse
|
37
|
Lourou N, Gavriilidis M, Kontoyiannis DL. Lessons from studying the AU-rich elements in chronic inflammation and autoimmunity. J Autoimmun 2019; 104:102334. [PMID: 31604649 DOI: 10.1016/j.jaut.2019.102334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
AU-rich elements (AREs) comprise one of the most widely studied families of regulatory RNA structures met in RNAs engaged in complex immunological reactions. A multitude of genetic, molecular, holistic and functional studies have been utilized for the analyses of the AREs and their interactions to proteins that bind to them. Data stemming from these studies brought forth a world of RNA-related check-points against infection, chronic inflammation, tumor associated immunity, and autoimmunity; and the interest to capitalize the interactions of AREs for clinical management and therapy. They also provided lessons on the cellular capabilities of post-transcriptional control. Originally thought as transcript-restricted regulators of turnover and translation, ARE-binding proteins do in fact harbor great versatility and interactivity across nuclear and cytoplasmic compartments; and act as functional coordinators of immune-cellular programs. Harnessing these deterministic functions requires extensive knowledge of their synergies or antagonisms at a cell-specific level; but holds great promise since it can provide the efficacy of combinatorial therapies with single agents.
Collapse
Affiliation(s)
- Niki Lourou
- School of Biology, Department of Development, Genetics and Molecular Biology, Aristotle University of Thessaloniki, Greece
| | - Maxim Gavriilidis
- School of Biology, Department of Development, Genetics and Molecular Biology, Aristotle University of Thessaloniki, Greece; Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Greece
| | - Dimitris L Kontoyiannis
- School of Biology, Department of Development, Genetics and Molecular Biology, Aristotle University of Thessaloniki, Greece; Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Greece.
| |
Collapse
|
38
|
CXCL4 is a driver of cytokine mRNA stability in monocyte-derived dendritic cells. Mol Immunol 2019; 114:524-534. [DOI: 10.1016/j.molimm.2019.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/16/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022]
|
39
|
Wang Y, Yang Y, Chen Q, Zhai H, Xie Z, Ke F. PfHMGB2 protects yellow catfish (Pelteobagrus fulvidraco) from bacterial infection by promoting phagocytosis and proliferation of PBL. FISH & SHELLFISH IMMUNOLOGY 2019; 93:567-574. [PMID: 31394161 DOI: 10.1016/j.fsi.2019.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
HMGB2, a member of the high mobility group box family, plays an important role in host immune responses. However, the mechanism of action of HMGB2 is not well understood. Herein, a homologue from yellow catfish (Pelteobagrus fulvidraco) was cloned and named PfHMGB2. The deduced amino acid sequence of PfHMGB2 possessed a typical tripartite structure (two DNA binding boxes and an acid tail) and shared 90% identity with the predicted HMGB2 from I. punctatus. The mRNA of PfHMGB2 was widely distributed in all 11 tested tissues in healthy fish bodies and was significantly induced in the liver and head kidney when yellow catfish were injected with inactivated Aeromonas hydrophila. Consistently, PfHMGB2 mRNA could also be induced in yellow catfish peripheral blood leucocytes (PBL) by lipopolysaccharide. The recombinant PfHMGB2 protein was purified from E. coli BL21 (DE3):pET-28a/PfHMGB2 and showed DNA-binding affinity. Moreover, rPfHMGB2 improved the phagocytosis and proliferation activity and upregulated the mRNA expression of the pro-inflammatory cytokine TNFα in yellow catfish PBL. These results indicated that PfHMGB2 could protect yellow catfish from pathogen infection by activating PBL.
Collapse
Affiliation(s)
- Yun Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Hubei Province, Wuhan, 430056, China; Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan Province, Pingdingshan, 467036, China.
| | - Yanyan Yang
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan Province, Pingdingshan, 467036, China
| | - Qianying Chen
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan Province, Pingdingshan, 467036, China
| | - Hanfei Zhai
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan Province, Pingdingshan, 467036, China
| | - Zhaohui Xie
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan Province, Pingdingshan, 467036, China
| | - Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
40
|
Yoshinaga M, Takeuchi O. Post-transcriptional control of immune responses and its potential application. Clin Transl Immunology 2019; 8:e1063. [PMID: 31236273 DOI: 10.1002/cti2.1063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammation is the host response against stresses such as infection. Although the inflammation process is required for the elimination of pathogens, uncontrolled inflammation leads to tissue destruction and inflammatory diseases. To avoid this, the inflammatory response is tightly controlled by multiple layers of regulation. Post-transcriptional control of inflammatory mRNAs is increasingly understood to perform critical roles in this process. This is mediated primarily by a set of RNA binding proteins (RBPs) including tristetraprolin, Roquin and Regnase-1, and RNA methylases. These key regulators coordinate the inflammatory response by modulating mRNA pools in both immune and local nonimmune cells. In this review, we provide an overview of the post-transcriptional coordination of immune responses in various tissues and discuss how RBP-mediated regulation of inflammation may be harnessed as a potential class of treatments for inflammatory diseases.
Collapse
Affiliation(s)
- Masanori Yoshinaga
- Department of Medical Chemistry Graduate School of Medicine Kyoto University Kyoto Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry Graduate School of Medicine Kyoto University Kyoto Japan
| |
Collapse
|
41
|
Mugoni V, Panella R, Cheloni G, Chen M, Pozdnyakova O, Stroopinsky D, Guarnerio J, Monteleone E, Lee JD, Mendez L, Menon AV, Aster JC, Lane AA, Stone RM, Galinsky I, Zamora JC, Lo-Coco F, Bhasin MK, Avigan D, Longo L, Clohessy JG, Pandolfi PP. Vulnerabilities in mIDH2 AML confer sensitivity to APL-like targeted combination therapy. Cell Res 2019; 29:446-459. [PMID: 31024166 DOI: 10.1038/s41422-019-0162-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
Although targeted therapies have proven effective and even curative in human leukaemia, resistance often ensues. IDH enzymes are mutated in ~20% of human AML, with targeted therapies under clinical evaluation. We here characterize leukaemia evolution from mutant IDH2 (mIDH2)-dependence to independence identifying key targetable vulnerabilities of mIDH2 leukaemia that are retained during evolution and progression from early to late stages. Mechanistically, we find that mIDH2 leukaemia are metastable and vulnerable at two distinct levels. On the one hand, they are characterized by oxidative and genotoxic stress, in spite of increased 1-carbon metabolism and glutathione levels. On the other hand, mIDH2 leukaemia display inhibition of LSD1 and a resulting transcriptional signature of all-trans retinoic acid (ATRA) sensitization, in spite of a state of suppressed ATRA signalling due to increased levels of PIN1. We further identify GSH/ROS and PIN1/LSD1 as critical nodes for leukaemia maintenance and the combination of ATRA and arsenic trioxide (ATO) as a key therapeutic modality to target these vulnerabilities. Strikingly, we demonstrate that the combination of ATRA and ATO proves to be a powerfully synergistic and effective therapy in a number of mouse and human mIDH1/2 leukemic models. Thus, our findings pave the way towards the treatment of a sizable fraction of human AMLs through targeted APL-like combinatorial therapies.
Collapse
Affiliation(s)
- Vera Mugoni
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Riccardo Panella
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Giulia Cheloni
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Ming Chen
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dina Stroopinsky
- Division of Hematology and Hematologic Malignancies, Department of Medicine, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jlenia Guarnerio
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Emanuele Monteleone
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.,Molecular Biotechnology Center and Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Jonathan David Lee
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Lourdes Mendez
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Archita Venugopal Menon
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Jon Christopher Aster
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew A Lane
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard Maury Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ilene Galinsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - José Cervera Zamora
- Biobanco La Fe - Instituto de Investigation Sanitaria La Fe (IIS-LA FE), Avda. de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Neuro-Oncohematology Unit, Santa Lucia Foundation, Rome, Italy
| | - Manoj Kumar Bhasin
- Division of IMBIO, Department of Medicine, BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - David Avigan
- Division of Hematology and Hematologic Malignancies, Department of Medicine, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Letizia Longo
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - John Gerard Clohessy
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.,Preclinical Murine Pharmacogenetics Core, Beth Israel Deaconess Cancer Center, Dana Farber/Harvard Cancer Center, Boston, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center; Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Chen S, Lin M, Tsai J, He P, Luo W, Herschman H, Li H. EP 4 Antagonist-Elicited Extracellular Vesicles from Mesenchymal Stem Cells Rescue Cognition/Learning Deficiencies by Restoring Brain Cellular Functions. Stem Cells Transl Med 2019; 8:707-723. [PMID: 30891948 PMCID: PMC6591556 DOI: 10.1002/sctm.18-0284] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/20/2019] [Indexed: 12/25/2022] Open
Abstract
Adult brains have limited regenerative capacity. Consequently, both brain damage and neurodegenerative diseases often cause functional impairment for patients. Mesenchymal stem cells (MSCs), one type of adult stem cells, can be isolated from various adult tissues. MSCs have been used in clinical trials to treat human diseases and the therapeutic potentials of the MSC‐derived secretome and extracellular vesicles (EVs) have been under investigation. We found that blocking the prostaglandin E2/prostaglandin E2 receptor 4 (PGE2/EP4) signaling pathway in MSCs with EP4 antagonists increased EV release and promoted the sorting of specific proteins, including anti‐inflammatory cytokines and factors that modify astrocyte function, blood–brain barrier integrity, and microglial migration into the damaged hippocampus, into the EVs. Systemic administration of EP4 antagonist‐elicited MSC EVs repaired deficiencies of cognition, learning and memory, inhibited reactive astrogliosis, attenuated extensive inflammation, reduced microglial infiltration into the damaged hippocampus, and increased blood–brain barrier integrity when administered to mice following hippocampal damage. stem cells translational medicine2019
Collapse
Affiliation(s)
- Shih‐Yin Chen
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| | - Meng‐Chieh Lin
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| | - Jia‐Shiuan Tsai
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| | - Pei‐Lin He
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| | - Wen‐Ting Luo
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| | - Harvey Herschman
- Department of Molecular & Medical PharmacologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Hua‐Jung Li
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| |
Collapse
|
43
|
Burmeister AR, Marriott I. The Interleukin-10 Family of Cytokines and Their Role in the CNS. Front Cell Neurosci 2018; 12:458. [PMID: 30542269 PMCID: PMC6277801 DOI: 10.3389/fncel.2018.00458] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Resident cells of the central nervous system (CNS) play an important role in detecting insults and initiating protective or sometimes detrimental host immunity. At peripheral sites, immune responses follow a biphasic course with the rapid, but transient, production of inflammatory mediators giving way to the delayed release of factors that promote resolution and repair. Within the CNS, it is well known that glial cells contribute to the onset and progression of neuroinflammation, but it is only now becoming apparent that microglia and astrocytes also play an important role in producing and responding to immunosuppressive factors that serve to limit the detrimental effects of such responses. Interleukin-10 (IL-10) is generally considered to be the quintessential immunosuppressive cytokine, and its ability to resolve inflammation and promote wound repair at peripheral sites is well documented. In the present review article, we discuss the evidence for the production of IL-10 by glia, and describe the ability of CNS cells, including microglia and astrocytes, to respond to this suppressive factor. Furthermore, we review the literature for the expression of other members of the IL-10 cytokine family, IL-19, IL-20, IL-22 and IL-24, within the brain, and discuss the evidence of a role for these poorly understood cytokines in the regulation of infectious and sterile neuroinflammation. In concert, the available data indicate that glia can produce IL-10 and the related cytokines IL-19 and IL-24 in a delayed manner, and these cytokines can limit glial inflammatory responses and/or provide protection against CNS insult. However, the roles of other IL-10 family members within the CNS remain unclear, with IL-20 appearing to act as a pro-inflammatory factor, while IL-22 may play a protective role in some instances and a detrimental role in others, perhaps reflecting the pleiotropic nature of this cytokine family. What is clear is that our current understanding of the role of IL-10 and related cytokines within the CNS is limited at best, and further research is required to define the actions of this understudied family in inflammatory brain disorders.
Collapse
Affiliation(s)
- Amanda R Burmeister
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Ian Marriott
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
44
|
Yamasaki S. Recent advances in the role of RNA-binding protein, tristetraprolin, in arthritis. Immunol Med 2018; 41:98-102. [PMID: 30938272 DOI: 10.1080/25785826.2018.1531187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The expression levels of cytokines and chemokines are strictly regulated at transcriptional and post-transcriptional levels. These small proteins are closely related to inflammatory diseases such as rheumatoid arthritis (RA). The purpose of this review is to highlight the potential utilization of tristetraprolin (TTP) as a therapeutic target in treating RA. TTP is the most notable and well-characterized RNA-binding protein that destabilizes mRNA of pro-inflammatory cytokines. TTP is thought to play an important role in RA because its target mRNA includes a lot of inflammatory cytokines such as TNFα. Post-translational modifications, especially phosphorylation, seem to be critical for the anti-inflammatory effects of TTP. Importantly, various mouse models, many of which are consistent with in vitro studies, are now available to elicit a more detailed understanding of the pathogenic role of TTP. The results of these multidisciplinary studies indicate that it is possible to improve inflammation by controlling TTP activity. Through this review, I propose that the use of recently developed mouse models and establishment of clever designs to target TTP will greatly contribute to future drug development to treat RA.
Collapse
Affiliation(s)
- Satoshi Yamasaki
- a Division of Rheumatology, Kurume University Medical Center , Fukuoka , Japan
| |
Collapse
|
45
|
Yang C, Kelaini S, Caines R, Margariti A. RBPs Play Important Roles in Vascular Endothelial Dysfunction Under Diabetic Conditions. Front Physiol 2018; 9:1310. [PMID: 30294283 PMCID: PMC6158626 DOI: 10.3389/fphys.2018.01310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/30/2018] [Indexed: 12/17/2022] Open
Abstract
Diabetes is one of the major health care problems worldwide leading to huge suffering and burden to patients and society. Diabetes is also considered as a cardiovascular disorder because of the correlation between diabetes and an increased incidence of cardiovascular disease. Vascular endothelial cell dysfunction is a major mediator of diabetic vascular complications. It has been established that diabetes contributes to significant alteration of the gene expression profile of vascular endothelial cells. Post-transcriptional regulation by RNA binding proteins (RBPs) plays an important role in the alteration of gene expression profile under diabetic conditions. The review focuses on the roles and mechanisms of critical RBPs toward diabetic vascular endothelial dysfunction. Deeper understanding of the post- transcriptional regulation by RBPs could lead to new therapeutic strategies against diabetic manifestation in the future.
Collapse
Affiliation(s)
- Chunbo Yang
- Centre for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| | - Sophia Kelaini
- Centre for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| | - Rachel Caines
- Centre for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| | - Andriana Margariti
- Centre for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| |
Collapse
|
46
|
Xie W, Zheng W, Liu M, Qin Q, Zhao Y, Cheng Z, Guo F. BRF1 ameliorates LPS-induced inflammation through autophagy crosstalking with MAPK/ERK signaling. Genes Dis 2018; 5:226-234. [PMID: 30320187 PMCID: PMC6176218 DOI: 10.1016/j.gendis.2018.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/16/2018] [Indexed: 01/11/2023] Open
Abstract
Inflammation is indispensable for host defense, whereas excessive inflammation often develop inflammatory diseases. Autophagy is thought to be engaged in many extracellular stress responses, such as starvation and innate immunity. Thus, autophagy plays an important role in maintaining homeostasis. The purpose of this study was to elucidate the function of BRF1 in the regulation of inflammation and autophagy response in macrophages. We found that BRF1 inhibited the LPS-induced inflammatory factors expression and the autophagy flux in macrophage. Furthermore, inhibition autophagy with 3-MA can attenuate the suppressive effect of BRF1 on LPS-mediated inflammation. In addition, MAPK/ERK signaling pathway was involved in the BRF1 inhibition inflammation and autophagy in macrophages. These findings indicate that BRF1 attenuates LPS-induced inflammatory factors secretion through autophagy, at least in part, through MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Weiwei Xie
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Zheng
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Min Liu
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Qizhong Qin
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Yunpeng Zhao
- Department of Orthopaedic Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Zhi Cheng
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Fengjin Guo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
47
|
Angiolilli C, Kabala PA, Grabiec AM, Rossato M, Lai WS, Fossati G, Mascagni P, Steinkühler C, Blackshear PJ, Reedquist KA, Baeten DL, Radstake TRDJ. Control of cytokine mRNA degradation by the histone deacetylase inhibitor ITF2357 in rheumatoid arthritis fibroblast-like synoviocytes: beyond transcriptional regulation. Arthritis Res Ther 2018; 20:148. [PMID: 30029685 PMCID: PMC6053802 DOI: 10.1186/s13075-018-1638-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/01/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Histone deacetylase inhibitors (HDACi) suppress cytokine production in immune and stromal cells of patients with rheumatoid arthritis (RA). Here, we investigated the effects of the HDACi givinostat (ITF2357) on the transcriptional and post-transcriptional regulation of inflammatory markers in RA fibroblast-like synoviocytes (FLS). METHODS The effects of ITF2357 on the expression and messenger RNA (mRNA) stability of IL-1β-inducible genes in FLS were analyzed using array-based qPCR and Luminex. The expression of primary and mature cytokine transcripts, the mRNA levels of tristetraprolin (TTP, or ZFP36) and other AU-rich element binding proteins (ARE-BP) and the cytokine profile of fibroblasts derived from ZFP36+/+ and ZFP36-/- mice was measured by qPCR. ARE-BP silencing was performed by small interfering RNA (siRNA)-mediated knockdown, and TTP post-translational modifications were analyzed by immunoblotting. RESULTS ITF2357 reduced the expression of 85% of the analyzed IL-1β-inducible transcripts, including cytokines (IL6, IL8), chemokines (CXCL2, CXCL5, CXCL6, CXCL10), matrix-degrading enzymes (MMP1, ADAMTS1) and other inflammatory mediators. Analyses of mRNA stability demonstrated that ITF2357 accelerates IL6, IL8, PTGS2 and CXCL2 mRNA degradation, a phenomenon associated with the enhanced transcription of TTP, but not other ARE-BP, and the altered post-translational status of TTP protein. TTP knockdown potentiated cytokine production in RA FLS and murine fibroblasts, which in the latter case was insensitive to inhibition by ITF2357 treatment. CONCLUSIONS Our study identifies that regulation of cytokine mRNA stability is a predominant mechanism underlying ITF2357 anti-inflammatory properties, occurring via regulation of TTP. These results highlight the therapeutic potential of ITF2357 in the treatment of RA.
Collapse
Affiliation(s)
- Chiara Angiolilli
- Laboratory of Translational Immunology and Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands. .,Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.
| | - Pawel A Kabala
- Laboratory of Translational Immunology and Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Aleksander M Grabiec
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.,Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marzia Rossato
- Laboratory of Translational Immunology and Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Functional Genomics Center, University of Verona, Verona, Italy
| | - Wi S Lai
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | | | - Paolo Mascagni
- Italfarmaco Research and Development, Cinisello Balsamo, Italy
| | | | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Kris A Reedquist
- Laboratory of Translational Immunology and Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Dominique L Baeten
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Timothy R D J Radstake
- Laboratory of Translational Immunology and Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
48
|
Tian FJ, He XY, Wang J, Li X, Ma XL, Wu F, Zhang J, Liu XR, Qin XL, Zhang Y, Zeng WH, Lin Y. Elevated Tristetraprolin Impairs Trophoblast Invasion in Women with Recurrent Miscarriage by Destabilization of HOTAIR. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:600-609. [PMID: 30195796 PMCID: PMC6078837 DOI: 10.1016/j.omtn.2018.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/20/2022]
Abstract
Tristetraprolin (TTP) regulates the stability of multiple targets that have important biological roles. However, the role of TTP in trophoblasts at the maternal-fetal interface remains poorly understood. We demonstrated that TTP was upregulated in placental trophoblasts from patients with recurrent miscarriages (RMs). Immunofluorescence and immunoblotting analyses indicated that TTP was redistributed from the nucleus to the cytoplasm in trophoblasts from patients with RMs. Trophoblast invasion and proliferation was repressed by TTP overexpression and was enhanced by TTP knockdown. Interestingly, TTP knockdown promoted trophoblast invasion in an ex vivo explant culture model. Furthermore, TTP overexpression in trophoblasts significantly inhibited the expression of the long non-coding RNA (lncRNA) HOTAIR. TTP was found to regulate HOTAIR expression by a posttranscriptional mechanism. To RNA immunoprecipitation (RIP) and RNA-protein, pull-down identified TTP as a specific binding partner that decreased the half-life of HOTAIR and lowered steady-state HOTAIR expression levels, indicating a novel posttranscriptional regulatory mechanism. Our findings identify a novel function for TTP in lncRNA regulation and provide important insights into the regulation of lncRNA expression. This study reveals a new pathway governing the regulation of TTP/HOTAIR in trophoblast cell invasion during early pregnancy.
Collapse
Affiliation(s)
- Fu-Ju Tian
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiao-Ying He
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jie Wang
- Department of Breast Disease, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiao Li
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiao-Ling Ma
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Fan Wu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jing Zhang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiao-Rui Liu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiao-Li Qin
- Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei-Hong Zeng
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Yi Lin
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
49
|
Díaz-Muñoz MD, Turner M. Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System. Front Immunol 2018; 9:1094. [PMID: 29875770 PMCID: PMC5974052 DOI: 10.3389/fimmu.2018.01094] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022] Open
Abstract
Fighting external pathogens requires an ever-changing immune system that relies on tight regulation of gene expression. Transcriptional control is the first step to build efficient responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional regulation of RNA editing, location, stability, and translation are the other key steps for final gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays we have a deep understanding of how transcription factors control the immune system but recent evidences suggest that post-transcriptional regulation by RBPs is equally important for both development and activation of immune responses. Here, we review current knowledge about how post-transcriptional control by RBPs shapes our immune system and discuss the perspective of RBPs being the key players of a hidden immune cell epitranscriptome.
Collapse
Affiliation(s)
- Manuel D Díaz-Muñoz
- Centre de Physiopathologie Toulouse-Purpan, INSERM UMR1043/CNRS U5282, Toulouse, France
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
50
|
Steinkamp HM, Hathaway-Schrader JD, Chavez MB, Aartun JD, Zhang L, Jensen T, Shojaee Bakhtiari A, Helke KL, Stumpo DJ, Alekseyenko AV, Novince CM, Blackshear PJ, Kirkwood KL. Tristetraprolin Is Required for Alveolar Bone Homeostasis. J Dent Res 2018. [PMID: 29514008 DOI: 10.1177/0022034518756889] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tristetraprolin (TTP) is an RNA-binding protein that targets numerous immunomodulatory mRNA transcripts for degradation. Many TTP targets are key players in the pathogenesis of periodontal bone loss, including tumor necrosis factor-α. To better understand the extent that host immune factors play during periodontal bone loss, we assessed alveolar bone levels, inflammation and osteoclast activity in periodontal tissues, and immune response in draining cervical lymph nodes in TTP-deficient and wild-type (WT) mice in an aging study. WT and TTP-deficient (knockout [KO]) mice were used for all studies under specific pathogen-free conditions. Data were collected on mice aged 3, 6, and 9 mo. Microcomputed tomography (µCT) was performed on maxillae where 3-dimensional images were generated and bone loss was assessed. Decalcified sections of specimens were scored for inflammation and stained with tartrate-resistant acid phosphate (TRAP) to visualize osteoclasts. Immunophenotyping was performed on single-cell suspensions isolated from primary and peripheral lymphoid tissues using flow cytometry. Results presented indicate that TTP KO mice had significantly more alveolar bone loss over time compared with WT controls. Bone loss was associated with significant increases in inflammatory cell infiltration and an increased percentage of alveolar bone surfaces apposed with TRAP+ cells. Furthermore, it was found that the draining cervical lymph nodes were significantly enlarged in TTP-deficient animals and contained a distinct pathological immune profile compared with WT controls. Finally, the oral microbiome in the TTP KO mice was significantly different with age from WT cohoused mice. The severe bone loss, inflammation, and increased osteoclast activity observed in these mice support the concept that TTP plays a critical role in the maintenance of alveolar bone homeostasis in the presence of oral commensal flora. This study suggests that TTP is required to inhibit excessive inflammatory host responses that contribute to periodontal bone loss, even in the absence of specific periodontal pathogens.
Collapse
Affiliation(s)
- H M Steinkamp
- 1 Department of Oral Health Sciences and Center for Oral Health Research, Medical University of South Carolina, Charleston, SC, USA
| | - J D Hathaway-Schrader
- 1 Department of Oral Health Sciences and Center for Oral Health Research, Medical University of South Carolina, Charleston, SC, USA
| | - M B Chavez
- 1 Department of Oral Health Sciences and Center for Oral Health Research, Medical University of South Carolina, Charleston, SC, USA
| | - J D Aartun
- 1 Department of Oral Health Sciences and Center for Oral Health Research, Medical University of South Carolina, Charleston, SC, USA
| | - L Zhang
- 1 Department of Oral Health Sciences and Center for Oral Health Research, Medical University of South Carolina, Charleston, SC, USA.,2 Department of Oral Biology, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - T Jensen
- 1 Department of Oral Health Sciences and Center for Oral Health Research, Medical University of South Carolina, Charleston, SC, USA
| | - A Shojaee Bakhtiari
- 3 Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - K L Helke
- 4 Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - D J Stumpo
- 3 Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - A V Alekseyenko
- 1 Department of Oral Health Sciences and Center for Oral Health Research, Medical University of South Carolina, Charleston, SC, USA.,3 Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - C M Novince
- 1 Department of Oral Health Sciences and Center for Oral Health Research, Medical University of South Carolina, Charleston, SC, USA
| | - P J Blackshear
- 5 Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Departments of Biochemistry & Medicine, Duke University Medical Center, Durham, NC, USA
| | - K L Kirkwood
- 2 Department of Oral Biology, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|