1
|
Shukla M, Narayan M. Proteostasis and Its Role in Disease Development. Cell Biochem Biophys 2025; 83:1725-1741. [PMID: 39422790 PMCID: PMC12123047 DOI: 10.1007/s12013-024-01581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Proteostasis (protein homeostasis) refers to the general biological process that maintains the proper balance between the synthesis of proteins, their folding, trafficking, and degradation. It ensures proteins are functional, locally distributed, and appropriately folded inside cells. Genetic information enclosed in mRNA is translated into proteins. To ensure newly synthesized proteins take on the exact three-dimensional conformation, molecular chaperones assist in proper folding. Misfolded proteins can be refolded or targeted for elimination to stop aggregation. Cells utilize different degradation pathways, for instance, the ubiquitin-proteasome system, the autophagy-lysosome pathway, and the unfolded protein response, to degrade unwanted or damaged proteins. Quality control systems of the cell monitor the folding of proteins. These checkpoint mechanisms are aimed at degrading or refolding misfolded or damaged proteins. Under stress response pathways, such as heat shock response and unfolded protein response, which are triggered under conditions that perturb proteostasis, the capacity for folding is increased, and degradation pathways are activated to help cells handle stressful conditions. The deregulation of proteostasis is implicated in a variety of illnesses, comprising cancer, metabolic diseases, cardiovascular diseases, and neurological disorders. Therapeutic strategies with a deeper insight into the mechanism of proteostasis are crucial for the treatment of illnesses linked with proteostasis and to support cellular health. Thus, proteostasis is required not only for the maintenance of cellular homeostasis and function but also for proper protein function and prevention of injurious protein aggregation. In this review, we have covered the concept of proteostasis, its mechanism, and how disruptions to it can result in a number of disorders.
Collapse
Affiliation(s)
- Manisha Shukla
- Department of Biotechnology, Pandit S.N. Shukla University, Shahdol, Madhya Pradesh, India
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas, El Paso, TX, USA.
| |
Collapse
|
2
|
Dong H, Lyu Y, Huang CY, Tsai SY. Limiting cap-dependent translation increases 20S proteasomal degradation and protects the proteomic integrity in autophagy-deficient skeletal muscle. Autophagy 2025; 21:1212-1227. [PMID: 39878121 PMCID: PMC12087647 DOI: 10.1080/15548627.2025.2457925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Postmitotic skeletal muscle critically depends on tightly regulated protein degradation to maintain proteomic stability. Impaired macroautophagy/autophagy-lysosomal or ubiquitin-proteasomal protein degradation causes the accumulation of damaged proteins, ultimately accelerating muscle dysfunction with age. While in vitro studies have demonstrated the complementary nature of these systems, their interplay at the organism levels remains poorly understood. Here, our study reveals novel insights into this complex relationship in autophagy-deficient skeletal muscle. We demonstrated that despite a compensatory increase in proteasome level in response to autophagy impairment, 26S proteasome activity was not proportionally enhanced in autophagy-deficient skeletal muscle. This functional deficit was partly attributed to reduced ATP levels to fuel the 26S proteasome. Remarkably, we found that activation of EIF4EBP1, a crucial inhibitor of cap-dependent translation, restored and even augmented proteasomal function through dual mechanisms. First, genetically activating EIF4EBP1 enhanced both ATP-dependent 26S proteasome and ATP-independent 20S proteasome activities, thereby expanding overall protein degradation capacity. Second, EIF4EBP1 activation caused muscle fiber transformation and increased mitochondrial biogenesis, thus replenishing ATP levels for 26S proteasome activation. Notably, the improved performance of the 20S proteasome in EIF4EBP1-activated skeletal muscle was attributed to an increased abundance of the immunoproteasome, a subtype specially adapted to function under oxidative stress conditions. This dual action of EIF4EBP1 activation preserved proteomic integrity in autophagy-deficient skeletal muscle. Our findings uncover a novel role of EIF4EBP1 in improving protein quality control, presenting a promising therapeutic strategy for autophagy-related muscular disorders and potentially other conditions characterized by proteostatic imbalance.Abbreviations: 3-MA: 3-methyladenine; ACAC/ACC: acetyl-Coenzyme A carboxylase; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; ATG7: autophagy related 7; ATP: adenosine triphosphate; ATP5F1A/ATP5A: ATP synthase F1 subunit alpha; CKM-Cre: creatine kinase, muscle-Cre; CMA: chaperone-mediated autophagy; CTSB: cathepsin B; CTSK: cathepsin K; CTSL: cathepsin L; CUL3: cullin 3; EDL: extensor digitorum longus; EIF4E: eukaryotic translation initiation factor 4E; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; EIF4F: eukaryotic translation initiation factor 4F complex; FBXO32/ATROGIN1/MAFbx: F-box protein 32; GFP: green fluorescent protein; IFNG/IFN-γ: interferon gamma; KEAP1: kelch-like ECH-associated protein 1; LAMP1: lysosomal-associated membrane protein 1; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; Myl1/Mlc1f-Cre: myosin, light polypeptide 1 (promoter driving Cre recombinase); mRFP: monomeric red fluorescent protein; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NFE2L1/NRF1: nuclear factor, erythroid derived 2, like 1; NFE2L2/NRF2: nuclear factor, erythroid derived 2, like 2; NFKB1/NFκB1: nuclear factor of kappa light polypeptide gene enhancer in B cells 1, p105; OXPHOS: oxidative phosphorylation; PPARGC1A/PGC1α: peroxisome proliferator activated receptor, gamma, coactivator 1 alpha; PSMB5: proteasome (prosome, macropain) subunit, beta type 5; PSMB6: proteasome (prosome, macropain) subunit, beta type 6; PSMB7: proteasome (prosome, macropain) subunit, beta type 7; PSMB8: proteasome (prosome, macropain) subunit, beta type 8 (large multifunctional peptidase 7); PSMB9: proteasome (prosome, macropain) subunit, beta type 9 (large multifunctional peptidase 2); PSMB10: proteasome (prosome, macropain) subunit, beta type 10; PSME1: proteasome (prosome, macropain) activator subunit 1 (PA28 alpha); PSME2: proteasome (prosome, macropain) activator subunit 2 (PA28 beta); RBX1: ring-box 1; SQSTM1/p62: sequestosome 1; SREBF1/SREBP1: sterol regulatory element binding transcription factor 1; STAT3: signal transducer and activator of transcription 3; TRIM63/MURF1: tripartite motif-containing 63; ULK1: unc-51 like kinase 1; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Han Dong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yifan Lyu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chien-Yung Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shih-Yin Tsai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
3
|
Tiburcio PDB, Chen K, Xu L, Chen KS. Suppressing proteasome activity enhances sensitivity to actinomycin D in diffuse anaplastic Wilms tumor. Cell Rep Med 2025; 6:102133. [PMID: 40347939 DOI: 10.1016/j.xcrm.2025.102133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 02/28/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
Wilms tumor is the most common pediatric kidney cancer, and diffuse anaplastic Wilms tumor is the most chemoresistant subtype. Here, we explore how Wilms tumor cells evade the chemotherapy actinomycin D, which inhibits ribosomal RNA biogenesis. Using ribosome profiling, protein arrays, and a genome-wide knockout screen, we describe how actinomycin D disrupts protein homeostasis and blocks cell-cycle progression. When ribosomal capacity is limited by actinomycin D treatment, anaplastic Wilms tumor cells preferentially translate proteasome components. Next, we find that the proteasome inhibitor bortezomib sensitizes cells to actinomycin D treatment in vitro and prolongs survival in xenograft models. Lastly, increased levels of proteasome components are associated with anaplastic histology and worse prognosis in Wilms tumor patients. In sum, maintaining protein homeostasis is critical for Wilms tumor proliferation, and it can be therapeutically disrupted by blocking protein synthesis or turnover.
Collapse
Affiliation(s)
- Patricia D B Tiburcio
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O'Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Quantitative Biomedical Research Center, Peter O'Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenneth S Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Kelu JJ, Hughes SM. Muscle peripheral circadian clock drives nocturnal protein degradation via raised Ror/Rev-erb balance and prevents premature sarcopenia. Proc Natl Acad Sci U S A 2025; 122:e2422446122. [PMID: 40324095 PMCID: PMC12088385 DOI: 10.1073/pnas.2422446122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/04/2025] [Indexed: 05/07/2025] Open
Abstract
How central and peripheral circadian clocks regulate protein metabolism and affect tissue mass homeostasis has been unclear. Circadian shifts in the balance between anabolism and catabolism control muscle growth rate in young zebrafish independent of behavioral cycles. Here, we show that the ubiquitin-proteasome system (UPS) and autophagy, which mediate muscle protein degradation, are each upregulated at night under the control of the muscle peripheral clock. Perturbation of the muscle transcriptional molecular clock disrupts nocturnal proteolysis, increases muscle growth measured over 12 h, and compromises muscle function. Mechanistically, the shifting circadian balance of Ror and Rev-erb regulates nocturnal UPS, autophagy, and muscle growth through altered TORC1 activity. Although environmental zeitgebers initially mitigate defects, lifelong muscle clock inhibition reduces muscle size and growth rate, accelerating aging-related loss of muscle mass and function. Circadian misalignment such as shift work, sleep deprivation, or dementia may thus unsettle muscle proteostasis, contributing to muscle wasting and sarcopenia.
Collapse
Affiliation(s)
- Jeffrey J. Kelu
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King’s College London, LondonSE1 1UL, United Kingdom
| | - Simon M. Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King’s College London, LondonSE1 1UL, United Kingdom
| |
Collapse
|
5
|
Chen H, Zang L, Kielkowski P. Self-assembled PROTACs enable glycoproteins degradation in the living cells. Chem Sci 2025; 16:8060-8068. [PMID: 40206552 PMCID: PMC11976659 DOI: 10.1039/d5sc00400d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
We report here a two-component proteolysis targeting chimeras (PROTACs) strategy selectively targeting O-GalNAcylated and O-GlcNAcylated proteins for proteasomal degradation, which leads to severe toxicity in human cancer cell lines through perturbation of critical metabolic and signaling pathways governed by glycoproteins. Our approach termed as GlyTAC leverages from metabolic incorporation of easily accessible and cell-permeable peracetylated N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine (GalNAc) analogues bearing an azido group into glycoproteins. In the living cells, the azido-modified glycoproteins serve as covalent anchors for the introduction of thalidomide moiety by strain-promoted azide-alkyne cycloaddition (SPAAC) to recruit E3 ligase cereblon (CRBN), resulting in stepwise ubiquitination of 'sensitized' proteins and their degradation by proteasome. We show the efficiency of the system in a series of human cancer cell lines and verify the mechanistic pathway by performing control experiments at each stage of the process. Given the characteristic features of cancer cells including fast nutrient turnover, and overall increase of protein glycosylation, as well as the low cytotoxicity of the individual components, our approach may open a feasible strategy in cancer therapy.
Collapse
Affiliation(s)
- Haoyu Chen
- Department of Chemistry, LMU Munich Würmtalstr. 201 81375 Munich Germany
| | - Liu Zang
- Department of Chemistry, LMU Munich Würmtalstr. 201 81375 Munich Germany
| | - Pavel Kielkowski
- Department of Chemistry, LMU Munich Würmtalstr. 201 81375 Munich Germany
| |
Collapse
|
6
|
Ling LA, Boukhalfa A, Kung AH, Yang VK, Chen HH. Advances in Targeted Autophagy Modulation Strategies to Treat Cancer and Associated Treatment-Induced Cardiotoxicity. Pharmaceuticals (Basel) 2025; 18:671. [PMID: 40430490 PMCID: PMC12114528 DOI: 10.3390/ph18050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Autophagy, an evolutionarily conserved process, plays an important role in cellular homeostasis and human diseases. Cardiovascular dysfunction, which presents during cancer treatment or in cancer-free individuals years after treatment, is a growing clinical challenge. Millions of cancer survivors and patients face an unpredictable risk of developing cardiotoxicity. Cardiotoxicity due to cancer treatment, as well as cancer progression, has been linked to autophagy dysregulation. Modulating autophagy has been further proposed as a therapeutic treatment for both cancer and cardiovascular disorders. The safe and effective use of autophagy modulation as a cardioprotective strategy during cancer treatment especially requires careful consideration and experimentation to minimize the impact on cancer treatment. We focus here on recent advances in targeted autophagy modulation strategies that utilize interdisciplinary approaches in biomedical sciences and are potentially translatable to treat cardiotoxicity and improve cancer treatment outcomes. This review highlights non-small molecule autophagy modulators to enhance targeted therapy, nanomedicine for autophagy modulation and monitoring, and in vitro models and future experiments needed to bring novel autophagy discoveries from basic research to clinical translation.
Collapse
Affiliation(s)
- Lauren A. Ling
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, #80, Boston, MA 02111, USA; (L.A.L.); (A.B.)
- School of Medicine, Tufts University, 145 Harrison Avenue, Boston, MA 02111, USA
| | - Asma Boukhalfa
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, #80, Boston, MA 02111, USA; (L.A.L.); (A.B.)
| | - Andrew H. Kung
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, #80, Boston, MA 02111, USA; (L.A.L.); (A.B.)
| | - Vicky K. Yang
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd., North Grafton, MA 01536, USA;
| | - Howard H. Chen
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, #80, Boston, MA 02111, USA; (L.A.L.); (A.B.)
- School of Medicine, Tufts University, 145 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
7
|
Sen MK, Liao E, Ni D, Ge A, Piccio L. Immunomodulatory effects of calorie restriction and its mimetics: A new potential therapeutic approach for autoimmune diseases. Pharmacol Rev 2025; 77:100063. [PMID: 40449126 DOI: 10.1016/j.pharmr.2025.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 04/22/2025] [Indexed: 06/02/2025] Open
Abstract
Calorie restriction (CR) is a well known intervention associated with multifaceted anti-aging and pro-longevity health benefits. It induces complex physiological cellular and molecular adaptations, resulting in the fine-tuning of metabolic and immune responses in both homeostatic and diseased states. It has thus been extensively studied both preclinically and clinically, uncovering its therapeutic potential against inflammatory conditions, particularly autoimmune diseases. CR mimetics (CRMs), that is, molecules that mimic CR's effects, have also been widely investigated to counteract inflammatory states associated with numerous diseases, including autoimmunity. However, a comprehensive overview of how CR and CRMs modulate different aspects of immune responses, thereby potentially modifying autoimmunity, is still lacking. Here, we reviewed the latest progress on the impacts of CR and CRMs on the immune system and the current evidence on their potential translation in the clinical management of people with autoimmune diseases. First, we summarized different types of CR and CRMs and their main mechanisms of action. We next reviewed comprehensively how CR and CRMs modulate immune cells and discussed up-to-date preclinical and clinical advances in using CR and CRMs in the context of some of the most common autoimmune diseases. Finally, challenges faced in CR-related research and its translation into the clinic are discussed. SIGNIFICANCE STATEMENT: Calorie restriction (CR) encompasses various approaches for daily or intermittent reduction in calorie intake while maintaining adequate nutrient intake. It acts through cell-intrinsic and -extrinsic pathways to modulate immune cell functions. CR is emerging as a strategy for autoimmune disease management. CR's effects could be partially mimicked by molecules called CR mimetics, which are proposed to achieve CR's effects without reducing food intake. CR and CR mimetics have been tested as promising potential therapeutics in preclinical and clinical autoimmune disease studies.
Collapse
Affiliation(s)
- Monokesh K Sen
- Charles Perkins Centre, Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Eileen Liao
- Charles Perkins Centre, Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Duan Ni
- Charles Perkins Centre, Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anjie Ge
- Charles Perkins Centre, Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Laura Piccio
- Charles Perkins Centre, Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
8
|
Liao X, Xie Q, Liang M, Liao Q, Huang B, Zhang S, Zhang F, Wang L, Yuan L, Liu X, Wen S, Luo C, Wang D, Chen Y, Luo H, Shu Y. Glucosidase alpha neutral C promotes influenza virus replication by inhibiting proteosome-dependent degradation of hemagglutinin. Signal Transduct Target Ther 2025; 10:131. [PMID: 40263249 PMCID: PMC12015365 DOI: 10.1038/s41392-025-02227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 03/19/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
The H7N9 influenza virus poses a significant threat to human health, and the mechanism by which it infects humans remains incompletely understood. Our investigation has unveiled significant insights into the role of glucosidase alpha, neutral C (GANC) gene in human H7N9 infections. Through whole genome sequencing (WGS), we identified five low-frequency functional and heterozygous variants of GANC strongly associated with human H7N9 infections compared to healthy controls. Furthermore, we observed a reduction in mRNA and protein expression of GANC following H7N9 virus infection in vitro and in vivo. Subsequent experiments involving GANC demonstrated the promotion of H7N9 virus replication in a stable strain with GANC overexpression. Conversely, GANC knockdown exhibited the ability to restrict influenza A virus (IAV) replication, including H7N9, H9N2, and H1N1, both in vitro and in vivo. This inhibition was mediated by GANC's ability to promote the degradation of H7N9 hemagglutinin (HA). Moreover, we discovered that GANC knockdown facilitated the degradation of HA in a proteasome-dependent manner. The inhibition caused by GANC knockdown was mediated by promoting direct binding of HA with the proteasome 26S subunit, non-ATPase, 1 (PSMD1) and PSMD2. All five variants in the GANC gene reduced their ability to promote H7N9 virus replication, and also diminished the levels of GANC-induced HA protein expression. Our findings revealed a novel mechanism by which GANC inhibits the proteasome-dependent degradation of HA to promote H7N9 virus replication. These results suggest that GANC may play an important role in IAV replication.
Collapse
Affiliation(s)
- Xinzhong Liao
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qian Xie
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Minqi Liang
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qijun Liao
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Bi Huang
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shengze Zhang
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Feng Zhang
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Lifang Yuan
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xuejie Liu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Simin Wen
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Dayan Wang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yongkun Chen
- Guangdong Provincial Key Laboratory of Infection Immunity and Inflammation, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China.
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Landgraf A, Okada J, Horton M, Liu L, Solomon S, Qiu Y, Kurland IJ, Sidoli S, Pessin JE, Shinoda K. Widespread discordance between mRNA expression, protein abundance and de novo lipogenesis activity in hepatocytes during the fed-starvation transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.15.649020. [PMID: 40376090 PMCID: PMC12080948 DOI: 10.1101/2025.04.15.649020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
The mammalian liver plays a critical role in maintaining metabolic homeostasis during fasting and feeding. Liver function is further shaped by sex dimorphism and zonation of hepatocytes. To explore how these factors interact, we performed deep RNA-sequencing and label-free proteomics on periportal and pericentral hepatocytes isolated from male and female mice under fed and starved conditions. We developed a classification system to assess protein-mRNA relationship and found that gene products (mRNA or protein) for most zonation markers showed strong concordance between mRNA and protein. Although classical growth hormone regulated sex-biased gene products also exhibited concordance, ∼60% of sex-biased gene products showed protein-level enrichment without corresponding mRNA differences. In contrast, transition between feeding and starvation triggered widespread changes in mRNA expression without significantly affecting protein levels. In particular, key lipogenic mRNAs (e.g. Acly , Acaca , and Fasn ) were dramatically induced by feeding, but their corresponding proteins (ACLY, ACC1, and FAS) showed little to no change even as functional de novo lipogenic activity increased ∼28-fold in the fed state. To facilitate further exploration of these findings, we developed Discorda ( https://shinoda-lab.shinyapps.io/discorda/ ), a web database for interactive analysis. Our findings reinforce the principle that mRNA changes do not reliably predict corresponding protein levels (and vice versa), particularly in the context of sex and acute metabolic regulation of hepatocytes, and that de novo lipogenesis activity can be completely uncoupled from changes in protein expression.
Collapse
|
10
|
Nizami ZN, Al Azzani M, Khaldi S, Wali AF, Magramane R, Samad SA, Eid AH, Arafat K, Al Dhaheri Y, Attoub S, Iratni R. Rhus coriaria (Sumac) induces autophagic cell death and inhibits mTOR, p38MAPK and STAT3 pathways in 5fluorouracil-resistant colorectal cancer cells. Front Pharmacol 2025; 16:1542204. [PMID: 40176890 PMCID: PMC11962434 DOI: 10.3389/fphar.2025.1542204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Colorectal cancer is a leading cause of cancer related-death worldwide, and resistance to 5-fluorouracil (5FU, a key component of chemotherapy regimens, is a major clinical concern. We have previously elucidated the effects of Rhus coriaria ethanolic extract (RCE) in triple-negative breast cancer, CRC, and pancreatic cancer cells. Here, we explored the anticancer effects of RCE in parental (HCT-116-WT) and 5FU-resistant HCT-116 (HCT-116-5FU-R) CRC cells. Methods MTT assay was used to assess cell viability. Muse analyzer was used to assess cell viability, cell cycle distribution, and apoptosis. Additionally, colony formation and growth assays and western blots were performed. In vivo effects of RCE were assessed by an in ovo chick embryo tumor growth assay. Results We found that RCE inhibited the viability and colony formation and growth capacities of HCT-116-WT and HCT-116-5FU-R cells. The antiproliferative effects were attributed to DNA damage-mediated impairment of cell cycle at S phase, and induction of Beclin-1-independent autophagy in both cell lines. Mechanistically, inhibition of the mTOR, STAT3 and p38 MAPK pathways was implicated in the latter. Additionally, RCE induced caspase-7-independent apoptosis in HCT-116-WT cells. However, HCT-116-5FU-R cells were resistant to apoptosis through upregulation of survivin, and downregulation of Bax. Using autophagy and proteasome inhibitors, we clarified that autophagy and the proteasome pathway contributed to RCE-mediated cell death in HCT-116-WT and HCT-116-5FU-R cells. Lastly, we confirmed RCE inhibited the growth of both HCT-116-WT and HCT-116-5FU-R xenografts in a chick embryo model. Discussion Collectively, our findings highlight that RCE is a source of phytochemicals that can be used as anticancer agents for 5FU-resistant CRC.
Collapse
Affiliation(s)
- Zohra Nausheen Nizami
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mazoun Al Azzani
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Samah Khaldi
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Rym Magramane
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Shamaa Abdul Samad
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Kholoud Arafat
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
11
|
Huang B, Yang Y, Liu J, Zhang B, Lin N. Ubiquitination regulation of mitochondrial homeostasis: a new sight for the treatment of gastrointestinal tumors. Front Immunol 2025; 16:1533007. [PMID: 40134432 PMCID: PMC11933043 DOI: 10.3389/fimmu.2025.1533007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Mitochondrial homeostasis (MH) refers to the dynamic balance of mitochondrial number, function, and quality within cells. Maintaining MH is significant in the occurrence, development, and clinical treatment of Gastrointestinal (GI) tumors. Ubiquitination, as an important post-translational modification mechanism of proteins, plays a central role in the regulation of MH. Over the past decade, research on the regulation of MH by ubiquitination has focused on mitochondrial biogenesis, mitochondrial dynamics, Mitophagy, and mitochondrial metabolism during these processes. This review summarizes the mechanism and potential therapeutic targets of ubiquitin (Ub)-regulated MH intervention in GI tumors.
Collapse
Affiliation(s)
- Bingqian Huang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yulin Yang
- School of Clinical Chinese Medicine, Gansu University of Chinese Medicine, Gansu, China
| | - Jinming Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| |
Collapse
|
12
|
Wang H, Syed AA, Krijgsveld J, Sigismondo G. Isolation of Proteins on Chromatin Reveals Signaling Pathway-Dependent Alterations in the DNA-Bound Proteome. Mol Cell Proteomics 2025; 24:100908. [PMID: 39842777 PMCID: PMC11889358 DOI: 10.1016/j.mcpro.2025.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025] Open
Abstract
Signaling pathways often convergence on transcription factors and other DNA-binding proteins that regulate chromatin structure and gene expression, thereby governing a broad range of essential cellular functions. However, the repertoire of DNA-binding proteins is incompletely understood even for the best-characterized pathways. Here, we optimized a strategy for the isolation of Proteins on Chromatin (iPOC) exploiting tagged nucleoside analogs to label the DNA and capture associated proteins, thus enabling the comprehensive, sensitive, and unbiased characterization of the DNA-bound proteome. We then applied iPOC to investigate chromatome changes upon perturbation of the cancer-relevant PI3K-AKT-mTOR pathway. Our results show distinct dynamics of the DNA-bound proteome upon selective inhibition of PI3K, AKT, or mTOR, and we provide evidence how this signaling cascade regulates the DNA-bound status of SUZ12, thereby modulating H3K27me3 levels. Collectively, iPOC is a powerful approach to study the composition of the DNA-bound proteome operating downstream of signaling cascades, thereby both expanding our knowledge of the mechanism of action of the pathway and unveiling novel chromatin modulators that can potentially be targeted pharmacologically.
Collapse
Affiliation(s)
- Huiyu Wang
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Azmal Ali Syed
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany.
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
13
|
Cai Y, Kanyo J, Wilson R, Bathla S, Cardozo PL, Tong L, Qin S, Fuentes LA, Pinheiro-de-Sousa I, Huynh T, Sun L, Mansuri MS, Tian Z, Gan HR, Braker A, Trinh HK, Huttner A, Lam TT, Petsalaki E, Brennand KJ, Nairn AC, Grutzendler J. Subcellular proteomics and iPSC modeling uncover reversible mechanisms of axonal pathology in Alzheimer's disease. NATURE AGING 2025; 5:504-527. [PMID: 40065072 PMCID: PMC11922768 DOI: 10.1038/s43587-025-00823-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/29/2025] [Indexed: 03/21/2025]
Abstract
Dystrophic neurites (also termed axonal spheroids) are found around amyloid deposits in Alzheimer's disease (AD), where they impair axonal electrical conduction, disrupt neural circuits and correlate with AD severity. Despite their importance, the mechanisms underlying spheroid formation remain incompletely understood. To address this, we developed a proximity labeling approach to uncover the proteome of spheroids in human postmortem and mouse brains. Additionally, we established a human induced pluripotent stem cell (iPSC)-derived AD model enabling mechanistic investigation and optical electrophysiology. These complementary approaches revealed the subcellular molecular architecture of spheroids and identified abnormalities in key biological processes, including protein turnover, cytoskeleton dynamics and lipid transport. Notably, the PI3K/AKT/mTOR pathway, which regulates these processes, was activated in spheroids. Furthermore, phosphorylated mTOR levels in spheroids correlated with AD severity in humans. Notably, mTOR inhibition in iPSC-derived neurons and mice ameliorated spheroid pathology. Altogether, our study provides a multidisciplinary toolkit for investigating mechanisms and therapeutic targets for axonal pathology in neurodegeneration.
Collapse
Affiliation(s)
- Yifei Cai
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Jean Kanyo
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
| | - Rashaun Wilson
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
| | - Shveta Bathla
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | | | - Lei Tong
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Shanshan Qin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Lukas A Fuentes
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Tram Huynh
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Liyuan Sun
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Mohammad Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Zichen Tian
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Hao-Ran Gan
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Amber Braker
- Yale College, Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Hoang Kim Trinh
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Anita Huttner
- Department of Pathology, Yale University, New Haven, CT, USA
| | - TuKiet T Lam
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Kristen J Brennand
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Genetics, Yale University, New Haven, CT, USA
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
14
|
Shao WQ, Li YT, Zhou X, Zhang SG, Fan MH, Zhang D, Chen ZM, Yi CH, Wang SH, Zhu WW, Lu M, Chen JS, Lin J, Zhou Y. Cholesterol suppresses AMFR-mediated PDL1 ubiquitination and degradation in HCC. Mol Cell Biochem 2025; 480:1807-1818. [PMID: 39231894 PMCID: PMC11842428 DOI: 10.1007/s11010-024-05106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The degradation of proteasomes or lysosomes is emerging as a principal determinant of programmed death ligand 1 (PDL1) expression, which affects the efficacy of immunotherapy in various malignancies. Intracellular cholesterol plays a central role in maintaining the expression of membrane receptors; however, the specific effect of cholesterol on PDL1 expression in cancer cells remains poorly understood. Cholesterol starvation and stimulation were used to modulate the cellular cholesterol levels. Immunohistochemistry and western blotting were used to analyze the protein levels in the samples and cells. Quantitative real-time PCR, co-immunoprecipitation, and confocal co-localization assays were used for mechanistic investigation. A xenograft tumor model was constructed to verify these results in vivo. Our results showed that cholesterol suppressed the ubiquitination and degradation of PDL1 in hepatocellular carcinoma (HCC) cells. Further mechanistic studies revealed that the autocrine motility factor receptor (AMFR) is an E3 ligase that mediated the ubiquitination and degradation of PDL1, which was regulated by the cholesterol/p38 mitogenic activated protein kinase axis. Moreover, lowering cholesterol levels using statins improved the efficacy of programmed death 1 (PD1) inhibition in vivo. Our findings indicate that cholesterol serves as a signal to inhibit AMFR-mediated ubiquitination and degradation of PDL1 and suggest that lowering cholesterol by statins may be a promising combination strategy to improve the efficiency of PD1 inhibition in HCC.
Collapse
Affiliation(s)
- Wei-Qing Shao
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Yi-Tong Li
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Xu Zhou
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Sheng-Guo Zhang
- Department of Infection, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China
| | - Ming-Hao Fan
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Dong Zhang
- Department of Infection, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China
| | - Zhen-Mei Chen
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Chen-He Yi
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Sheng-Hao Wang
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Wen-Wei Zhu
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Ming Lu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ji-Song Chen
- Depatment of Hepatobiliary Surgery, Taizhou Fourth People's Hospital, Jiangsu, 214527, China
| | - Jing Lin
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China.
| | - Yu Zhou
- Department of Infection, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China.
| |
Collapse
|
15
|
Li T, Liu R, He Y, Zhang B, Rui X, Yang X, Wang J, Zeng J, Li G, Li X, Liu G. Overexpression of TECPR1 improved cognitive function of P301S-tau mice via activation of autophagy in the early and late process. Aging Cell 2025; 24:e14404. [PMID: 39511758 PMCID: PMC11896361 DOI: 10.1111/acel.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
Autophagy disorders in AD patients and animal models were well known, however, the effect of P301S-tau on autophagy is not clear. Here, we found that autophagy related protein Tectonin Beta-Propeller Repeat-Containing Protein 1 (TECPR1) decreased in the hippocampus of P301S-tau transgenic mice by proteomics, which was proved in vivo and in vitro, and P301S-tau induced autophagic deficits in early and late process. TECPR1 overexpression attenuated P301S-tau induced autophagy defects via promoting autophagosome generation and autophagosome and lysosomes fusion. We also found that TECPR1 overexpression ameliorated the behavior disorders of P301S-tau mice with promoting tau degradation, improving synaptic plasticity and neuron loss. Lastly, CQ or 3-MA treatment reversed TECPR1 induced improvement effects on autophagic and cognitive disorders, further proved that, TECPR1 activated the early and late process of autophagy to ameliorate the cognition of P301S-tau mice. Our data suggest that TECPR1 is a potential therapy target for AD.
Collapse
Affiliation(s)
- Ting Li
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanChina
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ruijuan Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ye He
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Bingge Zhang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuexiang Rui
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Modern ToxicologyShenzhen Center for Disease Control and PreventionShenzhenChina
| | - Jian‐Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Juan Zeng
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiao Li
- Department of PathologyWuhan No. 1 HospitalWuhanChina
| | - Gong‐Ping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Modern ToxicologyShenzhen Center for Disease Control and PreventionShenzhenChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| |
Collapse
|
16
|
Ranxhi B, Bangash ZR, Chbihi ZM, Todi SV, LeWitt PA, Tsou WL. The effect of AKT inhibition in α-synuclein-dependent neurodegeneration. Front Mol Neurosci 2025; 18:1524044. [PMID: 39974188 PMCID: PMC11835820 DOI: 10.3389/fnmol.2025.1524044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting millions of individuals worldwide. A hallmark of PD pathology is the accumulation of α-synuclein (α-Syn), a small protein known to support neuronal development and function. However, in PD, α-Syn cumulatively misfolds into toxic aggregates that disrupt cellular processes and contribute to neuronal damage and neurodegeneration. Previous studies implicated the AKT signaling pathway in α-Syn toxicity in cellular models of PD, suggesting AKT as a potential therapeutic target. Here, we investigated the effect of AKT inhibition in a Drosophila model of synucleinopathy. We observed that administration of the AKT inhibitor, A-443654 led to mild improvements in both survival and motor function in flies expressing human α-Syn. Genetic studies revealed that reduction of AKT levels decreased α-Syn protein levels, concomitant with improved physiological outcomes. The protective effects of AKT reduction appear to operate through the fly ortholog of NF-κB, Relish, suggesting a link between AKT and NF-κB in regulating α-Syn levels. These findings highlight the AKT cascade as a potential therapeutic target for synucleinopathies and provide insights into mechanisms that could be utilized to reduce α-Syn toxicity in PD and related disorders, such as multiple system atrophy.
Collapse
Affiliation(s)
- Bedri Ranxhi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Zoya R. Bangash
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Zachary M. Chbihi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sokol V. Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Peter A. LeWitt
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Neurology, Henry Ford Health Systems, Detroit, MI, United States
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
17
|
Lee D. Activators of the 26S proteasome when protein degradation increases. Exp Mol Med 2025; 57:41-49. [PMID: 39779978 PMCID: PMC11799193 DOI: 10.1038/s12276-024-01385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025] Open
Abstract
In response to extra- and intracellular stimuli that constantly challenge and disturb the proteome, cells rapidly change their proteolytic capacity to maintain proteostasis. Failure of such efforts often becomes a major cause of diseases or is associated with exacerbation. Increase in protein breakdown occurs at multiple steps in the ubiquitin-proteasome system, and the regulation of ubiquitination has been extensively studied. However, the activities of the 26S proteasome are also stimulated, especially under highly catabolic conditions such as those associated with atrophying skeletal muscle, proteotoxic stress such as heat shock and arsenite, or hormonal cues such as cAMP or cGMP agonists. Among the proteins that enhance proteasomal degradation are the PKA, PKG, UBL-UBA proteins and the Zn finger AN1-type domain (ZFAND) family proteins. ZFAND proteins are of particular interest because of their inducible expression in response to various stimuli and their abilities to control protein quality by stimulating the 26S proteasome and p97/VCP. The regulatory roles of ZFAND proteins appear to be important not only for the control of protein degradation but also for other cellular processes, such as mRNA stability and signaling pathways. This review summarizes the known functions of proteasome activators and discusses their possible roles in regulating proteostasis and other cellular processes.
Collapse
Affiliation(s)
- Donghoon Lee
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
- Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University. 88 Daxue Road, 325060, Wenzhou, Zhejiang, China.
| |
Collapse
|
18
|
Sedlacek J. Activation of the 26S Proteasome to Reduce Proteotoxic Stress and Improve the Efficacy of PROTACs. ACS Pharmacol Transl Sci 2025; 8:21-35. [PMID: 39816802 PMCID: PMC11729432 DOI: 10.1021/acsptsci.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025]
Abstract
The 26S proteasome degrades the majority of cellular proteins and affects all aspects of cellular life. Therefore, the 26S proteasome abundance, proper assembly, and activity in different life contexts need to be precisely controlled. Impaired proteasome activity is considered a causative factor in several serious disorders. Recent advances in proteasome biology have revealed that the proteasome can be activated by different factors or small molecules. Thus, activated ubiquitin-dependent proteasome degradation has effects such as extending the lifespan in different models, preventing the accumulation of protein aggregates, and reducing their negative impact on cells. Increased 26S proteasome-mediated degradation reduces proteotoxic stress and can potentially improve the efficacy of engineered degraders, such as PROTACs, particularly in situations characterized by proteasome malfunction. Here, emerging ideas and recent insights into the pharmacological activation of the proteasome at the transcriptional and posttranslational levels are summarized.
Collapse
Affiliation(s)
- Jindrich Sedlacek
- Department
of Genetics and Microbiology, Charles University
and Research Center BIOCEV, Pru°myslová 595, Vestec 252 50, Czech Republic
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech
Republic
| |
Collapse
|
19
|
He L, Cho S, Blenis J. mTORC1, the maestro of cell metabolism and growth. Genes Dev 2025; 39:109-131. [PMID: 39572234 PMCID: PMC11789495 DOI: 10.1101/gad.352084.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The mechanistic target of rapamycin (mTOR) pathway senses and integrates various environmental and intracellular cues to regulate cell growth and proliferation. As a key conductor of the balance between anabolic and catabolic processes, mTOR complex 1 (mTORC1) orchestrates the symphonic regulation of glycolysis, nucleic acid and lipid metabolism, protein translation and degradation, and gene expression. Dysregulation of the mTOR pathway is linked to numerous human diseases, including cancer, neurodegenerative disorders, obesity, diabetes, and aging. This review provides an in-depth understanding of how nutrients and growth signals are coordinated to influence mTOR signaling and the extensive metabolic rewiring under its command. Additionally, we discuss the use of mTORC1 inhibitors in various aging-associated metabolic diseases and the current and future potential for targeting mTOR in clinical settings. By deciphering the complex landscape of mTORC1 signaling, this review aims to inform novel therapeutic strategies and provide a road map for future research endeavors in this dynamic and rapidly evolving field.
Collapse
Affiliation(s)
- Long He
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Sungyun Cho
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
20
|
Liu L, Wang J, Zheng X, Zhang Q. VPS28 regulates triglyceride synthesis via ubiquitination in bovine mammary epithelial cells. Sci Rep 2024; 14:31310. [PMID: 39732879 PMCID: PMC11682384 DOI: 10.1038/s41598-024-82774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
VPS28 (vacuolar protein sorting 28) is a subunit of the endosomal sorting complexes required for transport (ESCRTs) and is involved in ubiquitination. Ubiquitination is a critical system for protein degradation in eukaryotes. Considering the recent findings on the role of ubiquitination in the regulation of lipid metabolism, we hypothesized that VPS28 might affect the expression of genes involved in milk fat synthesis. To test this hypothesis, we modulated VPS28 expression in the bovine mammary epithelial cell line (MAC-T) and measured the effects on triglyceride (TG) synthesis using lentivirus-mediated techniques. The results showed that VPS28 knockdown significantly upregulated the levels of the fatty acid transporter CD36 molecule (CD36) and adipose differentiation-related protein (ADFP), leading to increased TG and fatty acid production, along with elevated ubiquitin (UB) levels, while reducing proteasome activity. In contrast, VPS28 overexpression increased CD36 levels while not significantly affecting ADFP or TG levels, with a trend toward reduced lipid droplets and increased UB expression and proteasome activity. In addition, inhibition of the ubiquitin-proteasome system and the endosomal-lysosomal pathway using epoxomicin and chloroquine, respectively, further increased CD36, ADFP, and TG levels, thereby enhancing cell viability. These in vitro findings were validated in vivo in a mouse model, where VPS28 knockdown increased mammary CD36, ADFP, UB expression, TG content, and lipid droplets without pathological changes in mammary tissue or blood TG alterations. These results confirm the pivotal role of VPS28 in regulating TG synthesis via the ubiquitination pathway, offering novel insights into the molecular mechanisms of milk fat production in a bovine cell model.
Collapse
Affiliation(s)
- Lily Liu
- College of Biological and Food Engineering, Southwest Forestry University, Kunming, 650224, China.
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| | - Jinhai Wang
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Qin Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
21
|
Maitland MER, Onea G, Owens DDG, Gonga-Cavé BC, Wang X, Arrowsmith CH, Barsyte-Lovejoy D, Lajoie GA, Schild-Poulter C. Interplay between β-propeller subunits WDR26 and muskelin regulates the CTLH E3 ligase supramolecular complex. Commun Biol 2024; 7:1668. [PMID: 39702571 DOI: 10.1038/s42003-024-07371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
The Pro/N-degron recognizing C-terminal to LisH (CTLH) complex is an E3 ligase of emerging interest in the developmental biology field and for targeted protein degradation (TPD) modalities. The human CTLH complex forms distinct supramolecular ring-shaped structures dependent on the multimerization of WDR26 or muskelin β-propeller proteins. Here, we find that, in HeLa cells, CTLH complex E3 ligase activity is dictated by an interplay between WDR26 and muskelin in tandem with muskelin autoregulation. Proteomic experiments revealed that complex-associated muskelin protein turnover is a major ubiquitin-mediated degradation event dependent on the CTLH complex in unstimulated HeLa cells. We observed that muskelin and WDR26 binding to the scaffold of the complex is interchangeable, indicative of the formation of separate WDR26 and muskelin complexes, which correlated with distinct proteomes in WDR26 and muskelin knockout cells. We found that mTOR inhibition-induced degradation of Pro/N-degron containing protein HMGCS1 is distinctly regulated by a muskelin-specific CTLH complex. Finally, we found that mTOR inhibition also activated muskelin degradation, likely as an autoregulatory feedback mechanism to regulate CTLH complex activity. Thus, rather than swapping substrate receptors, the CTLH E3 ligase complex controls substrate selectivity through the differential association of its β-propeller oligomeric subunits WDR26 and muskelin.
Collapse
Affiliation(s)
- Matthew E R Maitland
- Robarts Research Institute, University of Western Ontario, London, ON, N6A 5B7, Canada
- Department of Biochemistry, University of Western Ontario, London, ON, N6G 2V4, Canada
- Don Rix Protein Identification Facility, University of Western Ontario, London, ON, N6G 2V4, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Gabriel Onea
- Robarts Research Institute, University of Western Ontario, London, ON, N6A 5B7, Canada
- Department of Biochemistry, University of Western Ontario, London, ON, N6G 2V4, Canada
| | - Dominic D G Owens
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Amphista Therapeutics, The Cori Building, Granta Park, Cambridge, UK
| | - Brianna C Gonga-Cavé
- Robarts Research Institute, University of Western Ontario, London, ON, N6A 5B7, Canada
- Department of Biochemistry, University of Western Ontario, London, ON, N6G 2V4, Canada
| | - Xu Wang
- Robarts Research Institute, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, University of Western Ontario, London, ON, N6G 2V4, Canada
- Don Rix Protein Identification Facility, University of Western Ontario, London, ON, N6G 2V4, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute, University of Western Ontario, London, ON, N6A 5B7, Canada.
- Department of Biochemistry, University of Western Ontario, London, ON, N6G 2V4, Canada.
- Department of Oncology, University of Western Ontario, London, ON, N6G 2V4, Canada.
| |
Collapse
|
22
|
Tiburcio PD, Chen K, Xu L, Chen KS. Actinomycin D and bortezomib disrupt protein homeostasis in Wilms tumor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598518. [PMID: 38948702 PMCID: PMC11212905 DOI: 10.1101/2024.06.11.598518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Wilms tumor is the most common kidney cancer in children, and diffuse anaplastic Wilms tumor is the most chemoresistant histological subtype. Here, we explore how Wilms tumor cells evade the common chemotherapeutic drug actinomycin D, which inhibits ribosomal RNA biogenesis. Using ribosome profiling, protein arrays, and a genome-wide knockout screen, we describe how actinomycin D disrupts protein homeostasis and blocks cell cycle progression. We found that, when ribosomal capacity is limited by actinomycin D treatment, anaplastic Wilms tumor cells preferentially translate proteasome components and upregulate proteasome activity. Based on these findings, we tested whether the proteasome inhibitor bortezomib sensitizes cells to actinomycin D treatment. Indeed, we found that the combination induces apoptosis both in vitro and in vivo and prolongs survival in xenograft models. Lastly, we show that increased levels of proteasome components are associated with anaplastic histology and worse prognosis in Wilms tumor patients. In sum, maintaining protein homeostasis is critical for Wilms tumor proliferation, and it can be therapeutically disrupted by blocking protein synthesis or turnover.
Collapse
Affiliation(s)
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O’Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lin Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
- Quantitative Biomedical Research Center, Peter O’Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kenneth S. Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
23
|
Ato S, Oya C, Ogasawara R. Rapamycin administration causes a decrease in muscle contractile function and systemic glucose intolerance concomitant with reduced skeletal muscle Rictor, the mTORC2 component, expression independent of energy intake in young rats. PLoS One 2024; 19:e0312859. [PMID: 39637031 PMCID: PMC11620399 DOI: 10.1371/journal.pone.0312859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024] Open
Abstract
Emerging evidence suggests the potential of rapamycin, an antibiotic from Streptomyces hygroscopicus that functions as a mechanistic target of rapamycin (mTOR) inhibitor, as a mimetic of caloric restriction (CR) for maintaining skeletal muscle health. Several studies showed that rapamycin administration (RAP) reduced appetite and energy intake. However, the physiological and molecular differences between RAP and CR in skeletal muscle are not fully understood. Here we observed the effects of 4 weeks of RAP administration and CR corresponding to the reduction in energy intake produced by RAP administration (PF, paired feeding) on fast glycolytic and slow oxidative muscle in young adult rats. We found that 4 weeks of RAP demonstrated low fast-glycolytic muscle mass with smaller type I and IIb/x myofiber size independent of the energy intake. In addition, PF improved the contractile function of the plantar flexor muscle, whereas RAP did not improve its function. The suppressing response of mTORC1 signaling to RAP is greater in slow-oxidative muscles than in fast-glycolytic muscles. In addition, systemic glucose tolerance was exacerbated by RAP, with reduced expression of Rictor and hexokinase in skeletal muscle. These observations imply that RAP may have a slight but significant negative impact and it obviously different to CR in young adult skeletal muscle.
Collapse
Affiliation(s)
- Satoru Ato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Faculty of Health and Sports Sciences, Toyo University, Tokyo, Japan
| | - Chieri Oya
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
24
|
Kong S, Zhu M, Scarpin MR, Pan D, Jia L, Martinez RE, Alamos S, Vadde BVL, Garcia HG, Qian SB, Brunkard JO, Roeder AHK. DRMY1 promotes robust morphogenesis in Arabidopsis by sustaining the translation of cytokinin-signaling inhibitor proteins. Dev Cell 2024; 59:3141-3160.e7. [PMID: 39305905 PMCID: PMC11614703 DOI: 10.1016/j.devcel.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
Robustness is the invariant development of phenotype despite environmental changes and genetic perturbations. In the Arabidopsis flower bud, four sepals robustly initiate and grow to a constant size to enclose and protect the inner floral organs. We previously characterized the mutant development-related myb-like 1 (drmy1), where 3-5 sepals initiate variably and grow to different sizes, compromising their protective function. The molecular mechanism underlying this loss of robustness was unclear. Here, we show that drmy1 has reduced TARGET OF RAPAMYCIN (TOR) activity, ribosomal content, and translation. Translation reduction decreases the protein level of ARABIDOPSIS RESPONSE REGULATOR7 (ARR7) and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6), two cytokinin-signaling inhibitors that are normally rapidly produced before sepal initiation. The resultant upregulation of cytokinin signaling disrupts robust auxin patterning and sepal initiation. Our work shows that the homeostasis of translation, a ubiquitous cellular process, is crucial for the robust spatiotemporal patterning of organogenesis.
Collapse
Affiliation(s)
- Shuyao Kong
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Mingyuan Zhu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - M Regina Scarpin
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - David Pan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Longfei Jia
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ryan E Martinez
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Simon Alamos
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Batthula Vijaya Lakshmi Vadde
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hernan G Garcia
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA; Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jacob O Brunkard
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
25
|
Li M, Wang Y, Wei X, Cai WF, Liu YH, Wu J, Chen Y, Xiong J, Cui LF, Zhu M, Zhang C, Lin L, Yu Y, Piao HL, Lin SC, Zhang CS. AMPK-PDZD8-GLS1 axis mediates calorie restriction-induced lifespan extension. Cell Res 2024; 34:806-809. [PMID: 39300254 PMCID: PMC11528062 DOI: 10.1038/s41422-024-01021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Affiliation(s)
- Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei-Feng Cai
- Xiamen Key Laboratory of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Xiamen, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jinye Xiong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li-Feng Cui
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Liyun Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yong Yu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
- The Zhongzhou Laboratory for Integrative Biology, Henan University, Zhengzhou, Henan, China.
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
26
|
Li F, Liu J, Fu Y. Acquired Bortezomib Resistance in Multiple Myeloma: From Mechanisms to Strategy. Curr Treat Options Oncol 2024; 25:1354-1365. [PMID: 39432172 DOI: 10.1007/s11864-024-01273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
OPINION STATEMENT Multiple myeloma (MM) is a heterogeneous plasma cell tumor with a survival period of several months to over ten years. Despite the development of various new drugs, MM is still incurable and recurs repeatedly. Bortezomib, a landmark event in the history of MM treatment, has dramatically improved the prognosis of patients with MM. Although proteasome inhibitors (PIs) represented by bortezomib, have greatly prolonged MM survival, unfortunately, almost all MM will develop bortezomib resistance, leading to relapse with a shorter survival. It has been reported that both the tumor microenvironment and myeloma cells drive bortezomib resistance. Multiple treatment methods have been attempted to overcome bortezomib resistance, but unfortunately, there has been no breakthrough. It is believed that the key resistance mechanism has not yet been discovered. A deeper understanding of the mechanism of bortezomib resistance and strategies to overcome it can help identify key resistance mechanisms and further improve the prognosis of MM.
Collapse
Affiliation(s)
- Fangfang Li
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yunfeng Fu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
27
|
Zhang Y, Han S, Li Y, Zhou Y, Sun M, Hu M, Zhou C, Lin L, Lan J, Lu X, Zhang Q, Liu L, Jin J. Manganese inhibits HBV transcription and promotes HBsAg degradation at non-toxic levels. Int J Biol Macromol 2024; 280:135764. [PMID: 39299429 DOI: 10.1016/j.ijbiomac.2024.135764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/24/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Chronic hepatitis B virus (HBV) infection continues to pose a significant global health challenge. However, therapeutic measures for a cure are lacking in clinical practice. Manganese, an essential trace element, has garnered attention due to its potential to activate innate immune pathways and its significant role in antiviral and antitumor immunity. Yet, the specific impact of manganese on chronic hepatitis B has been largely unexplored. Our research reveals that manganese substantially inhibits HBV replication in hepatocellular carcinoma cells at non-toxic levels. This suppression occurs independently of well-known anti-HBV innate immune pathways, such as the cGAS-STING pathway. Mechanistically, manganese decreases HBV transcription by diminishing the levels of liver-specific transcription factors. Furthermore, it activates the mTOR pathway, enhancing HBsAg ubiquitination through the upregulation of the ubiquitin ligase β-TrCP and increasing proteasome activity via the augmentation of its subunits, leading to a ubiquitin-dependent degradation of HBsAg. Significantly, our study also uncovers a notable clinical correlation between manganese levels and chronic hepatitis B infection. These findings position manganese as a critical element in diminishing HBV replication, offering a new direction in the management of chronic hepatitis B.
Collapse
Affiliation(s)
- Yong Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China.
| | - Shaowei Han
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Yuanyuan Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Yuting Zhou
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; School of Pharmacy, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Mengdan Sun
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Mingna Hu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; School of Pharmacy, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Chengcai Zhou
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Lu Lin
- Clinical Medical College, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Jianfeng Lan
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Xing Lu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Qinqin Zhang
- Department of Thyroid and Breast Surgery, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin 541002, Guangxi, China
| | - Lingyun Liu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Department of Hepatobiliary and Pancreatic Surgery, Laboratory of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Junfei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China.
| |
Collapse
|
28
|
Bugajova M, Raudenska M, Hanelova K, Navratil J, Gumulec J, Petrlak F, Vicar T, Hrachovinova S, Masarik M, Kalfert D, Grega M, Plzak J, Betka J, Balvan J. Glutamine and serum starvation alters the ATP production, oxidative stress, and abundance of mitochondrial RNAs in extracellular vesicles produced by cancer cells. Sci Rep 2024; 14:25815. [PMID: 39468126 PMCID: PMC11519472 DOI: 10.1038/s41598-024-73943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Induction of autophagy represents an effective survival strategy for nutrient-deprived or stressed cancer cells. Autophagy contributes to the modulation of communication within the tumor microenvironment. Here, we conducted a study of the metabolic and signaling implications associated with autophagy induced by glutamine (Gln) and serum starvation and PI3K/mTOR inhibitor and autophagy inducer NVP-BEZ235 (BEZ) in the head and neck squamous cell carcinoma (HNSCC) cell line FaDu. We compared the effect of these different types of autophagy induction on ATP production, lipid peroxidation, mitophagy, RNA cargo of extracellular vesicles (EVs), and EVs-associated cytokine secretome of cancer cells. Both BEZ and starvation resulted in a decline in ATP production. Simultaneously, Gln starvation enhanced oxidative damage of cancer cells by lipid peroxidation. In starved cells, there was a discernible fragmentation of the mitochondrial network coupled with an increase in the presence of tumor susceptibility gene 101 (TSG101) on the mitochondrial membrane, indicative of the sorting of mitochondrial cargo into EVs. Consequently, the abundance of mitochondrial RNAs (mtRNAs) in EVs released by FaDu cells was enhanced. Notably, mtRNAs were also detectable in EVs isolated from the serum of both HNSCC patients and healthy controls. Starvation and BEZ reduced the production of EVs by cancer cells, yet the characteristic molecular profile of these EVs remained unchanged. We also found that alterations in the release of inflammatory cytokines constitute a principal response to autophagy induction. Importantly, the specific mechanism driving autophagy induction significantly influenced the composition of the EVs-associated cytokine secretome.
Collapse
Affiliation(s)
- Maria Bugajova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Klara Hanelova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Jiri Navratil
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Frantisek Petrlak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Tomas Vicar
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Sarka Hrachovinova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, CZ- 625 00, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - David Kalfert
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, V Uvalu 84, Prague, CZ-15006, Czech Republic
| | - Marek Grega
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University, University Hospital Motol/ V Uvalu 84, Prague 5, CZ-15006, Czech Republic
| | - Jan Plzak
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, V Uvalu 84, Prague, CZ-15006, Czech Republic
| | - Jan Betka
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, V Uvalu 84, Prague, CZ-15006, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
29
|
Zhang W, Zhang K. Understanding the Biological Basis of Polygenic Risk Scores and Disparities in Prostate Cancer: A Comprehensive Genomic Analysis. Cancer Inform 2024; 23:11769351241276319. [PMID: 39444678 PMCID: PMC11497523 DOI: 10.1177/11769351241276319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/14/2024] [Indexed: 10/25/2024] Open
Abstract
Objectives For prostate cancer (PCa), hundreds of risk variants have been identified. It remains unknown whether the polygenic risk score (PRS) that combines the effects of these variants is also a sufficiently informative metric with relevance to the molecular mechanisms of carcinogenesis in prostate. We aimed to understand the biological basis of PRS and racial disparities in the cancer. Methods We performed a comprehensive analysis of the data generated (deposited in) by several genomic and/or transcriptomic projects (databases), including the GTEx, TCGA, 1000 Genomes, GEO and dbGap. PRS was constructed from 260 PCa risk variants that were identified by a recent trans-ancestry meta-analysis and contained in the GTEx dataset. The dosages of risk variants and the multi-ancestry effects on PCa incidence estimated by the meta-analysis were used in calculating individual PRS values. Results The following novel results were obtained from our analyses. (1) In normal prostate samples from healthy European Americans (EAs), the expression levels of 540 genes (termed PRS genes) were associated with the PRS (P < .01). (2) Ubiquitin-proteasome system in high-PRS individuals' prostates was more active than that in low-PRS individuals' prostates. (3) Nine PRS genes play roles in the cancer progression-relevant parts, which are frequently hit by somatic mutations in PCa, of PI3K-Akt/RAS-MAPK/mTOR signaling pathways. (4) The expression profiles of the top significant PRS genes in tumor samples were capable of predicting malignant PCa relapse after prostatectomy. (5) The transcriptomic differences between African American and EA samples were incompatible with the patterns of the aforementioned associations between PRS and gene expression levels. Conclusions This study provided unique insights into the relationship between PRS and the molecular mechanisms of carcinogenesis in prostate. The new findings, alongside the moderate but significant heritability of PCa susceptibility contributed by the risk variants, suggest the aptness and inaptness of PRS for explaining PCa and disparities.
Collapse
Affiliation(s)
- Wensheng Zhang
- Bioinformatics Core of Xavier NIH RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, LA, USA
| | - Kun Zhang
- Bioinformatics Core of Xavier NIH RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, LA, USA
- Department of Computer Science, Xavier University of Louisiana, New Orleans, LA, USA
| |
Collapse
|
30
|
Qu HQ, Wang JF, Rosa-Campos A, Hakonarson H, Feldman AM. The Role of BAG3 Protein Interactions in Cardiomyopathies. Int J Mol Sci 2024; 25:11308. [PMID: 39457090 PMCID: PMC11605229 DOI: 10.3390/ijms252011308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Bcl-2-associated athanogene 3 (BAG3) plays an important function in cellular protein quality control (PQC) maintaining proteome stability. Mutations in the BAG3 gene result in cardiomyopathies. Due to its roles in cardiomyopathies and the complexity of BAG3-protein interactions, it is important to understand these protein interactions given the importance of the multifunctional cochaperone BAG3 in cardiomyocytes, using an in vitro cardiomyocyte model. The experimental assay was conducted using high pressure liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the human AC16 cardiomyocyte cell line with BioID technology. Proteins with BAG3-interaction were identified in all the 28 hallmark gene sets enriched in idiopathic cardiomyopathies and/or ischemic disease. Among the 24 hallmark gene sets enriched in both idiopathic cardiomyopathies and ischemic disease, 15 gene sets had at least 3 proteins with BAG3-interaction. This study highlights BAG3 protein interactions, unveiling the key gene sets affected in cardiomyopathies, which help to explain the molecular mechanisms of the cardioprotective effects of BAG3. In addition, this study also highlighted the complexity of proteins with BAG3 interactions, implying unwanted effects of BAG3.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Ju-Fang Wang
- Department of Medicine, Division of Cardiology, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.-F.W.); (A.M.F.)
| | - Alexandre Rosa-Campos
- Proteomics Facility, Sanford-Burnham-Presby Medical Discovery Institute, La Jolla, CA 92037, USA;
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- Division of Human Genetics, Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Faculty of Medicine, University of Iceland, 102 Reykjavík, Iceland
| | - Arthur M. Feldman
- Department of Medicine, Division of Cardiology, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.-F.W.); (A.M.F.)
| |
Collapse
|
31
|
He L, Kwon D, Trnka MJ, Liu Y, Yang J, Li K, Totah RA, Johnson EF, Burlingame AL, Correia MA. Liver CYP4A autophagic-lysosomal degradation (ALD): A major role for the autophagic receptor SQSTM1/p62 through an uncommon target interaction site. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618315. [PMID: 39464120 PMCID: PMC11507770 DOI: 10.1101/2024.10.14.618315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The hepatic P450 hemoproteins CYPs 4A are typical N-terminally anchored Type I endoplasmic reticulum (ER)-proteins, that are inducible by hypolipidemic drugs and other "peroxisome proliferators". They are engaged in the ω-/ω-1-oxidation of various fatty acids including arachidonic acid, prostaglandins and leukotrienes and in the biotransformation of some therapeutic drugs. Herein we report that of the mammalian liver CYPs 4A, human CYP4A11 and mouse Cyp4a12a are preferential targets of the ER-lysosome-associated degradation (ERLAD). Consequently, these proteins are stabilized both as 1%Triton X100-soluble and -insoluble species in mouse hepatocytes and HepG2-cells deficient in the autophagic initiation ATG5-gene. Although these proteins exhibit surface LC3-interacting regions (LIRs) that would target them directly to the autophagosome, they nevertheless interact intimately with the autophagic receptor SQSTM1/p62. Through structural deletion analyses and site-directed mutagenesis, we have identified the Cyp4A-interacting p62 subdomain to lie between residues 170 and 233, which include its Traf6-binding and LIM-binding subdomains. Mice carrying a liver-specific genetic deletion of p62 residues 69-251 (p62Mut) that includes the CYP4A-interacting subdomain also exhibit Cyp4a-protein stabilization both as Triton X100-soluble and -insoluble species. Consistently, p62Mut mouse liver microsomes exhibit enhanced ω- and ω-1-hydroxylation of arachidonic acid to its physiologically active metabolites 19- and 20-HETEs relative to the corresponding wild-type mouse liver microsomes. Collectively, our findings suggest that any disruption of CYP4A ERLAD results in functionally active P450 protein and consequent production of proinflammatory metabolites on one hand, and insoluble aggregates on the other, which may contribute to pathological aggregates i.e. Mallory-Denk bodies/inclusions, hallmarks of many liver diseases.
Collapse
|
32
|
Gao AYL, Montagna DR, Hirst WD, Temkin PA. RIT2 regulates autophagy lysosomal pathway induction and protects against α-synuclein pathology in a cellular model of Parkinson's disease. Neurobiol Dis 2024; 199:106568. [PMID: 38885848 DOI: 10.1016/j.nbd.2024.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Substantial work has been devoted to better understand the contribution of the myriad of genes that may underly the development of Parkinson's disease (PD) and their role in disease etiology. The small GTPase Ras-like without CAAX2 (RIT2) is one such genetic risk factor, with one single nucleotide polymorphism in the RIT2 locus, rs12456492, having been associated with PD risk in multiple populations. While RIT2 has previously been shown to influence signaling pathways, dopamine transporter trafficking, and LRRK2 activity, its cellular function remains unclear. In the current study, we have situated RIT2 to be upstream of various diverse processes associated with PD. In cellular models, we have shown that RIT2 is necessary for activity-dependent changes in the expression of genes related to the autophagy-lysosomal pathway (ALP) by regulating the nuclear translocation of MiT/TFE3-family transcription factors. RIT2 is also associated with lysosomes and can regulate autophagic flux and clearance by regulating lysosomal hydrolase expression and activity. Interestingly, upregulation of RIT2 can augment ALP flux and protect against α-synuclein aggregation in cortical neurons. Taken together, the present study suggests that RIT2 can regulates gene expression upstream of ALP function and that enhancing RIT2 activity may provide therapeutic benefit in PD.
Collapse
Affiliation(s)
- Andy Y L Gao
- Neurodegeneration Research Unit, Biogen, 225 Binney St, Cambridge, MA 02142, USA; Biogen Postdoctoral Scientist Program, Biogen, 225 Binney St, Cambridge, MA 02142, USA
| | - Daniel R Montagna
- Neurodegeneration Research Unit, Biogen, 225 Binney St, Cambridge, MA 02142, USA
| | - Warren D Hirst
- Neurodegeneration Research Unit, Biogen, 225 Binney St, Cambridge, MA 02142, USA
| | - Paul A Temkin
- Neurodegeneration Research Unit, Biogen, 225 Binney St, Cambridge, MA 02142, USA.
| |
Collapse
|
33
|
Kazyken D, Dame SG, Wang C, Wadley M, Fingar DC. Unexpected roles for AMPK in the suppression of autophagy and the reactivation of MTORC1 signaling during prolonged amino acid deprivation. Autophagy 2024; 20:2017-2040. [PMID: 38744665 PMCID: PMC11346535 DOI: 10.1080/15548627.2024.2355074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
AMPK promotes catabolic and suppresses anabolic cell metabolism to promote cell survival during energetic stress, in part by inhibiting MTORC1, an anabolic kinase requiring sufficient levels of amino acids. We found that cells lacking AMPK displayed increased apoptotic cell death during nutrient stress caused by prolonged amino acid deprivation. We presumed that impaired macroautophagy/autophagy explained this phenotype, as a prevailing view posits that AMPK initiates autophagy (often a pro-survival response) through phosphorylation of ULK1. Unexpectedly, however, autophagy remained unimpaired in cells lacking AMPK, as monitored by several autophagic readouts in several cell lines. More surprisingly, the absence of AMPK increased ULK1 signaling and MAP1LC3B/LC3B lipidation during amino acid deprivation while AMPK-mediated phosphorylation of ULK1 S555 (a site proposed to initiate autophagy) decreased upon amino acid withdrawal or pharmacological MTORC1 inhibition. In addition, activation of AMPK with compound 991, glucose deprivation, or AICAR blunted autophagy induced by amino acid withdrawal. These results demonstrate that AMPK activation and glucose deprivation suppress autophagy. As AMPK controlled autophagy in an unexpected direction, we examined how AMPK controls MTORC1 signaling. Paradoxically, we observed impaired reactivation of MTORC1 in cells lacking AMPK upon prolonged amino acid deprivation. Together these results oppose established views that AMPK promotes autophagy and inhibits MTORC1 universally. Moreover, they reveal unexpected roles for AMPK in the suppression of autophagy and the support of MTORC1 signaling in the context of prolonged amino acid deprivation. These findings prompt a reevaluation of how AMPK and its control of autophagy and MTORC1 affect health and disease.
Collapse
Affiliation(s)
- Dubek Kazyken
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sydney G. Dame
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Claudia Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maxwell Wadley
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Diane C. Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Dass D, Banerjee A, Dhotre K, Sonawane V, More A, Mukherjee A. HSV-2 Manipulates Autophagy through Interferon Pathway: A Strategy for Viral Survival. Viruses 2024; 16:1383. [PMID: 39339859 PMCID: PMC11437441 DOI: 10.3390/v16091383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Autophagy, an evolutionarily conserved cellular process, influences the regulation of viral infections. While the existing understanding indicates that Herpes Simplex Virus type 2 (HSV-2) maintains a basal level of autophagy to support its viral yield, the precise pathways governing the induction of autophagy during HSV-2 infection remain unknown. Therefore, this study aims to explore the role of type I interferons (IFN-I) in modulating autophagy during HSV-2 infection and to decode the associated signaling pathways. Our findings revealed an interplay wherein IFN-I regulates the autophagic response during HSV-2 infection. Additionally, we investigated the cellular pathways modulated during this complex process. Exploring the intricate network of signaling events involved in autophagy induction during HSV-2 infection holds promising therapeutic implications. Identifying these pathways advances our understanding of host-virus interactions and holds the foundation for developing targeted therapeutic strategies against HSV-2. The insight gained from this study provides a platform for exploring potential therapeutic targets to restrict HSV-2 infections, addressing a crucial need in antiviral research.
Collapse
Affiliation(s)
| | | | | | | | | | - Anupam Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, India; (D.D.); (A.B.); (K.D.); (V.S.); (A.M.)
| |
Collapse
|
35
|
Pach N, Basler M. Cellular stress increases DRIP production and MHC Class I antigen presentation. Front Immunol 2024; 15:1445338. [PMID: 39247192 PMCID: PMC11377247 DOI: 10.3389/fimmu.2024.1445338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Background Defective ribosomal products (DRiPs) are non-functional proteins rapidly degraded during or after translation being an essential source for MHC class I ligands. DRiPs are characterized to derive from a substantial subset of nascent gene products that degrade more rapidly than their corresponding native retiree pool. So far, mass spectrometry analysis revealed that a large number of HLA class I peptides derive from DRiPs. However, a specific viral DRiP on protein level was not described. In this study, we aimed to characterize and identify DRiPs derived from a viral protein. Methods Using the nucleoprotein (NP) of the lymphocytic choriomeningitis virus (LCMV) which is conjugated N-terminally to ubiquitin, or the ubiquitin-like modifiers FAT10 or ISG15 the occurrence of DRiPs was studied. The formation and degradation of DRiPs was monitored by western blot with the help of a FLAG tag. Flow cytometry and cytotoxic T cells were used to study antigen presentation. Results We identified several short lived DRiPs derived from LCMV-NP. Of note, these DRiPs could only be observed when the LCMV-NP was modified with ubiquitin or ubiquitin-like modifiers, but not in the wild type form. Using proteasome inhibitors, we could show that degradation of LCMV-NP derived DRiPs were proteasome dependent. Interestingly, the synthesis of DRiPs could be enhanced when cells were stressed with the help of FCS starvation. An enhanced NP118-126 presentation was observed when the LCMV-NP was modified with ubiquitin or ubiquitin-like modifiers, or under FCS starvation. Conclusion Taken together, we visualize for the first time DRiPs derived from a viral protein. Furthermore, DRiPs formation, and therefore MHC-I presentation, is enhanced under cellular stress conditions. Our investigations on DRiPs in MHC class I antigen presentation open up new approaches for the development of vaccination strategies.
Collapse
Affiliation(s)
- Natalie Pach
- Institute of Cell Biology and Immunology Thurgau (BITG) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Michael Basler
- Institute of Cell Biology and Immunology Thurgau (BITG) at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
36
|
Gabriel CH, del Olmo M, Rizki Widini A, Roshanbin R, Woyde J, Hamza E, Gutu NN, Zehtabian A, Ewers H, Granada A, Herzel H, Kramer A. Circadian period is compensated for repressor protein turnover rates in single cells. Proc Natl Acad Sci U S A 2024; 121:e2404738121. [PMID: 39141353 PMCID: PMC11348271 DOI: 10.1073/pnas.2404738121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024] Open
Abstract
Most mammalian cells have molecular circadian clocks that generate widespread rhythms in transcript and protein abundance. While circadian clocks are robust to fluctuations in the cellular environment, little is known about the mechanisms by which the circadian period compensates for fluctuating metabolic states. Here, we exploit the heterogeneity of single cells both in circadian period and a metabolic parameter-protein stability-to study their interdependence without the need for genetic manipulation. We generated cells expressing key circadian proteins (CRYPTOCHROME1/2 (CRY1/2) and PERIOD1/2 (PER1/2)) as endogenous fusions with fluorescent proteins and simultaneously monitored circadian rhythms and degradation in thousands of single cells. We found that the circadian period compensates for fluctuations in the turnover rates of circadian repressor proteins and uncovered possible mechanisms using a mathematical model. In addition, the stabilities of the repressor proteins are circadian phase dependent and correlate with the circadian period in a phase-dependent manner, in contrast to the prevailing model.
Collapse
Affiliation(s)
- Christian H. Gabriel
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| | - Marta del Olmo
- Institute for Theoretical Biology, Charité–Universitätsmedizin Berlin, Berlin10115, Germany
| | - Arunya Rizki Widini
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| | - Rashin Roshanbin
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| | - Jonas Woyde
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| | - Ebrahim Hamza
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| | - Nica-Nicoleta Gutu
- Charité Comprehensive Cancer Center, Charité–Universitätsmedizin Berlin, Berlin10117, Germany
| | - Amin Zehtabian
- Department of Biology, Chemistry and Pharmacy, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin14195, Germany
| | - Helge Ewers
- Department of Biology, Chemistry and Pharmacy, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin14195, Germany
| | - Adrian Granada
- Charité Comprehensive Cancer Center, Charité–Universitätsmedizin Berlin, Berlin10117, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité–Universitätsmedizin Berlin, Berlin10115, Germany
| | - Achim Kramer
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| |
Collapse
|
37
|
Meerod T, Sangsuwan R, Klumthong K, Chantrathonkul B, Phutubtim N, Govitrapong P, Ruchirawat S, Ploypradith P, Sopha P. Cytotoxic stress caused by azalamellarin D (AzaD) interferes with cellular protein translation by targeting the nutrient-sensing kinase mTOR. J Biochem 2024; 176:139-153. [PMID: 38669682 DOI: 10.1093/jb/mvae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Analogs of pyrrole alkaloid lamellarins exhibit anticancer activity by modulating multiple cellular events. Lethal doses of several lamellarins were found to enhance autophagy flux in HeLa cells, suggesting that lamellarins may modulate protein homeostasis through the interference of proteins or kinases controlling energy and nutrient metabolism. To further delineate molecular mechanisms and their targets, our results herein show that azalamellarin D (AzaD) cytotoxicity could cause translational attenuation, as indicated by a change in eIF2α phosphorylation. Intriguingly, acute AzaD treatment promoted the phosphorylation of GCN2, a kinase that transduces the integrated stress response (ISR), and prolonged exposure to AzaD could increase the levels of the phosphorylated forms of eIF2α and the other ISR kinase protein kinase R (PKR). However, the effects of AzaD on ISR signalling were marginally abrogated in cells with genetic deletion of GCN2 and PKR, and evaluation of protein target engagement by cellular thermal shift assay (CETSA) revealed no significant interaction between AzaD and ISR kinases. Further investigation revealed that acute AzaD treatment negatively affected mechanistic target of rapamycin (mTOR) phosphorylation and signalling. The analyses by CETSA and computational modelling indicated that mTOR may be a possible protein target for AzaD. These findings indicate the potential for developing lamellarins as novel agents for cancer treatment.
Collapse
Affiliation(s)
- Tirawit Meerod
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Rapeepat Sangsuwan
- Laboratory of Natural Products, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Kanawut Klumthong
- Program in Chemical Sciences, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Bunkuea Chantrathonkul
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Nadgrita Phutubtim
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Piyarat Govitrapong
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology, Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Rama VI Road, Ratchadevi, Bangkok 10400, Thailand
| | - Poonsakdi Ploypradith
- Program in Chemical Sciences, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology, Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Rama VI Road, Ratchadevi, Bangkok 10400, Thailand
| | - Pattarawut Sopha
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology, Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Rama VI Road, Ratchadevi, Bangkok 10400, Thailand
| |
Collapse
|
38
|
Polishchuk A, Cilleros-Mañé V, Balanyà-Segura M, Just-Borràs L, Forniés-Mariné A, Silvera-Simón C, Tomàs M, Jami El Hirchi M, Hurtado E, Tomàs J, Lanuza MA. BDNF/TrkB signalling, in cooperation with muscarinic signalling, retrogradely regulates PKA pathway to phosphorylate SNAP-25 and Synapsin-1 at the neuromuscular junction. Cell Commun Signal 2024; 22:371. [PMID: 39044222 PMCID: PMC11265447 DOI: 10.1186/s12964-024-01735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/04/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Protein kinase A (PKA) enhances neurotransmission at the neuromuscular junction (NMJ), which is retrogradely regulated by nerve-induced muscle contraction to promote Acetylcholine (ACh) release through the phosphorylation of molecules involved in synaptic vesicle exocytosis (SNAP-25 and Synapsin-1). However, the molecular mechanism of the retrograde regulation of PKA subunits and its targets by BDNF/TrkB pathway and muscarinic signalling has not been demonstrated until now. At the NMJ, retrograde control is mainly associated with BDNF/TrkB signalling as muscle contraction enhances BDNF levels and controls specific kinases involved in the neurotransmission. Neurotransmission at the NMJ is also highly modulated by muscarinic receptors M1 and M2 (mAChRs), which are related to PKA and TrkB signallings. Here, we investigated the hypothesis that TrkB, in cooperation with mAChRs, regulates the activity-dependent dynamics of PKA subunits to phosphorylate SNAP-25 and Synapsin-1. METHODS To explore this, we stimulated the rat phrenic nerve at 1Hz (30 minutes), with or without subsequent contraction (abolished by µ-conotoxin GIIIB). Pharmacological treatments were conducted with the anti-TrkB antibody clone 47/TrkB for TrkB inhibition and exogenous h-BDNF; muscarinic inhibition with Pirenzepine-dihydrochloride and Methoctramine-tetrahydrochloride for M1 and M2 mAChRs, respectively. Diaphragm protein levels and phosphorylation' changes were detected by Western blotting. Location of the target proteins was demonstrated using immunohistochemistry. RESULTS While TrkB does not directly impact the levels of PKA catalytic subunits Cα and Cβ, it regulates PKA regulatory subunits RIα and RIIβ, facilitating the phosphorylation of critical exocytotic targets such as SNAP-25 and Synapsin-1. Furthermore, the muscarinic receptors pathway maintains a delicate balance in this regulatory process. These findings explain the dynamic interplay of PKA subunits influenced by BDNF/TrkB signalling, M1 and M2 mAChRs pathways, that are differently regulated by pre- and postsynaptic activity, demonstrating the specific roles of the BDNF/TrkB and muscarinic receptors pathway in retrograde regulation. CONCLUSION This complex molecular interplay has the relevance of interrelating two fundamental pathways in PKA-synaptic modulation: one retrograde (neurotrophic) and the other autocrine (muscarinic). This deepens the fundamental understanding of neuromuscular physiology of neurotransmission that gives plasticity to synapses and holds the potential for identifying therapeutic strategies in conditions characterized by impaired neuromuscular communication.
Collapse
Affiliation(s)
- Aleksandra Polishchuk
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Víctor Cilleros-Mañé
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Marta Balanyà-Segura
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Laia Just-Borràs
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Anton Forniés-Mariné
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
| | - Carolina Silvera-Simón
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Marta Tomàs
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Meryem Jami El Hirchi
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Erica Hurtado
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Josep Tomàs
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Maria A Lanuza
- Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain.
- Unitat d'Histologia i Neurobiologia (UHNeurob), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| |
Collapse
|
39
|
Negi H, Ravichandran A, Dasgupta P, Reddy S, Das R. Plasticity of the proteasome-targeting signal Fat10 enhances substrate degradation. eLife 2024; 13:e91122. [PMID: 38984715 PMCID: PMC11299979 DOI: 10.7554/elife.91122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/09/2024] [Indexed: 07/11/2024] Open
Abstract
The proteasome controls levels of most cellular proteins, and its activity is regulated under stress, quiescence, and inflammation. However, factors determining the proteasomal degradation rate remain poorly understood. Proteasome substrates are conjugated with small proteins (tags) like ubiquitin and Fat10 to target them to the proteasome. It is unclear if the structural plasticity of proteasome-targeting tags can influence substrate degradation. Fat10 is upregulated during inflammation, and its substrates undergo rapid proteasomal degradation. We report that the degradation rate of Fat10 substrates critically depends on the structural plasticity of Fat10. While the ubiquitin tag is recycled at the proteasome, Fat10 is degraded with the substrate. Our results suggest significantly lower thermodynamic stability and faster mechanical unfolding in Fat10 compared to ubiquitin. Long-range salt bridges are absent in the Fat10 structure, creating a plastic protein with partially unstructured regions suitable for proteasome engagement. Fat10 plasticity destabilizes substrates significantly and creates partially unstructured regions in the substrate to enhance degradation. NMR-relaxation-derived order parameters and temperature dependence of chemical shifts identify the Fat10-induced partially unstructured regions in the substrate, which correlated excellently to Fat10-substrate contacts, suggesting that the tag-substrate collision destabilizes the substrate. These results highlight a strong dependence of proteasomal degradation on the structural plasticity and thermodynamic properties of the proteasome-targeting tags.
Collapse
Affiliation(s)
- Hitendra Negi
- National Center for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
- SASTRA University, ThirumalaisamudramThanjavurIndia
| | - Aravind Ravichandran
- National Center for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
- SASTRA University, ThirumalaisamudramThanjavurIndia
| | - Pritha Dasgupta
- National Center for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Shridivya Reddy
- National Center for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Ranabir Das
- National Center for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
40
|
Mori Y, Akizuki Y, Honda R, Takao M, Tsuchimoto A, Hashimoto S, Iio H, Kato M, Kaiho-Soma A, Saeki Y, Hamazaki J, Murata S, Ushijima T, Hattori N, Ohtake F. Intrinsic signaling pathways modulate targeted protein degradation. Nat Commun 2024; 15:5379. [PMID: 38956052 PMCID: PMC11220168 DOI: 10.1038/s41467-024-49519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Targeted protein degradation is a groundbreaking modality in drug discovery; however, the regulatory mechanisms are still not fully understood. Here, we identify cellular signaling pathways that modulate the targeted degradation of the anticancer target BRD4 and related neosubstrates BRD2/3 and CDK9 induced by CRL2VHL- or CRL4CRBN -based PROTACs. The chemicals identified as degradation enhancers include inhibitors of cellular signaling pathways such as poly-ADP ribosylation (PARG inhibitor PDD00017273), unfolded protein response (PERK inhibitor GSK2606414), and protein stabilization (HSP90 inhibitor luminespib). Mechanistically, PARG inhibition promotes TRIP12-mediated K29/K48-linked branched ubiquitylation of BRD4 by facilitating chromatin dissociation of BRD4 and formation of the BRD4-PROTAC-CRL2VHL ternary complex; by contrast, HSP90 inhibition promotes BRD4 degradation after the ubiquitylation step. Consequently, these signal inhibitors sensitize cells to the PROTAC-induced apoptosis. These results suggest that various cell-intrinsic signaling pathways spontaneously counteract chemically induced target degradation at multiple steps, which could be liberated by specific inhibitors.
Collapse
Affiliation(s)
- Yuki Mori
- Laboratory of Protein Degradation, Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
- Graduate School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yoshino Akizuki
- Laboratory of Protein Degradation, Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
- Graduate School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Rikuto Honda
- Laboratory of Protein Degradation, Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
- Graduate School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Miyu Takao
- Graduate School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Ayaka Tsuchimoto
- Laboratory of Protein Degradation, Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
- Graduate School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Sota Hashimoto
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroaki Iio
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masakazu Kato
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano-ku, Tokyo, 1648530, Japan
| | - Ai Kaiho-Soma
- Laboratory of Protein Degradation, Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yasushi Saeki
- Division of Protein Metabolism, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Toshikazu Ushijima
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Naoko Hattori
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Fumiaki Ohtake
- Laboratory of Protein Degradation, Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
- Graduate School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
41
|
Zhang Q, Halle JL, Counts BR, Pi M, Carson JA. mTORC1 and BMP-Smad1/5 regulation of serum-stimulated myotube hypertrophy: a role for autophagy. Am J Physiol Cell Physiol 2024; 327:C124-C139. [PMID: 38766767 PMCID: PMC11371323 DOI: 10.1152/ajpcell.00237.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Protein synthesis regulation is critical for skeletal muscle hypertrophy, yet other established cellular processes are necessary for growth-related cellular remodeling. Autophagy has a well-acknowledged role in muscle quality control, but evidence for its role in myofiber hypertrophy remains equivocal. Both mammalian target of rapamycin complex I (mTORC1) and bone morphogenetic protein (BMP)-Smad1/5 (Sma and Mad proteins from Caenorhabditis elegans and Drosophila, respectively) signaling are reported regulators of myofiber hypertrophy; however, gaps remain in our understanding of how this regulation is integrated with growth processes and autophagy regulation. Therefore, we investigated the mTORC1 and Smad1/5 regulation of protein synthesis and autophagy flux during serum-stimulated myotube growth. Chronic serum stimulation experiments were performed on day 5 differentiated C2C12 myotubes incubated in differentiation medium [2% horse serum (HS)] or growth medium [5% fetal bovine serum (FBS)] for 48 h. Rapamycin or LDN193189 was dosed for 48 h to inhibit mTORC1 and BMP-Smad1/5 signaling, respectively. Acute serum stimulation was examined in day 7 differentiated myotubes. Protein synthesis was measured by puromycin incorporation. Bafilomycin A1 and immunoblotting for LC3B were used to assess autophagy flux. Chronic serum stimulation increased myotube diameter 22%, total protein 21%, total RNA 100%, and Smad1/5 phosphorylation 404% and suppressed autophagy flux. Rapamycin, but not LDN193189, blocked serum-induced myotube hypertrophy and the increase in total RNA. Acute serum stimulation increased protein synthesis 111%, Smad1/5 phosphorylation 559%, and rpS6 phosphorylation 117% and suppressed autophagy flux. Rapamycin increased autophagy flux during acute serum stimulation. These results provide evidence for mTORC1, but not BMP-Smad1/5, signaling being required for serum-induced myotube hypertrophy and autophagy flux by measuring LC3BII/I expression. Further investigation is warranted to examine the role of autophagy flux in myotube hypertrophy.NEW & NOTEWORTHY The present study demonstrates that myotube hypertrophy caused by chronic serum stimulation requires mammalian target of rapamycin complex 1 (mTORC1) signaling but not bone morphogenetic protein (BMP)-Smad1/5 signaling. The suppression of autophagy flux was associated with serum-induced myotube hypertrophy and mTORC1 regulation of autophagy flux by measuring LC3BII/I expression. Rapamycin is widely investigated for beneficial effects in aging skeletal muscle and sarcopenia; our results provide evidence that rapamycin can regulate autophagy-related signaling during myotube growth, which could benefit skeletal muscle functional and metabolic health.
Collapse
Affiliation(s)
- Quan Zhang
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health ProfessionsUniversity of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Jessica L Halle
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health ProfessionsUniversity of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Brittany R Counts
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health ProfessionsUniversity of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Min Pi
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - James A Carson
- Huffines Institute for Sports Medicine & Human Performance, Department of Kinesiology & Sports Management , Texas A&M University, College Station, Texas, United States
| |
Collapse
|
42
|
Harasimov K, Gorry RL, Welp LM, Penir SM, Horokhovskyi Y, Cheng S, Takaoka K, Stützer A, Frombach AS, Taylor Tavares AL, Raabe M, Haag S, Saha D, Grewe K, Schipper V, Rizzoli SO, Urlaub H, Liepe J, Schuh M. The maintenance of oocytes in the mammalian ovary involves extreme protein longevity. Nat Cell Biol 2024; 26:1124-1138. [PMID: 38902423 PMCID: PMC11252011 DOI: 10.1038/s41556-024-01442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/14/2024] [Indexed: 06/22/2024]
Abstract
Women are born with all of their oocytes. The oocyte proteome must be maintained with minimal damage throughout the woman's reproductive life, and hence for decades. Here we report that oocyte and ovarian proteostasis involves extreme protein longevity. Mouse ovaries had more extremely long-lived proteins than other tissues, including brain. These long-lived proteins had diverse functions, including in mitochondria, the cytoskeleton, chromatin and proteostasis. The stable proteins resided not only in oocytes but also in long-lived ovarian somatic cells. Our data suggest that mammals increase protein longevity and enhance proteostasis by chaperones and cellular antioxidants to maintain the female germline for long periods. Indeed, protein aggregation in oocytes did not increase with age and proteasome activity did not decay. However, increasing protein longevity cannot fully block female germline senescence. Large-scale proteome profiling of ~8,890 proteins revealed a decline in many long-lived proteins of the proteostasis network in the aging ovary, accompanied by massive proteome remodeling, which eventually leads to female fertility decline.
Collapse
Affiliation(s)
- Katarina Harasimov
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Rebecca L Gorry
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Luisa M Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Sarah Mae Penir
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Yehor Horokhovskyi
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katsuyoshi Takaoka
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Laboratory of Embryology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Alexandra Stützer
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ann-Sophie Frombach
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ana Lisa Taylor Tavares
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals, NHS Foundation Trust, Cambridge, UK
| | - Monika Raabe
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sara Haag
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translation Alliance Lower Saxony, Hannover, Braunschweig, Göttingen, Germany
| | - Debojit Saha
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katharina Grewe
- Department for Neuro and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Vera Schipper
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Silvio O Rizzoli
- Department for Neuro and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells, University of Göttingen, Göttingen, Germany.
| | - Juliane Liepe
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
43
|
Sharma I, Talakayala A, Tiwari M, Asinti S, Kirti PB. A synchronized symphony: Intersecting roles of ubiquitin proteasome system and autophagy in cellular degradation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108700. [PMID: 38781635 DOI: 10.1016/j.plaphy.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Eukaryotic cells have evolved dynamic quality control pathways and recycling mechanisms for cellular homeostasis. We discuss here, the two major systems for quality control, the ubiquitin-proteasome system (UPS) and autophagy that regulate cellular protein and organelle turnover and ensure efficient nutrient management, cellular integrity and long-term wellbeing of the plant. Both the pathways rely on ubiquitination signal to identify the targets for proteasomal and autophagic degradation, yet they use distinct degradation machinery to process these cargoes. Nonetheless, both UPS and autophagy operate together as an interrelated quality control mechanism where they communicate with each other at multiple nodes to coordinate and/or compensate the recycling mechanism particularly under development and environmental cues. Here, we provide an update on the cellular machinery of autophagy and UPS, unravel the nodes of their crosstalk and particularly highlight the factors responsible for their differential deployment towards protein, macromolecular complexes and organelles.
Collapse
Affiliation(s)
- Isha Sharma
- International Crop Research Institute for Semi-Arid Tropics, Patancheru, Hyderabad, India, 502324.
| | - Ashwini Talakayala
- International Crop Research Institute for Semi-Arid Tropics, Patancheru, Hyderabad, India, 502324
| | - Manish Tiwari
- CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Sarath Asinti
- Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, 211007, India
| | - P B Kirti
- Agri Biotech Foundation, Rajendranagar, 500030, Hyderabad, India
| |
Collapse
|
44
|
Homma ST, Wang X, Frere JJ, Gower AC, Zhou J, Lim JK, tenOever BR, Zhou L. Respiratory SARS-CoV-2 Infection Causes Skeletal Muscle Atrophy and Long-Lasting Energy Metabolism Suppression. Biomedicines 2024; 12:1443. [PMID: 39062017 PMCID: PMC11275164 DOI: 10.3390/biomedicines12071443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Muscle fatigue represents the most prevalent symptom of long-term COVID, with elusive pathogenic mechanisms. We performed a longitudinal study to characterize histopathological and transcriptional changes in skeletal muscle in a hamster model of respiratory SARS-CoV-2 infection and compared them with influenza A virus (IAV) and mock infections. Histopathological and bulk RNA sequencing analyses of leg muscles derived from infected animals at days 3, 30, and 60 post-infection showed no direct viral invasion but myofiber atrophy in the SARS-CoV-2 group, which was accompanied by persistent downregulation of the genes related to myofibers, ribosomal proteins, fatty acid β-oxidation, tricarboxylic acid cycle, and mitochondrial oxidative phosphorylation complexes. While both SARS-CoV-2 and IAV infections induced acute and transient type I and II interferon responses in muscle, only the SARS-CoV-2 infection upregulated TNF-α/NF-κB but not IL-6 signaling in muscle. Treatment of C2C12 myotubes, a skeletal muscle cell line, with combined IFN-γ and TNF-α but not with IFN-γ or TNF-α alone markedly impaired mitochondrial function. We conclude that a respiratory SARS-CoV-2 infection can cause myofiber atrophy and persistent energy metabolism suppression without direct viral invasion. The effects may be induced by the combined systemic interferon and TNF-α responses at the acute phase and may contribute to post-COVID-19 persistent muscle fatigue.
Collapse
Affiliation(s)
- Sachiko T. Homma
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Xingyu Wang
- Department of Neurology, Hospital for Special Surgery, New York, NY 10021, USA
| | - Justin J. Frere
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adam C. Gower
- Clinical and Translational Science Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jingsong Zhou
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jean K. Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin R. tenOever
- Department of Microbiology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Lan Zhou
- Department of Neurology, Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
45
|
Chun Y, Fruman DA, Lee G. The picky mTORC1 in metabolic enzyme degradation. Mol Cell 2024; 84:2011-2013. [PMID: 38848689 DOI: 10.1016/j.molcel.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
In this issue of Molecular Cell, Yi et al.1 demonstrate that reduced mTORC1 activity induces the CTLH E3 ligase-dependent degradation of HMGCS1, an enzyme in the mevalonate pathway, thus revealing a unique connection between mTORC1 signaling and the degradation of a specific metabolic enzyme via the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Yujin Chun
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Gina Lee
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
46
|
Yi SA, Sepic S, Schulman BA, Ordureau A, An H. mTORC1-CTLH E3 ligase regulates the degradation of HMG-CoA synthase 1 through the Pro/N-degron pathway. Mol Cell 2024; 84:2166-2184.e9. [PMID: 38788716 PMCID: PMC11186538 DOI: 10.1016/j.molcel.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Mammalian target of rapamycin (mTOR) senses changes in nutrient status and stimulates the autophagic process to recycle amino acids. However, the impact of nutrient stress on protein degradation beyond autophagic turnover is incompletely understood. We report that several metabolic enzymes are proteasomal targets regulated by mTOR activity based on comparative proteome degradation analysis. In particular, 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) synthase 1 (HMGCS1), the initial enzyme in the mevalonate pathway, exhibits the most significant half-life adaptation. Degradation of HMGCS1 is regulated by the C-terminal to LisH (CTLH) E3 ligase through the Pro/N-degron motif. HMGCS1 is ubiquitylated on two C-terminal lysines during mTORC1 inhibition, and efficient degradation of HMGCS1 in cells requires a muskelin adaptor. Importantly, modulating HMGCS1 abundance has a dose-dependent impact on cell proliferation, which is restored by adding a mevalonate intermediate. Overall, our unbiased degradomics study provides new insights into mTORC1 function in cellular metabolism: mTORC1 regulates the stability of limiting metabolic enzymes through the ubiquitin system.
Collapse
Affiliation(s)
- Sang Ah Yi
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sara Sepic
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany; Technical University of Munich, School of Natural Sciences, Munich, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany; Technical University of Munich, School of Natural Sciences, Munich, Germany; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heeseon An
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional PhD Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
47
|
Rawat SS, Keshri AK, Arora N, Kaur R, Mishra A, Kumar R, Prasad A. Taenia solium cysticerci's extracellular vesicles Attenuate the AKT/mTORC1 pathway for Alleviating DSS-induced colitis in a murine model. J Extracell Vesicles 2024; 13:e12448. [PMID: 38779712 PMCID: PMC11112404 DOI: 10.1002/jev2.12448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/24/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The excretory-secretory proteome plays a pivotal role in both intercellular communication during disease progression and immune escape mechanisms of various pathogens including cestode parasites like Taenia solium. The cysticerci of T. solium causes infection in the central nervous system known as neurocysticercosis (NCC), which affects a significant population in developing countries. Extracellular vesicles (EVs) are 30-150-nm-sized particles and constitute a significant part of the secretome. However, the role of EV in NCC pathogenesis remains undetermined. Here, for the first time, we report that EV from T. solium larvae is abundant in metabolites that can negatively regulate PI3K/AKT pathway, efficiently internalized by macrophages to induce AKT and mTOR degradation through auto-lysosomal route with a prominent increase in the ubiquitination of both proteins. This results in less ROS production and diminished bacterial killing capability among EV-treated macrophages. Due to this, both macro-autophagy and caspase-linked apoptosis are upregulated, with a reduction of the autophagy substrate sequestome 1. In summary, we report that T. solium EV from viable cysts attenuates the AKT-mTOR pathway thereby promoting apoptosis in macrophages, and this may exert immunosuppression during an early viable stage of the parasite in NCC, which is primarily asymptomatic. Further investigation on EV-mediated immune suppression revealed that the EV can protect the mice from DSS-induced colitis and improve colon architecture. These findings shed light on the previously unknown role of T. solium EV and the therapeutic role of their immune suppression potential.
Collapse
Affiliation(s)
- Suraj Singh Rawat
- School of Biosciences and BioengineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| | - Anand Kumar Keshri
- School of Biosciences and BioengineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| | - Naina Arora
- School of Biosciences and BioengineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| | - Rimanpreet Kaur
- School of Biosciences and BioengineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| | - Amit Mishra
- Cellular and Molecular Neurobiology UnitIndian Institute of Technology JodhpurJodhpurRajasthanIndia
| | - Rajiv Kumar
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurHimachal PradeshIndia
| | - Amit Prasad
- School of Biosciences and BioengineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| |
Collapse
|
48
|
Dear AJ, Garcia GA, Meisl G, Collins GA, Knowles TPJ, Goldberg AL. Maximum entropy determination of mammalian proteome dynamics. Proc Natl Acad Sci U S A 2024; 121:e2313107121. [PMID: 38652742 PMCID: PMC11067036 DOI: 10.1073/pnas.2313107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/04/2024] [Indexed: 04/25/2024] Open
Abstract
Full understanding of proteostasis and energy utilization in cells will require knowledge of the fraction of cell proteins being degraded with different half-lives and their rates of synthesis. We therefore developed a method to determine such information that combines mathematical analysis of protein degradation kinetics obtained in pulse-chase experiments with Bayesian data fitting using the maximum entropy principle. This approach will enable rapid analyses of whole-cell protein dynamics in different cell types, physiological states, and neurodegenerative disease. Using it, we obtained surprising insights about protein stabilities in cultured cells normally and upon activation of proteolysis by mTOR inhibition and increasing cAMP or cGMP. It revealed that >90% of protein content in dividing mammalian cell lines is long-lived, with half-lives of 24 to 200 h, and therefore comprises much of the proteins in daughter cells. The well-studied short-lived proteins (half-lives < 10 h) together comprise <2% of cell protein mass, but surprisingly account for 10 to 20% of measurable newly synthesized protein mass. Evolution thus appears to have minimized intracellular proteolysis except to rapidly eliminate misfolded and regulatory proteins.
Collapse
Affiliation(s)
- Alexander J. Dear
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Gonzalo A. Garcia
- Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Georg Meisl
- Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Galen A. Collins
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Starkville, MS39762
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| | - Alfred L. Goldberg
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| |
Collapse
|
49
|
Kim J, Byun I, Kim DY, Joh H, Kim HJ, Lee MJ. Targeted protein degradation directly engaging lysosomes or proteasomes. Chem Soc Rev 2024; 53:3253-3272. [PMID: 38369971 DOI: 10.1039/d3cs00344b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Targeted protein degradation (TPD) has been established as a viable alternative to attenuate the function of a specific protein of interest in both biological and clinical contexts. The unique TPD mode-of-action has allowed previously undruggable proteins to become feasible targets, expanding the landscape of "druggable" properties and "privileged" target proteins. As TPD continues to evolve, a range of innovative strategies, which do not depend on recruiting E3 ubiquitin ligases as in proteolysis-targeting chimeras (PROTACs), have emerged. Here, we present an overview of direct lysosome- and proteasome-engaging modalities and discuss their perspectives, advantages, and limitations. We outline the chemical composition, biochemical activity, and pharmaceutical characteristics of each degrader. These alternative TPD approaches not only complement the first generation of PROTACs for intracellular protein degradation but also offer unique strategies for targeting pathologic proteins located on the cell membrane and in the extracellular space.
Collapse
Affiliation(s)
- Jiseong Kim
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Insuk Byun
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Do Young Kim
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Hyunhi Joh
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Hak Joong Kim
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Min Jae Lee
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
50
|
Kumar P, Goettemoeller AM, Espinosa-Garcia C, Tobin BR, Tfaily A, Nelson RS, Natu A, Dammer EB, Santiago JV, Malepati S, Cheng L, Xiao H, Duong DD, Seyfried NT, Wood LB, Rowan MJM, Rangaraju S. Native-state proteomics of Parvalbumin interneurons identifies unique molecular signatures and vulnerabilities to early Alzheimer's pathology. Nat Commun 2024; 15:2823. [PMID: 38561349 PMCID: PMC10985119 DOI: 10.1038/s41467-024-47028-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Dysfunction in fast-spiking parvalbumin interneurons (PV-INs) may represent an early pathophysiological perturbation in Alzheimer's Disease (AD). Defining early proteomic alterations in PV-INs can provide key biological and translationally-relevant insights. We used cell-type-specific in-vivo biotinylation of proteins (CIBOP) coupled with mass spectrometry to obtain native-state PV-IN proteomes. PV-IN proteomic signatures include high metabolic and translational activity, with over-representation of AD-risk and cognitive resilience-related proteins. In bulk proteomes, PV-IN proteins were associated with cognitive decline in humans, and with progressive neuropathology in humans and the 5xFAD mouse model of Aβ pathology. PV-IN CIBOP in early stages of Aβ pathology revealed signatures of increased mitochondria and metabolism, synaptic and cytoskeletal disruption and decreased mTOR signaling, not apparent in whole-brain proteomes. Furthermore, we demonstrated pre-synaptic defects in PV-to-excitatory neurotransmission, validating our proteomic findings. Overall, in this study we present native-state proteomes of PV-INs, revealing molecular insights into their unique roles in cognitive resiliency and AD pathogenesis.
Collapse
Affiliation(s)
- Prateek Kumar
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Annie M Goettemoeller
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Neuroscience Graduate Program, Laney Graduate School, Emory University, Atlanta, USA
| | - Claudia Espinosa-Garcia
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Brendan R Tobin
- Georgia W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Ali Tfaily
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Ruth S Nelson
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Aditya Natu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Juliet V Santiago
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Neuroscience Graduate Program, Laney Graduate School, Emory University, Atlanta, USA
| | - Sneha Malepati
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lihong Cheng
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
| | - Hailian Xiao
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
| | - Duc D Duong
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Levi B Wood
- Georgia W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30322, USA
- School of Chemical and Biological Engineering, GeoInsrgia titute of Technology, Atlanta, GA, 30322, USA
| | - Matthew J M Rowan
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Srikant Rangaraju
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA.
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|